A Certain Subclass of Analytic Functions Defined by Means of Differential Subordination

H. M. Srivastava ${ }^{\text {a }}$, Dorina Răducanu ${ }^{\text {b }}$, Paweł Zaprawa ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada and
China Medical University, Taichung 40402, Taiwan, Republic of China
${ }^{b}$ Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu 50, R-500091 Braşov, Romania
${ }^{c}$ Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38D, PL-20-618 Lublin, Poland

Abstract

For $\alpha \in(\pi, \pi]$, let $\mathcal{R}_{\alpha}(\phi)$ denote the class of all normalized analytic functions in the open unit disk \mathbb{U} satisfying the following differential subordination: $$
f^{\prime}(z)+\frac{1}{2}\left(1+e^{i \alpha}\right) z f^{\prime \prime}(z)<\phi(z) \quad(z \in \mathbb{U})
$$ where the function $\phi(z)$ is analytic in the open unit disk \mathbb{U} such that $\phi(0)=1$. In this paper, various integral and convolution characterizations, coefficient estimates and differential subordination results for functions belonging to the class $\mathcal{R}_{\alpha}(\phi)$ are investigated. The Fekete-Szegö coefficient functional associated with the k th root transform $\left[f\left(z^{k}\right)\right]^{1 / k}$ of functions in $\mathcal{R}_{\alpha}(\phi)$ is obtained. A similar problem for a corresponding class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$ of bi-univalent functions is also considered. Connections with previous known results are pointed out.

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

We denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U} and by \mathcal{C} the familiar subclass of \mathcal{S} whose members are convex functions in \mathbb{U}.

[^0]Let \mathcal{M} be the class of analytic functions $\phi(z)$ in \mathbb{U}, normalized by $\phi(0)=1$. Also let \mathcal{N} be the subclass of \mathcal{M} consisting of all univalent functions ϕ for which $\phi(\mathbb{U})$ is a convex domain.

We denote by \mathcal{P} the well-known class of analytic functions $p(z)$ with

$$
p(0)=1 \quad \text { and } \quad \mathfrak{R}(p(z))>0 \quad(z \in \mathbb{U}) .
$$

We also denote by \mathcal{B} the class of analytic functions $\omega(z)$ in \mathbb{U} with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1 \quad(z \in \mathbb{U})
$$

Suppose that the functions f and g are analytic in \mathbb{U}. Then the function f is said to be subordinate to the function g, denoted by $f<g$, if there exists a function $\omega \in \mathcal{B}$ such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U})
$$

For functions f given by (1) and $g \in \mathcal{A}$ given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in \mathbb{U})
$$

the Hadamard product (or convolution), denoted by $f * g$, is defined by

$$
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) \quad(z \in \mathbb{U})
$$

Recently, Silverman and Silvia [25] considered the following classes of functions:

$$
\begin{equation*}
\mathcal{L}_{\alpha}=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \mathfrak{R}\left(f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)\right)>0 \quad(z \in \mathbb{U})\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{\alpha}(b)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad\left|f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)-b\right|<b \quad(z \in \mathbb{U})\right\} \tag{3}
\end{equation*}
$$

where $\alpha \in(-\pi, \pi]$ and $b>\frac{1}{2}$. Clearly, if $b \rightarrow \infty$, then $\mathcal{L}_{\alpha}(b) \rightarrow \mathcal{L}_{\alpha}$. For each of these two classes of functions, they obtained extreme points, coefficient estimates and convolution characterizations. Trojnar-Spelina [31], on the other hand, studied the function class $\mathcal{L} \mathcal{P}_{\alpha}$ given by

$$
\begin{equation*}
\mathcal{L} \mathcal{P}_{\alpha}=\left\{f: f \in \mathcal{A} \quad \text { and } \quad f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)<Q(z) \quad(z \in \mathbb{U})\right\} \tag{4}
\end{equation*}
$$

where $\alpha \in(-\pi, \pi]$. The function $Q(z)$ defined by

$$
\begin{equation*}
Q(0)=1 \quad \text { and } \quad Q(z)=1+\frac{2}{\pi^{2}}\left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^{2} \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

maps \mathbb{U} onto the domain given by

$$
\Omega=\{w: w \in \mathbb{C} \quad \text { and } \quad|w-1|<\mathfrak{R}(w)\} .
$$

Motivated by some of the ideas explored in the aforecited investigations [25] and [31], here we define a new class of analytic functions.

Definition 1. Let $\alpha \in(-\pi, \pi]$ and let $\phi \in \mathcal{M}$. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R}_{\alpha}(\phi)$ if the following differential subordination is satisfied:

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)<\phi(z) \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

Consider the following two functions:

$$
\begin{equation*}
\phi_{0}(z)=\frac{1+z}{1-z} \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{b}(z)=\frac{1+z}{1-\left(1-\frac{1}{b}\right) z} \quad\left(z \in \mathbb{U} ; b>\frac{1}{2}\right) \tag{8}
\end{equation*}
$$

Then it is easy to observe that the corresponding classes $\mathcal{R}_{\alpha}\left(\phi_{0}\right)$ and $\mathcal{R}_{\alpha}\left(\phi_{b}\right)$ reduce to the classes \mathcal{L}_{α} and $\mathcal{L}_{\alpha}(b)$, respectively. We note also that the class $\mathcal{R}_{\alpha}(Q)$, where the function Q is defined by (5), reduces to function class $\mathcal{L} \mathcal{P}_{\alpha}$.

We now recall that the function class \mathcal{R} given by

$$
\begin{equation*}
\mathcal{R}=\mathcal{R}_{0}\left(\phi_{0}\right)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \mathfrak{R}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>0 \quad(z \in \mathbb{U})\right\} \tag{9}
\end{equation*}
$$

was investigated by Chichra [7] and also by Singh and Singh [26]. Another function class \mathcal{R}_{β} given by

$$
\begin{equation*}
\mathcal{R}_{\beta}=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \mathfrak{R}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\beta \quad(z \in \mathbb{U})\right\} \tag{10}
\end{equation*}
$$

which was considered by Silverman [24], can also be obtained from $\mathcal{R}_{\alpha}(\phi)$ upon setting

$$
\alpha=0 \quad \text { and } \quad \phi=\phi_{\beta}
$$

where

$$
\begin{equation*}
\phi_{\beta}(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(z \in \mathbb{U} ; 0 \leqq \beta<1) \tag{11}
\end{equation*}
$$

In its special case when $\beta=0$, the function class \mathcal{R}_{β} reduces to the function class \mathcal{R} considered by Silverman [24].

