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Abstract: The main objective of this paper is to introduce and study the numerical solutions of
the multi-space fractal-fractional Kuramoto-Sivashinsky equation (MSFFKS) and the multi-space
fractal-fractional Korteweg-de Vries equation (MSFFKDV). These models are obtained by replacing
the classical derivative by the fractal-fractional derivative based upon the generalized Mittag-Leffler
kernel. In our investigation, we use the spectral collocation method (SCM) involving the shifted
Legendre polynomials (SLPs) in order to reduce the new models to a system of algebraic equations.
We then use one of the known numerical methods, the Newton-Raphson method (NRM), for solving
the resulting system of the nonlinear algebraic equations. The efficiency and accuracy of the numerical
results are validated by calculating the absolute error as well as the residual error. We also present
several illustrative examples and graphical representations for the various results which we have
derived in this paper.

Keywords: generalized Mittag-Leffler function; multi-space fractal-fractional Kuramoto-Sivashinsky
equation; multi-space fractal-fractional; Korteweg-de Vries equation; spectral collocation method
involving the shifted legendre polynomials; Newton-Raphson method

MSC: 26A33; 33C45; 34A08; 35A20; 35A22

1. Introduction

Many researchers have been attracted to study the behavior of solutions for many
mathematical models, which are closely related to the real-world problems in (for example)
biological, chemical and physical sciences, as well as in economic models (see, for exam-
ple [1–8]). For most of these models, it is difficult to find the exact analytical solutions
to them. This difficulty is among the many challenges facing researchers in the applied
sciences (see, for example [9,10]). Hence, this challenge has attracted many researchers
to this field, who are in search of appropriate numerical methods to find approximate
and numerical solutions for these models (see [11,12]). In the existing literature, one can
find simulations which were made by means of such familiar computer programs such as
Mathematica, Matlab, Maple, and others. This procedure, in fact, has become remarkably
useful for researchers in such applied scientific fields as biology, chemistry, physics and
economics (see, for example [13–15]). Thus, by using these models and numerical solutions
together with computer simulations, it is possible to simulate many laboratory experiments.
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Our presentation in this article is organized as follows. In Section 2, the basic defini-
tions and main theory are presented. In Section 3, a method based upon, and the relevant
properties of, the familiar Legendre polynomials are presented and also the scheme of
the two equations are considered. In Section 4, the numerical results are studied and a
convincingly good agreement is found. Finally, in Section 5, we include some remarks
and observations.

2. Basic Definitions and the Main Theorems

We first define the one-parameter Mittag-Leffler function Eβ(ξ).

Definition 1. The Mittag-Leffler function Eβ(ξ) of the parameter β is given by

Eβ(ξ) =
∞

∑
k=0

ξk

Γ(βk + 1)
(ξ ∈ R; β > 0), (1)

and

Eβ,α(ξ) =
∞

∑
k=0

ξk

Γ(βk + α)
(ξ ∈ R; β, α > 0). (2)

Based on the definitions in [16–18], we can introduce the following definitions.

Definition 2. Let ψ ∈ H1(a, b) (a < b) and β, r ∈ (0, 1). Then the fractal-fractional derivative of
order (β, r) of the continuous function ψ(ξ) via the Mittag-Leffler kernel in the left-sided Riemann-
Liouville sense is given by

(FFM
a Dβ

r ψ
)
(ξ) =

M(β)

1− β

d
dξr

∫ ξ

a
ψ(τ)Eβ

(
−β

(ξ − τ)β

1− β

)
dτ. (3)

We now define the higher-order fractal-fractional derivative as follows.

Definition 3. The fractal-fractional derivative of order (ν, r) of the continuous function ψ(ξ) via
the Mittag-Leffler kernel in the left-sided Riemann-Liouville sense, denoted by FFM

a Dν
r , is given by

FFM
aDν

r ψ(x) =
M(β)

1− β

d
dξr

∫ ξ

a
ψ(n+1)(τ) Eβ

(
−β

(ξ − τ)β

1− β

)
dτ (4)

(n < ν 5 n + 1; 0 < r < 1)

or, equivalently,

FFM
aDν

r ψ(x) =
M(β)ξ1−r

(1− β)r
d

dξ

∫ ξ

a
ψ(n+1)(τ) Eβ

(
−β

(ξ − τ)β

1− β

)
dτ (5)

(n < ν 5 n + 1; 0 < r < 1).

