CERTAIN SCHUR-HADAMARD MULTIPLIERS IN THE SPACES C_p

JONATHAN ARAZY

ABSTRACT. Let f be a continuously differentiable function on [-1, 1] satisfying $|f'(t)| \leq C|t|^{\alpha}$ for some 0 < C, $\alpha < \infty$ and all $-1 \leq t \leq 1$, and let $\lambda = (\lambda_i) \in l_r$ satisfy $-1 \leq \lambda_i \leq 1$ for all *i*. Then

$$a_{f,\lambda} = \left(\frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}\right)$$

is a Schur-Hadamard multiplier from C_{p_1} into C_{p_2} for all p_1 , p_2 satisfying $1 \le p_2 \le 2 \le p_1 \le \infty$ and $p_2^{-1} \le p_1^{-1} + \alpha/r$.

1. Introduction . Let C_{∞} be the space of all compact operators on l_2 with the operator norm. For $1 \leq p < \infty$ let C_p be the Banach space of all $x \in C_{\infty}$ for which $||x||_p = (\operatorname{trace}(x^*x)^{p/2})^{1/p} < \infty$. (See [9, Chapter III] for a detailed study of these spaces and related topics.) A matrix a = (a(i, j)) is said to be a *Schur-Hadamard multiplier* (or, briefly, a multiplier) from C_{p_1} into C_{p_2} if for every b = (b(i, j)) in C_{p_1} the Schur-Hadamard product of a and b, namely $a \circ b = (a(i, j)b(i, j))$, belongs to C_{p_2} . We denote by $M(C_{p_1}, C_{p_2})$ the space of all multipliers from C_{p_1} into C_{p_2} with the norm

 $||a||_{p_1,p_2} = \sup\{||a \circ b||_{p_2}; ||b||_{p_1} \le 1\}.$

In this note we study multipliers of the form

$$a_{f,\lambda} = (a_{f,\lambda}(i,j)),$$

where

(1.1)
$$a_{f,\lambda}(i,j) = \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}, & \lambda_i \neq \lambda_j, \\ f'(\lambda_i), & \lambda_i = \lambda_j. \end{cases}$$

Here f is a continuously differentiable function on [-1, 1] and $\lambda = (\lambda_i)$ is a real sequence with $-1 \leq \lambda_i \leq 1, i = 1, 2, \ldots$. Such multipliers are of great importance in perturbation theory of linear operators (see [1, 3, 5-8]). The multiplier $a_{f,\lambda}$ plays the role of the Gâteaux derivative of the operator map $x \mapsto f(x)$, evaluated at the diagonal matrix $d(\lambda) = \operatorname{diag}(\lambda_i)$, whenever the derivative exists.

In the papers [1-5] the authors study general multipliers from C_p into itself (and from $B(l_2)$ into itself) under the name "Stieltjes Double Operator Integrals". In their applications to the multipliers $a_{f,\lambda}$ there is no restriction on λ besides boundedness. As for f, boundedness of the derivative f' is clearly a necessary condition for the boundness of the multiplier $a_{f,\lambda}$ in C_p for all λ , but if $p \neq 2$ it is not sufficient and

© 1982 American Mathematical Society 0002-9939/82/0000-0117/**\$**02.50

Received by the editors September 4, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D15; Secondary 46B99, 47B10.

Key words and phrases. Cp spaces, Schur-Hadamard multipliers, triangular projection.

one has to impose more restrictive smoothness conditions on f. (The case p = 2 is trivial. C_2 , the Hilbert-Schmidt class, is a Hilbert space by itself and thus its multipliers are precisely the coordinate-wise bounded matrices.) A typical result is the following

THEOREM 1.1 [1, THEOREM 5]. Let f be so that $f' \in \operatorname{Lip}_{\alpha}[-1,1]$ for some $\alpha > 0$, and let $\lambda = (\lambda_i)$ satisfies $-1 \leq \lambda_i \leq 1$ for all i. Then $a_{f,\lambda} \in M(B(l_2), B(l_2))$ and $a_{f,\lambda} \in M(C_p, C_p)$ for all $1 \leq p \leq \infty$.