In this paper, we investigate various convolution and integral characterizations, coefficient estimates and subordination results for the general function class $\mathcal{R}_{\alpha}(\phi)$ which we have introduced here by Definition 1 above. In particular, in Section 6, we derive the Fekete-Szegö coefficient functional associated with the k th root transform $\left[f\left(z^{k}\right)\right]^{1 / k}$ of functions in the class $\mathcal{R}_{\alpha}(\phi)$. A similar problem for a corresponding class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$ of bi-univalent functions is also considered in the last section (Section 7) of this paper.

2. Convolution Characterization

In this section we obtain a membership characterization of the class $\mathcal{R}_{\alpha}(\phi)$ in terms of convolution.
Theorem 1. Let $\alpha \in(-\pi, \pi]$ and let $\phi \in \mathcal{M}$. A necessary and sufficient condition for a function $f \in \mathcal{A}$ to be in the class $\mathcal{R}_{\alpha}(\phi)$ is given by

$$
\frac{1}{z}\left(f(z) * \frac{z+z^{2} e^{i \alpha}}{(1-z)^{3}}\right) \neq \phi\left(e^{i \theta}\right) \quad(z \in \mathbb{U} ; \theta \in[0,2 \pi))
$$

Proof. We have $f \in \mathcal{R}_{\alpha}(\phi)$ if and only if

$$
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)<\phi(z) \quad(z \in \mathbb{U})
$$

It follows that $f \in \mathcal{R}_{\alpha}(\phi)$ if and only if

$$
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z) \neq \phi\left(e^{i \theta}\right) \quad(z \in \mathbb{U} ; \theta \in[0,2 \pi)) .
$$

Since

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=\frac{1-e^{i \alpha}}{2} f^{\prime}(z)+\frac{1+e^{i \alpha}}{2}\left(z f^{\prime}(z)\right)^{\prime} \tag{12}
\end{equation*}
$$

and

$$
z f^{\prime}(z)=f(z) * \frac{z}{(1-z)^{2}} \quad \text { and } \quad f(z)=f(z) * \frac{z}{1-z} \quad(z \in \mathbb{U})
$$

we have

$$
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=\left(f(z) *\left(\frac{1-e^{i \alpha}}{2} \frac{z}{1-z}+\frac{1+e^{i \alpha}}{2} \frac{z}{(1-z)^{2}}\right)\right)^{\prime} \neq \phi\left(e^{i \theta}\right)
$$

or, equivalently,

$$
\left(f(z) * \frac{z-\frac{1-e^{i \alpha}}{2} z^{2}}{(1-z)^{2}}\right)^{\prime}=\frac{1}{z}\left(f(z) * \frac{z+z^{2} e^{i \alpha}}{(1-z)^{3}}\right) \neq \phi\left(e^{i \theta}\right) .
$$

The convolution characterization asserted by Theorem 1 is thus proved.

3. Integral Representation

In this section an integral representation for functions in the class $\mathcal{R}_{\alpha}(\phi)$ is provided.
Theorem 2. Let $\alpha \in(-\pi, \pi)$ and let $\phi \in \mathcal{M}$. Suppose also that

$$
\gamma:=\frac{2}{1+e^{i \alpha}} .
$$

Then $f \in \mathcal{R}_{\alpha}(\phi)$ if and only if there exists $\omega \in \mathcal{B}$ such that the following equality:

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{\gamma}{\eta^{\gamma}}\left(\int_{0}^{\eta} \zeta^{\gamma-1} \phi(\omega(\zeta)) d \zeta\right) d \eta \tag{13}
\end{equation*}
$$

holds true for all $z \in \mathbb{U}$.
Proof. It follows from Definition 1 of the function class $\mathcal{R}_{\alpha}(\phi)$ that $f \in \mathcal{R}_{\alpha}(\phi)$ if and only if there exists $\omega \in \mathcal{B}$ such that

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=\phi(\omega(z)) \quad(z \in \mathbb{U}) \tag{14}
\end{equation*}
$$

Making use of (12) in the above equality (14), we obtain

$$
\frac{1-e^{i \alpha}}{2} f^{\prime}(z)+\frac{1+e^{i \alpha}}{2}\left(z f^{\prime}(z)\right)^{\prime}=\phi(\omega(z)) \quad(z \in \mathbb{U})
$$

It follows that

$$
\left(\frac{1-e^{i \alpha}}{1+e^{i \alpha}}\right) f^{\prime}(z)+\left(z f^{\prime}(z)\right)^{\prime}=\frac{2}{1+e^{i \alpha}} \phi(\omega(z)) \quad(z \in \mathbb{U})
$$

which is equivalent to

$$
(\gamma-1) z^{\gamma-1} f^{\prime}(z)+z^{\gamma-1}\left(z f^{\prime}(z)\right)^{\prime}=\gamma z^{\gamma-1} \phi(\omega(z)) \quad(z \in \mathbb{U})
$$

where

$$
\gamma=\frac{2}{1+e^{i \alpha}}, \alpha \neq \pi
$$

We thus find that

$$
\left(z^{\gamma-1}\left(z f^{\prime}(z)\right)\right)^{\prime}=\gamma z^{\gamma-1} \phi(\omega(z))
$$

which readily yields

$$
\begin{equation*}
z^{\gamma} f^{\prime}(z)=\gamma \int_{0}^{z} \zeta^{\gamma-1} \phi(\omega(\zeta)) d \zeta \tag{15}
\end{equation*}
$$