In Definitions 1 and 2 above, we have

d
dηr {ψ(η)} = lim

τ→η

ψ(τ)− ψ(η)

τr − ηr . (6)

We also have n = bνc (that is, the integer part of ν), β = dνe (that is, the decimal part
of ν) and M(β) is the normalization function such that M(0) = M(1) = 1,
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Theorem 1. The left-sided FFM of order (ν, r), where ν ∈ (n, n+ 1] and r ∈ (0, 1), of the function
ψ(ξ) = ξγ (γ > 1; γ = dνe) is given by

FFM
aDν

r ξγ =
M(β)Γ(γ + 1)ξ1−r

(1− β)rΓ(λ)

∞

∑
k=0

ββk

[
aξα−1

(
1− a

ξ

)βk( a
ξ

)γ−n

+(α + 1)ξα

(
Γ(λ)Γ(kβ + 1)

Γ(α + 2)
− B a

ξ
(λ, kβ + 1)

)]
, (7)

where α = γ + βk− n and λ = γ− n + 1.

Proof. According to Equation (5), we have

FFM
aDν

r ξγ =
M(β)ξ1−r

(1− β)r
d

dξ

∫ ξ

a
D(n+1)τγEβ

(
− β(ξ − τ)β

1− β

)
dτ

=
M(β)Γ(γ + 1)ξ1−r

(1− β)rΓ(λ)
d

dξ

∫ ξ

a
τγ−n−1

∞

∑
k=0

ββk(ξ − τ)βk

Γ(kβ + 1)
dτ

=
M(β)Γ(γ + 1)ξ1−r

(1− β)rΓ(λ)
d

dξ

∞

∑
k=0

ββk
[
ξα+1

(
Γ(λ)Γ(kβ+1)

Γ(α+2) − B a
ξ
(λ, kβ + 1)

)]
Γ(kβ + 1)

=
M(β)Γ(γ + 1)ξ1−r

(1− β)rΓ(λ)

∞

∑
k=0

ββk

[
aξα−1

(
1− a

ξ

)βk( a
ξ

)γ−n

+(α + 1)ξα

(
Γ(λ)Γ(kβ + 1)

Γ(α + 2)
− B a

ξ
(λ, kβ + 1)

)]
,

which completes the proof of Theorem 1.

Upon setting r = 0 in Theorem 1, we obtain the result derived in [19]. Moreover, for
n = 0 and a = 0, Theorem 1 yields the result given in [20].

3. Legendre Polynomials and Numerical Scheme

Orthogonal functions and spectral methods have attracted the interest of many re-
searchers and have become an important performer for solving differential equations.
Recently, these methods have also been employed in finding numerical solutions of frac-
tional differential equations (see, for example [21,22]).

3.1. The Shifted Legendre Polynomials

We begin by defining the shifted Legendre polynomials on the interval [0, 1] with the
variable z = 2ξ − 1. These polynomials possess the following property:

φk(ξ) = φk(2ξ − 1) = φ2k(
√

ξ),

where the set {φk(ξ)}k∈N0 forms a family of orthogonal Legendre polynomials on the
interval [−1, 1] (see, for details [23]), N0 := N∪ {0} being the set of non-negative integers.
The analytic form of the shifted Legendre polynomials of degree s is given by

φ̄i(ξ) =
i

∑
k=0

(−1)i+k (i + k)!
(k!)2 (i− k)!

ξk (
φ̄0(ξ) = 1; φ̄1(ξ) = 2ξ − 1; i ∈ N \ {1}). (8)

The function ψ(ξ) ∈ L2[0, 1] can be expressed and approximated as a linear combina-
tion of the first m + 1 terms of φ̄i(ξ) as follows:

ψ(ξ) ' ψι(ξ) =
ι

∑
i=0

υi φ̄i(ξ) (ι ∈ N), (9)
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where the coefficients υi are given by

υi = (2i + 1)
∫ 1

0
ψ(ξ) φ̄i(ξ) dξ (i ∈ N0).

