
Certificate Translation in Abstract Interpretation

Gilles Barthe and César Kunz

INRIA Sophia Antipolis-Méditerranée, France
{Gilles.Barthe,Cesar.Kunz}@inria.fr

Abstract. A certificate is a mathematical object that can be used to
establish that a piece of mobile code satisfies some security policy. Since
in general certificates cannot be generated automatically, there is an in-
terest in developing methods to reuse certificates. This article formalises
in the setting of abstract interpretation a method to transform certifi-
cates of program correctness along program transformations.

1 Introduction

A certificate c is a mathematical object that can be checked automatically
against some property φ it intends to prove; certificates arise naturally in logic,
in the context of proof checking (via the Curry-Howard isomorphism) and of
result checking. Certificates are also used to carry evidence of innocuousness
of components in mobile code: in a typical Proof Carrying Code (PCC) sce-
nario [11], a piece of mobile code is downloaded together with a certificate that
shows its adherence to the consumer policy. While certificate checking is reason-
ably understood, certificate generation remains a challenging problem: while it
is possible to generate certificates automatically for properties that are enforce-
able by automated program analyses, and in particular type systems, certificate
generation remains necessarily interactive in the general case. It is therefore of
interest to develop methods that simplify the construction of certificates.

In this paper, we use the setting of abstract interpretation [8,9] to describe
a method for transforming certificates along program transformations. We pro-
vide sufficient conditions for transforming a certificate of a program G into a
certificate of a program G′, where G′ is derived from G by a semantically jus-
tified program transformation, typically a program optimization. These results
provide substantial leverage on our earlier work on certificate translation [3].

Certificate Translation. The primary goal of certificate translation is to extend
the scope of PCC to complex policies, by supporting the generation of certificates
from interactive source code verification. The scenario is of interest in situations
where the functional correctness of the downloaded code is essential, and where
certificate issues such as size or checking time are not relevant, e.g. in whole-
sale PCC, where one code verifier checks the certificate prior to distributing a
cryptographically signed version to code consumers.

Certificate translation is tightly bound to the compilation infrastructure: for
compilers that do not perform any optimization, proof obligations are preserved

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 368–382, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Certificate Translation in Abstract Interpretation 369

(up to syntactic equality), and hence it is possible to reuse directly certificates
of source code programs for their compilation; see e.g. [4].

In contrast, program optimizations make certificate translation more chal-
lenging. In [3], we show in a simplified setting that one can define certificate
transformers for common program optimizations, provided one can infer au-
tomatically certificates of correctness for the underlying program analyses, by
means of certifying analyzers. The existence of certifying analyzers and certifi-
cate translators is shown individually for each optimization.

Comparison with our previous work. The lack of a framework in which to formu-
late the basic concepts of certificate translation was a clear limitation of our ear-
lier work, and made it difficult to assess the generality of certificate translation.
The present article overcomes this limitation: we capture the essence of certifi-
cate translation in an algebraic setting that abstracts away from the specifics of
programming languages, program transformations, and of verification methods.
In fact, our results provide a means to generate, for given verification settings
and program transformations, a set of proof obligations that guarantee the ex-
istence of certificate translators. The results of [3,4] can then be recovered by
discharging these proof obligations.

2 Certified Solutions

This section extends the basic framework of abstract interpretation with cer-
tificate infrastructures, in order to introduce formally the notion of certified
solution. Definition 7 provides a general definition of certified solution that is
of independent interest from certificate transformation, and provides a unifying
framework for existing ad hoc definitions, see Section 5. For the purpose of this
article, one can think about certified solutions as:

– programs annotated with logical assertions, and bundled with a certificate
of the correctness of the verification conditions, or;

– programs annotated with abstract values (or types), and bundled with a
certificate that the program is correct with respect to the interpretation of
the abstract values.

We view programs as flow graphs. Thus, programs are directed pointed graphs
with a distinguished set of output nodes, from which execution may not flow.

Definition 1 (Programs). A program is a pointed directed graph G=〈N, E, lsp〉,
where N is a set of nodes, lsp ∈ N is a distinguished initial node, and E ⊆N ×N
a finitely branching relation; elements of E are called edges. We let O be the set
of nodes without successors.

