CERTAIN SCHUR-HADAMARD MULTIPLIERS IN THE SPACES C_{p}

JONATHAN ARAZY

Abstract. Let f be a continuously differentiable function on [$-1,1$] satisfying $\left|f^{\prime}(t)\right| \leq C|t|^{\alpha}$ for some $0<C, \alpha<\infty$ and all $-1 \leq t \leq 1$, and let $\lambda=\left(\lambda_{i}\right) \in l_{r}$ satisfy $-1 \leq \lambda_{i} \leq 1$ for all i. Then

$$
a_{f, \lambda}=\left(\frac{f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}\right)
$$

is a Schur-Hadamard multiplier from $C_{p_{1}}$ into $C_{p_{2}}$ for all p_{1}, p_{2} satisfying $1 \leq p_{2} \leq 2 \leq p_{1} \leq \infty$ and $p_{2}^{-1} \leq p_{1}^{-1}+\alpha / r$.

1. Introduction . Let C_{∞} be the space of all compact operators on l_{2} with the operator norm. For $1 \leq p<\infty$ let C_{p} be the Banach space of all $x \in C_{\infty}$ for which $\|x\|_{p}=\left(\operatorname{trace}\left(x^{*} x\right)^{p / 2}\right)^{1 / p}<\infty$. (See [9, Chapter III] for a detailed study of these spaces and related topics.) A matrix $a=(a(i, j))$ is said to be a Schur-Hadamard multiplier (or, briefly, a multiplier) from $C_{p_{1}}$ into $C_{p_{2}}$ if for every $b=(b(i, j))$ in $C_{p_{1}}$ the Schur-Hadamard product of a and b, namely $a \circ b=(a(i, j) b(i, j))$, belongs to $C_{p_{2}}$. We denote by $M\left(C_{p_{1}}, C_{p_{2}}\right)$ the space of all multipliers from $C_{p_{1}}$ into $C_{p_{2}}$ with the norm

$$
\|a\|_{p_{1}, p_{2}}=\sup \left\{\|a \circ b\|_{p_{2}} ;\|b\|_{p_{1}} \leq 1\right\}
$$

In this note we study multipliers of the form

$$
a_{f, \lambda}=\left(a_{f, \lambda}(i, j)\right)
$$

where

$$
a_{f, \lambda}(i, j)= \begin{cases}\frac{f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}, & \lambda_{i} \neq \lambda_{j} \tag{1.1}\\ f^{\prime}\left(\lambda_{i}\right), & \lambda_{i}=\lambda_{j}\end{cases}
$$

Here f is a continuously differentiable function on $[-1,1]$ and $\lambda=\left(\lambda_{i}\right)$ is a real sequence with $-1 \leq \lambda_{i} \leq 1, i=1,2, \ldots$. Such multipliers are of great importance in perturbation theory of linear operators (see [1,3,5-8]). The multiplier $a_{f, \lambda}$ plays the role of the Gâteaux derivative of the operator map $x \mapsto f(x)$, evaluated at the diagonal matrix $d(\lambda)=\operatorname{diag}\left(\lambda_{i}\right)$, whenever the derivative exists.

In the papers [1-5] the authors study general multipliers from C_{p} into itself (and from $B\left(l_{2}\right)$ into itself) under the name "Stieltjes Double Operator Integrals". In their applications to the multipliers $a_{f, \lambda}$ there is no restriction on λ besides boundedness. As for f, boundedness of the derivative f^{\prime} is clearly a necessary condition for the boundness of the multiplier $a_{f, \lambda}$ in C_{p} for all λ, but if $p \neq 2$ it is not sufficient and
one has to impose more restrictive smoothness conditions on f. (The case $p=2$ is trivial. C_{2}, the Hilbert-Schmidt class, is a Hilbert space by itself and thus its multipliers are precisely the coordinate-wise bounded matrices.) A typical result is the following

Theorem 1.1 [1, TheOrem 5]. Let f be so that $f^{\prime} \in \operatorname{Lip}_{\alpha}[-1,1]$ for some $\alpha>0$, and let $\lambda=\left(\lambda_{i}\right)$ satisfies $-1 \leq \lambda_{i} \leq 1$ for alli. Then $a_{f, \lambda} \in M\left(B\left(l_{2}\right), B\left(l_{2}\right)\right)$ and $a_{f, \lambda} \in M\left(C_{p}, C_{p}\right)$ for all $1 \leq p \leq \infty$.

