CERTAIN SUBCLASSES OF BAZILEVIČ FUNCTIONS OF TYPE α

SHIGEYOSHI OWA

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577
Japan
and
milutin obradoović
Technološko-Matelurški Fakultet
Kernegijeva 4
11000 Beograd
Yugos lavia
(Received October 25,1985)

ABSTRACT. Certain subclasses $B(\alpha, \beta)$ and $B_{1}(\alpha, \beta)$ of Bazilevic functions of type α are introduced. The object of the present paper is to derive a lot of interesting properties of the classes $B(\alpha, \beta)$ and $B_{1}(\alpha, \beta)$.

KEY WORDS AND PHRASES. Bazilevic function, starlike function of order B, convex function of order β, subordination.

1980 MATHEMATICS SUBJECT CLASSIFICATION. 30 C 45.

1. INTRODICTION.

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1,1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$. Let S be the subclass of A consisting of univalent functions in the unit disk U. A function $f(z)$ belonging to the class A is said to be starlike of order β if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>B \tag{1.2}
\end{equation*}
$$

for some $\beta(0 \leq \beta<1)$, and for all $z \varepsilon U$. We denote by $S^{*}(\beta)$ the class of all functions in A which are starlike of order β. Throughout this paper, it should be understood that functions such as $z f^{\prime}(z) / f(z)$, which have removable singularities at $z=0$, have had these singularities removed in statements like (1.2). A function $f(z)$ belonging to the class A is said to be convex of order β if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>B \tag{1.3}
\end{equation*}
$$

for some $\beta(0 \leqq \beta<1)$, and for all $z \in U$. Also we denote by $K(B)$ the class of all functions in A which are convex of order β.

We note that $f(z) \varepsilon K(\beta)$ if and only if $z f^{\prime}(z) \varepsilon S^{*}(\beta)$. We also have $S^{*}(\beta) \subseteq S^{*}(0) \equiv S^{*}, K(\beta) \subseteq K(0) \equiv K$, and $K(\beta) \subset S^{*}(\beta)$ for $0 \leq \beta<1$.

The classes $S^{*}(\beta)$ and $K(\beta)$ were first introduced by Robertson [1], and were studied subsequently by Schild [2], MacGregor [3], Pinchuk [4], Jack [5], and others.

A function $f(z)$ of A is said to be in the class $B(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) f(z)^{\alpha-1} / g(z)^{\alpha}\right\}>\beta \quad(z \in U) \tag{1.4}
\end{equation*}
$$

for some $\alpha(\alpha>0)$ and for some $\beta(0 \leq \beta<1)$, where $g(z) \varepsilon S^{*}$. Furthermore, we denote by $B_{1}(\alpha, \beta)$ the subclass of $B(\alpha, \beta)$ for which $g(z) \equiv z$.

Note that $B(0,0)=B_{1}(0,0)=S^{*}, B(0, \beta)=B_{1}(0, \beta)=B^{*}(B)$, and that $B_{1}(1, \beta)$ is the subclass of A consisting of functions for which $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\beta$ for $z \in U$.

The class $B(\alpha, 0)$ when $\beta=0$ was studied by Singh [6] and Obradović ([7], [8]). Since $B(\alpha, \beta) \subseteq B(\alpha, 0)$ for $0 \leq \beta<1$, the class $B(\alpha, \beta)$ is the subclass of Bazilevic functions of type α (cf. [6]).

Let $f(z)$ and $g(z)$ be analytic in the unit disk U. Then a function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $w(z)$ analytic in the unit disk U satisfying $w(0)=0$ and $|w(z)|<1(z \varepsilon U)$ such that $f(z)=g(w(z))$. We denote by $f(z) \prec g(z)$ this relation. In particular, if $g(z)$ is univalent in the unit disk U the subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$.

The consept of subordination can be traced back to Lindelöf [9], but Littlewood [10] and Rogosinski [11] introduced the term and discovered the basic relations.
2. SOME PROPERTIES OF THE CLASS $B(\alpha, \beta)$.