Integrating once more the equality (15), we get (13). The proof of Theorem 2 is thus completed.
Remark 1. If $\alpha \rightarrow \pi$, then the equality (14) reduces to

$$
f^{\prime}(z)=\phi(\omega(z)) \quad(z \in \mathbb{U})
$$

It follows that $f \in \mathcal{R}_{\pi}(\phi)$ if and only if

$$
f(z)=\int_{0}^{z} \phi(\omega(\zeta)) d \zeta
$$

For $\theta \in[0,2 \pi)$ and $\tau \in[0,1]$, we now define the function $f(z, \theta, \tau)$ by

$$
\begin{equation*}
f(z, \theta, \tau)=\int_{0}^{z} \frac{\gamma}{\eta^{\gamma}}\left[\int_{0}^{\eta} \zeta^{\gamma-1} \phi\left(\frac{e^{i \theta} \zeta(\zeta+\tau)}{1+\zeta \tau}\right) d \zeta\right] d \tau \quad(z \in \mathbb{U}) \tag{16}
\end{equation*}
$$

By virtue of Theorem 2, the function $f(z, \theta, \tau)$ belongs to the class $\mathcal{R}_{\alpha}(\phi)$.

4. Coefficient Estimates

In this section we obtain coefficient estimates for functions belonging to the class $\mathcal{R}_{\alpha}(\phi)$.
Theorem 3. Let $\alpha \in(-\pi, \pi]$ and let the function $\phi(z)$ given by

$$
\phi(z)=1+A_{1} z+A_{2} z^{2}+\cdots
$$

be in the class \mathcal{N}. If a function f of the form (1) belongs to the class $\mathcal{R}_{\alpha}(\phi)$, then

$$
\left|a_{n}\right| \leqq \frac{\sqrt{2}\left|A_{1}\right|}{n \sqrt{n^{2}+1+\left(n^{2}-1\right) \cos \alpha}} \quad(n \geqq 2)
$$

Proof. Since $f \in \mathcal{R}_{\alpha}(\phi)$, we have

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=p(z) \quad(z \in \mathbb{U}) \tag{17}
\end{equation*}
$$

where

$$
p(z)=1+\sum_{n=2}^{\infty} p_{n} z^{n}<\phi(z)
$$

Equating the coefficients of z^{n} on both sides of (17), we find the following relation between the coefficients:

$$
\begin{equation*}
\frac{n}{2}\left[2+\left(1+e^{i \alpha}\right)(n-1)\right] a_{n}=p_{n-1} \quad(n \geqq 2) \tag{18}
\end{equation*}
$$

Since the function ϕ is univalent in \mathbb{U} and $\phi(\mathbb{U})$ is a convex domain, we can apply Rogosinski's lemma (see [21]). We thus find that

$$
\left|p_{n}\right| \leqq\left|A_{1}\right|, \quad n \geqq 1
$$

Making use of (18), we get

$$
\left|a_{n}\right| \leqq \frac{\left|A_{1}\right|}{\frac{n}{2}\left|2+\left(1+e^{i \alpha}\right)(n-1)\right|}=\frac{\sqrt{2}\left|A_{1}\right|}{n \sqrt{n^{2}+1+\left(n^{2}-1\right) \cos \alpha}}
$$

which completes the proof of Theorem 3.

Remark 2.

(i) Let $\phi(z)=\phi_{0}(z)$ defined by (7). If f of the form (1) is in the class $\mathcal{R}_{\alpha}\left(\phi_{0}\right)=\mathcal{L}_{\alpha}$, then by Theorem 3, we obtain the coefficient estimates found in [25], namely

$$
\left|a_{n}\right| \leqq \frac{2 \sqrt{2}}{n \sqrt{n^{2}+1+\left(n^{2}-1\right) \cos \alpha}} \quad(n \geqq 2)
$$

If, in the above inequality, we set $\alpha \rightarrow \pi$, then we get

$$
\left|a_{n}\right| \leqq \frac{2}{n} \quad(n \geqq 2)
$$

which is the well-known coefficient estimates for the class \mathcal{R} (see [10] and [9]).
(ii) Let $\phi(z)=Q(z)$ defined by (5) and let f of the form (1) be in the class $\mathcal{R}_{\alpha}(Q)=\mathcal{L} \mathcal{P}_{\alpha}$. Since

$$
Q(z)=1+\frac{8}{\pi^{2}} z+\cdots
$$

it follows from Theorem 3, that

$$
\left|a_{n}\right| \leqq \frac{8 \sqrt{2}}{n \pi^{2} \sqrt{n^{2}+1+\left(n^{2}-1\right) \cos \alpha}}=\frac{8}{n \pi^{2}\left|1+\frac{n-1}{2}\left(1+e^{i \alpha}\right)\right|}, n \geqq 2
$$

which is the same with the inequality found in [31].

5. Results Involving Differential Subordination

In order to prove our main results of this section, we need the following lemma due to Hallenbeck and Ruscheweyh [11].
Lemma 1. (see [11]) Let h be a convex function with $h(0)=a$ and let $\gamma \in \mathbb{C}^{*}$ with $\mathfrak{R} \gamma \geqq 0$. If the function $p(z)$ given by

$$
p(z)=a+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots
$$

is analytic in \mathbb{U} and

$$
\begin{equation*}
p(z)+\frac{1}{\gamma} z p^{\prime}(z)<h(z) \quad(z \in \mathbb{U}) \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
p(z)<q(z)<h(z) \quad(z \in \mathbb{U}) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(\zeta) \zeta^{\gamma / n-1} d \zeta \tag{21}
\end{equation*}
$$

The result is sharp.

