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Certain subclasses of Spiral-like univalent functions related
with Pascal distribution series
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Abstract. The purpose of the present paper is to find the sufficient conditions for the subclasses of analytic
functions associated with Pascal distribution to be in subclasses of spiral-like univalent functions and inclu-
sion relations for such subclasses in the open unit disk D. Further, we consider the properties of integral
operator related to Pascal distribution series. Several corollaries and consequences of the main results are
also considered.
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1. Introduction

Denote by A the class of functions whose members are of the form

f (z) = z +
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1} and normalized by the
conditions f (0) = 0 = f ′(0) − 1. Let S be subclass of A whose members are given by (1.1)
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and are univalent in D. For functions f ∈ S be given by (1.1) and g ∈ S given by g(z) =
z + ∑∞

n=2 bnzn, we define the Hadamard product (or convolution) of f and g by

( f ∗ g)(z) = z +
∞

∑
n=2

anbnzn, z ∈ D.

The two well known subclass of S , are namely the class of starlike and convex functions (for
details see Robertson [19]). A function f ∈ S given by (1.1) is said to be starlike of order γ
(0 ≤ γ < 1), if and only if

Re
(

z f ′(z)
f (z)

)
> γ (z ∈ D).

This function class is denoted by S∗(γ). We also write S∗(0) =: S∗, where S∗ denotes the class
of functions f ∈ A that f (D) is starlike with respect to the origin.

A function f ∈ S is said to be convex of order γ (0 ≤ γ < 1) if and only if

Re
(

1 +
z f ′′(z)
f ′(z)

)
> γ (z ∈ D).

This class is denoted by K(γ). Further, K = K(0), the well-known standard class of convex
functions. By Alexander’s relation(see [3]), it is a known fact that

f ∈ K ⇔ z f ′(z) ∈ S∗.
A function f ∈ S is said to be spiral-like if

<
(

e−iα z f ′(z)
f (z)

)
> 0

for some α with | α |< π
2 and for all z ∈ D. This class of spiral-like function was introduced

in[27]. Also f (z) is convex spiral-like if z f ′(z) is spiral-like. For instance, in 1974,a subclass
of spiral-like functions was familiarized by Silvia[21],who gave some amazing properties of
this function class. Consequently, Umarani [29] dened and deliberate another function class
of spiral-like functions.Lately, certain properties of spiral-like close-to-convex functions associ-
ated with conic domains has been studied extensively by Srivastava et al.,[25] (see also [23, 26]
and the references cited therein). Due to Murugusundramoorthy [9] (see also [10]), we consider
subclasses of spiral-like functions as below:

Definition 1.1. For 0 ≤ ρ < 1, 0 ≤ γ < 1 then

S(ξ, γ, ρ) :=
{

f ∈ S : Re
(

eiξ z f ′(z)
(1− ρ) f (z) + ρz f ′(z)

)
> γ cos ξ, |ξ| < π

2
, z ∈ D

}
.

By virtue of Alexander’s relation, we define the following subclass:

Definition 1.2. For 0 ≤ ρ < 1, 0 ≤ γ < 1 then

K(ξ, γ, ρ) :=
{

f ∈ S : Re
(

eiξ z f ′′(z) + f ′(z)
f ′(z) + ρz f ′′(z)

)
> γ cos ξ, |ξ| < π

2
, z ∈ D

}
.

By specialising the parameter ρ = 0 we remark the following :
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Definition 1.3. For 0 ≤ γ < 1 then

S(ξ, γ) :=
{

f ∈ S : Re
(

eiξ z f ′(z)
f (z)

)
> γ cos ξ, |ξ| < π

2
, z ∈ D

}
and

K(ξ, γ) :=
{

f ∈ S : Re
(

eiξ
[

1 +
z f ′′(z)
f ′(z)

])
> γ cos ξ, |ξ| < π

2
, z ∈ D

}
.

The above function classes S(ξ, γ),K(ξ, γ) and S(ξ, γ, ρ)(see [9, 10]) have been studied and
generalized by different view points and perspectives. Now we state the necessary sufficient
conditions for f in the above classes relevant for current study.

Lemma 1.1 ([9, 10]). A function f (z) given by (1.1) is a member of S(ξ, γ, ρ) if
∞

∑
n=2

[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]|an| ≤ 1− γ, (1.2)

where |ξ| < π
2 , 0 ≤ ρ < 1, 0 ≤ γ < 1.