We are interested here in the little different problem of membership of $a_{f, \lambda}$ in $M\left(C_{p_{1}}, C_{p_{2}}\right)$ for $p_{1} \neq p_{2}$, mainly for $p_{2} \leq 2 \leq p_{1}$. Roughly speaking, we require that $\lambda \in l_{r}$ for some $r<\infty$, and relax the $\operatorname{Lip}_{\alpha}$ condition on f^{\prime} by requiring only that $\left|f^{\prime}(t)\right| \leq C|t|^{\alpha}$ for some $0<C<\infty$ and all $-1 \leq t \leq 1$, where the exponent $\alpha>0$ satisfies $1 / p_{2} \leq 1 / p_{1}+\alpha / r$. The condition $p_{2} \leq 2 \leq p_{1}$ allows us to factor $a_{f, \lambda}$ through C_{2}, and thus to reduce the study of the multipliers $a_{f, \lambda}$ to that of the multipliers $b_{\mu}=\left(\mu_{\min \{i, j\}}\right)$ where $\mu_{i}=\left|\lambda_{i}\right|^{\beta}$ for an appropriate β. Finally, using the triangular projection, we reduce the study of the multipliers b_{μ} to that of left and right multiplication by diagonal matrices. We also show that, in a sense, the result stated in the abstract is best possible.
2. The main result. We start with some known facts on multipliers which will be needed later.

PROPOSITION 2.1. $M\left(C_{2}, C_{2}\right)=1_{\infty}(\mathbf{N} \times \mathbf{N})$.
Proof. This follows immediately from $C_{2}=l_{2}(\mathbf{N} \times \mathbf{N})$.
PROPOSITION 2.2. Let $1 \leq p_{1} \leq q_{1} \leq \infty, 1 \leq q_{2} \leq p_{2} \leq \infty$. Then $M\left(C_{q_{1}}, C_{q_{2}}\right) \subseteq M\left(C_{p_{1}}, C_{p_{2}}\right)$ and $\|a\|_{p_{1}, p_{2}} \leq\|\bar{a}\|_{q_{1}, q_{2}}$ for all $a \in M\left(C_{q_{1}}, C_{q_{2}}\right)$.

Proof. This follows trivially from the fact that if $p \leq q$ then $C_{p} \subseteq C_{q}$ and $\|x\|_{q} \leq\|x\|_{p}$ for all $x \in C_{p}$.

COROLLARY 2.3. Let $1 \leq p_{1} \leq 2 \leq p_{2} \leq \infty$. Let $\lambda=\left(\lambda_{i}\right)$ be so that $-1 \leq$ $\lambda_{i} \leq 1$ for all i, and let f be any continuously differentiable function on $[-1,1]$. Then $a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$.

Proof. By Propositions 2.1 and 2.2, $a_{f, \lambda} \in M\left(C_{2}, C_{2}\right) \subseteq M\left(C_{p_{1}}, C_{p_{2}}\right)$.
Let D denotes the diagonal projection, i.e. $(D a)(i, j)=\delta_{i, j} a(i, i)$.
PROPOSITION 2.4.

$$
D\left(M\left(C_{p_{1}}, C_{p_{2}}\right)\right)=M\left(l_{p_{1}}, l_{p_{2}}\right)=l_{p_{0}}
$$

where $1 / p_{2}=1 / p_{1}+1 / p_{0}$.
Proof. l_{p} is identified with $D\left(C_{p}\right)$, so

$$
D\left(M\left(C_{p_{1}}, C_{p_{2}}\right)\right)=M\left(D\left(C_{p_{1}}\right), D\left(C_{p_{2}}\right)\right)=M\left(l_{p_{1}}, l_{p_{2}}\right)
$$