We begin to state the following lemma due to Miller and Mocanu [12].

LEMMA 1. Let $M(z)$ and $N(z)$ be regular in the unit disk U with $M(0)=N(0)=0$, and let β be real. If $N(z)$ maps U onto a possibly many-sheeted) region which is starlike with respect to the origin then
$\operatorname{Re}\left\{M^{\prime}(z) / N^{\prime}(z)\right\}>\beta(z \in U) \Longrightarrow \operatorname{Re}\left\{M(z) / N^{\prime}(z)\right\}>B(z \varepsilon U)$, and
$\operatorname{Re}\left\{M^{\prime}(z) / N^{\prime}(z)\right\}<B(z \varepsilon U) \Longrightarrow \operatorname{Re}\{M(z) / N(z)\}<B \quad(z \varepsilon U)$.

Applying Lemma 1 , we prove

LEMMA 2. Let the function $f(z)$ defined by (1.1) be in the class $S^{*}(\beta)$, and let α and c be positive integers. Then the function $F(z)$ defined by

$$
F(z)^{\alpha}=\frac{\alpha+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t)^{\alpha} d t
$$

is also in the class $S^{*}(B)$.

PROOF. Setting
$\frac{\alpha z F^{\prime}(z)}{F(z)}=\frac{z^{c} f(z)^{\alpha}-c \int_{0}^{z} t^{c-1} f(t)^{\alpha} d t}{\int_{0}^{z} t^{c-1} f(t)^{\alpha} d t}=\frac{M(z)}{N(z)}$.
we have $M(0)=N(0)=0$ and
$\operatorname{Re}\left\{M^{\prime}(z) / N^{\prime}(z)\right\}=\alpha \operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha \beta$.

As $N(z)$ is $(\alpha+1)$-valently starlike in the unit disk U, Lemma 1 shows that $\operatorname{Re}\{M(z) / N(z)\}=\alpha \operatorname{Re}\left\{z F^{\prime}(z) / F(z)\right\}>\alpha \beta$
which implies $F(z) \varepsilon S^{*}(\beta)$.

Now, we state and prove

THEOREM 1. Let the function $f(z)$ defined by (1.1) be in the class $B(\alpha, \beta)$ for $g(z) \varepsilon S^{*}(\beta)$, where α is a positive integer and $0 \leq B<1$. Then the function $F(z)$ defined by (2.3) is also in the class $B(\alpha, \beta)$.

PROOF. It follows from (2.3) that

$$
\begin{equation*}
\frac{\alpha z F^{\prime}(z)}{F(z)^{I-\alpha}}=\frac{\alpha+c}{z^{c}}\left(z^{c} f(z)^{\alpha}-c \int_{0}^{z} t^{c-1} f(z)^{\alpha} d t\right) \tag{2.7}
\end{equation*}
$$

Note that there exists a function $g(z)$ belonging to the class $S^{*}(\beta)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) f(z)^{\alpha-1} / g(z)^{\alpha}\right\}>\beta \tag{2.8}
\end{equation*}
$$

Define the function $G(z)$ by

$$
\begin{equation*}
G(z)^{\alpha}=\frac{\alpha+c}{z^{c}} \int_{0}^{z} t^{c-1} g(t)^{\alpha} d t \tag{2.9}
\end{equation*}
$$

Then, by using Lemma 2, we have $G(z) \in S^{*}(B)$. Combining (2.7) and (2.9), we observe that

$$
\begin{equation*}
\frac{\alpha z F^{\prime}(z)}{F(z)^{1-\alpha} G(z)^{\alpha}}=\frac{z^{c} f(z)^{\alpha}-c \int_{0}^{z} t^{c-1} f(t)^{\alpha} d t}{\int_{0}^{z} t^{c-1} g(t)^{\alpha} d t} \tag{2.10}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\frac{\alpha z F^{\prime}(z)}{F(z)^{I-\alpha} G(z)^{\alpha}}=\frac{M(z)}{N(z)}, \tag{2.11}
\end{equation*}
$$

