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Abstract

The certainty-factor model was one of the most popular models for the representation
and manipulation of uncertain knowledge in the early rule-based expert systems of the
1980s. After the model was criticised by researchers in artificial intelligence and statistics
as being ad-hoc in nature, researchers and developers have stopped looking at the model.
Nowadays, it is often stated that the model is merely interesting from a historical point
of view. Its place has been taken over by more expressive formalisms for the representa-
tion and manipulation of uncertain knowledge, in particular by the formalism of Bayesian
belief networks. In this paper, it is shown that this view underestimates the importance
of the principles underlying the certainty-factor model. In particular, it is shown that
certainty-factor-like structures occur frequently in practical Bayesian network models as
causal independence assumptions. In fact, the noisy-OR and noisy-AND models, two
probabilistic models frequently employed, appear to be reinventions of combination func-
tions previously introduced as part of the certainty-factor model. This insight may lead
to a reappraisal of the certainty-factor model.

Keywords: Bayesian networks, certainty-factor model, causal independence, noisy-OR
model, noisy-AND model.

1 Introduction

In the early rule-based expert systems as developed in the 1980s, the representation and
manipulation of uncertain knowledge was accomplished by various ad-hoc schemes. Typical
examples of such schemes are the certainty-factor calculus of Shortliffe and Buchanan [4, 20]
and the subjective Bayesian method [7]. At the time in particular the certainty-factor model

enjoyed much popularity, possibly due to its mathematical and computational simplicity.
After the introduction of more expressive, and mathematically sound, probabilistic meth-

ods for the representation and manipulation of uncertainty the early methods have been
criticised, sometimes severely, by researchers. Examples of such criticism are easily found in
the literature; a selection is shown below (explanations added for the purpose of this paper

are written in parentheses). For example, Heckerman states ([9], page 309):

“... it is recommended that those who intend to build a system incorporating the
certainty factor model consider these more general techniques (i.e. Bayesian belief
networks).”



whereas Neapolitan states ([17], pages 70-71):

“The calculus for combining certainty factors ... is of interest primarily for its
historical significance.”

Jensen’s opinion is even stronger ([14], page 3):

“... it is not possible to capture reasoning with uncertainty with inference rules

for production rules.”
In contrast, the criticism of Pearl is more moderate ([18], page 6):

“The price attached to extensional systems (e.g. rule-based systems) is that they
often yield updating that is incoherent, i.e. subject to surprise and counterintuitive
conclusions.”

Nowadays, the majority of Al and uncertainty in AT researchers probably agrees with the
opinions summarised above. They believe that the framework of Bayesian belief networks
offers a coherent, expressive, and flexible formalism for the representation and manipulation
of uncertain knowledge, and there seems to be little reason to revert to the use of the early
models of uncertainty. The author of this paper shares this opinion. Yet, the situation is not
as clear-cut as it appears, and researchers should be aware of this.

In this paper it is shown that the certainty-factor model has in fact been reintroduced
by Bayesian network theoreticians without knowing, and is used as an essential ingredient
of many practical network models. It even appears that fragments of the certainty-factor
model are currently very popular for the representation and manipulation of uncertainty. We
think the results of this study to be important, because it shows that particular probabilistic
models have been introduced by various research traditions independently, indicating their
general significance. Furthermore, this study also sheds some light on current Bayesian belief
network modelling practice. As we have not been able to find similar results in the literature,
we believe this result to be new.

The structure of the remainder of this paper is as follows. In the next section, the certainty-
factor model is introduced. Next, we study various probabilistic models that seem good
candidates for their mapping to fragments of the certainty-factor model. To what extent
such mappings are possible is also investigated. The practical significance of the various
probabilistic models selected is next illustrated by a number of real-life applications as found
in the literature. The paper is rounded off by a discussion of the practical consequences of
the results achieved in this paper.