Throughout this section, we let G = 〈N , E , lsp〉 be a program.
The semantics of programs is specified as a transition relation between states.

Although more general definitions could be used, we choose to model states as
pairs consisting of a program point and of an environment.

370 G. Barthe and C. Kunz

c := 1
x′ := x
y′ := y
while (y′ �= 1) do
if (y′ mod 2 = 1) then
c := c × x′

fi
done
x′ = x′ × c

Fig. 1. Fast exponentiation algorithm Fig. 2. Graph representation

Definition 2 (States, semantics). Let Env be an abstract set of environments.
The set of states is defined as State = N × Env. The semantics of program G is
given by an abstract relation �⊆ State × State.

Example. Consider as a running example (Fig. 1) a fast exponentiation algo-
rithm. Its representation as a (labeled) graph is given in Figure 2; labels are
either assignments of the form x:=e, in which case the node has exactly one
successor, or conditional statements of the form b?, in which case the node has
exactly two successor nodes, respectively corresponding to the true and false
branch of the condition.

Both the analysis and verification frameworks are viewed as abstract interpre-
tations. Note that, in contrast to standard abstract interpretation, our domains
are pre-orders, rather than partial orders1.

Definition 3 (Abstract interpretation). Let G = 〈N , E , lsp〉 be a program.
An abstract interpretation of G is a triple I = 〈A, {Te}e∈E , f〉, where

– A is a pre-lattice2 〈DA, �A, �A, �A, 	A,
A, ⊥A〉 of abstract states. By abuse
of notation, we write A instead of DA;

– f is the flow sense, either forward (f =↓), or backward (f =↑);
– {Te}e∈E : A → A is a family of monotone transfer functions.

Thus, an abstraction of the program consists of an abstract domain, e.g. asser-
tions or types, and a set of transfer functions, e.g. weakest precondition trans-
formers.
1 A binary relation � on a set A is a pre-order if it is reflexive and transitive. A

pre-order is a partial order if it is also antisymmetric. One natural domain for the
verification infrastructure is that of propositions; we do not want to view it as a
partial order since it would later imply (in Definition 6) that any formulas φ1 and
φ2, if logically equivalent (i.e. if φ1 � φ2 and φ2 � φ1), by antisymmetry will have
the same certificates (since φ1 = φ2), which is not desirable.

2 Although it is sufficient to consider meet or join semi-lattices, depending on the
flow of the interpretation, we find it more convenient to require our domains to be
pre-lattices, since we deal both with forward and backwards analyses.

Certificate Translation in Abstract Interpretation 371

Furthermore, for every abstract domain A, we assume that |=A⊆ Env×A is a
satisfaction relation, s.t. � is an approximation order, i.e., that for all η ∈ Env,
a1, a2 ∈ A, if |=A η : a1 and a1 � a2 then |=A η : a2. In the following, we simply
write |= omitting the subscript A.

Definition 4 (Consistency). We say that I is consistent with the semantics
of G w.r.t. |= iff for all states 〈l, η〉, 〈l′, η′〉 ∈ State such that 〈l, η〉 � 〈l′, η′〉, and
for all a ∈ A:

– if f =↓ and |= η : a, then |= η′ : Te(a);
– if f =↑ and |= η : Te(a), then |= η′ : a.

A common means to verify program properties is to consider (pre- or post-)
fixpoints of the transfer functions.

Definition 5 (Solution). A labeling S : N → A is a solution of I if

– f =↑ and for every l in N , S(l) �
�
〈l,l′〉∈E T〈l,l′〉(S(l′));

– f =↓ and for every node l in N , S(l) �
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)).

Lemma 1. Let S be a solution of the abstract interpretation I = 〈A, {Te}, f〉
and assume I consistent with the semantics of G. Then, if 〈l, η〉 �� 〈l′, η′〉 and
|= η : S(l) then |= η′ : S(l′).

In order to capture the notion of certified solution at an appropriate level of
abstraction, we rely on a general notion of certificate infrastructure.

Definition 6 (Certificate infrastructure). A certificate infrastructure for
G consists of an abstract interpretation I = 〈A, {Te}e∈E , f〉 for G, and a proof
algebra P that assigns to every a, a′ ∈ A a set of certificates P(� a � a′) s.t.:

– P is closed under the operations of Figure 3, where a, b, c ∈ A;
– P is sound, i.e. for every a, a′ ∈ A, if a �� a′, then P(� a � a′) = ∅.

