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Certain rational functions whose power series have positive coefficients 

Richard Askey 

In the late 1920 1 s some very important work was done by Courant, 

Friedrichs, and Lewy on solving partial differential equations by 

approximating them with systems of algebraic equations and solving 

these algebraic equations. In trying to prove convergence of the 

solutions of the algebraic equations which approximate the wave equation 

in three variables the series 

00 

(1-r)(1-s)+(1-r)(1-t)+(1-s)(1-t) 
= I 

n,m,k=O 

arose. The corresponding solution to the differential equation was 

positive and all of the coefficients they calculated also turned out 

to be positive, but they were unable to prove the positivity. In such 

circumstances the best course is to write to someone who is an expert 

on questions of this type. So in 1930 H. Lewy wrote to G. Szego and 

in a very short while he received a solution. We will give a solution 

which is closely related to Szego's solution. Szego's idea was to use 

some of the special functions of mathematical physics. He solved the 

problem by using old results on Bessel functions and then he showed how 

to reduce the problem to an integral of products of Laguerre polynomials. 

We will follow this part of Szego's paper and then estimate the integral 

of Laguerre polynomials. The Laguerre polynomial L (x) comes from the 
:p. 

generating function 

-xr/(1-r) 
e 

1-r 

It is easy to show that L (x) 
n 

is a 

00 

00 00 

J I I L (x) L (x) 
n=O m=O 

n m 
0 

00 

= I 
n=O 

L (x) 
n 

polynomial of 

00 

J 
-x nm 

e dx r s = 

0 

n 
r . 

degree 

xr 
e 1-r 

n. Also 

XS 

1-s 

( 1-r )( 1-s) 

dx 
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00 

1 
I (rs)n =-- = 

1-rs 
n=O 

00 

n 'f so 

I l° 
m, 

L (x) L (x) 
-x 

n m 
e dx = 1 n = m. 

0 

This is a st~ndard argument and Szego extended it as follows. 

From the generating function we have 

Then 

00 -x/(1-r) 
e 

1-r = I ( ) -x n 
L x e r . 

n 

1 1 1 
-x(1-r + 1-s + 1-t) 

e 

~( 1 -r) ( 1-s ) ( 1-t ) 

n=O 

00 00 00 

= L L L L (x)L (x)Lk(x)e-3x rnsmtk. 
n=O m=O k=O n m 

Integrating from O to 00 gives 

so 

00 

_ ___,,__,_----,--,--....,....,.._1 ---.--.----.-. = , I 
(1-r)(1-s)+(1-r)(1-t)+(1-s)(1~t) l 

00 

A . = I 
n,m,k 

0 

L (x)L (x)L (x)e-3xdx. 
n m k 

0 

When faced with a new integral which you can not find in any of the 

standard tables of· integrals the first thing to look for is a similar 

integral. In Whittaker and Watson, Modern Analysis, the integral 

·1 

( 1 ) J Pn(x) Pm(x) Pk(x)dx 

--1 

is evaluated. Here P (x) is the Legendre polynomial defined by 
n 

2 -
(1-2xr+r ) 2 

= 

00 

I 
n=O 
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It satisfies the orthogonality condition 

1 

f P (x) P (x)dx = O, n + m. 
n m 

-1 

The actual value of (1) is not important to us but the fact that it 

is nonnegative is essential. Now the problem that occurs is how to go 

from P (x) to L (x). Recall that (1 - _tx)t • e-x as t • ~.This 
n n 

suggests that we should consider polynomials orthogonal on G1,1] 

with respect to (1-x)a. Actually we will now define the polynomials 

which are orthogonal with respect to (1-x)a(1+x) 6. These polynomials 

are called P (a,S)(x) and are normalize by P (a,S)(1) = 
n n 

= (a+1)(a+2) + (a+n) = (n+a) 
n 

1 • 2 •••• n 

The orthogonality relation is 

1 

f p (a, S ) ( X) P (a, S \ X) ( 1-x) a ( 1 +x) S dx = 0, m f n • 
n m 

-1 

If we let x = 1 - E]£_ then this is a 

0 

. -a-B-1 1+a . . 
If we multiply by 2 S this is 

a I p~a,6)(1 - r)P~a,a)(1 - ~)ya(1 - f)ady = 0 m + n. 

0 

Letting a •~ this should approach 

0 
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where L0 (x) are polynomials orthogonal with respect 

which a~e normalized by L0 (o) = p(a,S)(1) = (n+a). 
n n n 

true and L0 (x) is L (x). The normalization is right 
Or n n 

- 1-r 00 (X) 

to x0 e-x on (0,00 ) 