We are interested here in the little different problem of membership of $a_{f,\lambda}$ in $M(C_{p_1}, C_{p_2})$ for $p_1 \neq p_2$, mainly for $p_2 \leq 2 \leq p_1$. Roughly speaking, we require that $\lambda \in l_r$ for some $r < \infty$, and relax the Lip_{α} condition on f' by requiring only that $|f'(t)| \leq C|t|^{\alpha}$ for some $0 < C < \infty$ and all $-1 \leq t \leq 1$, where the exponent $\alpha > 0$ satisfies $1/p_2 \leq 1/p_1 + \alpha/r$. The condition $p_2 \leq 2 \leq p_1$ allows us to factor $a_{f,\lambda}$ through C_2 , and thus to reduce the study of the multipliers $a_{f,\lambda}$ to that of the multipliers $b_{\mu} = (\mu_{\min\{i,j\}})$ where $\mu_i = |\lambda_i|^{\beta}$ for an appropriate β . Finally, using the triangular projection, we reduce the study of the multipliers b_{μ} to that of left and right multiplication by diagonal matrices. We also show that, in a sense, the result stated in the abstract is best possible.

2. The main result. We start with some known facts on multipliers which will be needed later.

PROPOSITION 2.1. $M(C_2, C_2) = 1_{\infty}(\mathbf{N} \times \mathbf{N}).$

PROOF. This follows immediately from $C_2 = l_2(N \times N)$. \Box

PROPOSITION 2.2. Let $1 \le p_1 \le q_1 \le \infty$, $1 \le q_2 \le p_2 \le \infty$. Then $M(C_{q_1}, C_{q_2}) \subseteq M(C_{p_1}, C_{p_2})$ and $||a||_{p_1, p_2} \le ||a||_{q_1, q_2}$ for all $a \in M(C_{q_1}, C_{q_2})$.

PROOF. This follows trivially from the fact that if $p \leq q$ then $C_p \subseteq C_q$ and $||x||_q \leq ||x||_p$ for all $x \in C_p$. \Box

COROLLARY 2.3. Let $1 \leq p_1 \leq 2 \leq p_2 \leq \infty$. Let $\lambda = (\lambda_i)$ be so that $-1 \leq \lambda_i \leq 1$ for all *i*, and let *f* be any continuously differentiable function on [-1, 1]. Then $a_{f,\lambda} \in M(C_{p_1}, C_{p_2})$.

PROOF. By Propositions 2.1 and 2.2, $a_{f,\lambda} \in M(C_2, C_2) \subseteq M(C_{p_1}, C_{p_2})$. Let *D* denotes the diagonal projection, i.e. $(Da)(i, j) = \delta_{i,j}a(i, i)$.

PROPOSITION 2.4.

$$D(M(C_{p_1}, C_{p_2})) = M(l_{p_1}, l_{p_2}) = l_{p_0}$$

where $1/p_2 = 1/p_1 + 1/p_0$.

PROOF. l_p is identified with $D(C_p)$, so

$$D(M(C_{p_1}, C_{p_2})) = M(D(C_{p_1}), D(C_{p_2})) = M(l_{p_1}, l_{p_2}).$$

The fact that $M(l_{p_1}, l_{p_2}) = l_{p_0}$ is well known. \Box

Next for $0 < \alpha < \infty$ let X_{α} be the space of all continuously differentiable functions on [-1, 1] satisfying f(0) = 0 and $|f'(t)| \leq C|t|^{\alpha}$ for some $0 < C < \infty$ and all $t \in [-1, 1]$, with the norm

$$||f||_{\alpha} = \inf\{0 < C < \infty; |f'(t)| \le C|t|^{\alpha} \text{ for all } -1 \le t \le 1\}.$$

Our main result is the following:

THEOREM 2.5. Let $0 < \alpha$, $r < \infty$. Let $f \in X_{\alpha}$ and let $\lambda = (\lambda_i) \in l_r$ be so that $-1 \leq \lambda_i \leq 1$ for all *i*. Then

$$a_{f,\lambda} = \left((f(\lambda_i) - f(\lambda_j)) / (\lambda_i - \lambda_j) \right)$$

is a multiplier from C_{p_1} into C_{p_2} for all p_1, p_2 satisfying $1 \le p_2 \le 2 \le p_1 \le \infty$ and $1/p_2 = 1/p_1 + \alpha/r$.