The fact that $M\left(l_{p_{1}}, l_{p_{2}}\right)=l_{p_{0}}$ is well known.
Next for $0<\alpha<\infty$ let X_{α} be the space of all continuously differentiable functions on $[-1,1]$ satisfying $f(0)=0$ and $\left|f^{\prime}(t)\right| \leq C|t|^{\alpha}$ for some $0<C<\infty$ and all $t \in[-1,1]$, with the norm

$$
\|f\|_{\alpha}=\inf \left\{0<C<\infty ;\left|f^{\prime}(t)\right| \leq C|t|^{\alpha} \text { for all }-1 \leq t \leq 1\right\}
$$

Our main result is the following:
THEOREM 2.5. Let $0<\alpha, r<\infty$. Let $f \in X_{\alpha}$ and let $\lambda=\left(\lambda_{i}\right) \in l_{r}$ be so that $-1 \leq \lambda_{i} \leq 1$ for all i. Then

$$
a_{f, \lambda}=\left(\left(f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)\right) /\left(\lambda_{i}-\lambda_{j}\right)\right)
$$

is a multiplier from $C_{p_{1}}$ into $C_{p_{2}}$ for all p_{1}, p_{2} satisfying $1 \leq p_{2} \leq 2 \leq p_{1} \leq \infty$ and $1 / p_{2}=1 / p_{1}+\alpha / r$.

Moreover,

$$
\left\|a_{f, \lambda}\right\|_{p_{1}, p_{2}} \leq 2\|f\|_{\alpha} \cdot\|\lambda\|_{r}^{\alpha}
$$

We remark that using Proposition 2.2 one gets easily that, under the hypotheses of Theorem 2.5, $a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$ for all $1 \leq p_{2} \leq 2 \leq p_{1} \leq \infty$ with $1 / p_{2} \leq$ $1 / p_{1}+\alpha / r$.

The proof of Theorem 2.5 proceeds by a sequence of propositions.
Proposition 2.6. Let $0<\alpha<\infty$, let $f \in X_{\alpha}$ and let $\lambda=\left(\lambda_{i}\right)$ be so that $-1 \leq \lambda_{i} \leq 1$ for all i. Let $m_{f, \lambda, \alpha}$ be defined by

$$
m_{f, \lambda, \alpha}(i, j)= \begin{cases}\left(f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)\right)\left(\left(\lambda_{i}-\lambda_{j}\right) \max \left\{\left|\lambda_{i}\right|^{\alpha},\left|\lambda_{j}\right|^{\alpha}\right\}\right)^{-1} \tag{2.1}\\ 0 & \text { if } \lambda_{i}=\lambda_{j}=0\end{cases}
$$

Then $m_{f, \lambda, \alpha} \in M\left(C_{2}, C_{2}\right)$ and $\left\|m_{f, \lambda, \alpha}\right\|_{2,2} \leq\|f\|_{\alpha}$.
Proof. Using Proposition 2.1 we get

$$
\left\|m_{f, \lambda, \alpha}\right\|_{2,2}=\sup _{i, j}\left|m_{f, \lambda, \alpha}(i, j)\right| \leq\|f\|_{\alpha}
$$

Next, let P_{T} denotes the (upper) triangular projection, that is

$$
\left(P_{T} x\right)(i, j)= \begin{cases}x(i, j), & i \leq j \\ 0, & i>j\end{cases}
$$

It is known that P_{T} is bounded in C_{p} if and only if $1<p<\infty$ (see [10, Chapter III and 11]). In this case, let γ_{p} denotes the norm of P_{T} in C_{p}.