Theorem 4. Let $\alpha \in(-\pi, \pi)$ and let $\phi \in \mathcal{N}$. If $f \in \mathcal{R}_{\alpha}(\phi)$, then

$$
\begin{equation*}
f^{\prime}(z)<\int_{0}^{1} \phi\left(z t^{1 / \gamma}\right) d t<\phi(z) \quad(z \in \mathbb{U}) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(z)}{z} \prec \int_{0}^{1} \int_{0}^{1} \phi\left(z r t^{1 / \gamma}\right) d r d t \quad(z \in \mathbb{U}) \tag{23}
\end{equation*}
$$

where

$$
\gamma=\frac{2}{1+e^{i \alpha}}
$$

The results are sharp.
Proof. Assume that $f \in \mathcal{R}_{\alpha}(\phi)$. Then, from Definition 1, it follows that the differential subordination (6) holds true. Let $p(z)=f^{\prime}(z)$. Also let

$$
\gamma=\frac{2}{1+e^{i \alpha}}
$$

Then

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z)=f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)<\phi(z) \quad(z \in \mathbb{U}) .
$$

Since $\phi \in \mathcal{N}$ and $\mathfrak{R}(\gamma) \geqq 0$ for $\alpha \in(-\pi, \pi)$, in view of Lemma 1, we have

$$
\begin{equation*}
p(z)<\frac{\gamma}{z^{\gamma}} \int_{0}^{z} \zeta^{\gamma-1} \phi(\zeta) d \zeta<\phi(z) \quad(z \in \mathbb{U}) \tag{24}
\end{equation*}
$$

With the substitution $\zeta=z t^{1 / \gamma}$ in the integral in (24) and, by taking into account the fact that $p(z)=f^{\prime}(z)$, the differential chain (24) yields

$$
f^{\prime}(z)<\int_{0}^{1} \phi\left(z t^{1 / \gamma}\right) d t<\phi(z)
$$

The first condition (22) of Theorem 4 is thus proved.
In order to obtain the differential subordination (23), we show that the function $h(z)$ given by

$$
\begin{equation*}
h(z)=\int_{0}^{1} \phi\left(z t^{1 / \gamma}\right) d t \quad(z \in \mathbb{U}) \tag{25}
\end{equation*}
$$

belongs to the class \mathcal{N}. To prove this, we employ the same technique as in [1]. We first define

$$
\begin{equation*}
\Phi_{\gamma}(z)=\int_{0}^{1} \frac{1}{1-z t^{1 / \gamma}} d t=\sum_{n=0}^{\infty} \frac{\gamma}{n+\gamma} z^{n} \tag{26}
\end{equation*}
$$

For $\mathfrak{R}(\gamma)>0$, the function $\Phi_{\gamma}(z)$ is convex in \mathbb{U} (see [23]). From (26) we obtain

$$
\phi(z) * \Phi_{\gamma}(z)=\int_{0}^{1} \frac{1}{1-z t^{1 / \gamma}} d t * \phi(z)=\int_{0}^{1} \phi\left(z t^{1 / \gamma}\right) d t=h(z)
$$

It was proved in [22] that the convolution of two convex functions is also convex. Therefore, the function $h(z)$ defined by (25) is convex in \mathbb{U}. Moreover, since $h(0)=1$, it follows that $h \in \mathcal{N}$.

We now let

$$
p(z)=\frac{f(z)}{z}
$$

Then, by making use of (22) and (25), we have

$$
p(z)+z p^{\prime}(z)=f^{\prime}(z)<\int_{0}^{1} \phi\left(z t^{1 / \gamma}\right) d t=h(z) \quad(z \in \mathbb{U})
$$

By applying Lemma 1 once more with $\gamma=1$, we obtain

$$
\begin{equation*}
p(z)<\frac{1}{z} \int_{0}^{z} h(\zeta) d \zeta<h(z) \quad(z \in \mathbb{U}) \tag{27}
\end{equation*}
$$

With the substitution $\zeta=r z$ in the integral in (27), if we take into account (25) and also that

$$
p(z)=\frac{f(z)}{z}
$$

the first differential subordination in (27) implies that

$$
\frac{f(z)}{z} \prec \int_{0}^{1} \int_{0}^{1} \phi\left(z r t^{1 / \gamma}\right) d r d t
$$

The differential subordination (23) is thus proved.
Since the result in Lemma 1 is sharp, it follows that the differential subordinations in (22) and (23) are also sharp. Consequently, the proof of Theorem 4 is completed.

The next result is an immediate consequence of Theorem 4.
Corollary 1. Let f be in the class $\mathcal{R}_{\beta}(0 \leqq \beta<1)$ defined by (10). Then

$$
f^{\prime}(z)<2 \beta-1-\frac{2(1-\beta)}{z} \log (1-z) \quad(z \in \mathbb{U})
$$

and

$$
\frac{f(z)}{z}<2 \beta-1-\frac{2(1-\beta)}{z} \int_{0}^{1} \frac{1}{r} \log (1-r z) d r \quad(z \in \mathbb{U}) .
$$

Consider the function

$$
\phi_{M}(z)=1+M z \quad(M>0)
$$

and the corresponding function class $\mathcal{R}_{\alpha}\left(\phi_{M}\right)$ given by

$$
\mathcal{R}_{\alpha}\left(\phi_{M}\right)=\left\{f: f \in \mathbb{A} \quad \text { and } \quad\left|f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)-1\right| \leqq M \quad(z \in \mathbb{U} ; M>0)\right\}
$$

Variations of the class $\mathcal{R}_{0}\left(\phi_{M}\right)$ have been investigated in several works (see, for example, [36] and [12]).
The following result is another consequence of Theorem 4.
Corollary 2. Let the function f be in the class $\mathcal{R}_{\alpha}\left(\phi_{M}\right)$. Then

$$
\left|f^{\prime}(z)-1\right| \leqq \frac{M \sqrt{2}}{\sqrt{5+3 \cos \alpha}} \quad(z \in \mathbb{U})
$$

and

$$
\left|\frac{f(z)}{z}-1\right| \leqq \frac{M \sqrt{2}}{2 \sqrt{5+3 \cos \alpha}} \quad(z \in \mathbb{U} ;-\pi<\alpha<\pi)
$$

6. The Fekete-Szegö Problem for the Function Class $\mathcal{R}_{\alpha}(\phi)$

The problem of finding sharp upper bounds for the coefficient functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for different subclasses of the normalized analytic function class \mathcal{A} is known as the Fekete-Szegö problem. Over the years, this problem has been investigated by many works including (for example) [8], [13], [16], [18], [19], [28] and [29].