Moreover,

$$||a_{f,\lambda}||_{p_1,p_2} \leq 2||f||_{\alpha} \cdot ||\lambda||_r^{\alpha}.$$

We remark that using Proposition 2.2 one gets easily that, under the hypotheses of Theorem 2.5, $a_{f,\lambda} \in M(C_{p_1}, C_{p_2})$ for all $1 \leq p_2 \leq 2 \leq p_1 \leq \infty$ with $1/p_2 \leq 1/p_1 + \alpha/r$.

The proof of Theorem 2.5 proceeds by a sequence of propositions.

PROPOSITION 2.6. Let $0 < \alpha < \infty$, let $f \in X_{\alpha}$ and let $\lambda = (\lambda_i)$ be so that $-1 \leq \lambda_i \leq 1$ for all *i*. Let $m_{f,\lambda,\alpha}$ be defined by

(2.1)
$$m_{f,\lambda,\alpha}(i,j) = \begin{cases} (f(\lambda_i) - f(\lambda_j))((\lambda_i - \lambda_j) \max\{|\lambda_i|^{\alpha}, |\lambda_j|^{\alpha}\})^{-1} \\ if \lambda_i \neq 0 \text{ or } \lambda_j \neq 0, \\ 0 \quad if \lambda_i = \lambda_j = 0. \end{cases}$$

Then $m_{f,\lambda,\alpha} \in M(C_2,C_2)$ and $||m_{f,\lambda,\alpha}||_{2,2} \leq ||f||_{\alpha}$.

PROOF. Using Proposition 2.1 we get

$$\|m_{f,\lambda,lpha}\|_{2,2} = \sup_{i,j} |m_{f,\lambda,lpha}(i,j)| \le \|f\|_{lpha}.$$

Next, let P_T denotes the (upper) triangular projection, that is

$$(P_T x)(i, j) = \begin{cases} x(i, j), & i \le j, \\ 0, & i > j. \end{cases}$$

It is known that P_T is bounded in C_p if and only if $1 (see [10, Chapter III and 11]). In this case, let <math>\gamma_p$ denotes the norm of P_T in C_p .

For any $\lambda = (\lambda_i) \in l_{\infty}$ let $d(\lambda) = \text{diag}(\lambda_i)$ be the diagonal matrix whose (i, i) entry is λ_i . We denote by L_{λ} and R_{λ} the operators of left and right multiplication by $d(\lambda)$, respectively. That is

$$(L_{\lambda}x)(i,j) = \lambda_i x(i,j), \qquad (R_{\lambda}x)(i,j) = x(i,j)\lambda_j.$$

Since L_{λ} , R_{λ} , P_T are (identified with) multipliers—they commute with each other.

Finally, for all sequences $\lambda = (\lambda_i)$ we define a matrix $b_{\lambda} = (b_{\lambda}(i, j))$ by

$$b_{\lambda}(i,j) = \lambda_{\min\{i,j\}}$$

Notice that for all matrix x

$$(2.2) b_{\lambda} \circ x = L_{\lambda} P_T x + R_{\lambda} (I - P_T) x = P_T L_{\lambda} x + (I - P_T) R_{\lambda} x.$$

PROPOSITION 2.7. Let $1 \leq p_0, p_1, p_2 \leq \infty$ be so that $1/p_2 = 1/p_0 + 1/p_1$. Let $\lambda \in l_{p_0}$. Then L_{λ} and R_{λ} map C_{p_1} into C_{p_2} and $\|L_{\lambda}\|_{p_1,p_2} = \|R_{\lambda}\|_{p_1,p_2} = \|\lambda\|_{p_0}$.