2 The certainty-factor model

In this section, the basic principles of the certainty-factor model, so far as needed for the
reading of this paper, are briefly reviewed.
2.1 Certainty factors

The certainty-factor model was introduced by Shortliffe and Buchanan as a method for the
representation and manipulation of uncertain knowledge in the rule-based expert system



MYCIN [20, 4], and later incorporated, in slightly modified form, in the prototypical rule-
based expert-system shell EMYCIN [4]. The basic idea underlying the method is that when
representing knowledge as production rules of the form if e then h; fi, a measure of uncer-
tainty z is associated with the hypothesis h, expressing the degree to which the observation of
evidence e influences the confidence in h. In developing the certainty-factor model Shortliffe
and Buchanan have chosen two basic measures of uncertainty: the measure of belief MB(h, e)
expressing the degree to which an observed piece of evidence e increases the belief in a hy-
pothesis h, and the measure of disbelief MD(h, e), expressing the degree to which an observed
piece of evidence e decreases the belief in a hypothesis h. Each of these measures lie in the
closed interval [0,1].

The measure of belief MB(h, e) and the measure of disbelief MD(h, e) are defined in terms
of probability theory as relative changes with respect to the prior probability Pr(h), based
on available evidence e. Although intuitively attractive at first sight, Heckerman [9] and Van
der Gaag [22] showed that this choice renders the certainty-factor model inconsistent with
the basic axioms of probability theory. Heckerman, however, has been able to find alternative
definitions for these measures in terms of likelihood ratios, yielding mathematically sound
probabilistic interpretations of the model [9].

A certainty factor CF(h,e) is just a numerical measure between —1 and +1, defined in
terms of measures of belief and disbelief. The actual definition is not relevant for this paper
(cf. [15]). A negative certainty factor indicates that the hypothesis & is disconfirmed by the
evidence e; a positive certainty factor indicates that the hypothesis h is confirmed by the
evidence e. A certainty factor equal to zero indicates that the evidence e does not influence
the belief in the hypothesis h. In most implementations of the certainty factor model, the
measures of belief MB(h,e) and disbelief MD(h,e) are no longer used; only the certainty
factor is employed. Consequently, with each production rule if e then A fi is now associated
a certainty factor CF(h,e); this can also be depicted as a directed graph, as shown below:

CF(h,e)

e —_— h

2.2 Combination functions

For the manipulation of certainty factors, Shortliffe and Buchanan have defined a number of
combination functions, expressed in terms of certainty factors. For an extensive motivation
underlying their design, the reader is referred to [4].

The combination function for the propagation of uncertain evidence from the antecedent
of a production rule to its consequences, as shown in the following directed graph

/
o CF(e,€') . e CF(h,e) A
is the following:
CF(h,e') = CF(h,e) - max{0, CF(e,e')} (1)

Here, CF(h,e) is the certainty factor associated with the hypothesis A by the production rule
if e then h fi if the evidence e has been observed with absolute certainty; CF(e, e’) indicates
the actual confidence in e based on some prior evidence €', and acts as a weighting factor to



CF(h,e). If the rule’s antecedent is false, the resulting weighting factor will be 0, as indicated
in formula (1).

The function for combining two certainty factors CF(ey,e’) and CF(ez, ') of two consti-
tuting pieces of evidence e; and ey to obtain a certainty factor for the conjunction e; and ey
of these pieces of evidence, as shown in the directed graph below

!
e CF(ela € ) —
!
e CF(eQa € ) - e
is the following;:
CF(e1 and eg,€') = min{CF(ey,¢'), CF(e,€')} (2)

For the disjunction of two pieces of evidence, we have the following formula:
CF (e or ey, e’) = max{CF(ey,¢'), CF(es,€')} (3)

The combination functions (2) and (3) are commutative and associative in their first argument;
so the order in which conjunctions and disjunctions are evaluated has no effect on the resulting
certainty factor.

Finally, the combination function for combining two certainty factors CF(h,e}) and
CF(h,e)) which have been derived from two co-concluding production rules if e; then h
fi, i = 1,2, as shown in the following directed graph

, CF(h,¢})

is as follows:

w—}—ys_l—a:) ifz,y >0

T .

CF(h,e co€y) = § Tommpayyy i 1 <2y <0 (4)
z+y(l+z) ifz,y<0

where CF(h,e}) = z and CF(h,e}) = y. Combination function (4) is commutative and
associative in its second argument; so, the order in which production rules are applied has no
effect on the final result.