In the sequel, we write c :� a � a′ or c :� a′ � a instead of c ∈ P(� a � a′).

In the context of standard proof carrying code, the underlying pre-lattice is that
of logical assertions, with logical implication ⇒ as pre-order, and the trans-
fer functions are the predicate transformers (based on weakest precondition or
strongest postcondition) induced by instructions at any given program point.
The particular form of certificates is irrelevant for this paper. It may neverthe-
less be helpful for the reader to think about certificates in terms of the Curry-
Howard isomorphism and consider that P is given by the typing judgment in a
dependently typed λ-calculus, i.e. P(φ) = {e ∈ E | 〈〉 � e : φ}, where E is the set
of expressions of the type theory. Under such assumptions, one can provide an
obvious type-theoretical interpretation to the functions of Figure 3; for example,
intro� is given by the λ-term λf. λg. λa. 〈fa, ga〉.

In the sequel, we let I = 〈A, {Te}, f〉 be a certificate infrastructure for G.

Definition 7 (Certified solution). A certified solution for I is a pair 〈S, c〉,
where S : N → A is a labeling and c = (cl)l∈N is a family of certificates s.t. for
every l ∈ N ,

372 G. Barthe and C. Kunz

axiom : P(� a � a)
weak� : P(� a � b) → P(� a � c � b)
weak� : P(� a � b) → P(� a � b � c)
elim� : P(� c � a � b) → P(� c � a) → P(� c � b)
intro� : P(� a � c) → P(� b � c) → P(� a � b � c)
intro� : P(� a � b) → P(� a � c) → P(� a � b � c)

Fig. 3. Proof Algebra

– if f =↑ then cl :� S(l) �
�
〈l,l′〉∈E T〈l,l′〉(S(l′));

– if f =↓ then cl :�
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)) � S(l).

It follows that S is a solution for I.

Many techniques, including lightweight bytecode verification and abstraction
carrying code, do not bundle code with a full (certified) solution, but with a
partial labeling (and some certificates) from which a full (certified) solution can
be reconstructed. The remaining of this section relates the construction of a
(certified) solution from a partial labeling.

Definition 8 (Labeling). A partial labeling is a partial function S : N ⇀ A
s.t. entry and output nodes are annotated, i.e. O ∪ {lsp} ⊆ dom(S), and such
that the program is sufficiently annotated, i.e. the restriction GN\dom(S) of G to
nodes that are not annotated is acyclic. A labeling S is total if dom(S) = N .

In a partial labeling annot, annotations on entry and output nodes serve as spec-
ification, whereas we need sufficient annotations to reconstruct a total labeling
annot from the partial one.

Definition 9. [Annotation propagation, verification condition] Let annot be a
partial labeling. The labeling annot is defined by the clause:

– if f =↑, annot(l) =
{

annot(l) if l ∈ dom(annot)�
〈l,l′〉∈E T〈l,l′〉(annot(l′)) otherwise

– if f =↓, annot(l) =
{

annot(l) if l ∈ dom(annot)⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) otherwise

For every l ∈ dom(annot), the verification condition vc(l) is defined by the clause

– vc(l) := annot(l) �
�
〈l,l′〉∈E T〈l,l′〉(annot(l′)) if f =↑;

– vc(l) :=
⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) � annot(l) if f =↓.

Given a partial labeling annot, one can build a certificate for annot from certifi-
cates for the verification conditions on dom(annot).

Lemma 2. Let annot be a partial labeling for I and assume given cl :� vc(l) for
every l ∈ dom(annot). Then there exists c′ s.t. 〈annot, c′〉 is a certified solution.

Certificate Translation in Abstract Interpretation 373

In the sequel, we shall abuse language and speak about certified solutions of the
form 〈annot, c〉 where annot is a partial labeling and c is an indexed family of
certificates that establish all verification conditions of annot.

Corollary 1. Let 〈annot, c〉 be a certified partial labeling of 〈I, P〉 and assume
I consistent with the semantics of G. Then, if 〈lsp, η〉 �∗ 〈lo, η′〉 with lo ∈ O
and |= η : annot(lsp) then |= η′ : annot(lo).