Lemma 1.2. A function f (z) given by (1.1) is a member of S(ξ, γ, ρ) if
∞

∑
n=2

n[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]|an| ≤ 1− γ, (1.3)

where |ξ| < π
2 , 0 ≤ ρ < 1, 0 ≤ γ < 1.

Proof. By Alexander type Theorem (see [3]) ,we have f ∈ K(ξ, γ, ρ) if and only if z f ′ ∈
S(ξ, γ, ρ), Thus z +

∞
∑

n=2
(nan)zn is in S(ξ, γ, ρ). Hence by wringing an by nanin Lemma 1.1

we get the desired result.

Lemma 1.3. Let f (z) be given by (1.1). Then f ∈ S(ξ, γ) if
∞

∑
n=2

[(n− 1) sec ξ + (1− γ)]|an| ≤ 1− γ, (1.4)

where |ξ| < π
2 , 0 ≤ γ < 1.

Lemma 1.4. A function f (z) given by (1.1) is a member of K(ξ, γ) if
∞

∑
n=2

n[(n− 1) sec ξ + (1− γ)]|an| ≤ 1− γ, (1.5)

where |ξ| < π
2 , 0 ≤ γ < 1.

Definition 1.4. A function f ∈ S is said to be in the classRτ(ϑ, δ), (τ ∈ C\{0}, 0 < ϑ ≤ 1; δ < 1),
if it satisfies the inequality∣∣∣∣∣ (1− ϑ) f (z)

z + ϑ f ′(z)− 1

2τ(1− δ) + (1− ϑ) f (z)
z + ϑ f ′(z)− 1

∣∣∣∣∣ < 1 (z ∈ D).

The class Rτ(ϑ, δ) was introduced earlier by Swaminathan [28](for special cases see the references
cited there in).
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Lemma 1.5 ([28]). If f ∈ Rτ(ϑ, δ) is of form (1.1), then

|an| ≤
2 |τ| (1− δ)

1 + ϑ(n− 1)
, n ∈N \ {1}. (1.6)

The bounds given in (1.6) is sharp.

A variable x is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with probabilities

(1− q)m,
qm(1− q)m

1!
,

q2m(m + 1)(1− q)m

2!
,

q3m(m + 1)(m + 2)(1− q)m

3!
· · ·

, respectively, where q and m are called the parameters, and thus

P(x = k) =
(

k + m− 1
m− 1

)
qk(1− q)m, k = 0, 1, 2, 3, . . . .

Lately, El-Deeb et al.[5](also see [1]) introduced a power series whose coefficients are probabil-
ities of Pascal distribution

Θm
q (z) = z +

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)mzn, z ∈ D

where m ≥ 1; 0 ≤ q ≤ 1 and one can easily verify that the radius of convergence of above
series is infinity by ratio test. Now, we define the linear operator

Λm
q (z) : A → A

defined by the convolution or Hadamard product

Λm
q f (z) = Θm

q (z) ∗ f (z) = z +
∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)manzn, z ∈ D.

In recent years,several interesting subclasses of analytic functions were introduced and in-
vestigated from different view points.Stimulated by prior results on relations between differ-
ent subclasses of analytic and univalent functions by using hypergeometric functions (see for
example,[2, 7, 8, 20, 22, 15, 24, 28]) and by the recent investigations related with distribution
series (see for example, [1, 4, 5, 6, 12, 11, 17, 16, 18], we obtain sufficient condition for the
function Φm

q to be in the classes S(ξ, γ, ρ) and K(ξ, γ, ρ), and information regarding the im-
ages of functions belonging in Rτ(ϑ, δ) by smearing convolution operator. Finally, we afford

conditions for the integral operator Gm
q (z) =

∫ z
0

Θm
q (t)
t dt belonging to the above classes.