We omit the straightforward proof which depends on the "generalized Hölder inequality" in the spaces C_p (see [9, Chapter III]):

$$||xy||_{p_2} \leq ||x||_{p_0} ||y||_{p_1}, \quad 1/p_2 = 1/p_0 + 1/p_1.$$

PROPOSITION 2.8. Let $1 \le p_0, p_1, p_2 \le \infty$ be so that $1/p_2 = 1/p_0 + 1/p_1$. Let $\lambda \in l_{p_0}$. Then $b_{\lambda} \in M(C_{p_1}, C_{p_2})$ with norm $||b_{\lambda}||_{p_1, p_2} \le A||\lambda||_{p_0}$ (the constant A depends only on p_1, p_2), except for the cases $p_1 = p_2 = \infty$ and $p_1 = p_2 = 1$.

PROOF. If $1 < p_1 < \infty$ then P_T is bounded in C_{p_1} , and L_{λ} and R_{λ} map C_{p_1} into C_{p_2} . Using (2.2) and Proposition 2.7 we get $b_{\lambda} \in M(C_{p_1}, C_{p_2})$ and $||b_{\lambda}||_{p_1, p_2} \leq (1+2\gamma_{p_1})||\lambda||_{p_0}$. (If $1 < p_2 < \infty$ then, using the boundedness of P_T in C_{p_2} , we get in a similar way $b_{\lambda} \in M(C_{p_1}, C_{p_2})$ and $||b_{\lambda}||_{p_1, p_2} \leq (1+2\gamma_{p_2})||\lambda||_{p_0}$.) It remains to deal with the case $p_0 = p_2 = 1$, $p_1 = \infty$. For $x \in C_{\infty}$ define $x_n(i, j) = x(i, j)$ if $\min\{i, j\} = n$ and $x_n(i, j) = 0$ otherwise. Clearly, $x = \sum_{n=1}^{\infty} x_n$ and $||x_n||_1 \leq 2||x||_{\infty}$. So

$$\begin{aligned} \|b_{\lambda} \circ x\|_{1} &= \left\|\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\|_{1} \leq \sum_{n=1}^{\infty} |\lambda_{n}| \, \|x_{n}\|_{1} \\ &\leq 2\|x\|_{\infty} \sum_{n=1}^{\infty} |\lambda_{n}| = 2\|x\|_{\infty} \|\lambda\|_{1}, \end{aligned}$$

i.e. $b_{\lambda} \in M(C_{\infty}, C_1)$ and $||b_{\lambda}||_{\infty,1} \leq 2||\lambda||_1$. \Box

REMARK. For general $\lambda \in l_{\infty}$, b_{λ} need not be defined on the whole of C_{∞} (or C_1); this is the consequence of [11, Proposition 1.3] and the unboundedness of the triangular projection in C_{∞} (respectively, in C_1). If $\lambda \in c_0$ and

$$\sum_{i=1}^{\infty}\lambda_i^*(2i-1)^{-1}<\infty,$$

where $\{\lambda_i^*\}_{i=1}^{\infty}$, is the nonincreasing rarrangement of $\{|\lambda_i|\}_{i=1}^{\infty}$, then

$$b_{\lambda} \in M(C_{\infty}, C_{\infty}) = M(C_1, C_1).$$

This follows by the above arguments from the fact that P_T acts continuously from the Macaev ideal

$$C_{\omega} = \left\{ x \in C_{\infty}; \|x\|_{\omega} = \sum_{i=1}^{\infty} s_i(x)(2i-1)^{-1} < \infty \right\}$$

into C_{∞} and from C_1 into $C_{\Omega} = C_{\omega}^*$. (Here $\{s_i(x)\}_{i=1}^{\infty}$ are the s-numbers of x; see [10, Chapter III].)

PROOF OF THEOREM 2.5. Since $\lambda_i \to 0$, we can assume without loss of generality that $\{|\lambda_i|\}_{i=1}^{\infty}$ is nonincreasing. Thus

$$\max\{|\lambda_i|^{\alpha}, |\lambda_j|^{\alpha}\} = |\lambda_{\min\{i,j\}}|^{\alpha}$$

Let α_1 be defined by $1/2 = 1/p_1 + \alpha_1/r$ and let $\alpha_2 = \alpha - \alpha_1$. Clearly, $0 \le \alpha_1, \alpha_2 \le \alpha$ and $1/p_2 = 1/2 + \alpha_2/r$. We present the proof in the case $p_2 < 2 < p_1$, i.e. $0 < \alpha_1, \alpha_2 < \alpha$. The other cases are treated similarly, and are even easier. Let $m_{f,\lambda,\alpha}$ be defined by (2.1), let $\mu^{(k)} = |\lambda|^{\alpha_k}$ (k = 1, 2), i.e. $\mu_i^{(k)} = |\lambda_i|^{\alpha_k}$.