As mentioned above, Heckerman has proposed a number of suitable transformations of
the certainty-factor model to probability theory [9]; it is therefore known that the model, with
slightly altered definitions, permits a probabilistic interpretation. Although important as a
result, this work is still in line with the basic ideas of Shortliffe and Buchanan, in the sense
that the original model was the central focus of the study; the meaning of certainty factors
as changes to belief states was left unchanged. Our goals are different, because we employ
the certainty-factor model as a tool in the analysis of Bayesian belief network models. Thus,



Figure 1: Causal independence model.

we are actually interested in the inverse problem. Taking solving the inverse problem as our
aim, it seems unnecessary complicated to maintain the idea of certainty factors as modelling
belief changes, and we shall therefore abandon this idea. In facts, although certainty factors
were originally defined in terms of probability theory, they have never been used in this way,
not even in the MYCIN system for which the model was originally developed.

Below, it is investigated under which conditions Bayesian belief network models correspond
to ingredients of the certainty-factor model.

3 Certainty-factor interpretation of Bayesian belief networks

Above, we have summarised the principles of the certainty-factor model. In this section, we
trace probabilistic models that correspond to fragments of the certainty-factor model.

3.1 Employed notation

Stochastic variables will be denoted by upper-case letter, e.g. X; values of variables will be
denoted by lower-case letters, e.g. . In the case of binary variables, the value X = true will
be denoted by X = z, or simply z; the value X = false is denoted by X = —z, or simply —z.
All variables are assumed to be discrete. By an expression like

> (X, Xn)

f(Xl 5"'5X'n):C

is indicated a summation of function values of a function v, ranging over all possible values of
the variables X7, ..., X, satisfying the functional constraint f(Xy,...,X,) = c. A probability
distribution will be denoted by Pr.

3.2 Causal independence

In building Bayesian belief networks for practical purposes it has been argued by several
researchers that considering the assumption of causal independence may be very fruitful [8, 10,
11, 12]. The global structure of a causal-independence model is shown in Figure 1; it expresses
the idea that causes Ci,...,C), influence a given common effect E through intermediate
variables I1,..., I, and a deterministic function f. The influence of each cause C; on the
common effect E is independent of each cause Cj, j # k. The function f represents in which
way the intermediate effects I, and indirectly also the causes Cj, interact to yield a final
effect . Hence, this function f is defined in such way that when a relationship as modelled



by the function f between Iy, = ix, k = 1,...,n, and E = e is satisfied, then it holds that
€= f(zla azn)

In terms of probability theory, the notion of causal independence can be formalised for a
distinguished value e of E as follows:

Pr(e|Ch,...,Cn)= > Pr(ell,...,I) Pr(l1,..., I|Ch,...,Cn)
f(Ilr"aIn):e

meaning that the causes (1, ..., C), influence the common effect E through the intermediate
effects Iy, ..., I, only when e = f([3,...,I,) for certain values Iy = ix, k = 1,...,n. Under
this condition, it is assumed that Pr(e|éy,...,%,) = 1; otherwise, when f(i1,...,i,) =€ # e,
it holds that Pr(e|i1,...,i,) = 0. Note that the effect variable E is conditionally independent
of C1,...,C, given the intermediate variables Iy,...,I,, and that each variable I is only
dependent on its associated variable Ci; hence, it holds that

Pr(elly,...,I,,Cy,...,Cy) = Pr(e|l1,...,1I,)

and

n
Pr(ly,...,1n|Ch,. .., Cp) = [ [ Pr(Zx|Ck)
k=1

The formula above can now be simplified to:

Pr(e|Ci,...,Cn) = > ] PrilC) (5)

f(Ilﬂ“'aIn):e k=1

Based on the assumptions above, it also holds that

Pr(e|Ch,...,Cp) = Y Pr(el1,..., L) [[ Pr(Z/Ck)
Inyendn k=1

Formula (5) above is practically spoken not very useful, because the size of the specification
of the function f is exponential in the number of its arguments. The resulting probability
distribution is therefore in general computationally intractable, both in terms of space and
time requirements. An important subclass of causal independence models, however, is formed
by models in which the deterministic function f can be defined in terms of separate binary
functions g, also denoted by gx (I, Ix+1). Such causal independence models have been called
decomposable causal independence models [11]; these models are of significant practical im-
portance. Usually, all functions g (Ix, Ix+1) are identical for each k; a function g (Ix, Ixt1)
may therefore be simply denoted by g(I,I'). Typical examples of decomposable causal in-
dependence models are the noisy-OR [5, 8, 13, 18, 21] and noisy-MAX [5, 12, 21] models.
Other popular causal independence models are the noisy-AND and noisy-MIN models. These
models will be studied below.