For any $\lambda=\left(\lambda_{i}\right) \in l_{\infty}$ let $d(\lambda)=\operatorname{diag}\left(\lambda_{i}\right)$ be the diagonal matrix whose (i, i) entry is λ_{i}. We denote by L_{λ} and R_{λ} the operators of left and right multiplication by $d(\lambda)$, respectively. That is

$$
\left(L_{\lambda} x\right)(i, j)=\lambda_{i} x(i, j), \quad\left(R_{\lambda} x\right)(i, j)=x(i, j) \lambda_{j}
$$

Since $L_{\lambda}, R_{\lambda}, P_{T}$ are (identified with) multipliers-they commute with each other.

Finally, for all sequences $\lambda=\left(\lambda_{i}\right)$ we define a matrix $b_{\lambda}=\left(b_{\lambda}(i, j)\right)$ by

$$
b_{\lambda}(i, j)=\lambda_{\min \{i, j\}}
$$

Notice that for all matrix x

$$
\begin{equation*}
b_{\lambda} \circ x=L_{\lambda} P_{T} x+R_{\lambda}\left(I-P_{T}\right) x=P_{T} L_{\lambda} x+\left(I-P_{T}\right) R_{\lambda} x . \tag{2.2}
\end{equation*}
$$

PROPOSITION 2.7. Let $1 \leq p_{0}, p_{1}, p_{2} \leq \infty$ be so that $1 / p_{2}=1 / p_{0}+1 / p_{1}$. Let $\lambda \in l_{p_{0}}$. Then L_{λ} and $R_{\lambda} \operatorname{map} C_{p_{1}}$ into $C_{p_{2}}$ and $\left\|L_{\lambda}\right\|_{p_{1}, p_{2}}=\left\|R_{\lambda}\right\|_{p_{1}, p_{2}}=\|\lambda\|_{p_{0}}$.

We omit the straightforward proof which depends on the "generalized Hölder inequality" in the spaces C_{p} (see [9 , Chapter III]):

$$
\|x y\|_{p_{2}} \leq\|x\|_{p_{0}}\|y\|_{p_{1}}, \quad 1 / p_{2}=1 / p_{0}+1 / p_{1}
$$

PROPOSITION 2.8. Let $1 \leq p_{0}, p_{1}, p_{2} \leq \infty$ be so that $1 / p_{2}=1 / p_{0}+1 / p_{1}$. Let $\lambda \in l_{p_{0}}$. Then $b_{\lambda} \in M\left(C_{p_{1}}, \bar{C}_{p_{2}}\right)$ with norm $\left\|b_{\lambda}\right\|_{p_{1}, p_{2}} \leq A\|\lambda\|_{p_{0}}$ (the constant A depends only on p_{1}, p_{2}), except for the cases $p_{1}=p_{2}=\infty$ and $p_{1}=p_{2}=1$.

PROOF. If $1<p_{1}<\infty$ then P_{T} is bounded in $C_{p_{1}}$, and L_{λ} and R_{λ} map $C_{p_{1}}$ into $C_{p_{2}}$. Using (2.2) and Proposition 2.7 we get $b_{\lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$ and $\left\|b_{\lambda}\right\|_{p_{1}, p_{2}} \leq$ $\left(1+2 \gamma_{p_{1}}\right)\|\lambda\|_{p_{0}}$. (If $1<p_{2}<\infty$ then, using the boundedness of P_{T} in $C_{p_{2}}$, we get in a similar way $b_{\lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$ and $\left\|b_{\lambda}\right\|_{p_{1}, p_{2}} \leq\left(1+2 \gamma_{p_{2}}\right)\|\lambda\|_{p_{0}}$.) It remains to deal with the case $p_{0}=p_{2}=1, p_{1}=\infty$. For $x \in C_{\infty}$ define $x_{n}(i, j)=x(i, j)$ if $\min \{i, j\}=n$ and $x_{n}(i, j)=0$ otherwise. Clearly, $x=\sum_{n=1}^{\infty} x_{n}$ and $\left\|x_{n}\right\|_{1} \leq$ $2\|x\|_{\infty}$. So

