

Title	Certain invariant subrings are Gorenstein. I
Author(s)	Watanabe, Keiichi
Citation	Osaka Journal of Mathematics. 11(1) P.1-P.8
Issue Date	1974
Text Version	publisher
URL	https://doi.org/10.18910/12434
DOI	10.18910/12434
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

CERTAIN INVARIANT SUBRINGS ARE GORENSTEIN I

Keiichi WATANABE

(Received April 20, 1973)

Introduction

Let $R=k[X_1, \dots, X_n]$ be a polynomial ring over a field k and G be a finite subgroup of GL(n, k). We assume that |G|, the order of G, is not zero in k. Then G acts on 1-forms of R and thus G can be considered as an automorphism group of R. We want to investigate the invariant subring R^G . We have two theorems concerning R^G already.

Theorem ([4], Théorème 1) R^G is again a polynomial ring if and only it G is generated by pseudo-reflections. (We call $g \in G$ a pseudo-reflection if rank $(g-I) \le 1$, where I is the unit matrix).

Theorem ([2], Proposition 13) R^G is a Macaulay ring.

After these theorems, we ask:

"When is R^G a Gorenstein ring?"

We prove in this paper the following theorems.

Theorem 1. If $G \subset SL(n, k)$, then R^G is a Gorenstein ring.

We apply this theorem to the case of regular local rings. If (R, m) is a regular local ring and if G is a finite subgroup of Aut (R), then G acts linearly on m/m^2 . Thus we have the canonical homorphism $\lambda: G \to GL(m/m^2)$. We also assume that |G| is a unit in R. Then applying Theorem 1, we get the following theorem.

Theorem 3. If $\lambda(G) \subset SL(m/m^2)$, then R^G is Gorenstein.

To reduce the case of regular local rings to the case of polynomial rings, we use the following theorem.

Theorem 4. Let (A, m) be a local ring. (We assume always the Noetherian property.) We suppose that A has a filtration $F=(F_i)_{i\geq 0}$ satisfying the following conditions.

- (i) $F_0 = A$ and $F_1 = m$.
- (ii) $(F_i)_{i\geq 0}$ defines the same topology as the m-adic topology on A. We put $R=Gr^{\cdot}(A)=\bigoplus_{i\geq 0}F_i/F_{i+1}$ the associated graded algebra and $M=R_+=\bigoplus_{i\geq 1}F_i/F_{i+1}$ the

canonical maximal ideal of R. Then,

- (1) If R_M is Macaulay, then A is Macaulay.
- (2) If R_M is Gorenstein, then A is Gorenstein.

1. Preliminaries

The contents of this section can be found elsewhere. But for the convenience of the readers, I put the proofs. As for the definition and the fundamental properties of Gorenstein rings, see [1].

In this section, R is a Noetherian ring and G is a finite group acting on R. We assume that |G|, the order of G, is a unit in R. We denote by R^G the invariant subring of R by G and by ρ the Reynolds operator $R \rightarrow R^G$ defined by $\rho(r) = \frac{1}{|G|} \sum_{s \in G} g(r)$ for $r \in R$.

Lemma 1. If f_1, \dots, f_s are elements in R^G which form an R-regular sequence, then they form also an R^G -regular sequence and $R^G/(f_1, \dots, f_s) \cong (R/(f_1, \dots, f_s))^G$.

Proof. It suffices to show the latter part. Let's put $a=(f_1, \dots, f_s)R$. If $h \in R$ and $h-g(h) \in a$ for all $g \in G$, $h-f(h) \in a$ and $\rho(h) \in R^G$ obtaining that $R^G/(f_1, \dots, f_s)R^G \to (R/(f_1, \dots, f_s))^G$ is surjective. Since injectivity is clear, we are done.

Lemma 2. If R is Macaulay, then R^G is Macaulay.

Proof. If (f_1, \dots, f_s) is a parameter system of R^G , it is also a parameter system for R. Since R is Macaulay, (f_1, \dots, f_s) forms an R-regular sequence and by Lemma 1, it forms an R^G -regular sequence. So R^G is Macaulay.