We now state and prove the main approximation formula of FFM
0Dνψι(ξ) as Theorem 2

below.

Theorem 2. For the FFM-derivative operator FFM
0Dν

r (ψι(ξ)), it is asserted that

FFM
0Dν

r (ψι(ξ)) =
ι

∑
i=dνe

i

∑
k=dνe

aiΠi,k,βΥβ
i,k(ξ), (10)

where

Πi,k,β =
(−1)i+k

(i− k)!(k!)2
M(β)Γ(k + 1)ξ−r+1

(1− β)r

and

Υβ
i,k(ξ) =

∞

∑
l=0

ρl ξk+lβ−n

Γ(k + lβ− n + 1)
.

Proof. Making use of the approximation (9) and the linearization property of the FFM-
derivative, we find that

FFM
0Dν

r (ψι(ξ)) =
ι

∑
i=0

ai
FFM

0Dν
r (φ̄i(ξ)). (11)

If we now apply the Equations (7), (8) and (11), we obtain the following results:

FFM
0Dν

r (φ̄i(ξ)) = 0 (i = 0, 1, · · · , dνe − 1), (12)

and

FFM
0Dν

r (φ̄i(ξ)) =
i

∑
k=dνe

(−1)i+k

(i− k)!(k!)2
M(β)Γ(k + 1)ξ−r+1

(1− β)r

·
(

∞

∑
l=0

ρl ξk+lκ−n

Γ(k + lβ− n + 1)

)
(i = dνe, · · · , m). (13)

In order to complete the proof of Theorem 2, we combine the Equations (11)–(13). This
leads to the desired result (10).

Theorem 3. The FFM-derivative operator FFM
0 Dν

r (φ̄i(ξ)) for the SLPs can be expressed in SLPS
as follows:

FFM
0 Dν

r (φ̄i(ξ)) =
i

∑
k=dνe

k−dνe

∑
j=0

Λβ,n
i,j,kφ̄j(ξ), (14)

where

Λβ,n
i,j,k =

(−1)i+k M(β)Γ(k + 1)Eβ,α(ρ)

(i− k)!(k!)2(1− β)r
·

j

∑
s=0

(−1)j+s(2j + 1)(j + s)!
(j− s)!(s!)2(k + `β− n− r + k + 2)

.
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Proof. We can expand ξk+`β−n−r+k+2 by using the properties of the shifted Legendre
polynomials (see [23]). We thus obtain

ξk+`β−n−r+k+1 ∼=
k−dνe

∑
j=0

vkjφ̄j(ξ), (15)

vkj = (2j + 1)
∫ 1

0
ξk+`β−n−r+k+1φ̄j(ξ)dξ (j = 0, 1, 2, · · · ).

For j = 0, we have

vk0 =
1

k + `β− n− r + k + 2
,

and for j = 1, 2, · · · , we obtain

vkj = (2j + 1)
j

∑
s=0

(−1)j+s (j + s)!
(j− s)! (s!)2(k + `β− n− r + k + 2)

.

In view of (13) and (15), we get (14).

3.2. Convergence Analysis

In this subsection, we introduce some important theorems for convergence analysis
and for estimating the upper bound of the error of the approximations.

Lemma 1 (see [24]). If ψ(ξ) : [0, 1]→ R and |ψ′′(ξ)| 5 ϑ for some constant ϑ, then

|vi| 5
ϑ
√

6√
2i− 3(2i− 1)

.

Theorem 4 (see [24]). If ψ(ξ) is continuous function on [0, 1] and |ψ′′(ξ)| 5 ϑ, then

lim
ι→∞

ψι(ξ) = ψ(ξ)

and the estimator is given by

‖ψ(ξ)− ψι(ξ)‖ 5 ϑ
√

6

(
∞

∑
i=ι+1

1
(2i− 3)4

)1/2

.