Example. The verification infrastructure to certify the running example is built
from a weakest precondition calculus over first-order formulae. That is, the back-
ward transfer functions are defined, for any assertion φ, as T〈l,l′〉(φ) = φ[e/x]
in case the node l contains the assignment x:=e, and as b ⇒ φ or ¬b ⇒ φ
respectively for the positive and negative branch of a jump statement con-
ditioned by the boolean expression b. We assume given a certificate of func-
tional correctness for the program, i.e. we assume given a certified solution
〈annot, c〉 of I = 〈A, {Te}, ↑〉, where annot (as shown in Figure 5) is the par-
tial labeling s.t. the precondition is trivial, i.e. annot(l1) = true, the invariant is
annot(l2) = c × x′y

′
= xy and the postcondition is annot(l7) = x′=xy .

3 Certifying Analyzers

The certificate transformations studied in the next section require that the an-
alyzers upon which the program transformation is based are certifying, i.e. pro-
duce certificates which justify their results. In this section, we thus provide suf-
ficient conditions under which every solution may be certified. Proposition 1
below generalizes a previous result of Chaieb [7], who only considered the case
where f =↑ and f � =↓.

Let G be a program, I� = 〈A�, {T �
e}, f �〉 be an abstract interpretation, I =

〈A, {Te}, f〉 a certificate infrastructure of program G, and γ : A� → A a con-
cretization function.

Proposition 1 (Existence of certifying analyzers). For every solution S
of I�, one can compute c s.t. 〈γ ◦S, c〉 is a certified solution for I, provided there
exist:

– for every a, a′ ∈ A� s.t. a �� a′, a certificate monotγ(a, a′) :� γ(a) � γ(a′);
– for every x ∈ A�, a certificate cons(x) :� φ(x), where φ(x) is defined in

Figure 4 according to the flows of the interpretations.

Proof. For space reasons, we only show how to construct a certificate for the
analysis in case f = f � =↓. Let hyp stand for T �

〈l′,l〉(S(l′)) � S(l) in

p1:=monotγ(hyp) : � γ(T �
〈l′,l〉(S(l′))) � γ(S(l))

p2:=cons(S(l′)) : � T〈l′,l〉(γ(S(l′))) � γ(T �
〈l′,l〉(S(l′)))

p3:=weak�(−, p1) : � γ(T �
〈l′,l〉(S(l′))) 	 T〈l′,l〉(γ(S(l′))) � γ(S(l))

p4:=elim�(p3, p2) : � T〈l′,l〉(γ(S(l′))) � γ(S(l))
cl:=intro	({p4}〈l′,l〉∈E) : �

⊔
〈l′,l〉∈E T〈l′,l〉(γ(S(l′))) � γ(S(l))

374 G. Barthe and C. Kunz

f = f � =↓ Te(γ(x)) � γ(T �
e (x))

f = f � =↑ Te(γ(x))
 γ(T �
e (x))

f =↑, f � =↓ Te(γ(T �
e (x)))
 γ(x)

f =↓, f � =↑ Te(γ(T �
e (x))) � γ(x)

Fig. 4. Definition of φ(x)

While Proposition 1 provides a means to con-
struct certifying analyzers, it is sometimes of
interest to rely on more direct methods to
generate certificates: in [3], we show how to
construct compact certificates for constant
propagation and common sub-expression
elimination in an intermediate language.

4 Certificate Translation

In this section, we provide sufficient conditions for the existence for certificate
translators, that map certificates of a program G into certificates of another pro-
gram G′, derived from G by a program transformation. Rather than attempting
to prove a general result where G and G′ are related in some complex manner,
we establish three existence results that can be used in combination to cover
many cases of interest.

In a first instance, Section 4.1 generalizes program transformations by allow-
ing G′ to contain additional nodes that arise from duplicating fragments of G,
as is the case for transformations such as loop unrolling. In a second instance,
certificate transformation as defined in Section 4.2 requires that the transformed
program G′ is a subgraph of the original program G. This is the case, for ex-
ample, when G′ is derived from G by applying optimizations such as constant
propagation or common sub-expression elimination. In a third instance, in Sec-
tion 4.3, we provide a notion of program skeleton, which abstracts away some of
the structure of the program, to deal with transformations that do not preserve
so tightly the structure of programs, such as code motion. Finally, in Section 4.4
we generalize certificate translation, covering optimizations such as dead variable
elimination.