Lemma 3. If (A, m) is an Artinian local ring, the following conditions are equivalent.

- (a) A is Gorenstein.
- (b) $length_A(0:m)=1$.
- (c) There exists an element z in A, $z \neq 0$, such that for every $x \neq 0$ in A there exists an element y in A satisfying xy=z.

Proof. (a) \Rightarrow (b) is almost the definition itself. (b) \Rightarrow (c) is straightforward.

Lemma 4. Let (A, m) be an Artinian local Gorenstein ring, G a finite group acting on A. We assume that |G| is a unit in A and we denote by z an element in A satisfying the condition (c) of Lemma 3. If z is invariant under G, then A^G is Gorenstein.

Proof. We check the condition (c) of Lemma 3 for A^G . Take $x \neq 0$ in A^G . By assumption, there exists y in A satisfying xy = z. Then $x\rho(y) = z$ and $\rho(y)$

is in A^G .

Lemma 5. Let A be a ring which contains a field k and let k' be an extension field of k. If a group G acts on A and G acts trivially on k, we can extend the action of G to $A' = A \otimes_k k'$ naturally. Then $(A')^G = A^G \otimes_k k'$. Thus $(A')^G$ is faithfully flat over A^G and if $(A')^G$ is Gorenstein, A^G is Gorenstein.

Proof. We write elements of A' in the form $x' = \sum_{i=1}^{n} x_i c_i$ where $x_i \in A$, $c_i \in k'$ and c_i 's are linearly independent over k. For any $g \in G$, $g(x') = \sum_{i=1}^{n} g(x_i) \otimes c_i$ and if x is G-invariant, all x_i 's are G-invariant. Thus we have $(A')^G = A^G \otimes_k k'$ and so $(A')^G$ is faithfully flat over A^G . The latter part holds by [5], Theorem 1'.

2. The case when G is cyclic

In this section, we use the following notations.

 $R=k[X_1, \dots, X_n]$. the polynomial ring over a field k.

G is finite cyclic subgroup of GL(n, k). We assume that (ch(k), |G|)=1.

g is a generator of G. We put |G| = m and we denote by ε a primitive m-th root of unit.

$$n=R^G \cap (X_1, \dots, X_n)$$
 and $\mathcal{O}=(R^G)_n$.

By Lemma 5, we may assume that k is algebraically closed and that g is in a diagonal form, $g = \begin{bmatrix} e_1 \\ \ddots \\ e_n \end{bmatrix}$, where e_i 's are m-th roots of unity. We write $e_i = \varepsilon^{a_i}$.

Lemma 6. If det(g)=1, then O is Gorenstein.

Proof. X_1^m, \dots, X_n^m are in R^G and by Lemma 1, we have $\mathcal{O}/(X_1^m, \dots, X_n^m)\mathcal{O}$ $\cong (R/(X_1^m, \dots, X_n^m)R)^G$. $A = R/(X_1^m, \dots, X_n^m)R$ is an Artinian local ring. As A is a complete intersection, A is Gorenstein. In A, $z = (X_1 \cdot \dots \cdot X_n)^{m-1}$ satisfies the condition of Lemma 3 (c). If det (g) = 1, $z \in A^G$ and by Lemma 4, A^G is Gorenstein. Thus \mathcal{O} is Gorenstein.

Before proving the converse of Lemma 6, we need to fix some terminology.

DEFINITION 1. m and a_i are as in the beginning of this section. We put $I = \{(r_1, \dots, r_n) | r_i$'s are integers and $0 \le r_i < m$ for $i = 1, \dots, n\}$

$$J = \{(r_1, \dots, r_n) \in I \mid \sum_{i=1}^n r_i a_i \equiv 0 \pmod{m}\}.$$

We define an order in I and J. Namely, $(r_1, \dots, r_n) \ge (s_1, \dots, s_n)$ if $r_i \ge s_i$ for $i=1,\dots,n$. We call an element of J minimal if it is minimal among the elements of J which are not $(0,\dots,0)$.