3.3 Noisy-OR model

As shown above, it is the precise definition of the function f of a causal independence model
that distinguishes one model from the other. Hence, for simplicity’s sake, it is allowed to
discard intermediate variables. Also, since only the use of decomposable causal independence



Figure 2: Three-node model.

models is practically feasible, it seems justified to merely consider three-node models as shown
in Figure 2, without loss of generality.

Now, suppose that the three variables A, B and C are binary variables, and assume that
node C represents a logical OR, i.e.:

0 if A=-aand B=-b
1 otherwise

Pr(c|A, B) = {

The binary functions g as defined above all correspond to a logical OR, i.e. g(z,7') = gx(%,%') =
(1 Vi), for each k. The marginal probability Pr(C) is now obtained as follows:

Pr(c) = Z Pr(c|A, B) Pr(A, B)
A,B
= Pr(a)Pr(b) + Pr(—a) Pr(b) + Pr(a) Pr(—b)

since the variables A and B are independent. We can rewrite this result in two different ways:

1. Pr(a)Pr(b) +Pr(—a) Pr(b) +Pr(a) Pr(—-b) = Pr(a) +Pr(b)(1 — Pr(a)), which corresponds
to the combination function for co-concluding production rule (4) in the certainty-factor
model for positive certainty factors;

2. Pr(a) Pr(b)+Pr(—a) Pr(b)+Pr(a) Pr(-b) = 1—Pr(—a,—b) = 1—Pr(—a) Pr(—b) (because,
Pr(—a, —b) was discarded in the sum above), which is a well-known formula used to define
the noisy-OR model [18].

Note that Pr(—¢) = 1 — Pr(¢) = Pr(—a)Pr(—b) is unspecified in the certainty-factor model,
because certainty factors only concern positive literals. In principle, however, it might be
dealt with by the method discussed below in Section 3.5. Actually, this limitation is not too
important, because we take probability theory as our starting point. Hence, it appears that
the noisy-OR model has exactly the same mathematical structure as combination function
(4) for co-concluding production rules of the certainty-factor model for binary variables.

3.4 Noisy-MAX model

When we drop the restriction that the variables in the three-node model must be binary, the
probabilistic interpretation changes. Without loss of generality, let us assume that A, B and
C are ternary variables. Furthermore, assume that the values of the given variables satisfy
the following linear order: a1 > a2 > a3; a1 = b1 = c1, a2 = by = ¢9; a3 = by = c3. Also
assume that the function g(A, B) = C that underlies a particular causal independence model
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Figure 3: Enumeration of elements from which is selected for the computation of the proba-
bility distribution Pr(C).

defines a MAX function in accordance with the given linear order. The function g is thus
defined as follows:

cgp fA=a;or B="b

cy if A=ay or B = by, and
A# a1 and B # by

c3 otherwise

g(AvB) =

The resulting probabilistic model is known as the noisy-MAX model [5, 12].
Using this definition of g, it holds that

Pr(c1) = Y  Pr(A)Pr(B)

9(4,B)=c1

= > Pr(A)Pr(B)

A=a1VB=b;

Now, since

> Pr(A)Pr(B) =1
A,B

it follows that

Pr(c;) = 1- Y Pr(A)Pr(B)
A#ay,B#by
= 1—Pr(—ay)Pr(=by)

The last expression can be rewritten to Pr(c;) = Pr(ai) + Pr(b1)(1 — Pr(ay)), which cor-
responds to the combination function for co-concluding production rules for positive cer-
tainty factors. Similarly, applying the definition of the noisy-MAX model to Pr(cy) yields:
Pr(ce) = Pr(ag)(Pr(b2) + Pr(bs)) + Pr(b2) Pr(as). However, according to the combination
function for co-concluding production rules, we should have obtained: Pr'(c2) = Pr(ag) +
Pr(b2)(1 — Pr(ag)) = Pr(co) + Pr(ay) Pr(bs) + Pr(az) Pr(by); the two results differ.