$$
\begin{aligned}
\left\|b_{\lambda} \circ x\right\|_{1} & =\left\|\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\|_{1} \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|x_{n}\right\|_{1} \\
& \leq 2\|x\|_{\infty} \sum_{n=1}^{\infty}\left|\lambda_{n}\right|=2\|x\|_{\infty}\|\lambda\|_{1}
\end{aligned}
$$

i.e. $b_{\lambda} \in M\left(C_{\infty}, C_{1}\right)$ and $\left\|b_{\lambda}\right\|_{\infty, 1} \leq 2\|\lambda\|_{1}$.

Remark. For general $\lambda \in l_{\infty}, b_{\lambda}$ need not be defined on the whole of C_{∞} (or C_{1}); this is the consequence of [11, Proposition 1.3] and the unboundedness of the triangular projection in C_{∞} (respectively, in C_{1}). If $\lambda \in c_{0}$ and

$$
\sum_{i=1}^{\infty} \lambda_{i}^{*}(2 i-1)^{-1}<\infty
$$

where $\left\{\lambda_{i}^{*}\right\}_{i=1}^{\infty}$, is the nonincreasing rarrangement of $\left\{\left|\lambda_{i}\right|\right\}_{i=1}^{\infty}$, then

$$
b_{\lambda} \in M\left(C_{\infty}, C_{\infty}\right)=M\left(C_{1}, C_{1}\right)
$$

This follows by the above arguments from the fact that P_{T} acts continuously from the Macaev ideal

$$
C_{\omega}=\left\{x \in C_{\infty} ;\|x\|_{\omega}=\sum_{i=1}^{\infty} s_{i}(x)(2 i-1)^{-1}<\infty\right\}
$$

into C_{∞} and from C_{1} into $C_{\Omega}=C_{\omega}^{*}$. (Here $\left\{s_{i}(x)\right\}_{i=1}^{\infty}$ are the s-numbers of x; see [10, Chapter III].)

PROOF OF THEOREM 2.5. Since $\lambda_{i} \rightarrow 0$, we can assume without loss of generality that $\left\{\left|\lambda_{i}\right|\right\}_{i=1}^{\infty}$ is nonincreasing. Thus

$$
\max \left\{\left|\lambda_{i}\right|^{\alpha},\left|\lambda_{j}\right|^{\alpha}\right\}=\left|\lambda_{\min \{i, j\}}\right|^{\alpha} .
$$

Let α_{1} be defined by $1 / 2=1 / p_{1}+\alpha_{1} / r$ and let $\alpha_{2}=\alpha-\alpha_{1}$. Clearly, $0 \leq$ $\alpha_{1}, \alpha_{2} \leq \alpha$ and $1 / p_{2}=1 / 2+\alpha_{2} / r$. We present the proof in the case $p_{2}<2<$ p_{1}, i.e. $0<\alpha_{1}, \alpha_{2}<\alpha$. The other cases are treated similarly, and are even easier.

Let $m_{f, \lambda, \alpha}$ be defined by (2.1), let $\mu^{(k)}=|\lambda|^{\alpha_{k}}(k=1,2)$, i.e. $\mu_{i}^{(k)}=\left|\lambda_{i}\right|^{\alpha_{k}}$. Then $a_{f, \lambda}$ admits the following factorization:

$$
a_{f, \lambda}=b_{\mu(2)} \circ m_{f, \lambda, \alpha} \circ b_{\mu(1)}
$$

Now, by Proposition $2.8 b_{\mu^{(1)}} \in M\left(C_{p_{1}}, C_{2}\right), b_{\mu^{(2)}} \in M\left(C_{2}, C_{p_{2}}\right)$ and

$$
\begin{aligned}
& \left\|b_{\mu(1)}\right\|_{p_{1}, 2} \leq \sqrt{2}\left\|\mu^{(1)}\right\|_{r / \alpha_{1}}=\sqrt{2}\|\lambda\|_{r}^{\alpha_{1}} \\
& \left\|b_{\mu(2)}\right\|_{2, p_{2}} \leq \sqrt{2}\left\|\mu^{(2)}\right\|_{r / \alpha_{2}}=\sqrt{2}\|\lambda\|_{r}^{\alpha_{1}} .
\end{aligned}
$$