(2.10) gives

$$
\begin{equation*}
\operatorname{Re}\left\{M^{\prime}(z) / N^{\prime}(z)\right\}=\alpha \operatorname{Re}\left\{z f^{\prime}(z) f(z)^{\alpha-1} / g(z)^{\alpha}\right\}>\alpha \beta \tag{2.12}
\end{equation*}
$$

Consequently, with the help of Lemma 1 , we conclude that

$$
\begin{equation*}
\operatorname{Re}\left\{z F^{\prime}(z) F(z)^{\alpha-1} / G(z)^{\alpha}\right\}>\beta, \tag{2.13}
\end{equation*}
$$

that is, that $F(z) \varepsilon B(\alpha, \beta)$. Thus we have Theorem 1 .

COROLLARY 1. Let the function $f(z)$ defined by (1.1) be in the class $B(\alpha, 0)$, where α is a positive integer. Then the function $F(z)$ defined by (2.3) is also in the class $B(\alpha, 0)$.

THEOREM 2. The set of all points $\log \left\{z^{1-\alpha} f^{\prime}(z) / f(z)^{1-\alpha}\right\}$, for a fixed $z \varepsilon U$ and $f(z)$ ranging over the class $B(\alpha, \beta)$, is convex.

PROOF. We employ the same manner due to Singh [6]. For the function $f(z)$ belonging to the class $B(\alpha, \beta)$, we define the function

$$
\begin{equation*}
h(z)=z f^{\prime}(z) / f(z)^{1-\alpha} g(z)^{\alpha} \tag{2.14}
\end{equation*}
$$

where $g(z) \varepsilon S^{*}$. Then, it is clear that $\operatorname{Re}\{h(z)\}>\beta$ for $z \varepsilon U$. We denote by $P(\beta)$ the subclass of analytic functions $h(z)$ satisfying $\operatorname{Re}\{h(z)\}>\beta$ for $0 \leqq \beta<1$ and $z \in U$. We note from (2.14) that

$$
\begin{equation*}
\log \left\{z^{1-\alpha} f^{\prime}(z) / f(z)^{1-\alpha}\right\}=\log h(z)+\alpha \log \{g(z) / z\} \tag{2.15}
\end{equation*}
$$

Since, for a fixed $z \varepsilon U$, the range of $\log h(z)$, as $h(z)$ ranges over the class $P(\beta)$, is a convex set, and the range of $\log \{g(z) / z\}$, as $g(z)$ ranges over the class S^{*}, is a convex set, we complete the proof of Theorem 2 .

Taking $\alpha=0$ in Theorem 2 , we have

COROLLARY 2. The set of all points $\log \left\{z f^{\prime}(z) / f(z)\right\}$, for a fixed $z \varepsilon U$ and $f(z)$ ranging over the class $S^{*}(\beta)$, is convex.

Furthermore, taking $\alpha=1$ in Theorem 2, we obtain

COROLLARY 3. The set of all points $\log \left\{f^{\prime}(z)\right\}$, for a fixed $z \varepsilon U$ and $f(z)$ ranging over the class $C(\beta)$, is convex, where $C(\beta)$ is the class of analytic functions $f(z)$ which satisfy $\operatorname{Re}\left\{f^{\prime}(z) / g(z)\right\}>\beta$ for $g(z) \varepsilon S^{*}$
3. SOME PROPERTIES OF THE CLASS $B_{1}(\alpha, \beta)$.

In order to derive some properties of the class $B_{1}(\alpha, \beta)$, we shall recall here the following lemmas.