In this section and in the next one, it will be assumed that the function $\phi(z)$ is a member of the class \mathcal{M} and has positive real part in \mathbb{U}. Since $\phi \in \mathcal{M}$, its Taylor-Maclaurin series expansion is of the form:

$$
\begin{equation*}
\phi(z)=1+A_{1} z+A_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{28}
\end{equation*}
$$

Remark 3. In view of (22), if $f \in \mathcal{R}_{\alpha}(\phi)$ and $\alpha \in(-\pi, \pi)$, then $f^{\prime}(z)<\phi(z)$, which when combined with $\mathfrak{R}(\phi(z))>0$ implies that $\mathfrak{R}\left(f^{\prime}(z)\right)>0$. When $\alpha \rightarrow \pi$, the class $\mathcal{R}_{\pi}(\phi)$ consists of all functions f satisfying the same subordination $f^{\prime}(z)<\phi(z)$.

The well-known Noshiro-Warschawski theorem (see [9] and [10]) states that a function $f \in \mathcal{A}$ with $\mathfrak{R}\left(f^{\prime}(z)\right)>0$ is univalent in \mathbb{U}. Therefore, for all $\alpha \in(-\pi, \pi], \mathcal{R}_{\alpha}(\phi)$ is a class of univalent functions, that is, $\mathcal{R}_{\alpha}(\phi)$ is a subclass of the normalized univalent function class \mathcal{S}.

Recently, Ali et al. [2] considered the Fekete-Szegö functional associated with the k th root transform for several subclasses of univalent functions. We recall here that, for a univalent function $f(z)$ of the form (1), the k th root transform is defined by

$$
\begin{equation*}
F(z)=\left[f\left(z^{k}\right)\right]^{1 / k}=z+\sum_{n=1}^{\infty} b_{k n+1} z^{k n+1} \quad(z \in \mathbb{U}) \tag{29}
\end{equation*}
$$

In view of Remark 3, the functions in the class $\mathcal{R}_{\alpha}(\phi)$ are univalent. Therefore, following the same method as in [2], we consider the problem of finding sharp upper bounds for the Fekete-Szegö coefficient functional associated with the k th root transform for functions in the class $\mathcal{R}_{\alpha}(\phi)$.

Lemma 2 below is needed to prove our main result.
Lemma 2 (see [14]). Let the function $p(z)$ given by

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

be in the class \mathcal{P}. Then, for any complex number s,

$$
\begin{equation*}
\left|p_{2}-s p_{1}^{2}\right| \leqq 2 \max \{1,|2 s-1|\} \tag{30}
\end{equation*}
$$

The result is sharp for the function $p(z)$ given by

$$
p(z)=\frac{1+z}{1-z} \quad \text { or } \quad p(z)=\frac{1+z^{2}}{1-z^{2}} .
$$

Theorem 5. Let $\alpha \in(-\pi, \pi]$ and let $\phi \in \mathcal{M}$ be given by (28). Suppose also that the function f of the form (1) is a member of the class $\mathcal{R}_{\alpha}(\phi)$ and the function F is the k th root transform of f defined by (29). Then, for any complex number μ,

$$
\begin{equation*}
\left|b_{2 k+1}-\mu b_{k+1}^{2}\right| \leqq \frac{\left|A_{1}\right|}{3 k \sqrt{5+4 \cos \alpha}} \max \left\{1,\left|\frac{A_{2}}{A_{1}}-(2 \mu+k-1) \frac{3\left(2+e^{i \alpha}\right) A_{1}}{2 k\left(3+e^{i \alpha}\right)^{2}}\right|\right\} . \tag{31}
\end{equation*}
$$

The result is sharp.

Proof. Let $f \in \mathcal{R}_{\alpha}(\phi)$. Then, clearly, there exists $\omega \in \mathcal{B}$ such that

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=\phi(\omega(z)) \tag{32}
\end{equation*}
$$

We now define

$$
\begin{equation*}
p(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{33}
\end{equation*}
$$

Since $\omega \in \mathcal{B}$, it follows that $p \in \mathcal{P}$. We thus find from (33) that

$$
\begin{equation*}
\omega(z)=\frac{1}{2} p_{1} z+\frac{1}{2}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) z^{2}+\cdots \tag{34}
\end{equation*}
$$

Combining (28) and (34), we have

$$
\phi(\omega(z))=1+\frac{1}{2} A_{1} p_{1} z+\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots .
$$

Equating the coefficients of z and z^{2} on both sides of (32), we get

$$
\begin{equation*}
a_{2}=\frac{A_{1} p_{1}}{2\left(3+e^{i \alpha}\right)} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{1}{3\left(2+e^{i \alpha}\right)}\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) \tag{36}
\end{equation*}
$$

For f given by (1), a computation shows that

$$
\begin{equation*}
F(z)=\left[f\left(z^{k}\right)\right]^{1 / k}=z+\frac{1}{k} a_{2} z^{k+1}+\left(\frac{1}{k} a_{3}-\frac{1}{2} \frac{k-1}{k^{2}} a_{2}^{2}\right) z^{2 k+1}+\cdots \tag{37}
\end{equation*}
$$

The equations (29) and (37) lead us to

$$
\begin{equation*}
b_{k+1}=\frac{1}{k} a_{2} \text { and } b_{2 k+1}=\frac{1}{k} a_{3}-\frac{1}{2} \frac{k-1}{k^{2}} a_{2}^{2} . \tag{38}
\end{equation*}
$$

Substituting from (35) and (36) into (38), we obtain

$$
b_{k+1}=\frac{A_{1} p_{1}}{2 k\left(3+e^{i \alpha}\right)}
$$

and

$$
b_{2 k+1}=\frac{1}{3 k\left(2+e^{i \alpha}\right)}\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right)-\frac{(k-1) A_{1}^{2} p_{1}^{2}}{8 k^{2}\left(3+e^{i \alpha}\right)^{2}}
$$

so that

$$
b_{2 k+1}-\mu b_{k+1}^{2}=\frac{A_{1}}{6 k\left(2+e^{i \alpha}\right)}\left[p_{2}-\frac{1}{2}\left(1-\frac{A_{2}}{A_{1}}+(2 \mu+k-1) \frac{3\left(2+e^{i \alpha}\right) A_{1}}{2 k\left(3+e^{i \alpha}\right)^{2}}\right) p_{1}^{2}\right] .
$$

Let

$$
s=\frac{1}{2}\left(1-\frac{A_{2}}{A_{1}}+(2 \mu+k-1) \frac{3\left(2+e^{i \alpha}\right) A_{1}}{2 k\left(3+e^{i \alpha}\right)^{2}}\right) .
$$

The inequality (31) now follows as an application of Lemma 2.
It is easy to check that the result is sharp for the k th root transforms of the functions $f(z, \theta, 1)$ and $f(z, \theta, 0)$ defined by (16) with $\tau=1$ and $\tau=0$, respectively. This evidently completes our proof of Theorem 5 .