Theorem 5 (see [24]). The estimated error of the approximation FFM
0 Dν

r ψι(ξ), denoted by ET(ι),
is given by

ET(ι) = |FFM
0 Dν

r ψ(ξ)−FFM
0 Dν

r ψι(ξ)| 5
∞

∑
i=ι+1

vi

 i

∑
k=dνe

k−dνe

∑
j=0

Λβ,n
i,j,k

.

3.3. Construction of the Numerical Scheme of MSFFKS and MSFFKDVE

In this subsection, we present a detailed explanation for the construction of the formula
for finding numerical solutions of the multi-space fractal-fractional Kuramoto-Sivashinsky
equation and the multi-space fractal-fractional Korteweg-de Vries equation.

Example 1. Multi-Space Fractal-Fractional Kuramoto-Sivashinsky Equation.

The generalized Kuramoto-Sivashinsky equation (GKS) is often encountered when
studying connected media, and this equation is a model involving nonlinear partial differ-
ential equations (NLPDE) whose solutions appear in the form of chaotic behavior (see [25]).
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The GKS can be written in the terms of the fractal-fractional derivative with a generalized
Mittag-Leffler kernel as follows:

ψη +
FFM

0 Dα
r ψ + b FFM

0Dβ
r ψ + c FFM

0Dϑ
r ψ = 0 (0 < ξ < 1; 0 5 η 5 T) (16)

(0 < α 5 1; 1 < β 5 2; 3 < ϑ 5 4; b > 0; c > 0).

The mid-1970s was the beginning of the study of the KS equation (see [26]). In
fact, Kuramato [26] studied and analyzed his investigation of the phase turbulence in
the Belousov-Zhabotinsky reaction-diffusion systems. Subsequently, this equation was
extended in two or more spatial dimensions by Sivashinsky [27,28] in the modeling of
small thermal diffusive instability. It was also used as a model for the problem of Bénard
convection in one dimension, and also as a model to describe long waves. In dynamical
systems, these models are known for their chaotic solutions and complex behavior. In
addition, the GKS has been studied extensively (see [29,30]). In the case when α = 1, β = 2
and ϑ = 4, the exact solution is given by (see [31,32])

ψ(ξ, η) = c +
15
19

√
11
19
[
11 tanh3 (ω(ϕ)

)
− 9 tanh

(
ω(ϕ)

)]
, (17)

where ϕ = −cη + ξ − ξ0.
The initial and boundary conditions of GKS are given by

ψ(ξ, 0) = g(ξ), 0 < ξ < 1, (18)

ψ(0, η) = f1(ξ), (19)

ψ(1, η) = f2(ξ), (20)

ψξ(0, η) = f3(ξ) (21)

and

ψξ(1, η) = f4(ξ). (22)

We now explain the basic steps in order to get the approximate solution of the MS-
FKDVBE as detailed below:

(1) We can approximate the function ψ(ξ, η) by taking the first (ι + 1) terms of the sum
of the shifted Legendre polynomials φ̄s(ξ) as follows:

ψι(ξ, η) =
ι

∑
i=0

υi(η) φ̄i(ξ). (23)

(2) Upon substituting from the Equations (23) and (11) into Eqquation (16), we get the
following system of differential equations:

m

∑
i=0

d υi(η)

dt
φ̄i(ξ) +

(
m

∑
i=0

υi(η) φ̄i(ξ)

) m

∑
i=dαe

i

∑
j=dαe

υi(η)Υα
i,j(ξ)


+ a

 m

∑
i=dβe

i

∑
j=dβe

υi(η)Υ
β
i,j(ξ)

+ b

 m

∑
i=dϑe

i

∑
j=dϑe

υi(η)Υϑ
i,j(ξ)

 = 0. (24)

(3) At m + 1− dϑe points ξr, we collocate the Equation (24) as given below:
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m

∑
i=0

d υi(η)

dt
φ̄i(ξr) +

(
m

∑
i=0

υi(η) φ̄i(ξr)