Throughout this section, we assume given two programs: an initial program
G = 〈N , E , lsp〉 and a transformed program G′ = 〈N ′, E ′, lsp〉. Furthermore,
we assume given the required infrastructure to certify these programs; more
concretely, consider the two abstract interpretations I = 〈A, {Te}e∈E , f〉 and
I ′ = 〈A, {T ′e}e∈E′ , f〉 over G and G′, and a proof algebra P over A. Note that
the abstract interpretations share the same underlying domain and flow sense.

4.1 Code Duplication

In this section, we consider the case where some subgraphs of the initial pro-
gram are duplicated in the transformed program, with the aim to trigger further
program optimizations. Typical cases of code duplication are loop unrolling and
function inlining.

Definition 10 (Node replication). A program G+ = 〈N ∪ N+, E+, lsp〉 is a
result of replicating nodes of program G = 〈N , E , lsp〉 if N+ ⊆ {l+ | l ∈ N} and
E = {〈l1, l2〉 | 〈l, l′〉 ∈ E+ ∧ 〈l, l′〉 ∈ {l1, l

+
1 } × {l2, l

+
2 }}.

Certificate Translation in Abstract Interpretation 375

Fig. 5. Annotated program Fig. 6. Program after loop unrolling

Let 〈I, P〉 be a certificate infrastructure with I = 〈A, {Te}e∈E , f〉. Then, we
define an extended certificate infrastructure I+ = 〈A, {Te}e∈E+ , f〉 for program
G+, the transfer functions Te for e ∈ E+ \ E being such that for all 〈l1, l2〉 ∈ E+,
with li ∈ {li, l

+
i }, T〈l1,l2〉 = T〈l1,l2〉.

Proposition 2. Assume the certificates of Fig. 7 exist for every a1, a2, b1, b2 ∈
A. Then every certified solution 〈S, c〉 for G can be transformed into a certified
solution 〈S+, c′〉 for G+, s.t. S+(l+) = S(l) for all l ∈ dom(S).

Example. Figure 6 shows the result of applying loop unrolling. Formally, it con-
sists in duplicating a subset of nodes as defined in Section 4.1. In the graph, nodes
l2, l3, l4 and l5 are respectively duplicated into the nodes l′2, l′3, l′4, l′5 and a new
subset of edges is defined accordingly. A certified labeling 〈annot+, c+〉, where
annot+(l′2) = annot(l2), is generated for the program in Figure 6, by application
of Proposition 2.

4.2 Subgraph Transformation

In this section, we assume that G′ is a subgraph of G, i.e. N ′ ⊆ N and E ′ ⊆ E .
Furthermore, we assume given an abstract interpretation I = 〈A, {Te}e∈E , f〉 of
G and a labelling S that justifies the transformation from G to G′.

Proposition 3 (Existence of certificate translators). Let 〈S, cS〉 be a cer-
tified solution for I such that for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) : � S(l1) 	 T〈l1,l2〉(a) � T ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) : � T ′〈l1,l2〉(a) � S(l2) 	 T〈l1,l2〉(a)

Then, provided the certificates in Fig. 7 are given for every a1, a2, b1, b2 ∈ A,
one can transform every certified labeling 〈annot, c〉 for G into a certified la-
beling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) 	 S(l) for every node l in
dom(annot′) = dom(annot) ∩ N ′.

376 G. Barthe and C. Kunz

monotT : P(� a1 � a2) → P(� T (a1) � T (a2))
distr←

(T,�) :� T (a1) � T (a2) � T (a1 � a2)
distr→

(T,�) :� T (a1 � a2) � T (a1) � T (a2)
assoc←

� : P(� a1 � (b1 � b2) � (a1 � b1) � b2)
assoc→

� : P(� (a1 � b1) � b2 � a1 � (b1 � b2))
commut� : P(� a1 � a2 � a2 � a1)

Fig. 7. Requirements for certificate translation.