LEMMA 3 (Miller [13]). Let $\phi(u, v)$ be the complex function, $\phi: D \rightarrow C, D \quad C \times C$ (C-complex plane) and let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$. Suppose that the function ϕ satisfies the conditions:
(i) $\phi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\phi(1,0)\}>0$;
(iii) $\operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\} \leqq 0$ for all $\left(i u_{2}, v_{1}\right) \varepsilon D$ and such that $v_{1} \leqq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+\cdots$ be regular in the unit disk U, such that ($\left.p(z), z p^{\prime}(z)\right) \varepsilon U$ for all $z \varepsilon U$. If $\operatorname{Re}\left\{\phi\left(p(z), z p^{\prime}(z)\right)\right\}>0(z \varepsilon U)$, then $\operatorname{Re}\{p(z)\}>0$ for $z \varepsilon U$.

LEMMA 4 (Robertson [14]). Let $f(z) \in S$. For each $0 \leq t \leq 1$ let $F(z, t)$ be regular in the unit disk U, let $F(z, 0) \equiv f(z)$ and $F(0, t) \equiv 0$. Let p be a positive real number for which

$$
F(z)=\lim _{t \rightarrow+0} \frac{F(z, t)-F(z, 0)}{z t^{P}}
$$

exists. Let $F(z, t)$ be subordinate to $f(z)$ in U for $0 \leqq t \leqq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{F(z) / f^{\prime}(z)\right\} \leqq 0 \quad(z \varepsilon U) \tag{3.1}
\end{equation*}
$$

If in addition $F(z)$ is also regular in the unit disk U and $\operatorname{Re}\{F(0)\} \neq 0$, then

$$
\begin{equation*}
\operatorname{Re}\left\{F(z) / f^{\prime}(z)\right\}<0 \quad(z \varepsilon U) . \tag{3.2}
\end{equation*}
$$

LEMMA 5 (MacGregor [15]). Let the function $f(z)$ be in the class $K(\beta)$. Then $f(z) \varepsilon S^{*}(\gamma(\beta))$, where

$$
\gamma(\beta)= \begin{cases}\frac{2 \beta-1}{2\left(1-2^{1-2 \beta}\right)} & (\beta \neq 1 / 2) \tag{3.3}\\ \frac{1}{2 \log 2} & (\beta=1 / 2)\end{cases}
$$

We begin with

LEMMA 6. Let the function $f(z)$ be in the class $B_{1}(\alpha, \beta)$, where α is a positive integer and $0 \leqq \beta<1$. Then

$$
\begin{equation*}
\operatorname{Re}\{f(z) / z\}^{\alpha}>\beta \quad(z \varepsilon U) . \tag{3.4}
\end{equation*}
$$

PROOF. For $f(z) \varepsilon B_{1}(\alpha, \beta)$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) f(z)^{\alpha-1} / z^{\alpha}\right\}=\operatorname{Re}\left\{\frac{\mathrm{df}(z)^{\alpha} / \mathrm{d} z}{\mathrm{~d} z^{\alpha} / \mathrm{d} z}\right\}>B \tag{3.5}
\end{equation*}
$$

Applying Lemma 1 , we can prove the assertion (3.4).

THEOREM 3. Let the function $f(z)$ be in the class $B_{1}(\alpha, \beta)$, where α is a positive integer and $0 \leq \beta<1$. Then the function $F_{1}(z)$ defined by

$$
\begin{equation*}
F_{1}(z)^{\alpha+\gamma}=z^{\gamma} f(z)^{\alpha} \tag{3.6}
\end{equation*}
$$

belongs to the class $B_{1}(\alpha+\gamma, \beta)$ for $\gamma \geqq 0$.