Recall that, if (A, m) is an *n*-dimensional local Macaulay ring, the 'type' of A is defined by the number $[\text{Ext}_A^n(A/m, A): A/m]$. To say that A is Gorenstein

is equivalent to say that A is Macaulay and type(A)=1. We denote by emb(A) the embedding dimension of A. emb $(A)=\lceil m/m^2:A/m\rceil$.

Lemma 7. If the number of minimal element of J is E and the number of of maximal element of J is r, then $emb(\mathcal{O}/(X_1^m, \dots, X_n^m)) = E$ and type $(\mathcal{O}) = r$.

Proof. $X_1^{r_1}\cdots X_n^{r_n} \neq 0 \mod(X_1^m, \dots, X_n^m) \Leftrightarrow (r_1, \dots, r_n) \in I$, and $X_1^{r_1}\cdots X_n^{r_n} \in R^G \Leftrightarrow (r_1, \dots, r_n) \in J$, and type $(\mathcal{O}) = \text{type } (\mathcal{O}/(X_1^m, \dots, X_n^m))$. From these facts, the conclusion is immediate.

DEFINITION 2. We call an element g of GL(n, k) a pseudo-reflection if the order of g is finite and rank $(g-I_n) \le 1$. (Where I_n denotes the unit matrix).

Proposition 1. If R^G is Gorenstein and if G does not contain any pseudo-reflections other than the unity, then $G \subset SL(n, k)$.

Proof. It is clear that $(m, a_1, \dots, a_n)=1$. Since type $(\mathcal{O})=1$, J must have unique maximal element (r_1, \dots, r_n) . It is sufficient to prove that $(r_1, \dots, r_n)=(m-1, \dots, m-1)$. If this is not the case, we may assume that $r_1 < m-1$. Since (r_1, \dots, r_n) is the unique maximal element of J, for any s_i , $0 \le s_i \le m-1$ $(i=2, \dots, n)$, $(m-1, s_2, \dots, s_n) \notin J$. If $(a_2, \dots, a_n, m)=1$, this can not happen and so $d=(a_2, \dots, a_n, m)>1$. Then if we put m'=m/d, $g^{m'} \ne 1$ and $g^{m'}$ is a pseudoreflection. This contradicts the hypothesis that G does not contain any pseudoreflections other than the unity.

EXAMPLE 1. If \mathcal{E} is a primitive 6-th root of unity and if we put $g = \begin{bmatrix} \mathcal{E} \\ \mathcal{E}^2 \end{bmatrix}$, R^G is Gorenstein but $\det(g) \neq 1$. This is due to the fact that $g^3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ is a pseudo-reflection. If we put $H = \{1, g^3\}$, $R^G = (R^H)^{G/H}$, $R^H = k[X^2, Y, Z]$. The action of $g = g \mod H$ on $k[X^2, Y, Z]$ is represented by $\begin{bmatrix} \mathcal{E}^2 \\ \mathcal{E}^2 \end{bmatrix}$ and $\det(g) = 1$.

More generally (we don't suppose that G is cyclic), let H be the subgroup of G generated by all its pserdo-reflections. Then H is a normal subgroup of G and R^H is again a polynomial ring over k (Serre [4], Théorème 1). Thus the hypothesis "G does not contain any pseudo-reflections" is quite natural.

3. R^G is Gorenstein at the origin

Theorem 1a. If a finite group $G \subset SL(n,k)$ acts on $R=k[X_1, \dots, X_n]$ naturally and if (|G|, ch(k))=1, then R^G is Gorenstein 'at the origin'. Namely, if we put $n=R^G \cap (X_1, \dots, X_n)$ and $\mathcal{O}=(R^G)_n$, then \mathcal{O} is Gorenstein.

Proof. We take a parameter system (f_1, \dots, f_n) of \mathcal{O} as follows;

- 1. Each f_i is homogenous of the same degree m.
- 2. m is a multiple of |G|.

We put $A=R/(f_1, \dots, f_n)R$ and we want to apply Lemma 4. For this purpose we notice the following fact.

Lemma 8. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded ring. We assme that $A_0 = k$ is a filed and that each A_i is a finite dimensional vector space over k. If f is a homogenous element of A which is not a zero-divisor of A, then $\dim_k(A/fA)_n$ depends only on A, n and $\deg(f)$.