) m

∑
i=dαe

i

∑
j=dαe

υi(η)Υα
i,j(ξr)


+ a

 m

∑
i=dβe

i

∑
j=dβe

υi(η)Υ
β
i,j(ξr)

+ b

 m

∑
i=dϑe

i

∑
j=dϑe

υi(η)Υϑ
i,j(ξr)

 = 0. (25)

(4) By substituting from Equation (23) into the Equations (18)–(21), we obtain the follow-
ing related initial and boundary conditions of this system:

m

∑
i=0

φ̄i(0)υi(η) = f1(η), (26)

m

∑
i=0

φ̄i(1)υi(η) = f2(η), (27)

m

∑
i=0

φ̄
′
i(0) υi(η) = f3(η) (28)

and

m

∑
i=0

φ̄
′
i(1) υi(η) = f4(η). (29)

We thus get the roots and we find the solution of the following equation:

φ̄ι+1−dϑe(ξ) = 0

and we then set it as the collocation points.
(5) We solve the set of the ordinary differential Equations (25)–(28) for getting the

unknowns υi(η) (i = 0, 1, · · · , ι). By setting the following points 0 = η0 5 η1 5
η2 5 · · · 5 ηs = T, s = 0, 1, · · · , N, ηs = τs, τ = T/N (N ∈ N) and putting
as

i = υi(ηs), we divide the interval [0, T] into subintervals of equal length. Hence,
clearly, the system involving the Equations (25)–(28) transforms to a set of nonlinear
algebraic equations as follows:

m

∑
i=0

(
υs

i − υs−1
i

τ

)
φ̄i(ξr) +

(
m

∑
i=0

υs
i φ̄i(ξr)

) m

∑
i=dαe

i

∑
j=dαe

υs
i Υα

i,j(ξr)


+ a

 m

∑
i=dβe

i

∑
j=dβe

υs
i Υβ

i,j(ξr)

+ b

 m

∑
i=dϑe

i

∑
j=dϑe

υs
i Υϑ

i,j(ξr)

 = 0 (30)

under the initial and boundary conditions given by

m

∑
i=0

φ̄i(0)υs
i = f s

1 , (31)

m

∑
i=0

φ̄i(1)υs
i = f s

2 , (32)
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m

∑
i=0

φ̄
′
i(0)υ

s
i = f s

3 , (33)

and

m

∑
i=0

φ̄
′
i(1)υ

s
i = f s

4 . (34)

(6) Before applying the Newton-Raphson iteration method with ι = 4, we set the system
such as (30)–(33) in matrix form given by

Fs+1 = Fs − J−1(Fs) S(Fs) and Fs =
(
as

0, as
1, as

2, as
3, as

4
)T , (35)

where S(Fs) and J−1(Fs) are the nonlinear terms and the inverse of the Jacobian
matrix, respectively. We set s = 0 and, in view of (26) and (28), we can get the initial
solution F0.

(a) In order to obtain

ψ(ξ, 0) = g(ξ) '
4

∑
i=0

υi(0)φ̄i(ξ), (36)

we substitute from (23) into the initial condition (18).
(b) The collocation Equation (36) is given by

f (ξr) '
4

∑
i=0

υi(0)φ̄i(ξr) (r = 0, 1, 2, 3, 4), (37)

where the ξr are the roots of φ̄5(ξ). Now, for finding the components of the
initial solution ψ0, we solve the set of the Equation (37).

Finally, by evaluating the numerical approximate solutions of the Equation (16), we
solve this system and then substitute into (23) .

Example 2. Multi-Space Fractal-Fractional Korteweg-de Vries Equation.

The first appearance of the KdV equation as a one-dimensional evolution equation
to describe the propagation of the surface gravity in a shallow water channel in 1895
(see, for details [33]; see also a recent work [34]). It also appeared in various physical
phenomena such as plasma physics, sound ion waves, and so on. The KdV equation also
provides a mathematical model of waves on shallow water surfaces (see [35]). Here, in this
example, we write the KdV equation in a concept of fractal-fractional with a generalized
Mittag-Leffler kernel as follows:

ψη + ψ Dα
ξ ψ +

1
2

Dβ
ξ ψ = 0 (0 5 η 5 T) (38)

(0 < ξ < 1; 0 < α 5 1; 2 < β 5 3).