This in fact is 

for 

_e ___ = 

1-r I 
n=O 

L (x)rn = 
n I 

n=O 

n 
r so L (0) 

n 

0 
= 1 = L (0). The polynomials 

n 

L0 (x) 
n 

come from the generating function 

xr - --1-r (X) 

e 
I L0 (x)rn = 

( 1-r) a+1 n=O 
n 

and the orthogonality can be checked as before. We will return to 

L0 (x) later. 
n 

This shows us how to use P(O,S)(x) to get L (x) but we still haven't 

solved the problem of how to gonfrom P (x) to P (O,S)(x), We will do it 
n n 

one step at a time. Let w(x) be a nonnegative function on ~1, U and 

let p (x) be .the polynomials on [:.1,j] which are orthogonal with respect 
n 

to w(x). These polynomials are unique except for a multiplicative 

constant. We choose the polynomials to be orthonormal and choose the 

highest coefficient to be positive. Let 4n(x) be the polynomials 

orthogonal with respect to (1+x) w(x) and normalize them in the same 

way, Expand {1tx) 4n(x) in terms'of pk(x).·This is 

n+1 
( 1+x) 4n (x) = l ~ n pk(x), 

k=O ' 

where a. is given by 
.K.,n 1 

a. = I (1+x) a (x) pk(x) w(x) dx • 
.K. ,n -n 

If k <: n then 

and 

-1 

a - 0 since we have .K.,n -

1 

I xj 4n(x)(1+x) w(x)dx = O, 

-1 

k 
pk(x) = I 

j 
a. k X 

j=O J, 

J = 0, 1 , ••• ,n-1 
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Thus 

( 1 +x ) a ( x ) = A p + 1 ( x ) + B p ( x) . 
'"Il n n n n 

Since the highest coefficients of ~(x) and pn+1(x) are positive so 

is A. Now we let x = -1. The left hand side is zero so we have 
n 

All of the zeros of p (x) are real and lie strictly between -1 and 1. 
n 

Thus pn(-1)(-1)n > 0 and pn+1(-1)(-1)n+1 > 0. This gives Bn > O. 

Now we apply this to our problem of Jacobi polynomials. 

Recall that 
1 

I P (x) P (x) 
n m 

Pk(x)dx ,:_ O, 

-1 

with A > o, B > O. Thus 
n n 

1 

I 
-1 

1 

J C\tn+1(x) + BnPri.(x[J~mpm+1(x) + BmPm(x!] ci1lk+1(x) + BkPk(x)Jdx 

-1 

and after multiplying these terms we see that 

1 

I 
-1 

If we continue in the same fashion we see that 

1 

I 
-1 
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Now let x = 1 - ~ and let j • 00 • First multiply by j2-3j-1 and this 
J 

gives 

0 

• I L (y) L (y) L. (y)-3Ydy 
n m -k 

0 

and the approximating integrals on the left are all nonnegative. Thus so 

is the limit on the right. To prove the strict positivity we must 

generalize the original problem, This generalization is also due to 

Szego. The same argument which we gave before leads to 

where r(a+1) = J xa e-xdx. 

0 

Szego showed that these integrals are nonnegative if a,:_-;. They 

change sign for a<-; so let us consider the end case a=-;. The 

proof we gave above can be repeated once we know that 

If we let x = cose this is the same as 

'IT 

I P(-;,-;)(cosS)P (-;,-;)(cos8)P(-;,-;)(cos8)d8 > o. 
n m k 

0 

( 1 1) 
But what are these functions P - 2 ,- 2 (cose)? 

r i] ~)-; on i:1,1 with respect to (1-x and so 

P(-;,-;)(x) are orthogonal 
n ( 1 1 ) 

P - 2 ,- 2 (cos8) are 
n 

orthogonal on @,'IT] with respect to d8. They are also even functions of 

e, since cos(-e) = cose. 
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Thus they are constant multiples of cosn0 and the nonnegati vity of the 

above integral is just 

cosn0 cosm0 = ~ (Eos ( n+m) e + cos ( n-m) ~ 

since~> 0 is the only coefficient which does not vanish. 
CX) 

However we can now 

0 

2 
use x = xx to again show 

CX) 

I L (x) L (x) Lk(x)e-3xdx > 0 and this proof 
n m -

0 

can be extended to give the strict positivity of this integral. 

1 _ r(~) , 
[( 1-r) ( 1-s) + ( 1-r) ( 1-t )+ ( 1-s) ( 1-t )] - [( 1-r) ( 1-s )+ ( 1-r) ( 1-t) + ( 1-s) ( 1-t )} 2 

rO) ___ ......,_--,- . 

[ ]2 

CX) 

CX) 

f I L (x) L (x) ( ) -3x n sm tk Lkxe dx r = 
n,m,k=O 

n m 
0 

CX) CX) 

ln'.~)1 2 I 
1 1 1 

-~ -3x I 
1 1 1 1 3 

= I L- 2 (x) L- 2 (x) 1;2 (x) X e dx L- 2 (x) L- 2 (x) 1;2 (x)x- 2e- xdx 
n, m, 1 n2 m2 2 

0 0 

If we first sum over n 1+n2 = n and then over n we see that 

CX) CX) 

f Ln(x)Lm(x)Lk(x)e-3xdx = 

0 

1 l f L-~ (x)L-~ (x)1;~k(x)x-~e-3xdx 
lr(~)l2 n,=O,1, •• ,n O n-n, m-m, -

m1 =O, 1 , •• ,m 

k1=O,1, .• ,k 

CX) 
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This gives the nonnegati vi ty of the integral on the left without 
1 

using J Pn(x) Pm(x) Pk(x)dx ~ 0 and if we can show that even one 

-1 

product on the right is positive the left hand side will also be 

positive. It is possible to show that 

00 

0 

There are two ways to do this. One is to use the generating function 

and compute the integral. The other way is to use a very interesting 

theorem of Karlin and McGregor. If p (x) denotes a set of polynomials 
n 

orthogonal on @, 00] with respect to a nonnegative measure da ( x) 

with p (0) > 0 then 
n 

00 

I p (x) p (x)e-~xda(x) > O, 
n m 

~ > 0. 