Proof. If $\deg(f)=d$, $\dim_k(A/fA)_n=\dim_kA_n-\dim_kA_{n-d}$.

We return to the proof of our theorem. By Lemma 8, for any d, $\dim_k A_d = \dim_k(R/(X_1^m, \dots, X_n^m))_d$. If we take $z \in A$ satisfying the condition of Lemma 3 (c) (A is Gorenstein), $\deg(z) = n(m-1)$. Then we take an element $g \in G$ and assume that g is in a diagonal form. We put H the cyclic subgroup of G generated by g. Applying Lemma 8 to R^H , $\dim_k(R^H/(X_1^m, \dots, X_n^m)R^H)_d = \dim_k(A^H)_d = \dim_k(R^H/(f_1, \dots, f_n)R^H)_d$. As we have $(X_1, \dots, X_n)^{m-1} \in R^H$ (g is in a diagonal form and $\det(g)=1$), $\dim_k(A^H)_{n(m-1)}=1$. As $\dim_k A_{n(m-1)}=1$, z is invariant under H. As g is arbitrary, $z \in A^G$. By Lemma 4, $A^G = \mathcal{O}/(f_1, \dots, f_n)\mathcal{O}$ is Gorenstein. Thus \mathcal{O} is Gorenstein.

4. R^G is globally Gorenstein

Theorem 1. If a finite subgroup G of SL(n, k) acts neurally on $R=k[X_1, \dots, X_n]$ and if (|G|, ch(k))=1, then R^G is Gorenstein.

Proof. By Lemma 5, we may assume that k is algebraically closed. If we take a maximal ideal n' of R^G , we can write $n' = (X_1 - a_1, \dots, X_n - a_n)R \cap R^G$ $(a_1, \dots, a_n \in k)$. We put $H = \{g \in G \mid g(a_1, \dots, a_n) = (a_1, \dots, a_n)\}$. We consider the diagram $R^G \to R^H \to R$. Then it is known that $R^G \to R^H$ is étale in a neighbourhood of n' (Raynaud [3], P. 103, Th. 1). Thus $(R^G)_{n'} \to (R^H)_q$ is flat (where $q = (X_1 - a_1, \dots, X_n - a_n) \cap R^H$). If $(R^H)_q$ is Gorenstein, then $(R^G)_{n'}$ is Gorenstein ([5], Theorem 1). But by the coordinate transformation $(X_1, \dots, X_n) \to (X_1 - a_n, \dots, X_n - a_n)$, H can be regarded as a subgroup of SL(n, k) and $q = (X_1, \dots, X_n) \cap R^H$. By theorem 1a, $(R^H)_q$ is Gorenstein and we are done.

Question 1.13 Is the converse of Theorem 1 true? Let G be a finite subgroup of GL(n, k) and let us assume that $(|G|, \operatorname{ch}(k))=1$ and that G contains no pseudo-reflections other than the unity. If R^G is Gorenstein, then $G \subset SL(n, k)$?

¹⁾ Added in proof. The statement in Question 1 has been proved by the author. The proof will appear in [6].

Question 2. Is the following statement true? Let $A = \bigoplus_{i \ge 0} A_i$ be a Northerian graded ring with A_0 a field. We put $M = A_+ = \bigoplus_{i \ge 1} A_i$. If A_M is Gorenstein, is A_0 globally Gorenstein?

5. Base extensions

Theorem 2. Let A be a Noetherian ring and G be a finite subgroup of SL(n, A). We assume that |G| is a unit in A. Then G acts naturally on $R = A[X_1, \dots, X_n]$. Then R^G is Gorenstein if and only if A is Gorenstein.

Lemma 9. Under the assumptions of Theorem 2, R^G is faithfully flat over A.

Proof of Lemma 9. (i) If a is an ideal of A, then $a(R^G) = (aR)^G$. (If $\sum a_i f_i \in (aR)^G$ with $a_i \in a$ and $f_i \in R$, $\sum a_i f_i = \rho(\sum a_i f_i) = \sum a_i \rho(f_i)$ and we have $(aR)^G \subset aR^G$. The converse inclusion is clear).