Since, by Proposition 2.6, $m_{f, \lambda, \alpha} \in M\left(C_{2}, C_{2}\right)$ and $\left\|m_{f, \lambda, \alpha}\right\|_{2,2} \leq\|f\|_{\alpha}$ we finally get that $a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$ and

$$
\begin{aligned}
\left\|a_{f, \lambda}\right\|_{p_{1}, p_{2}} & \leq\left\|b_{\mu^{(2)}}\right\|_{2, p_{2}} \cdot\left\|m_{f, \lambda, \alpha}\right\|_{2,2} \cdot\left\|b_{\mu^{(1)}}\right\|_{p_{1}, 2} \\
& \leq \sqrt{2}\|\lambda\|_{r}^{\alpha_{2}} \cdot\|f\|_{c} \cdot \sqrt{2}\|\lambda\|_{r}^{\alpha_{1}}=2\|f\|\|\lambda\|_{r}^{\alpha} .
\end{aligned}
$$

3. Concluding remarks. Theorem 2.5 admits the following partial converse, which shows that our hypotheses on f and λ are optimal.

Proposition 3.1. Let $1 \leq p_{2}<p_{1} \leq \infty$, let $\alpha>0$ and let $0<r<\infty$ be so that $1 / p_{2}=1 / p_{1}+\alpha / r$.
(i) Let $\lambda=\left(\lambda_{i}\right)$ be so that $-1 \leq \lambda_{i} \leq 1$ for all i, and assume that for all $f \in X_{\alpha}$, $a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$. Then $\lambda \in l_{r}$.
(ii) Let f be a continuous differentiable function on $[-1,1]$ so that for $\lambda=\left(\lambda_{i}\right) \in$ l_{r} with $-1 \leq \lambda_{i} \leq 1$ for all $i, a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$. Then $f \in X_{\alpha}$.
Proof. (i) Consider $f(t)=t|t|^{\alpha}$. We have $f^{\prime}(t)=(\alpha+1)|t|^{\alpha}$ and so $f \in X_{\alpha}$. Since $a_{f, \lambda} \in M\left(C_{p_{1}}, C_{p_{2}}\right)$, we get by Proposition 2.4 that

$$
D\left(a_{f, \lambda}\right)=\operatorname{diag}\left((\alpha+1)\left(\lambda_{i}\right)^{\alpha}\right) \in M\left(l_{p_{1}}, l_{p_{2}^{\prime}}\right)=l_{r / \alpha}
$$

That is $\lambda \in l_{r}$.
(ii) Suppose that $f \notin X_{\alpha}$. Then there is a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ in $[-1,1]$ with $0<\left|t_{n}\right| \leq 2^{-n(1+1 / \alpha)}$ and $\left|f^{\prime}\left(t_{n}\right)\right| \geq 2^{n}\left|t_{n}\right|^{\alpha}$ for all $n=1,2, \ldots$. Put

$$
k_{n}=\left[2^{-n r / \alpha} \cdot\left|t_{n}\right|^{-r}\right], \quad n=1,2, \ldots,
$$

and let $\lambda=\left(\lambda_{i}\right)$ be the sequence in which t_{n} appears exactly k_{n} times. Then

$$
\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{r}=\sum_{n=1}^{\infty} k_{n}\left|t_{n}\right|^{r} \leq \sum_{n=1}^{\infty} 2^{-n r / \alpha}<\infty
$$

but

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|f^{\prime}\left(\lambda_{i}\right)\right|^{r / \alpha} & =\sum_{n=1}^{\infty} k_{n}\left|f^{\prime}\left(t_{n}\right)\right|^{r / \alpha} \\
& \geq \sum_{n=1}^{\infty} k_{n} 2^{n r / \alpha}\left|t_{n}\right|^{r} \geq \sum_{n=1}^{\infty}\left(1-2^{-n r}\right)=\infty
\end{aligned}
$$