0 

The real interest in this result is the connection with probability 

theory. This positive number represents the probability of a birth 

and death process going from a population of size m to one of size 

n in time e.. Rather than give any details of this let us consider 

some related problems. 

There are other interesting sets of orthogonal polynomials. For 

. . X O 1 example, eonsider the measure with mass c at x = , , •••• 

M (x;c) be the polynomials orthogonal on @, 00] with respect 
n 

measure • ~rha t is 

00 

l ex Mn(x;c) l\_(x;c) = O, 
x=O 

Normalize by M (O;c) = 1. 
n 

An analogue of Szego' s result would be 

00 

l Mn(x) l\_(x) M (x)c3x > O. 
x=O l 

n f k. 

Let 

to this 
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Unfortunately this result fails and I know no results of this typefor 

these polynomials, This type of result does not always hold for we 

can prove the following theorem, 

00 

f L~(x) L:(x) L~(x)xae-jxdx .::,_ O 

0 

does not hold for any j and all n,m,k, if -1 <a<-~. The Karlin

McGregor result shows that if a result of this type holds for some 

j then it holds for all larger j, It is possible to extend the Szego 

result to 

00 

J Ln(x) Lm(x) Lk(x) e-2xdx > o, and so 

0 

(1-r)(1-s)(1• )+(1-r)(11)(1-t)+(11)(1-s)(1-t) 

has positive coefficients • As Szego remarked there is another extension, 

this time to more variables. If f(x) = (x-r)(x-s)(x-t) then 

f'(1) = (1-r)(1-s)+(1-r)(1-t)+(1-s)(1-t), Similarly we can consider 

f(x) = (x-x1),,,(x-~), Then the same proof as above gives 

= I 

with Aa > 0 
n,, ... ,~ -

• .p , a 
J..a. a ?_ -l:! , and A 

n1 , , , , ,nk 
> o .. 

Most good problems suggest other problems and have interesting 

applications, We have mentioned some of the further problems suggested 

by this. One other was suggested by H. Lewy, Show that the coefficients 

of 

(4-r-~-t-u) ((1-r)(1-s)+(1-r)(1-t)+(1-r)(~-u)+(1-s)(1-t)+(1-s)(1-u)+(1-t)(1-u)) 

are positive. 
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Unfortunately we have been unable to find a representations for these 

coefficients in terms of special functions which is simple enough to 

handle. The original problem has been done directly by Kaluza but his 

proof is very complicated and does not extend at all. Thus special 

functions seem to be the only good way of attacking such problems. 

There are two applications besides the original one to difference 

equations. The first is to the construction df an interesting Banach 

algebra in which questions of analysis and probability theory can be 

asked.The other is probably no more·than an interesting remark in classical 

algebra. From 

= 
f I ( 1 ) 

n1 
l A X 

n1 , ••• ,~ 1 

we get 
k-1 00 

n1 nk X I 
1 

I A 
f' (x) 

= x1 X n n1 ' •• ,~ n 
n=O X n1+ •• +~ =n 

with A > O. 
n 1 , ••• ,nk 

k-1 
Now we would like to show how functions like ~'(x) can be used. 

tj 
00 

~j (x1 , ••• ,xk)tj. + I x. , •• x .. + ... = 1 + I . . . k i l.J j=1 1<i <i < •• <i< 
- 1- 2-

t 
-k 

= 
(t~1-x1) •• (t- 1-~) 

Let t- 1 = z. Then 

k k 00 tf, -j z z 
1 + I (z-x1) •• (z-xk) 

= f(z) = J z 
j=1 
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But 

1 1 

( z-x 1 ). • ( z-xk) 
= 

f'(x 1)(z-x1 ) 
+ ... 

or 

00 

~j 
k k 

1 I z-J I 
z 

+ = 
f' (x. )( z-x.) 

j=1 i=1 1 1 

k 
1 

k-1 00 x. 00 

z -l+k-1 
I I _1_ I = 

f' (x.) 
= z 

1 
i=1 l=O z 1 l:=O 

Thus 

N' l-k+1 

k 

= I 
i=1 

1 
x. 

1 

f' (x.) 
1 

+ 
1 

f' (~){z-~) 

k k-1 

I 
z 

= 
X;") 

i=1 f'(x.)(1 - ..1:.. 
1 z 

k 
1 

x. 

I 
1 

f' (x.) 
i=1 1 