Then $a_{f,\lambda}$ admits the following factorization:

$$a_{f,\lambda} = b_{\mu^{(2)}} \circ m_{f,\lambda,\alpha} \circ b_{\mu^{(1)}}.$$

Now, by Proposition 2.8 $b_{\mu^{(1)}} \in M(C_{p_1}, C_2), b_{\mu^{(2)}} \in M(C_2, C_{p_2})$ and

$$\begin{aligned} \|b_{\mu^{(1)}}\|_{p_{1},2} &\leq \sqrt{2} \|\mu^{(1)}\|_{r/\alpha_{1}} = \sqrt{2} \|\lambda\|_{r}^{\alpha_{1}}, \\ \|b_{\mu^{(2)}}\|_{2,p_{2}} &\leq \sqrt{2} \|\mu^{(2)}\|_{r/\alpha_{2}} = \sqrt{2} \|\lambda\|_{r}^{\alpha_{1}}. \end{aligned}$$

Since, by Proposition 2.6, $m_{f,\lambda,\alpha} \in M(C_2, C_2)$ and $||m_{f,\lambda,\alpha}||_{2,2} \leq ||f||_{\alpha}$ we finally get that $a_{f,\lambda} \in M(C_{p_1}, C_{p_2})$ and

$$\begin{aligned} \|a_{f,\lambda}\|_{p_1,p_2} &\leq \|b_{\mu^{(2)}}\|_{2,p_2} \cdot \|m_{f,\lambda,\alpha}\|_{2,2} \cdot \|b_{\mu^{(1)}}\|_{p_1,2} \\ &\leq \sqrt{2} \|\lambda\|_r^{\alpha_2} \cdot \|f\|_c \cdot \sqrt{2} \|\lambda\|_r^{\alpha_1} = 2\|f\|_c \|\lambda\|_r^{\alpha}. \quad \Box \end{aligned}$$

3. Concluding remarks. Theorem 2.5 admits the following partial converse, which shows that our hypotheses on f and λ are optimal.

PROPOSITION 3.1. Let $1 \le p_2 < p_1 \le \infty$, let $\alpha > 0$ and let $0 < r < \infty$ be so that $1/p_2 = 1/p_1 + \alpha/r$.

- (i) Let $\lambda = (\lambda_i)$ be so that $-1 \leq \lambda_i \leq 1$ for all *i*, and assume that for all $f \in X_{\alpha}$, $a_{f,\lambda} \in M(C_{p_1}, C_{p_2})$. Then $\lambda \in l_r$.
- (ii) Let f be a continuous differentiable function on [-1, 1] so that for λ = (λ_i) ∈ l_r with −1 ≤ λ_i ≤ 1 for all i, a_{f,λ} ∈ M(C_{p1}, C_{p2}). Then f ∈ X_α.

PROOF. (i) Consider $f(t) = t|t|^{\alpha}$. We have $f'(t) = (\alpha + 1)|t|^{\alpha}$ and so $f \in X_{\alpha}$. Since $a_{f,\lambda} \in M(C_{p_1}, C_{p_2})$, we get by Proposition 2.4 that

$$D(a_{f,\lambda}) = \operatorname{diag}((\alpha+1)(\lambda_i)^{\alpha}) \in M(l_{p_1}, l_{p_2}) = l_{r/\alpha}.$$

That is $\lambda \in l_r$.