2. Inclusion Results

In order to substantiate our main results, we will use the following symbolizations, for m ≥ 1
and 0 ≤ q < 1:

∞

∑
n=0

(
n + m− 1

m− 1

)
qn =

1
(1− q)m ;

∞

∑
n=0

(
n + m

m

)
qn =

1
(1− q)m+1
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and
∞

∑
n=0

(
n + m + 1

m + 1

)
qn =

1
(1− q)m+2 . (2.1)

By modest computation we get the subsequent relations:
∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1 =

∞

∑
n=0

(
n + m− 1

m− 1

)
qn − 1 =

1
(1− q)m − 1 (2.2)

∞

∑
n=2

(n− 1)
(

n + m− 2
m− 1

)
qn−1 = qm

∞

∑
n=0

(
n + m

m

)
qn =

qm
(1− q)m+1 (2.3)

and
∞

∑
n=2

(n− 1)(n− 2)
(

n + m− 2
m− 1

)
qn−1 = q2 m(m + 1)

∞

∑
n=0

(
n + m + 1

m + 1

)
qn

=
q2 m(m + 1)
(1− q)m+2 . (2.4)

Theorem 2.1. Let m > 0. Then Θm
q (z) ∈ S(ξ, γ, ρ) if

[(1− ρ) sec ξ + ρ(1− γ)]
qm

(1− q)m+1 ≤ 1− γ. (2.5)

Proof. Since

Θm
q (z) = z +

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)mzn.

Using the Lemma 1.1, it suffices to show that
∞

∑
n=2

[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)] ≤ 1− γ. (2.6)

From (2.6) we let

M1(ξ, γ, ρ) =
∞

∑
n=2

[(1− ρ) sec ξ(n− 1) + (1− γ)(1 + nρ− ρ)]

×
(

n + m− 2
m− 1

)
qn−1(1− q)m

= [(1− ρ) sec ξ + ρ(1− γ)](1− q)m
∞

∑
n=2

(n− 1)

×
(

n + m− 2
m− 1

)
qn−1 + (1− γ)(1− q)m

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1

= [(1− ρ) sec ξ + ρ(1− γ)](1− q)mqm
∞

∑
n=0

(
n + m

m

)
qn

+ (1− γ)(1− q)m

(
∞

∑
n=0

(
n + m− 1

m− 1

)
qn − 1

)
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= [(1− ρ) sec ξ + ρ(1− γ)](1− q)m qm
(1− q)m+1

+ (1− γ)(1− q)m
(

1
(1− q)m − 1

)
= [(1− ρ) sec ξ + ρ(1− γ)]

qm
(1− q)

+ (1− γ) (1− (1− q)m) .

But M1(ξ, γ, ρ) is constrained above by 1− γ if and only if (2.5) holds.

Theorem 2.2. Let m > 0. Then Θm
q (z) ∈ K(ξ, γ, ρ) if

[(1− ρ) sec ξ + ρ(1− γ)]
m(m + 1)q2

(1− q)2 + [2(1− ρ) sec ξ + (1− γ)(4− ρ)]
mq

1− q
+ [(1− γ)(2− ρ)] (1− (1− q)m) ≤ 1− γ. (2.7)

Proof. In view of Lemma 1.2, we have to show that
∞

∑
n=2

n[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

(
n + m− 2

m− 1

)
qn−1(1− q)m ≤ 1− γ. (2.8)

Writing n = (n− 1) + 1 and n2 = (n− 1)(n− 2) + 3(n− 1) + 1.
From (2.8), consider the expression

M2(ξ, γ, ρ) =
∞

∑
n=2

n[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

×
(

n + m− 2
m− 1

)
qn−1(1− q)m

= [(1− ρ) sec ξ + ρ(1− γ)](1− q)m
∞

∑
n=2

n2
(

n + m− 2
m− 1

)
qn−1

− (1− ρ)[sec ξ − (1− γ)(1− q)m
∞

∑
n=2

n
(

n + m− 2
m− 1

)
qn−1

= [(1− ρ) sec ξ + ρ(1− γ)](1− q)m
∞

∑
n=2

(n− 1)(n− 2)
(

n + m− 2
m− 1

)
qn−1

+ [2(1− ρ) sec ξ + (1− γ)(4− ρ)] (1− q)m
∞

∑
n=2

(n− 1)

×
(

n + m− 2
m− 1

)
qn−1

+ [(1− γ)(2− ρ)] (1− q)m
∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1

= [(1− ρ) sec ξ + ρ(1− γ)](1− q)mq2m(m + 1)
∞

∑
n=0

(
n + m + 1

m + 1

)
qn
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+ [2(1− ρ) sec ξ + (1− γ)(4− ρ)] (1− q)mmq
∞

∑
n=0

(
n + m

m

)
qn

+ [(1− γ)(2− ρ)] (1− q)m

[
∞

∑
n=0

(
n + m− 1

m− 1

)
qn − 1

]
.