For $k=1$, the k th root transform of f reduces to the function f itself. Corollary 3 below is an immediate consequence of Theorem 5.

Corollary 3. Let $\alpha \in(-\pi, \pi]$ and let the function $\phi \in \mathcal{M}$ be given by (28). Suppose also that the function f of the form (1) is in the class $\mathcal{R}_{\alpha}(\phi)$. Then, for any complex number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \frac{\left|A_{1}\right|}{3 \sqrt{5+4 \cos \alpha}} \max \left\{1,\left|\frac{A_{2}}{A_{1}}-\mu \frac{3\left(2+e^{i \alpha}\right) A_{1}}{\left(3+e^{i \alpha}\right)^{2}}\right|\right\}
$$

The result is sharp.

7. The Fekete-Szegö Problem for the Bi-Univalent Function Class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$

The famous Koebe one-quarter theorem (see [9]) ensures that the image of the open unit disk \mathbb{U} under every univalent function $f \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. Consequently, every univalent function f has an inverse f^{-1} satisfying the following relationships:

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; \quad r_{0}(f) \geqq \frac{1}{4}\right) .
$$

In some cases, the inverse function f^{-1} can be extended to the whole disk \mathbb{U}, in which case f^{-1} is also univalent in \mathbb{U}.

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}.
It is easy to check that a bi-univalent function f given by (1) has the inverse f^{-1} with the series expansion of the form:

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{39}
\end{equation*}
$$

Lewin [15] considered the class Σ of bi-univalent functions and obtained the bound for the second coefficient. Netanyahu [17] and Brannan et al. (see [6] and [5]) subsequently studied similar problems in this direction.

The paper of Srivastava et al. [30] has revived the study of bi-univalent functions in recent years. It was followed by a great number of papers on this topic (see, for example, [3], [4], [20], [27], [33], [32] and [34]).

In view of Remark 3, the functions in the class $\mathcal{R}_{\alpha}(\phi)$ are univalent. This motivates the next definition of the class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$.

Definition 2. A function $f \in \Sigma$ is said to be in the class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$ if the following subordination relationships hold true:

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)<\phi(z) \quad \text { and } \quad g^{\prime}(w)+\frac{1+e^{i \alpha}}{2} w g^{\prime \prime}(w)<\phi(w) \tag{40}
\end{equation*}
$$

where

$$
g(w)=f^{-1}(w)
$$

We find from Definition 2 that, if $f \in \mathcal{R}_{\Sigma ; \alpha}(\phi)$, then both f and $g=f^{-1}$ are univalent in \mathbb{U}. For this reason we can consider their corresponding k th root transforms

$$
F(z)=\left[f\left(z^{k}\right)\right]^{1 / k}
$$

given by (29) and

$$
\begin{equation*}
G(w)=\left[g\left(w^{k}\right)\right]^{1 / k}=w+\sum_{n=1}^{\infty} d_{k n+1} w^{k n+1} \quad\left(g(w)=f^{-1}(w)\right) \tag{41}
\end{equation*}
$$

In this section we derive upper bounds for the Fekete-Szegö functional associated with the k th root transform of functions in the class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$.

Theorem 6. Let $\alpha \in(-\pi, \pi]$ and let $\phi \in \mathcal{M}$ be given by (28). Suppose also that the function f of the form (1) is in the class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$ and F is the k th root transform of f defined by (29). Then, for any real number μ,

$$
\begin{align*}
& \left|b_{2 k+1}-\mu b_{k+1}^{2}\right| \\
& \quad \leqq \begin{array}{ll}
\frac{\left|A_{1}\right|}{3 k \sqrt{5+4 \cos \alpha}} & \left(\left|\frac{k+1}{2}-\mu\right| \leqq k\left|1+\frac{A_{1}-A_{2}}{3 A_{1}^{2}} \frac{\left(3+e^{i \alpha \alpha}\right)^{2}}{2+e^{i \alpha}}\right|\right) \\
\frac{\left|A_{1}\right|^{3}\left|\frac{k+1}{2}-\mu\right|}{k^{2}\left|3\left(2+e^{i \alpha}\right) A_{1}^{2}+\left(3+e^{i \alpha}\right)^{2}\left(A_{1}-A_{2}\right)\right|} & \left(\left|\frac{k+1}{2}-\mu\right| \geqq k\left|1+\frac{A_{1}-A_{2}}{3 A_{1}^{2}} \frac{\left(3+e^{i \alpha}\right)^{2}}{2+e^{i \alpha}}\right|\right)
\end{array} \tag{42}
\end{align*}
$$

Proof. Let $f \in \mathcal{R}_{\Sigma ; \alpha}(\phi)$. Then, in view of (40), we obtain

$$
\begin{equation*}
f^{\prime}(z)+\frac{1+e^{i \alpha}}{2} z f^{\prime \prime}(z)=\phi(u(z)) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(w)+\frac{1+e^{i \alpha}}{2} w g^{\prime \prime}(w)=\phi(v(w)) \tag{44}
\end{equation*}
$$

where $u, v \in \mathcal{B}$. Suppose that

$$
\begin{equation*}
g(w)=w+\sum_{n=2}^{\infty} c_{n} w^{n} \tag{45}
\end{equation*}
$$

Define

$$
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

and

$$
q(z)=\frac{1+v(z)}{1-v(z)}=1+q_{1} z+q_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