(ii) Suppose that $f \notin X_{\alpha}$. Then there is a sequence $\{t_n\}_{n=1}^{\infty}$ in [-1,1] with $0 < |t_n| \le 2^{-n(1+1/\alpha)}$ and $|f'(t_n)| \ge 2^n |t_n|^{\alpha}$ for all $n = 1, 2, \ldots$. Put

$$k_n = [2^{-nr/\alpha} \cdot |t_n|^{-r}], \qquad n = 1, 2, \dots,$$

and let $\lambda = (\lambda_i)$ be the sequence in which t_n appears exactly k_n times. Then

$$\sum_{i=1}^{\infty} |\lambda_i|^r = \sum_{n=1}^{\infty} k_n |t_n|^r \le \sum_{n=1}^{\infty} 2^{-nr/\alpha} < \infty,$$

 \mathbf{but}

$$\sum_{i=1}^{\infty} |f'(\lambda_i)|^{r/\alpha} = \sum_{n=1}^{\infty} k_n |f'(t_n)|^{r/\alpha}$$
$$\geq \sum_{n=1}^{\infty} k_n 2^{nr/\alpha} |t_n|^r \geq \sum_{n=1}^{\infty} (1-2^{-nr}) = \infty$$

It follows that $(f'(\lambda_i)) \notin M(l_{p_1}, l_{p_2})$, and so by Proposition 2.4,

$$a_{f,\lambda} \notin M(C_{p_1}, C_{p_2}).$$

A contradiction. \Box

REMARK. Our methods and results can be extended by standard arguments to other symmetric norm ideals. For instance, if $a \in M(C_{p_1}, C_{p_2})$ then $a \in M(C_{p_2^*}, C_{p_1^*})$ where $1/p_j + 1/p_j^* = 1$, j = 1, 2. This is the consequence of the fact that the adjoint operator of the multiplier a is the multiplier $\bar{a} = (\overline{a(i, j)})$, the fact that $||\bar{a}||_{p,q} = ||a||_{p,q}$ and the well-known fact that $(C_p)^* = C_{p^*}$. It follows that if \mathcal{F} is any interpolation functor and if $C_E = \mathcal{F}(C_{p_1}, C_{p_2^*}) = C_{\mathcal{F}(l_{p_1}, l_{p_2^*})}, C_F = \mathcal{F}(C_{p_2}, C_{p_1^*}) = C_{\mathcal{F}(l_{p_2}, l_{p_1^*})}$ then $a \in M(C_E, C_F)$. For instance, if $0 < \theta < 1$ and $p(\theta)$, $q(\theta)$ are defined by $1/p(\theta) = (1-\theta)/p_1 + \theta/p_2^*$ and $1/q(\theta) = (1-\theta)/p_2 + \theta/p_1^*$, then $a \in M(C_{p(\theta)}, C_{q(\theta)})$.

We conclude the paper with the following

CONJECTURE. Theorem 2.5 remains true even in the case where p_1 , p_2 are on the same side of 2, i.e., $1 \le p_2 \le p_1 \le 2$, or $2 \le p_2 \le p_1 \le \infty$.

REFERENCES

- 1. M. S. Birman and M. Z. Solomjak, Stieltjes double operator integrals, Soviet Math. Dokl. 6 (1965), 1567-1571.
- 2. ____, Stieltjes double operator integrals and multiplier problems, Soviet Math. Dokl. 7 (1966), 1618-1621.
- 3. ____, Remarks on the spectral shift function, J. Soviet Math. 3 (1975), 408-419.
- _____, Estimates of singular numbers of integral operators, Russian Math. Surveys, 32 (1977), 15-89.
- 5. Ju. L. Daleckii and S. G. Krein, Integration and differentation of functions of hermitian operators and applications to the theory of perturbations, Amer. Math. Soc. Transl. (2) 47 (1965), 1-30.
- 6. Yu. B. Farforovskaya, Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation. J. Soviet Math. 4 (1975), 426-433.
- 7. ____, An estimate of the difference f(B) f(A) in the classes γ_p , J. Soviet Math. 8 (1977), 146-148.
- _____, An estimate of the norm ||f(B) f(A)|| for self-adjoint operators A and B, J. Soviet Math. 14 (1980), 1133-1149.
- 9. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monos., Vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
- ____, Theory and applications of Volterra operators in Hilbert spaces, Transl. Math. Monos., Vol. 24, Amer. Math. Soc., Providence, R. I., 1970.
- 11. S. Kwapien and A. Pelczynski, The main triangular projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, HAIFA, ISRAEL

64