Now by using (2.2)-(2.4), we get

M2(ξ, γ, ρ) = [(1− ρ) sec ξ + ρ(1− γ)]
m(m + 1)q2

(1− q)2

+ [2(1− ρ) sec ξ + (1− γ)(4− ρ)]
mq

1− q
+ [(1− γ)(2− ρ)] (1− (1− q)m) .

Hence, M2(ξ, γ, ρ) is bounded above by 1− γ if (2.7) is satisfied.

3. Image Properties of Λm
q operator

Making use of the Lemma 1.5, we will focus the influence of the Pascal distribution series
on the classes S(ξ, γ, ρ) and K(ξ, γ, ρ).

Theorem 3.1. Let m > 0, and f ∈ Rτ(ϑ, δ). Then Λm
q f (z) is in S(ξ, γ, ρ) if

2 |τ| (1− δ)

ϑ

{
[(1− ρ) sec ξ + ρ(1− γ)] [1− (1− q)m]

+
(1− ρ)(1− γ− sec ξ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
≤ 1− γ. (3.1)

Proof. In view of Lemma 1.1, it is required to show that
∞

∑
n=2

[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

(
n + m− 2

m− 1

)
qn−1(1− q)m|an| ≤ 1− γ.

Let

M3(ξ, γ, ρ) =
∞

∑
n=2

[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

×
(

n + m− 2
m− 1

)
qn−1(1− q)m|an|.

Since f ∈ Rτ(ϑ, δ), then by Lemma 1.5, we have

|an| ≤
2 |τ| (1− δ)

1 + ϑ(n− 1)
, n ∈N \ {1}
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and 1 + ϑ(n− 1) ≥ ϑn. Thus,we have

M3(ξ, γ, ρ) ≤ 2 |τ| (1− δ)

ϑ

[
∞

∑
n=2

1
n
[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

×
(

n + m− 2
m− 1

)
qn−1(1− q)m

]
=

2 |τ| (1− δ)

ϑ
(1− q)m

[
∞

∑
n=2

[(1− ρ) sec ξ + ρ(1− γ)]

+ (1− ρ)(1− γ− sec ξ)
1
n

] (
n + m− 2

m− 1

)
qn−1

]
.

Using (2.2), we get

M3(ξ, γ, ρ) =
2 |τ| (1− δ)

ϑ
(1− q)m {[(1− ρ) sec ξ + ρ(1− γ)]

×
[

∞

∑
n=0

(
n + m− 1

m− 1

)
qn − 1

]

+
(1− ρ)(1− γ)

q(m− 1)

[
∞

∑
n=0

(
n + m− 2

m− 2

)
qn − 1− (m− 1)q

]}

=
2 |τ| (1− δ)

ϑ

{
[(1− ρ) sec ξ + ρ(1− γ)] [1− (1− q)m]

+
(1− ρ)(1− γ− sec ξ)

q(m− 1)
× [(1− q)− (1− q)m − q(m− 1)(1− q)m]} .

But M3(ξ, γ, ρ) is bounded by 1− γ, if (3.1) holds. This completes the proof of Theorem 3.1.

Applying Lemma 1.2 and using the same procedure as in the proof of Theorem 2.2, we have
the subsequent result.

Theorem 3.2. Let m > 0, and f ∈ Rτ(ϑ, δ). Then Λm
q f (z) is in K(ξ, γ, ρ) if

2 |τ| (1− δ)

ϑ

[
[(1− ρ) sec ξ + (1− γ)]

m(m + 1)q2

(1− q)2

+ [2(1− ρ) sec ξ + (1− γ)(4− ρ)]
mq

1− q
+ [(1− γ)(2− ρ)] (1− (1− q)m)

]
≤ 1− γ.
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4. An integral operator

Theorem 4.1. If the function Gm
q (z) is given by

Gm
q (z) =

∫ z

0

Θm
q (t)
t

dt, z ∈ D (4.1)

then Gm
q (z) ∈ K(ξ, γ, ρ) if

[(1− ρ) sec ξ + ρ(1− γ)]
qm

(1− q)m+1 ≤ 1− γ.

Proof. Since

Gm
q (z) = z +

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)m zn

n

then by Lemma 1.2, we requisite to prove that
∞

∑
n=2

n[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]× 1
n

(
n + m− 2

m− 1

)
qn−1(1− q)m ≤ 1− γ,

or, consistently
∞

∑
n=2

[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

(
n + m− 2

m− 1

)
qn−1(1− q)m ≤ 1− γ.