It follows that $\left(f^{\prime}\left(\lambda_{i}\right)\right) \notin M\left(l_{p_{1}}, l_{p_{2}}\right)$, and so by Proposition 2.4,

$$
a_{f, \lambda} \notin M\left(C_{p_{1}}, C_{p_{2}}\right)
$$

A contradiction.
Remark. Our methods and results can be extended by standard arguments to other symmetric norm ideals. For instance, if $a \in M\left(C_{p_{1}}, C_{p_{2}}\right)$ then $a \in$ $M\left(C_{p_{2}^{*}}, C_{p_{i}^{*}}\right)$ where $1 / p_{j}+1 / p_{j}^{*}=1, j=1,2$. This is the consequence of the fact that the adjoint operator of the multiplier a is the multiplier $\bar{a}=(\overline{a(i, j)})$, the fact that $\|\bar{a}\|_{p, q}=\|a\|_{p, q}$ and the well-known fact that $\left(C_{p}\right)^{*}=C_{p^{*}}$. It follows
that if \mathcal{f} is any interpolation functor and if $C_{E}=\mathcal{F}\left(C_{p_{1}}, C_{p_{\mathbf{2}}^{*}}\right)=C_{\mathcal{F}\left(l_{p_{1}}, l_{p_{2}^{*}}\right)}, C_{F}=$ $\mathcal{F}\left(C_{p_{2}}, C_{p_{1}^{*}}\right)=C_{\mathcal{F}\left(l_{p_{2}}, l_{p_{1}^{*}}\right)}$ then $a \in M\left(C_{E}, C_{F}\right)$. For instance, if $0<\theta<1$ and $p(\theta), q(\theta)$ are defined by $1 / p(\theta)=(1-\theta) / p_{1}+\theta / p_{2}^{*}$ and $1 / q(\theta)=(1-\theta) / p_{2}+\theta / p_{1}^{*}$, then $a \in M\left(C_{p(\theta)}, C_{q(\theta)}\right)$.

We conclude the paper with the following
CONJECTURE. Theorem 2.5 remains true even in the case where p_{1}, p_{2} are on the same side of 2 , i.e., $1 \leq p_{2} \leq p_{1} \leq 2$, or $2 \leq p_{2} \leq p_{1} \leq \infty$.

References

1. M. S. Birman and M. Z. Solomjak, Stieltjes double operator integrals, Soviet Math. Dokl. 6 (1965), 1567-1571.
2. __, Stieltjes double operator integrals and multiplier problems, Soviet Math. Dokl. 7 (1966), 1618-1621.
3. __, Remarks on the spectral shift function, J. Soviet Math. 3 (1975), 408-419.
4. ___ Estimates of singular numbers of integral operators, Russian Math. Surveys, 32 (1977), 15-89.
5. Ju. L. Daleckii and S. G. Krein, Integration and differentation of functions of hermitian operators and applications to the theory of perturbations, Amer. Math. Soc. Transl. (2) 47 (1965), 1-30.
6. Yu. B. Farforovskaya, Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation. J. Soviet Math. 4 (1975), 426-433.
7. ___, An estimate of the difference $f(B)-f(A)$ in the classes γ_{p}, J. Soviet Math. 8 (1977), 146-148.
8. , An estimate of the norm $\|f(B)-f(A)\|$ for self-adjoint operators A and B, J. Soviet Math. 14 (1980), 1133-1149.
9. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monos., Vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
10. __, Theory and applications of Volterra operators in Hilbert spaces, Transl. Math. Monos., Vol. 24, Amer. Math. Soc., Providence, R. I., 1970.
11. S. Kwapien and A. Pelczynski, The main triangular projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.

Department of Mathematics, University of haifa, Haifa, Israel