The difference between the two results can be explained in terms of the matrix shown in
Figure 3. Using the noisy-MAX model, the probability Pr(c;) is defined as the sum of the
probability Pr(a;,b;) on the diagonal of the matrix, supplemented with elements below and
to the right of the element (a;, b;), i.e.

n

Pr(c;) = Pr(a;, b;) + Z (Pr(a;,b;) + Pr(aj, b;))
j=it1



In the case of the combination function for co-concluding production rules, all elements on the
ith row and column are added, with the diagonal element Pr(a;, b;) just added once, resulting
in:
Pr'(ci) = Y (Pr(as, bj) + Pr(aj, b;)) — Pr(ai, by)
Jj=1

As a consequence, particular numbers Pr(a;, b;) will not only contribute to Pr'(c;), but also
to Pr'(c;), i # j, i.e. they are counted twice as part of the probability distribution Pr'(C).
The resulting probability distribution Pr’ is therefore inconsistent.

An interesting question is whether the probability distribution Pr’ can be made consistent,
and, if so, in which way. The causal independence model that corresponds to the certainty-
factor model appears to be defined by the following function g':

cp fA=ai0orB=20b
g(A,B) =< ¢y if A=asor B=by
cg if A=a3or B =bs

which is only identical to g when ¢'(A4, B) = ¢1. Although the function g’ does not take the
order of the values of the variables C, B and A into account, it is still very much alike the
noisy-MAX model.

The probability distribution Pr’ can be rendered consistent by uniformly distributing the
contribution of probabilities Pr(a;,b;) among Pr'(c;) and Pr'(c;), i # j. This manipulation
results in:

Pr'(ci):Pr(ai)Pr(bi)—l—% S Pr(4)Pr(B)
A=a;®B=b;

where @ denotes the exclusive OR operator. This equation is equal to §(Pr(a;) + Pr(b;)), but
not in general equal to (Pr(a;) + Pr(b;)(1 — Pr(a;))). Note that it holds that

ZPr'(ci) = %Z(Pr(ai)+Pr(bi))
=1 _ =1

Hence, Pr’ is now consistent. We thus have shown that it is in general not possible to map
the noisy-MAX model for non-binary variables to the combination functions of the certainty-
factor model by a similarity transformation, i.e. a transformation 7' : U — V, such that
T(u)=cv+b, bceR

It appears that the causal independence model for non-binary variables using combina-
tion function (4) for co-concluding production rules is related to the noisy-MAX model, but
nevertheless different for all but the probability of the value of the variable C that is highest
in the given linear order. The resulting model was shown to be probabilistically inconsis-
tent. It is not difficult to resolve the inconsistency, yielding a model that is still related to
the noisy-MAX model. However, the resulting probabilistic model cannot be represented in
terms of the certainty-factor model.



3.5 Noisy-AND model

The noisy-OR appears to be one of the most popular probabilistic models used in building
practical Bayesian belief networks. However, this model is not suitable when one is primarily
interested in modelling the conjunctive effect of particular causes. This idea naturally leads
to the concept of the noisy-AND model. Using again the topology of the graph depicted in
Figure 2, the noisy-AND model can be defined in terms of a probabilistic representation of
the logical AND:

1 fA=aand B=5b

Pr(c[4, B) = { 0 otherwise

where A, B and C are binary stochastic variables. It now follows that:

Pr(c) = Y Pr(c|4,B)Pr(4,B)
A,B
= Pr(a)Pr(b)

because A and B are independent. This result does not correspond to the combination
function for co-concluding production rules (4). However, it is possible to represent the
noisy-AND model in terms of the combination function for the propagation of evidence (1),
using two production rules as follows:

if a then bPr(b) fi
if b then C1.0 fi

given the probability distributions Pr(A) and Pr(B), and assuming that the subscript 1.0
attached to ¢ represents a certainty factor. Using combination function (1) twice yields the
required result for C.

