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CERTAIN SCHUR-HADAMARD MULTIPLIERS
IN THE SPACES Cp

JONATHAN ARAZY

Abstract. Let / be a continuously diflerentiable function on [—1,1] satis-

fying \f'(t)\ < C\t\<* for some 0 < C, a < oo and all — 1 < t < 1, and let

X = (Xi) € ¿r satisfy — 1 < Xj < 1 for all t. Then

/70<) - /(XiA
°'-x =      x -x      )V     X,     X,     J

is a Schur-Hadamard multiplier from CP1 into Cpa for all pi, P2 satisfying

l<P2<2<pi<oo and pj-1 < pj"1 -f- a/r.

1. Introduction . Let Coo be the space of all compact operators on l2 with the

operator norm. For 1 < p < oo let Cp be the Banach space of all x G Coo for which

||x||p = (trace^*!)"/2)1/? < oo. (See [9, Chapter IE] for a detailed study of these

spaces and related topics.) A matrix a = (a(i, j)) is said to be a Schur-Hadamard

multiplier (or, briefly, o multiplier) from CPl into CPa if for every b = (b(i, j)) in

CPl the Schur-Hadamard product of a and b, namely aob= (a(i, j)b(i, j)), belongs

to CPa. We denote by M(CPl,CPa) the space of all multipliers from CPl into CP3

with the norm

||a||Pl,P2=sup{||ao0||P3;||6||pl<l}.

In this note we study multipliers of the form

a/,x = (a/,x(î,j)),

where

7&)-7(XiJ
(i-i) *f,\(hj) = <

Xt^X,,
Ai — \j

f (Xt), X» = Xj.

Here / is a continuously diflerentiable function on [—1,1] and X = (Xi) is a real

sequence with —1 < \ < 1, i = 1,2,... . Such multipliers are of great importance

in perturbation theory of linear operators (see [1, 3, 5-8]). The multiplier a/,x plays

the role of the Gâteaux derivative of the operator map x >-► f(x), evaluated at the

diagonal matrix d(X) = diag(Xi), whenever the derivative exists.

In the papers [1-5] the authors study general multipliers from Cp into itself (and

from B(l2) into itself) under the name "Stieltjes Double Operator Integrals". In their

applications to the multipliers a/_x there is no restriction on X besides boundedness.

As for /, boundedness of the derivative /' is clearly a necessary condition for the

boundness of the multiplier a/,x in Cp for all X, but if p 7^ 2 it is not sufficient and
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one has to impose more restrictive smoothness conditions on /. (The case p = 2

is trivial. C2, the Hilbert-Schmidt class, is a Hubert space by itself and thus its

multipliers are precisely the coordinate-wise bounded matrices.) A typical result is

the following

Theorem 1.1 [1, THEOREM 5]. Let f be so that f G Lipa[—1,1] for some
a > 0, andletX — (\) satisfies—1 < X¿ < 1 for alii. Thenaft\ G M(B(l2),B(l2))
and o/,x G M(CP, Cp) for allí < p < co.

We are interested here in the little different problem of membership of aft\ in

M(CPl,CP2) for pi j¿ p2, mainly for p2 < 2 < pi. Roughly speaking, we require

that X G lr for some r < oo, and relax the LipQ condition on /' by requiring only

that |/'(i)| < C|i|Q for some 0 < C < oo and all —1 < t < 1, where the exponent

a > 0 satisfies \/p2 < 1/pi + a/r. The condition p2 < 2 < pi allows us to factor

a/,x through C2, and thus to reduce the study of the multipliers a¡:\ to that of the

multipliers 6M = (pmm{i,j}) where pi = \\\^ for an appropriate ß. Finally, using

the triangular projection, we reduce the study of the multipliers b^ to that of left

and right multiplication by diagonal matrices. We also show that, in a sense, the

result stated in the abstract is best possible.

2. The main result. We start with some known facts on multipliers which will

be needed later.

Proposition 2.1. M{C2, C2) = l^iN x N).

PROOF.   This follows immediately from C2 = ¿2(N X N).    D

Proposition 2.2. Let l < pi < ci < oo, l < q2 < p2 < oo. Then

M(Cqi,Cq2) C M(CPl,CP2) and \\a\\PllPa < ||o||,lf,a for allaE M(Cqi,Cq2).

PROOF. This follows trivially from the fact that if p < q then Cp Ç Cq and

\\X\\q 5Í \\x\\p f°r au x £CP.    D

Corollary 2.3. Let 1 < px < 2 < p2 < oo. Let X = (\) be so that —1 <

Xi < 1 for all i, and let f be any continuously differentiable function on [—1,1].

ThenafiXeM(CPl,CP2).

PROOF.  By Propositions 2.1 and 2.2, a/iX G M(C2,C2) C M(CPl,CP2).    D

Let D denotes the diagonal projection, i.e. (Da)(i,j) = 8i¿a(i,i).

Proposition 2.4.