As in the proof of Theorem 5, we have $p, q \in \mathcal{P}$ and

$$
\phi(u(z))=1+\frac{1}{2} A_{1} p_{1} z+\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots
$$

and

$$
\phi(v(z))=1+\frac{1}{2} A_{1} q_{1} z+\left(\frac{1}{4} A_{2} q_{1}^{2}+\frac{1}{2} A_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)\right) z^{2}+\cdots
$$

It follows from (43) that

$$
\begin{equation*}
a_{2}=\frac{A_{1} p_{1}}{2\left(3+e^{i \alpha}\right)} \quad \text { and } \quad a_{3}=\frac{1}{3\left(2+e^{i \alpha}\right)}\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) \tag{46}
\end{equation*}
$$

Moreover, the equality (44) in conjunction with (45) yields

$$
\begin{equation*}
c_{2}=\frac{A_{1} q_{1}}{2\left(3+e^{i \alpha}\right)} \quad \text { and } \quad c_{3}=\frac{1}{3\left(2+e^{i \alpha}\right)}\left(\frac{1}{4} A_{2} q_{1}^{2}+\frac{1}{2} A_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)\right) . \tag{47}
\end{equation*}
$$

Since

$$
\begin{equation*}
G(w)=\left[g\left(w^{k}\right)\right]^{1 / k}=w+\frac{1}{k} c_{2} w^{k+1}+\left(\frac{1}{k} c_{3}-\frac{1}{2} \frac{k-1}{k^{2}} c_{2}^{2}\right) w^{2 k+1}+\cdots \tag{48}
\end{equation*}
$$

it follows from (41) and (45) that

$$
\begin{equation*}
d_{k+1}=\frac{1}{k} c_{2} \quad \text { and } \quad d_{2 k+1}=\frac{1}{k} c_{3}-\frac{1}{2} \frac{k-1}{k^{2}} c_{2}^{2} \tag{49}
\end{equation*}
$$

On the other hand, from (39) and (45) we get

$$
\begin{equation*}
c_{2}=-a_{2} \quad \text { and } \quad c_{3}=2 a_{2}^{2}-a_{3} . \tag{50}
\end{equation*}
$$

The equalities (49) and (50) give

$$
\begin{equation*}
d_{k+1}=-\frac{1}{k} a_{2} \quad \text { and } \quad d_{2 k+1}=\frac{1}{k}\left(2 a_{2}^{2}-a_{3}\right)-\frac{1}{2} \frac{k-1}{k^{2}} a_{2}^{2} \tag{51}
\end{equation*}
$$

Furthermore, from (38) and (51), we have

$$
\begin{equation*}
d_{k+1}=-b_{k+1} \quad \text { and } \quad d_{2 k+1}=(k+1) b_{k+1}^{2}-b_{2 k+1} . \tag{52}
\end{equation*}
$$

Combining the equalities (38), (46), (47), (49) and (52), and after some simple calculations, we obtain

$$
\begin{align*}
& \left(3+e^{i \alpha}\right) k b_{k+1}=\frac{1}{2} A_{1} p_{1}, \tag{53}\\
& 3\left(2+e^{i \alpha}\right) k b_{2 k+1}=\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)-\frac{k-1}{8 k} \frac{3\left(2+e^{i \alpha}\right)}{\left(3+e^{i \alpha}\right)^{2}} A_{1}^{2} p_{1}^{2}, \tag{54}\\
& -\left(3+e^{i \alpha}\right) k b_{k+1}=\frac{1}{2} A_{1} q_{1} \tag{55}
\end{align*}
$$

and

$$
\begin{equation*}
3\left(2+e^{i \alpha}\right) k\left[(k+1) b_{k+1}^{2}-b_{2 k+1}\right]=\frac{1}{4} A_{2} q_{1}^{2}+\frac{1}{2} A_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)-\frac{k-1}{8 k} \frac{3\left(2+e^{i \alpha}\right)}{\left(3+e^{i \alpha}\right)^{2}} A_{1}^{2} q_{1}^{2} \tag{56}
\end{equation*}
$$

Now, in order to prove the inequality (42), we apply the same technique as in [35]. Indeed, from (53) and (55), we get

$$
\begin{equation*}
p_{1}=-q_{1} . \tag{57}
\end{equation*}
$$

Substracting (56) from (54) and using (57), we have

$$
\begin{equation*}
b_{2 k+1}=\frac{k+1}{2} b_{k+1}^{2}+\frac{A_{1}\left(p_{2}-q_{2}\right)}{12 k\left(2+e^{i \alpha}\right)} . \tag{58}
\end{equation*}
$$

Moreover, the sum between (54) and (56) gives

$$
3\left(2+e^{i \alpha}\right) k(k+1) b_{k+1}^{2}=\frac{1}{2} A_{1}\left(p_{2}+q_{2}\right)+\frac{1}{2}\left(A_{2}-A_{1}\right) p_{1}^{2}-\frac{k-1}{4 k} \frac{3\left(2+e^{i \alpha}\right)}{\left(3+e^{i \alpha}\right)^{2}} A_{1}^{2} p_{1}^{2}
$$

which, in conjunction with (53), yields

$$
\begin{equation*}
b_{k+1}^{2}=\frac{A_{1}^{3}\left(p_{2}+q_{2}\right)}{4 k^{2}\left[3\left(2+e^{i \alpha}\right) A_{1}^{2}+\left(3+e^{i \alpha}\right)^{2}\left(A_{1}-A_{2}\right)\right]} \tag{59}
\end{equation*}
$$

On the other hand, from (58) and (59), we obtain

$$
b_{2 k+1}-\mu b_{k+1}^{2}=\frac{A_{1}}{12 k\left(2+e^{i \alpha}\right)}\left[p_{2}(h(t)+1)+q_{2}(h(t)-1)\right]
$$

where

$$
h(t)=\frac{3 A_{1}^{2}\left(2+e^{i \alpha}\right)\left(\frac{k+1}{2}-\mu\right)}{k\left[3\left(2+e^{i \alpha}\right) A_{1}^{2}+\left(3+e^{i \alpha}\right)^{2}\left(A_{1}-A_{2}\right)\right]}
$$

Since the functions p and q are in the class \mathcal{P}, it follows that (see [9])

$$
\left|p_{2}\right| \leqq 2 \quad \text { and } \quad\left|q_{2}\right| \leqq 2
$$

Therefore, we have

$$
\left|b_{2 k+1}-\mu b_{k+1}^{2}\right| \leqq \begin{cases}\frac{\left|A_{1}\right|}{3 k\left|2+e^{i \alpha}\right|} & (|h(t)| \leqq 1) \\ \frac{\left|A_{1}\right||h(t)|}{3 k\left|2+e^{i \alpha}\right|} & (|h(t)| \geqq 1)\end{cases}
$$

which completes the proof of Theorem 6.
Since, for $k=1$, the k th root transform reduces to the function itself, the next result is an immediate consequence of Theorem 6.