3.5.1 Noisy-MIN model

As with the noisy-OR model, it is possible to generalise the noisy-AND model for non-binary
variables; the result is known as the noisy-MIN model. Assume that the stochastic variables
A, B and C are ternary variables, with values ordered as in Section 3.4. Also assume that the
functions g(A4, B) = C underlying the causal independence model respects the linear order of
values, yielding the minimum of its arguments as a result:

C3 ifA:agorB:bg

¢y if A=ay or B = by, and
A # a3 and B # b3

c1 otherwise

g(A,B) =

Using this definition of g yields the following result for Pr(c;):
Pr(c;) = Z Pr(A) Pr(B)
g(AzB):Cl

= > Pr(A)Pr(B)
A=a1 AB=b1
= Pr(a;)Pr(b)

10



Figure 4: Propagation of evidence.

This probability can be mapped to the certainty-factor model in the same way as done for
the noisy-AND model discussed above.
In general we have that

1—1
Pr(c;) = Pr(a;,b;) + Y (Pr(a;, bj) + Pr(a;, by))
j=1

which expresses that Pr(c;) is obtained as the sum of Pr(a;, b;) on the diagonal of Figure 3,
supplemented with elements Pr(a;, b;) on the ith row to the left of element (a;, b;) and elements
Pr(a;, b;) on the ith column above element (a;, b;) of Figure 3.

For Pr(cy) we thus get:

Pr(c2) = Pr(ag) Pr(bs) + Pr(az2) Pr(b1) + Pr(a;) Pr(be)

No mapping exists in this case, and the same is true for Pr(cs).

Similar to the noisy-MAX model, a mapping of the full noisy-MIN model to the certainty-
factor model is only possible for binary variables, in which case the noisy-MIN model and the
noisy-AND model are identical.

3.6 Propagation of evidence

Consider the probabilistic network shown in Figure 4; it is identical to the network model in
Figure 2, except that a node D is added. Let us assume that the corresponding variable D
only influences the uncertainty with respect to A for the distinguished value d (D is present);
if D is absent, i.e. —d, it holds that A cannot occur, formally: Pr(a|-d) = 0. We only consider
the noisy-OR probabilistic model of causal independence in this section.

Now, when assuming that evidence with respect to D has been observed with certainty,
it holds that:

Pr(C|D) = ) Pr(C,A,B|D)
A,B
= Y Pr(C|A, B)Pr(A|B, D) Px(B|D)
A,B
= > Pr(C|A, B)Pr(A|D) Pr(B)
A,B

11



by the (conditional) independence information represented in the network. Let node C again
model a logical OR, as defined in Section 3.3. Under this condition, it holds that when D = d:

Pr(c|d) = Pr(ald) Pr(b) + Pr(a|d) Pr(=b) + Pr(—ald) Pr(b)

which is equal to Pr(a|d) +Pr(b)(1 — Pr(a|d)). This equation combines the effects of combina-
tion function (1), the propagation of evidence from D to A, and combination function (4) for
co-concluding production rules. Note that Pr(c|—d) = Pr(—a|~d) Pr(b) = Pr(b), which result
corresponds to the situation when the rule if d then a fi fails; only B contributes to C'. This
result is again in accordance with the certainty-factor model.

Next, assume that D is not known with certainty. We then get:

Pr(C) = > Pr(C,A,B,D)
A,B,D
= > Pr(C,A,B|D)Px(D)
A,B,D
Substituting results from the derivation of Pr(C|D) above in this equality, we obtain:
Pr(C) = Y _ Pr(C|A, B)Pr(A|D)Pr(B)Pr(D)
A,B,D
Again, using the causal independence assumption of the logical OR, the following result is
obtained:
Pr(c) = Pr(c|d)Pr(d) + Pr(c|~d) Pr(—d)
(Pr(ald) + Pr(b)(1 — Pr(a|d)) Pr(d) + Pr(b) Pr(—d)
= Pr(a|ld) Pr(d) + Pr(b)(1 — Pr(a|d) Pr(d))

This result corresponds again to the successive application of combination functions (1) and
(4) in the certainty-factor model.