PROOF. Note that

$$
\begin{equation*}
\frac{(\alpha+\gamma) F_{1}^{!}(z)}{F_{1}(z)^{1-(\alpha+\gamma)}}=\gamma z^{\gamma-1} f(z)^{\alpha}+\frac{\alpha z^{\gamma} f^{\prime}(z)}{f(z)^{1-\alpha}} \tag{3.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{(\alpha+\gamma) z F_{1}^{\prime}(z)}{F_{1}(z)^{1-(\alpha+\gamma)} z^{\alpha+\gamma}}=\gamma\left(\frac{f(z)}{z}\right)^{\alpha}+\frac{\alpha z f^{\prime}(z)}{f(z)^{1-\alpha} z^{\alpha}} \tag{3.8}
\end{equation*}
$$

Therefore, by using Lemma 6 , we have

$$
\begin{equation*}
\operatorname{Re}\left\{z F_{1}^{\prime}(z) F_{I}(z)^{\left.(\alpha+\gamma)-1 / z^{\alpha+\gamma}\right\}>B}\right. \tag{3.9}
\end{equation*}
$$

which implies $F_{1}(z) \varepsilon B_{1}(\alpha+\gamma, \beta)$. Thus we completes the theorem.

Applying Lemma 3, we derive

THEOREM 4. Let the function $f(z)$ be in the class $B_{1}(\alpha, \beta)$ with $\alpha>0$ and $0 \leqq \beta<1$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}>\frac{1+2 \alpha \beta}{1+2 \alpha} \quad(z \varepsilon U) . \tag{3.10}
\end{equation*}
$$

PROOF. We define the function $p(z)$ by

$$
\begin{equation*}
A\{f(z) / z\}^{\alpha}=p(z)+B \tag{3.11}
\end{equation*}
$$

where $A=(1+2 \alpha) / 2 \alpha(1-\beta)$ and $B=(1+2 \alpha \beta) / 2 \alpha(1-\beta)$. Then $p(z)$ is analytic in the unit disk U and $p(0)=1$. Differentiating both sides of (3.11) logarithmically, we obtain
or $\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{\alpha}\left(\frac{z p^{\prime}(z)}{p(z)+B}+\alpha\right)$,
$z f^{\prime}(z) f(z)^{\alpha-1} / z^{\alpha}=\left\{z p^{\prime}(z)+\alpha(p(z)+B)\right\} / \alpha A$.

Since $f(z) \in B_{1}(\alpha, \beta)$, (3.13) gives

$$
\begin{equation*}
\operatorname{Re}\left\{z p^{\prime}(z)+\alpha(p(z)+B)\right\}-\alpha \beta A>0 \tag{3.14}
\end{equation*}
$$

Letting $p(z)=u=u_{1}+i u_{2}$ and $z p^{\prime}(z)=v=v_{1}+i v_{2}$, we consider the function

$$
\begin{equation*}
\phi(u, v)=v+\alpha(u+B)-\alpha B A \tag{3.15}
\end{equation*}
$$

which is continuous in $D=C \times C$, and which $(1,0) \in D$ and $\operatorname{Re}\{\phi(1,0)\}=3 / 2>0$. Then, for all $\left(i u_{2}, v_{1}\right)$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$, we have

$$
\begin{align*}
\operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\} & =v_{1}+\alpha \beta-\alpha \beta A \\
& \leq-u_{2}^{2} / 2 \\
& \leq 0 \tag{3.16}
\end{align*}
$$

Consequently, with the aid of Lemma 3 , we conclude that

$$
\operatorname{Re}\{p(z)\}>0 \quad\left(\begin{array}{l}
z \varepsilon U),
\end{array}\right.
$$

that is, that

$$
\begin{equation*}
\operatorname{Re}\left\{A\left(\frac{f(z)}{z}\right)^{\alpha}\right\}>B \tag{3.18}
\end{equation*}
$$

This completes the proof of Theorem 4.

Putting $B=0$ in Theorem 4, we have

COROLLARY 3 ([8, Theorem 3]). Let the function $f(z)$ be in the class $B_{1}(\alpha, 0)$ with $\alpha>0$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}>\frac{1}{1+2 \alpha} \quad(z \varepsilon U) \tag{3.19}
\end{equation*}
$$

Taking $\alpha=1$ in Theorem 4, we have

COROLLARY 4. If the function $f(z)$ belonging to A satisfies $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\beta$ with $0 \leqq \beta<1$, then

$$
\operatorname{Re}\left(\frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}}\right)>\frac{1+2 \beta}{3} \quad\left(\begin{array}{l}
z \varepsilon \mathrm{U}) . \tag{3.20}
\end{array}\right.
$$

REMARK 1. Letting $\beta=0$ in Corollary 4 , we have the corresponding result due to Obradovic [7, Theorem 2].