The enduring part of the proof of Theorem 4.1 is parallel to that of Theorem 2.1, and so we
omit the details.

Theorem 4.2. Let m > 0, and the integral operator Gm
q as assumed by (4.1). Then Gm

q is in S(ξ, γ, ρ)
if

[(1− ρ) sec ξ + ρ(1− γ)] [1− (1− q)m]

+
(1− ρ)(1− γ− sec ξ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m] ≤ 1− γ.

Proof. Since

Gm
q (z) = z +

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)m zn

n

then by Lemma 1.1, we requisite to prove that
∞

∑
n=2

1
n
[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]

(
n + m− 2

m− 1

)
qn−1(1− q)m ≤ 1− γ.

Thus, we have

M4(ξ, γ, ρ) =
∞

∑
n=2

1
n
[(1− ρ)(n− 1) sec ξ + (1− γ)(1 + nρ− ρ)]
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× .
(

n + m− 2
m− 1

)
qn−1(1− q)m

= (1− q)m

[
∞

∑
n=2

[(1− ρ) sec ξ + ρ(1− γ)]

+ (1− ρ)(1− γ− sec ξ)
1
n

] (
n + m− 2

m− 1

)
qn−1

]
.

Using (2.2), we get

M4(ξ, γ, ρ) = (1− q)m

{
[(1− ρ) sec ξ + ρ(1− γ)]

[
∞

∑
n=0

(
n + m− 1

m− 1

)
qn − 1

]

+
(1− ρ)(1− γ− sec ξ)

q(m− 1)

[
∞

∑
n=0

(
n + m− 2

m− 2

)
qn − 1− (m− 1)q

]}
=

{
[(1− ρ) sec ξ + ρ(1− γ)] [1− (1− q)m]

+
(1− ρ)(1− γ− sec ξ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
.

But M4(ξ, γ, ρ) is confined by 1− γ, if (3.1) holds. This concludes the proof of Theorem 4.2.

5. Corollaries and consequences

By taking ρ = 0 in Theorems 2.1-4.2, we attain the sufficient condition for Pascal distribution
series be in the function classes S(ξ, γ) and K(ξ, γ) as identified in following corollaries.

Corollary 5.1. Let m > 0, then Θm
q is in S(ξ, γ) if

qm sec ξ

(1− q)m+1 ≤ 1− γ.

Corollary 5.2. Let m > 0, then Θm
q is in K(ξ, γ) if

[sec ξ + (1− γ)]
m(m + 1)q2

(1− q)2 + [2 sec ξ + 4(1− γ)]
mq

1− q
+ [2(1− γ)] (1− (1− q)m) ≤ 1− γ.

Corollary 5.3. Let f ∈ Rτ(ϑ, δ) then Λm
q is in S(ξ, γ) if

2 |τ| (1− δ)

ϑ

{
sec ξ [1− (1− q)m]

+
(1− γ− sec ξ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
≤ 1− γ.
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Corollary 5.4. Let f ∈ Rτ(ϑ, δ), then Λm
q is in K(ξ, γ) if

2 |τ| (1− δ)

ϑ

[
[sec ξ + (1− γ)]

m(m + 1)q2

(1− q)2 + [2 sec ξ + 4(1− γ)]
mq

1− q

+ [2(1− γ)] (1− (1− q)m)
]
≤ 1− γ.

Corollary 5.5. Let m > 0, then Gm
q (z),as assumed by (4.1) is in K(ξ, γ) if

qm sec ξ

(1− q)m+1 ≤ 1− γ.

Corollary 5.6. Let m > 0, then Gm
q (z),as assumed by (4.1) is in S(ξ, γ) if

sec ξ [1− (1− q)m]

+
(1− γ− sec ξ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m] ≤ 1− γ.

Conclusions In this investigation, we obtain sufficient conditions and inclusion results for
functions f ∈ A to be in the classes S(ξ, γ, ρ) and K(ξ, γ, ρ), and information regarding the
images of functions by applying convolution operator with Pascal distribution series. Also,
certain special cases are also discussed. Further certain analytic Spiral-like functions of com-
plex order can be defined and inclusion properties based on general distribution series be
discussed based on this study.
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