4 Practical significance

Above we have seen that important Bayesian belief-network models, or parts of such models,
can be mapped to fragments of the certainty-factor model. However, the results of this
paper would have little significance, when in almost all practical belief-network models the
assumptions underlying decomposable, causal independence would not be satisfied. But the
opposite seems to be the case: in many practical Bayesian belief network models, a lot of
causal independence assumptions are made. This is to be expected, because the technology
of Bayesian belief networks is only practically useful when a large amount of information
concerning independence, with causal independence as a special case, is available in a domain.
A number of actual network models, as described in the literature, is briefly discussed to
illustrate the point.

Heckerman and colleagues have described a probabilistic network for printer trouble shoot-
ing [12]. The structure of this network seems quite typical for networks used for detecting
hardware faults. Assumptions of causal independence are rather essential ingredients of the
network, and the arguments developed in this paper seems to fully apply to this network.

12



Diez and colleagues [6] have developed a Bayesian belief network for the diagnosis of heart
disease, in which both the noisy-OR and noisy-MAX models are used to represent interactions
among causes. Another, well-known example, is the probabilistic reformulation of Internist-
1/QMR, often referred to as QMR-DT (Decision-Theoretic reformulation of QMR), which
uses the same assumptions [16].

Another interesting consequence of the results of this paper is that it at least partially
explains the similarity in the conclusions of the assessment of the sensitivity of the MYCIN
system to changes in certainty factors that was carried out in the 1970s [4], and a recent
major study of the sensitivity of Bayesian belief networks to changes in their underlying
probability distribution [19]. In both studies, it was concluded that the advice produced
by the systems was rather insensitive to changes in the underlying numbers. However, the
Bayesian belief networks that were studied incorporated noisy-OR and noisy-MAX models
for the representation of interactions. Hence, the structural assumptions of these two studies
were quite similar, which has not been recognised before.

Of course, causal independence does not play such an important role in all Bayesian belief
networks. However, even in networks in which the notions of causal independence has not
been adopted as a central modelling paradigm, e.g. the MUNIN network [2], such assumptions
appear to underly a large part of the probabilistic assessments.

Although many Bayesian belief networks heavily rely on the assumption of causal indepen-
dence, this does not mean that the certainty-factor calculus would be sufficient to manipulate
such networks. This only holds when it is prevented that stochastic dependencies are in-
troduced due to the entering of evidence. In networks purely used for diagnosis, and not
for prediction purposes, causes of problems usually reside in the upper part of the network;
findings that may be observed for a given case reside in the lower part of the network. When
particular findings concerning a problem case are entered into the lower part of the network,
new probabilistic dependencies would be induced. This could be handled by dynamically
adapting the structure of the network, in such way that it explicitly reflects the new de-
pendencies. Although this conclusion limits the practical usefulness of the certainty-factor
calculus for such applications, it still holds that the underlying probabilistic model would be
similar or even identical to fragments of the certainty-factor model.

In applications of prediction and planning it is in principle possible to use the certainty-
factor calculus as a method for probabilistic inference if the structure of the network follows
the principles discussed in this paper. An example of such a network, meant to assist medical
specialists in the treatment of infectious diseases, is described in [3]. This observation is
interesting from the perspective of the design of efficient algorithms for probabilistic inference
[1, 5, 23, 24].

5 Discussion

As has been said at the beginning of this paper, it is not our intention to promote renewed
popularity of the use of the certainty-factor model. Given the current state of research, this
would be absurd. Still, the conclusion that the certainty-factor model is more important
than most researcher would think possible seems inescapable. There can be learnt something
from the early models of uncertainty in terms of probabilistic structures that have general
significance.

We have studied the mapping of probabilistic structures to fragments of the certainty-
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factor model. As was to be expected, only very specific probabilistic models can be dealt
with in this way. For some probabilistic models a mapping was shown to exist; for other
models, the mapping was only partial. Nevertheless, these structures appear to be of major
practical importance to developers of Bayesian belief networks for specific problem domains.
This explains why we believe that the results of this paper ought to be common knowledge
to artificial-intelligence researchers.

We finally would like to plea for a more balanced view of the certainty-factor model:

much too often researchers have expressed opinions about the model that are not supported
by scientific facts.
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