Corollary 4. Let $\alpha \in(-\pi, \pi]$ and let $\phi \in \mathcal{M}$ be given by (28). Suppose also that the function f of the form (1) belongs to the class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$. Then, for any real number μ,

$$
\begin{align*}
\mid a_{3} & -\mu a_{2}^{2} \mid \\
& \leqq \begin{cases}\frac{\left|A_{1}\right|}{3 \sqrt{5+4 \cos \alpha}} & \left(|1-\mu| \leqq\left|1+\frac{A_{1}-A_{2}}{3 A_{1}^{2}} \frac{\left(3+e^{i \alpha}\right)^{2}}{2+e^{i \alpha}}\right|\right) \\
\frac{\left|A_{1}\right|^{3}|1-\mu|}{\left|3\left(2+e^{i \alpha}\right) A_{1}^{2}+\left(3+e^{i \alpha}\right)^{2}\left(A_{1}-A_{2}\right)\right|} & \left(|1-\mu| \geqq\left|1+\frac{A_{1}-A_{2}}{3 A_{1}^{2}} \frac{\left(3+e^{i \alpha}\right)^{2}}{2+e^{2}}\right|\right)\end{cases} \tag{60}
\end{align*}
$$

Finally, when $\alpha \rightarrow \pi$, the inequality (60) reduces to a result obtained by Zaprawa [35].

8. Concluding Remarks and Observations

In our present investigation, we have successfully applied the principle of differential subordination between analytic functions. Indeed, for $\alpha \in(\pi, \pi]$, we have considered a certain function class $\mathcal{R}_{\alpha}(\phi)$ of all normalized analytic functions in the open unit disk \mathbb{U}, which satisfy the following differential subordination:

$$
f^{\prime}(z)+\frac{1}{2}\left(1+e^{i \alpha}\right) z f^{\prime \prime}(z)<\phi(z) \quad(z \in \mathbb{U})
$$

where the function $\phi(z)$ is analytic in \mathbb{U} such that $\phi(0)=1$. In particular, we have investigated various integral and convolution characterizations, coefficient estimates and differential subordination results for functions belonging to the class $\mathcal{R}_{\alpha}(\phi)$. We have also derived the Fekete-Szegö coefficient functional associated with the k th root transform $\left[f\left(z^{k}\right)\right]^{1 / k}$ of functions in $\mathcal{R}_{\alpha}(\phi)$. Furthermore, we have considered a similar problem for a corresponding class $\mathcal{R}_{\Sigma ; \alpha}(\phi)$ of bi-univalent functions. We have pointed out relevant connections of the results presented here with previous known results.

References

[1] R. M. Ali, S. K. Lee, K. G. Subramanian and A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. 2011 (2011), Article ID 901235, 1-10.
[2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), 119-142.
[3] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351.
[4] D. Bansal and J. Sokól, Coefficient bounds for a new class of analytic and bi-univalent functions, J. Fract. Calc. Appl., 5 (2014), 122-128.
[5] D. A. Brannan and J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[6] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18-21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[7] P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1977), 37-43.
[8] J. H. Choi, Y. C. Kim and T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59 (2007), 707-727.
[9] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[10] A. W. Goodman, Univalent functions, Vols. 1 and 2, Mariner Publishing Company, Tampa, Florida, 1983.
[11] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
[12] J.-L. Liu, On subordination for certain subclasses of analytic functions, Internat. J. Math. Math. Sci. 20 (1997), 225-228.
[13] S. Kanas, An unified approach to the Fekete-Szegö problem, Appl. Math. Comput., 218 (2012), 8453-8461.
[14] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[15] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[16] A. K. Mishra and P. Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J. 33 (2010), 310-328.
[17] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[18] H. Orhan, E. Deniz and D. Răducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295.
[19] H. Orhan and D. Răducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Modelling 50 (2009), 430-438.
[20] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Preprint 2014 [arXiv:1404.0895v1 [math.CV], 2014], 1-8.
[21] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48 (1943), 48-82.
[22] S. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.
[23] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[24] H. Silverman, A class of bounded starlike functions, Internat. J. Math. Math. Sci. 17 (1994), 249-252.
[25] H. Silverman and E. M. Silvia, Characterizations for subclasses of univalent functions, Math. Japon. 50 (1999), 103-109.
[26] R. Singh and S. Singh, Convolutions properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), 145-152.
[27] H. M. Srivastava, S. Bulut, M. Çaglar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831-842.
[28] H. M. Srivastva and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (3-4) (2000), 57-69.
[29] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2001), 145-163.
[30] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192
[31] L. Trojnar-Spelina, Characterizations of subclasses of univalent functions, Demonstratio Math. 38 (2005), 35-41.
[32] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[33] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.
[34] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014 (2014), Article ID 357480, 1-6.
[35] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 169-178.
[36] Z.-Z. Zou and S. Owa, Convolution properties of a class of bounded analytic functions, Bull. Austral. Math. Soc. 45 (1992), 9-23.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. Analytic functions; Univalent functions; Bi-Univalent functions; Differential subordination; Fekete-Szegö problem.
 Received: 24 October 2014; Accepted: 19 December 2015
 Communicated by Dragan S. Djordjević
 Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), draducanu@unitbv.ro (Dorina Răducanu), p.zaprawa@pollub.pl (Paweł Zaprawa)