- (ii) As R is A-flat, $(aR)^G \cong (a \otimes_A R)^G$.
- (iii) $(a \otimes_A R)^G \cong a \otimes_A R^G$ (The isomorphisms is given by $\sum a_i \otimes f_i \to \sum a_i \otimes \rho(f_i)$.) By (i), (ii), (iii), $aR^G \cong a \otimes_A R^G$ and $R^G/aR^G \cong (R/aR)^G$. Thus R^G is faithfully flat over A.

Proof of Theorem 2. The fiber of the map f: Spec $(R^G) \rightarrow \text{Spec }(A)$ at $p \in \text{Spec }(A)$ is the Spec of $R^G \otimes_A k(p) \cong (k(p)[X_1, \dots, X_n])^G$ which is Gorenstein by Theorem 1. Thus f is a Gorenstein morphism in the sense of [5], Definition (1.7). The conclusion follows from [5], Theorem 1'.

REMARK. In Lemma 9, the assumption "|G| is a unit in A" is essential. For example, let A=k[e], k be a field of characteristic 2, $e^2=0$, $G=\langle g\rangle$, $g=\begin{bmatrix}1&e\\0&1\end{bmatrix}$. If we put a=eA, then $eX_1\in R^G$ and $e\otimes eX_1 \neq 0$ in $a\otimes_A R^G$, while $e.eX_1=0$. Thus $a\otimes_A R^G\to aR^G$ is not injective and R^G is not flat over A.

6. A theorem on the associated graded algebra of a local ring

Theorem 3. If (A, m) is a Noetherian local ring and $(F_n)_{n\geq 0}$ be a filtration on A satisfying the two conditions.

- 1. $F_0 = A$ and $F_1 = m$.
- 2. $(F_n)_{n\geq 0}$ defines the same topology as the m-adic topology on A. We put $R=Gr(A)=\bigoplus_{i\geq 0}F_i/F_{i+1}$ the associated graded algebra and $M=R_+=\bigoplus_{i\geq 1}F_i/F_{i+1}$ the canonical maximal ideal of R. Then,
 - (i) if R_M is Macaulay, then A is Macaulay.
 - (ii) if R_M is Gorenstein, then A is Gorenstein.

Proof. The proof follows immediately from the two lemmas below.

Lemma 10. Let f_1, \dots, f_s be homogenous elements of R which make an R-sequence. If x_1, \dots, x_s are elements of A with $\operatorname{In}(x_i) = f_i(i=1, \dots, s)$, then (x_1, \dots, x_r) form an A-regular sequence and $\operatorname{Gr}^*(A/(x_1, \dots, x_s)) \cong R/(f_1, \dots, f_s)$. (If $x \in A, x \in F_n$ and $x \notin F_{n+1}$, then $\operatorname{In}(x) = x \mod F_{n+1} \in \operatorname{Gr}^n(A)$. The filtration of $A/(x_1, \dots, x_s)$ is the one induced from (F_n) .)

Proof. We note the fact that if $x, y \in A$ and $In(x)In(y) \neq 0$, then In(xy) = In(x)In(y).

Case 1. s=1 (we omit the subscript 1).

If $y \in A$ and $\operatorname{In}(y) \neq 0$, by assumption $\operatorname{In}(x)\operatorname{In}(y) \neq 0$. Thus $\operatorname{In}(xy) = \operatorname{In}(x)$ In $(y) \neq 0$ and $xy \neq 0$. On the other hand, $Gr'(A/xA) \cong R/Gr'(xA)$ where Gr'(xA) is the homogenous ideal of R generated by $\operatorname{In}(z)$, $z \in xA$. But if $z = xy \in xA$, then $\operatorname{In}(z) = \operatorname{In}(x)\operatorname{In}(y)$ and so $\operatorname{In}(z) \in fR$. Thus we have $Gr'(A/xA) \cong R/fR$.

Case 2. General case.

We assume that the assumption is true for s=i and prove for s=i+1. As f_{i+1} is not a zero-divisor on $Gr(A/(x_1, \dots, x_i)) \cong R/(f_1, \dots, f_i)$, Case 1 applies.