The initial and boundary conditions are given by

ψ(ξ, 0) = f (ξ), (39)

ψ(0, η) = B1(η), (40)

ψ(1, η) = B2(η) (41)
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and

ψξ(0, η) = B3(η). (42)

In the classical derivative case, according to Zabusky and Kruskal [36], the soliton
solution of (38) is given by

ψ(ξ, η) = 6σ2sech2
(

σξ − 2σ3η
)

, (43)

where 6σ2 is the amplitude and σ > 0.
We now approximate the solution of (38) by taking ϕ(ξ, η) as follows:

ϕm(ξ, η) =
m

∑
i=0

ui(η) φ̄i(ξ), (44)

We can then numerically solve Equation (38) as in Example 1, by using the Legendre
collocation method with FDM.

If we substitute from the Equations (43) and (44) into Equation (38), we get

m

∑
i=0

d ui(η)

dη
φ̄i(ξ) +

(
m

∑
i=0

ci(η) φ̄i(ξ)

) m

∑
i=dαe

i

∑
j=dαe

ui(η)Υα
i,j(ξ)


+

1
2

 m

∑
i=dβe

i

∑
j=dβe

ui(η)Υ
β
i,j(ξ)

 = 0. (45)

By applying the same procedure as in Example 1, we can get the set of algebraic
equations as follows:

m

∑
i=0

(
us

i − us−1
i

τ

)
φ̄i(ξr) +

(
m

∑
i=0

us
i φ̄i(ξr)

) m

∑
i=dαe

i

∑
j=dαe

us
i Υα

i,j(ξ)


+

1
2

 m

∑
i=dβe

i

∑
j=dβe

us
i Υβ

i,j(ξ)

 = 0. (46)

Now, in view of (46), the numerical solutions of (38) can be obtained by using NRM.

4. Numerical Results and Graphical Illustrations

In this section, we present the numerical results of the multi-space fractal-fractional
Kuramoto-Sivashinsky equation and the multi-space fractal-fractional Korteweg-de Vries
equation based on the generalized Mittag-Leffler kernel.

We first study the numerical results for the multi-space fractal-fractional Kuramoto-
Sivashinsky equation. We focus on investigating two cases; the first case via the different
values of the fractional order and the second case via different values of the fractional
parameters. Figure 1a shows the comparison between the numerical solutions and the
exact solutions of (17) for different values of fractional order with the fractal order fixed.
In this figure, we set the fractional order as α = 0.7, β = 1.7, ϑ = 3.7 and α = 0.8, β = 1.8,
ϑ = 3.8 and α = 0.9, β = 1.9, ϑ = 3.9. This is illustrated by pink line, green line and blue
line, respectively. For the exact solution, we illustrate by red line the case when c = 1,

ξ0 = −10, ω = 1
2

√
11
9 , m = 5 and τ = 10−3. In addition, in Figure 1b, the absolute error

between the exact solution and the numerical solution for different values of the fractional
order is represented for the same parameters as in Figure 1a. It can be seen from these two
figures that the numerical solution approaches the exact solution as r approaches 1. This is
evident in Figure 1b, where the value of the absolute error decreases as r approaches 1.
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Figure 1. (a) Comparison Between the Exact Solution and the Numerical Solutions of (17) for Different

Values of α, β and γ with r = 1, c = 1, ξ0 = −11, ω = 1
2

√
11
9 , m = 5 and τ = 10−3. (b) Absolute Error

Between the Exact Solution and the Numerical Solutions for the Same Parameters as in (a). (Red Line:
Exact Solution).