THEOREM 5. Let $\alpha>1,0 \leq \beta<1$, and $\gamma(\beta)$ define by (3.3). Let $-1 / 4 \leq \alpha-\beta-(\alpha-1) \gamma(\beta) \leq 1 / 4$. If the function $f(z)$ belongs to the class $K(\beta)$, then $f(z) \in B_{1}\left(\alpha, \beta^{\prime}\right)$, where

$$
\beta^{\prime}=1 /[2\{\alpha-\beta-(\alpha-1) \gamma(\beta)\}+1]
$$

PROOF. Define the function $p(z)$ by

$$
\begin{equation*}
A z f^{\prime}(z) f(z)^{\alpha-1} / z^{\alpha}=p(z)+A-1 \tag{3.21}
\end{equation*}
$$

where $A=1+1 / 2\{\alpha-\beta-(\alpha-1) \gamma(\beta)\}$. Differentiating both sides of (3.21) logarithmically, we know that

$$
\begin{equation*}
I-\alpha+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\alpha-1) \frac{z f^{\prime}(z)}{f(z)}=\frac{z p^{\prime}(z)}{p(z)+A-1} \tag{3.22}
\end{equation*}
$$

or

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & -\beta+(\alpha-1)\left(\frac{z f^{\prime}(z)}{f^{\prime}(z)}-\gamma(\beta)\right) \\
& =\frac{z p^{\prime}(z)}{p(z)+A-1}+\alpha-\beta-(\alpha-1) \gamma(\beta) . \tag{3.23}
\end{align*}
$$

With the help of Lemma 5, (3.23) implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)+A-1}\right\}+\alpha-\beta-(\alpha-1) \gamma(\beta)>0 \tag{3.24}
\end{equation*}
$$

Let the function $\phi(u, v)$ be defined by

$$
\begin{equation*}
\phi(u, v)=\frac{v}{u+A-1}+\alpha-\beta-(\alpha-1) \gamma(\beta) \tag{3.25}
\end{equation*}
$$

with $p(z)=u=u_{1}+i u_{2}$ and $z p^{\prime}(z)=v=v_{1}+i v_{2}$. Then $\phi(u, v)$ is continuous in $D=(C-\{1-A\}) x C$. Further, $(1,0) \in D$ and

$$
\begin{align*}
\operatorname{Re}\{\phi(1,0)\} & =\alpha-\beta-(\alpha-1) \gamma(\beta) \\
& >(\alpha-1)\{1-\gamma(\beta)\} \\
& >0 \tag{3.26}
\end{align*}
$$

Consequently, for all $\left(\mathrm{iu}_{2}, \mathrm{v}_{1}\right)$ such that $\mathrm{v}_{1} \leq-\left(1+u_{2}^{2}\right) / 2$, we obtain

$$
\begin{align*}
& \operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\}=\frac{(A-1) v_{1}}{(A-1)^{2}+u_{2}^{2}}+\alpha-\beta-(\alpha-1) \gamma(\beta) \\
& \quad \leqq \frac{2\{\alpha-\beta-(\alpha-1) \gamma(B)\}\left\{(A-1)^{2}+u_{2}^{2}\right\}-(A-1)\left(1+u_{2}^{2}\right)}{2\left\{(A-1)^{2}+u_{2}^{2}\right\}} \\
& \quad \leq 0 . \tag{3.27}
\end{align*}
$$

By virtue of Lemma 3, we have

$$
\operatorname{Re}\{p(z)\}>0 \quad(z \in U),
$$

that is,

$$
\begin{equation*}
\operatorname{Re}\left\{\operatorname{Azf}(z) f(z)^{\alpha-1} / z^{\alpha}\right\}>A-1 \tag{3.28}
\end{equation*}
$$

It follows from (3.28) that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{z^{\alpha}}\right\}>\frac{1}{2\{\alpha-\beta-(\alpha-1) \gamma(\beta)\}+1} \tag{3.29}
\end{equation*}
$$

which completes the assertion of Theorem 5 .