D(M(CPl,CP2)) = M(lPl,lP2) = lP0

where l/p2 = 1/pi + 1/po-

PROOF.  lp is identified with D(CP), so

D(M(CP1, CP2)) = M(D(CPl),D(CP2)) = M(lPl,lP2).

The fact that M(lPl, lP2 ) = ZPo is well known.    D

Next for 0 < a < oo let Xa be the space of all continuously differentiable

functions on [—1,1] satisfying /(0) = 0 and \f'(t)\ < C\t\a for some 0 < C < oo

and all t G [—1,1], with the norm

||/||a = mf{0 < C < oo; |/'(i)| < C|i|a for all  - 1 < t < 1}.
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Our main result is the following:

THEOREM 2.5. Let 0 < a, r < oo. LetfeXa and let X = (X¿) G lr be so that
—1 < Xi < 1 for all i. Then

a/,x = ((/(Xi) — /(Xj))/(Xi — \j))

is a multiplier from CPl into CP2 for allpi,p2 satisfying l<p2<2<pi<oo

and l/p2 = 1/pi + ct/r.

Moreover,

l|a/,x||Pl,P2<2||/||Q.||X||ra.

We remark that using Proposition 2.2 one gets easily that, under the hypotheses

of Theorem 2.5, afi\ G M(CPl,CP2) for all 1 < p2 < 2 < pi < oo with l/p2 <

1/Pi + ot/r.
The proof of Theorem 2.5 proceeds by a sequence of propositions.

PROPOSITION 2.6. Let 0 < a < oo, let f E Xa and let X = (Xi) be so that

—1 < Xi < 1 for all i. Let mf:\i0l be defined by

((/(Xi) - /(XA* - XyJmaxílXil* M«})"1
(2.1)    m/lX>«(», j) **:l! î/Xi^0orX,^0,

JO   if\i = X, = 0.

Thenm-f^a G M(C2,C2) and Hm/.x.alb^ < ll/IU-

PROOF.   Using Proposition 2.1 we get

||"V,X,a||2,2 = SUplm/.x.a^',»!  < ||/||a-      D
i,j

Next, let Pt denotes the (upper) triangular projection, that is

(Ptx)(i,j) = \
[0, i

<r <i

>J-

It is known that Pt is bounded in Cp if and only if 1 < p < oo (see [10, Chapter

in and 11]). In this case, let ip denotes the norm of Pt in Cp.

For any X = (Xi) G loo let d(X) = diag(Xi) be the diagonal matrix whose (i, i)

entry is Xi. We denote by L\ and R\ the operators of left and right multiplication

by d(X), respectively. That is

(Lxx)(z, j) = \x(i, j),        (R\x)(i, j) = x(i, j)\.

Since L\, R\, Pt are (identified with) multipliers—they commute with each

other.

Finally, for all sequences X =¡ (Xi) we define a matrix b\ = (b\(i,j)) by

b\(hj) = Xmin{ij}.

Notice that for all matrix x

(2.2) &x o x = LxPTx + flx(/ - Pt)x = PTLxx + (/ - PT)Rxx.

Proposition 2.7. Let 1 < po,Pi,p2 < oo be so that \/p2 — l/p0 + 1/pi- Let

X G ZPo. ThenLx andRy map CPl into CP2 and ||Lx||PllP2 = ||Äx||Pl,Pa = ||X||Po.
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We omit the straightforward proof which depends on the "generalized Holder

inequality" in the spaces Cp (see [9, Chapter III]):

IMIP2 < INuilylU,     IM - i/po + 1/pi-

PROPOSITION 2.8. Let 1 < Po,Pi,P2 < oo be so that \/p2 = l/p0 + 1/pi- Let

X G lPo. Then b\ G M(CPl,CP2) with norm ||ox||PllP2 < A||X||Po (the constant A

depends only onpi,p2), except for the cases pi = p2 = oo andpi = p2 = 1.

PROOF. If 1 < pi < oo then Pt is bounded in CPl, and Lx and R\ map CPl

into CP3. Using (2.2) and Proposition 2.7 we get b\ G M(CPl, CP2) and ||&x||Pl,P3 <

(l-r-27Pl)||X||Po. (If 1 < p2 < oo then, using the boundedness of Pt in CP3, we get

in a similar way 6X G M(CPl,CP3) and ||6x||Pl)P2 < (1 + 27Pa)||X||Po.) It remains

to deal with the case po = p2 = 1, Pi = oo. For x G Coo define xn(i,j) = x(t,j)

if mm{i,j} = n and xn(i, j) = 0 otherwise. Clearly, x = X)^=i xn and ||xn||i <

2|N|oo. So

110X0X11! = / „ Xnxn

n=l

< ;cix»m*»i

< 2||x||oo 23 IXnl = 211x110011X11:,
n=l

i.e. bx G MtCoo.C,) and ||fex||oo.i < ^XIIl    D
REMARK. For general X G loo, b\ need not be defined on the whole of Coo (or

Ci); this is the consequence of [11, Proposition 1.3] and the unboundedness of the

triangular projection in Cx> (respectively, in Ci). If X G Co and

oo

^X*(2¿-1)-1 <oo,

i=i

where {X*}?^, is the nonincreasing rarrangement of {IXil}^!, then

OxGM(Coo,Coo) = M(C1,C1).