Figure 2a displays the comparison between the numerical solutions and the exact
solutions of (17). In this case, we consider the values of α, β and γ as 0.9, 1.9 and 3.9,

respectively, for different values of r and with c = 1, ξ0 = −11, ω = 1
2

√
11
9 , m = 5 and

τ = 10−3. Figure 2b represents the absolute error between the numerical solutions and
the exact solutions of (17) for the same data as in Figure 2a. The results for these figures
show the qualitative behavior for the numerical solutions and the absolute errors in both
cases. The error decreases significantly as the fractal and fractional orders approach the
classical case.
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Figure 2. (a) Comparison Between the Exact Solution and the Numerical Solutions of the Multi-Space
Fractal-Fractional Kuramoto-Sivashinsky Equation for Different Values of r with α = 0.9, β = 1.9,

γ = 3.9, c = 1, ξ0 = −10, ω = 1
2

√
11
9 , m = 5 and τ = 10−3. (b) Absolute Error Between the Exact

Solution and the Numerical Solutions for the Same Parameters as in (a). (Red Line: Exact Solution).

In Figure 3, the residual error function in the fractal-fractional case for different values
of r is represented. In this figure, the values are r = 04, 0.6 and 0.9 with α = 0.9, β = 1.9,

γ = 3.9, c = 1, ξ0 = −10, ω = 1
2

√
11
9 , m = 5 and τ = 10−3. Also, from this figure, we

derive the same conclusion as in Figures 1 and 2, but here with the fractal-fractional order.
In a similar manner as we described above, we study the numerical results of the

multi-space fractal-fractional Korteweg-de Vries equation. Figure 4a shows a comparison
between the exact solution and the numerical solutions of the multi-space fractal-fractional
Korteweg-de Vries equation for different values of r with α = 0.7, β = 2.7, σ = 0.5, m = 4
and τ = 10−3. while Figure 4b shows the absolute error between the exact solution and the
numerical solutions for the same parameters as in Figure 4a.
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Figure 3. Residual Error Function of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky

Equation for r = 0.4, 0.6 and 0.9 with α = 0.9, β = 1.9, γ = 3.9, c = 1, ξ0 = −10, ω = 1
2

√
11
9 , m = 5

and τ = 10−3.
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Figure 4. (a) Comparison Between the Exact Solution and the Numerical Solutions of the Multi-Space
Fractal-Fractional Korteweg-de Vries Equation for Different Values of r with α = 0.7, β = 2.7, σ = 0.5,
m = 4 and τ = 10−3. (b) Absolute Error Between the Exact Solution and the Numerical Solutions for
the Same Parameters as in (a). (Red line: Exact solution).

Figure 5 displays the residual error function in the fractal-fractional case for different
values of r for the multi-space fractal-fractional Korteweg-de Vries equation. Just as in
the previous cases, there is a good agreement between the numerical results for the exact
solution as well as an approximate solution. Although the numerical solutions are taken in
the fractal and fractional cases, there is a good agreement. The clarification increases when
the residual error function is represented in Figure 5.
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Figure 5. Residual Error Function of the Multi-Space Fractal-Fractional Korteweg-de Vries Equation
for r = 0.7, 0.8, 0.9 with α = 0.7, β = 2.7, σ = 0.5, m = 4 and τ = 10−2.

5. Conclusions

In this paper, we have studied the multi-space fractal-fractional Kuramoto-Sivashinsky
equation and the multi space fractal-fractional Korteweg-de Vries equation in the presence
of a generalized Mittag-Leffler kernel. We have first introduced the fractal-fractional
derivative by means of a generalized Mitag-Leffler kernel. We have then investigated its
application on power functions. The case that we have studied here is a generalization
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of several previously-studied cases. The numerical results have been obtained by using
the spectral collocation method with the aid of the shifted Legendre polynomials. With a
view to verifying the numerical results, the absolute error between the exact and numerical
solutions of the multi-space fractal-fractional Kuramoto-Sivashinsky equation and the multi
space fractal-fractional Korteweg-de Vries equation have been calculated and we have
thereby found a good agreement. In addition, the residual error function has been calculated
for both of the above-mentioned equations. The error order has been shown to be small and
it decreases as we go to the classical case for each of these equations. All of the numerical
solutions have been obtained by using the computer program package Mathematica.
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