Lemma 11. If (A, m) is an Artinian local ring, (F_n) is a filtration on A which satisfies the conditions of Theorem 3 and if R=Gr(A) is Gorenstein, then A is Gorenstein.

Proof. We use Lemma 3. Let h be a homogenous element of R which satisfies the condition of Lemma 3(c) for R(O:M) is a homogenous ideal of R). Then if $z \in A$ be such that In(z) = h, then for any $x \in A$, $x \neq 0$, there exists an element $f \in R$ such that In(x).f = h. If we take $y \in A$ such as In(y) = f and if deg(h) = m, In(y)In(x) = h and $xy \equiv z \mod F_{m+1}$. But as $F_{m+1} = 0$, xy = z and z satisfies the condition (c) of Lemma 3 for A.

7. The case of regular local rings

The statement of Theorem 4 was indicated to me by Professor M. Miyanishi with an outline of a proof. I wish to express my deep gratitude to him.

Theorem 4. Let (R, m) be a regular local ring of dimension n and G be a finite subgroup of Aut(R) satisfying the following conditions.

- 1. |G| is a unit in R.
- 2. The automorphisms of k=R/m inducted by the elements of G are identities.
- 3. If we denote $\lambda: G \rightarrow GL(m/m^2)$ the canonical homomorphism, then $\lambda(G) \subset SL(m/m^2)$.

Then $S=R^G$ is Gorenstein.

The proof is divided into several steps. First we need a lemma.

Lemma 12. ([2], Proposition 10) Let R be a commutative ring and G be a finite group acting on R. We assume that |G| is a unit in R and we put $S=R^G$. Then if a is an ideal of S, then $aR \cap S=a$.

Proof. If $\sum a_i r_i \in S$, $a_i \in a$, $r_i \in R$, then $\sum a_i r_i = \rho(\sum a_i r_i) = \sum a_i \rho(r_i) \in a$. Thus we get the inclsuion \subset and the converse is trivial.

We return to the proof of Theorem 4. From Lemma 12, we get

(1) S is a Noetherian local ring.

Proof. Since R is integral over S, S is local and by Lemma 12, S is Noetherian.

We put,

 $A = Gr_m(R) \cong k[X_1, \dots, X_n].$

G acts naturally on A. We denote by n the maximal ideal of S and we put $F_n = S \cap m^n$. $(F_n)_{n \ge 0}$ defines a filtration on S. We denote by B the graded ring associated to this filtration. Then we have;

(2) $B \simeq A^G$.

Proof. If $f=\operatorname{In}(x)\in A_n$ is invariant under G, then $x-\rho(x)\in m^{n+1}$ and $\rho(x)\in F_n$. Thus $A^G\subset B$. The converse implication is trivial.

(3) The filtration (F_n) defines on S the same topology as n-adic topology.

Proof. If suffices to say that for any integer $t \ge 0$, there exists an integer t' such that $S \cap m^{t'} \subset n^t$. But as nR is m-primary, for some s, $m^s \subset nR$. Then, by Lemma 12, $m^{st} \cap S \subset (nR)^t \cap S = n^t$.

By (2), (3), Theorem 1 and Theorem 3, Theorem 4 is proved.

TOKYO METROPOLITAN UNIVERSITY

References

- [1] H. Bass: On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [2] M. Hochster J. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
- [3] M. Raynaud: Anneaux Locaux Henséliens, Springer lecture notes, 169.
- [4] J. P. Serre: Groupes finis d'automorphisms d'anneaux locaux régulieres, Colloq. d'Alg. E.N.S. (1967).
- [5] K. Watanabe T. Ishikawa S. Tachibana K. Otsuka: On tensor products of Gorenstein rings, J. Math. Kyoto Univ. 9 (1969), 413-423.
- [6] K. Watanabe: Certain invariant subrings are Gorenstein II, to appear.

Added in proof; Question 2 in section 4 was solved affirmatively by Y. Aoyama, S. Goto, J. Matijevic and R.C. Cowsik independently and in more general forms.