This follows by the above arguments from the fact that Pt acts continuously

from the Macaev ideal

Cw = jx G Coo; ML = ¿ Si(x)(2i - I)"1 < 00

into Cqo and from Ci into Cci = C^. (Here {si(x)}'^=1 are the s-numbers of x; see

[10, Chapter m].)
PROOF OF THEOREM 2.5.    Since Xi —► 0, we can assume without loss of

generality that {IXil}?^ is nonincreasing. Thus

max{|Xt|a,|XJ|a} = |Xmin{i,,}|Q.

Let cti be defined by 1/2 = l/pi -\- cti/r and let a2 = a — «j. Clearly, 0 <

"ii <*2 < ot and l/p2 = 1/2 -\- a2/r. We present the proof in the case p2 < 2 <

Pi, i.e. 0 < cti, a2 < a. The other cases are treated similarly, and are even easier.

Let mfiX,a be defined by (2.1), let /*<*> = |X|a* (A = 1,2), i.e. p(k) = |Xi|a<=.

Then o/;x admits the following factorization:

a/,x = bíi(2) o mft\t<x o bM(i).
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Now, by Proposition 2.8 b^m G M(CPl,C2), bßW G M(C2, CP2) and

\KW\\2,P3 < V2\\pW\\r/a2 = >/2\\\\\?.

Since, by Proposition 2.6, m/^.a G M(C2,C2) and ||m/)x,Q||2>2 < ||/||Q we finally

get that aft\ G M(CPl, CP2) and

ll°/,x|lPi,P3   < IIV3>ll2,p3 • l|w/,X,a||2,2 • |IVl)llpi-2

< V^|X||?S • 11/11 « • >/2\\\\\? = 211/11 £||X||?.    D

3. Concluding remarks. Theorem 2.5 admits the following partial converse,

which shows that our hypotheses on / and X are optimal.

PROPOSITION 3.1. Let 1 < p2 < pi < oo, let a > 0 and let 0 < r < oo be so

that 1/pa = 1/pi + a/r.

(i) Let X = (Xi) be so that — 1 < Xi < 1 for all i, and assume that for all f G Xa,

o/,x G Af (CPl, CP3). Then \Elr-

(ii) Let f be a continuous differentiable function on[—1,1] so that for X = (\) G

lr with —1 < Xi < 1 for alii, o/,x G M(CPl,CP2). Then f G Xa.

PROOF, (i) Consider f(t) = t\t\a. We have f'(t) = (a + l)\t\a and so / G Xa.

Since o/;x G M(CPl,CP2), we get by Proposition 2.4 that

L>(fl/>x) = diag((a + l)(Xi)a) G M(lPl,lP2) = lr/a.

That is X G lr-

(ii) Suppose that / G Xa. Then there is a sequence {irJ^Lj in [—1,1] with

0 < m < 2~n(1+1/«) and |/'(t„)| > 2n|in|a for all n = 1,2,.... Put

fcn = [2~nr'a ■ \tn\-r],        n = l,2,...,

and let X = (Xi) be the sequence in which tn appears exactly kn times. Then

oo oo oo

£ Mr =   £ kn\tn\r <   ¿2 2~nT/a < °°>

i=l n=l n=l

but
oo oo

£ i/'(Xi)r/a = £ fcni/'(t„)r/a
i=X n=l

oo oo

> £ kn2nr'a\tn\r > £ (1 - 2-nr) = 00.

n=l n=l

It follows that (/'(Xi)) G Af(íPi,'Ps)i and so by Proposition 2.4,

a/iX?M(CPl,CP2).

A contradiction.    D

REMARK. Our methods and results can be extended by standard arguments

to other symmetric norm ideals. For instance, if o G M(CPl,CP2) then a G

Af(Cp2,Cpj) where 1/pj + 1/p^ = 1, j = 1,2.   This is the consequence of the

fact that the adjoint operator of the multiplier a is the multiplier ö = (a(i,j)), the

fact that ||ä||P)(j = ||a||P)9 and the well-known fact that (Cp)* = Cp..  It follows
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that if J is any interpolation functor and if Ce = 7(CPll Cpj) = Cj^v ,¡ ,), Cf =

7(CP3,Cpj) = Cjr(ip3ii .) then a G M(Ce,Cp). For instance, if 0 < 0 < 1 and

p(0), q(0) are defined byl/¿if>) = (l-ö)/Pl+c?/p^ and l/9(c?) = (l-c?)/p2+0/pî,
then o G M(CpW, CqW).

We conclude the paper with the following

CONJECTURE.   Theorem 2.5 remains true even in the case where pi, p2 are on

the same side of 2, i.e., 1 < p2 < pi < 2, or 2 < p2 < pi < oo.
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