Finally, we prove

THEOREM 6. Let $f(z) \varepsilon A, \alpha>0,0 \leq B<1$, and $0 \leq t \leq 1$. If

$$
\begin{equation*}
g(z)=\int_{0}^{z}\left(\frac{f(s)}{s}\right)^{1-\alpha} \text { ds } \varepsilon S \tag{3.30}
\end{equation*}
$$

and

$$
\begin{aligned}
& \left.G(z, t)=f((1-t) z)-f\left(1-t^{2}\right) z\right) \\
& \quad+\left(1-t^{2}\right) \int_{0}^{z}\left(\frac{f(s)}{s}\right)^{1-\alpha} d s+z t B\left(\frac{f(z)}{z}\right)^{1-\alpha}<g(z),
\end{aligned}
$$

then $f(z) \varepsilon B_{1}(\alpha, \beta)$.

PROOF. Note that

$$
\begin{align*}
G(z) & =\lim _{t \rightarrow+0} \frac{G(z, t)-G(z, 0)}{z t} \\
& =\lim _{t \rightarrow+0} \frac{\partial G(z, t) / \partial t}{z} \\
& =\beta\left(\frac{f(z)}{z}\right)^{1-\alpha}-f^{\prime}(z) \tag{3.32}
\end{align*}
$$

and $g^{\prime}(z)=\{f(z) / z\}^{1-\alpha}$. It is clear from (3.32) that $\operatorname{Re}\{G(0)\}=\beta-1 \neq 0$. Consequently, applying Lemma 4 when $p=1$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\beta-\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{z^{\alpha}}\right\}<0 \tag{3.33}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) f(z)^{\alpha-1} / z^{\alpha}\right\}>\beta \tag{3.34}
\end{equation*}
$$

which shows $f(z) \in B_{1}(\alpha, \beta)$.

REMARK 2. Letting $\beta=0$ in Theorem 6 , we have the corresponding theorem by Obradovie [8, Theorem 1].

REFERENCES

1. Robertson, M. S., On the theory of univalent functions, Ann. of Math. 37(1936), 374-408.
2. Schild, A., On starlike functions of order α, Amer. J. Math. 87 (1965), 65-70.
3. MacGregor, T. H., The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc. 14(1963), $71-76$.
4. Pinchuk, B., On starlike and convex functions of order α, Duke Math. J. 35(1968), 721-734.
5. Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc. (2) 3(1971), 469-474.
6. Singh, R., On Bazilevit functions, Proc. Amer. Math. Soc. 38(1973), 261-271.
7. Obradovic, M., Estimates of the real part of $f(z) / z$ for some classes of univalent functions, Mat. Vesnik 36(1984), 266-270.
8. Obradovic, M. Some results on Bazilevič functions, Mat. Vesnik 37(1985), 92 - 96.
9. Lindelơf, E., Mémoire sur certaines inéqalités dans la théorie des fonctions monogénes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel, Acta Soc. Sci. Fenn. 35(1909), 1-35.
10. Littlewood, J. E., On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23(1925), 481-519.
11. Rogosinski, W., On subordinate functions, Proc. Cambridge Philos. Soc. $35(1939), 1-26$.
12. Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Ana. Appl. 65(1978), 289-305.
13. Miller, S. S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81(1975), 79-81.
14. Robertson, M. S., Application of subordination principle to univalent functions, Pacific J. Math. 11(1961), 315-324.
15. MacGregor, T. H., A subordination for convex function of order α, J. London Math. Soc. (2) 9(1975), 530-536.