Using the results of Proposition 1, Proposition 3 can be instantiated to prove the
existence of certificate transformers for many common optimizations, including
constant propagation and common sub-expression elimination. In a nutshell, one
first runs the certifying analyzer, which provides the solution S, then performs
the optimization, and finally one provides a justification justif(l1, l2) for each
edge (instruction) that has been modified by the optimization. This process is
further illustrated in the following example.

Example. Suppose that we know (e.g. from the execution context) that the pro-
gram is called with an even y; such knowledge is formalized by a precondition
y = 2×p. Then, one can consider a forward abstract interpretation that analyses
parity of variables and which variables are modified. A certifying analyzer for
such an abstract interpretation exists by Proposition 1 and will produce a certi-
fied solution 〈S, cS〉 such that S (shown inside double squared boxes in Fig. 6)
associates the assertion y = 2×p to the node l1, the assertion y′ = 2×p∧x = x′

to the nodes {l′2, l
′
3, l
′
5} and true to any other node.

Figure 8 contains an optimized version of the program of Figure 6, where jump
statements whose conditions can be determined statically have been eliminated
(nodes l′2 and l′3) and unreachable nodes have been removed (node l′4), and where
assignments have been simplified by propagating the results of the analysis (node
l′5). By Proposition 3, one can build a certificate for the optimized program, with
labeling annot′(l) = annot(l)	S(l) for all nodes l ∈ dom(annot) (in squared boxes
in the figure), provided there exists, for every a ∈ A and for every modified edge,
i.e. for every 〈l, l′〉 ∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉}, a certificate:

justif〈l,l′〉 : � y′ = 2 × p ∧ x = x′ 	 T〈l,l′〉(a) � T ′〈l,l′〉(a)

The remaining certificates justif(l, l′) for 〈l, l′〉 �∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉} are triv-
ially generated since T ′〈l,l′〉 = T〈l,l′〉.

We conclude this section with a proof sketch of the existence of certificate
transformers in the case of a backward certificate infrastructure. The idea is to
build for every l in N ′ the certificate

goal(l) : � S(l) 	 annot(l) � annot′(l)

from which the existence of a certificate for annot′ follows. We proceed by induc-
tion, using the principle derived from the fact that annot is a sufficient annota-
tion. More concretely, one can attach to every node a weight that corresponds to

Certificate Translation in Abstract Interpretation 377

Fig. 8. Program after optimizing
transformations

Fig. 9. Node coalescing and dead as-
signment elimination

the length of the longest path to an annotated node, i.e. a node l ∈ dom(annot).
In the base case, where l ∈ dom(annot′), the certificate goal(l) is defined trivially,
since annot′(l) = S(l) 	 annot(l). For the inductive step, where l �∈ dom(annot′),
the proof is given in Figure 10, where the application of certificates assoc←� ,
assoc→� and commut� is omitted for readability.

4.3 Program Skeletons

Proposition 3 requires that the transformation is justified for each edge of the
program; this rules out several well known optimizations such as instruction
swapping or code motion, whose justification involves more than one instruc-
tion. To overcome this limitation, one can abandon the intuitive representation
of programs, where each edge represents one instruction, and cluster several in-
structions into a single edge. The purpose of this section is to capture formally
this idea of clustering, and use it to strengthen our basic result.

Throughout this section, we assume that N0 ⊆ N is a set of nodes such
that G|N\N0 and G′|N ′\N0

are acyclic. We define E0 = E� ∩ N0 × N0 where E�

denote the transitive closure of E . Let 〈I, P〉 be a certificate infrastructure with
I = 〈A, {Te}, f〉. The transfer functions T̂ are defined for every 〈l, l′〉 ∈ E0 and
a ∈ A as Ť〈l,l′〉(a), where Ťe is defined for every e ∈ E as:

– if f =↑,
{

Ť〈l,l′〉 = T〈l,l′〉 〈l, l′〉 ∈ E
Ť〈l,l′〉(a) =

�
{〈l,l′′〉∈E|reaches(l′′,l′)} T〈l,l′′〉(Ť〈l′′,l′〉(a)) 〈l, l′〉 �∈ E

– if f =↓,
{

Ť〈l′,l〉 = T〈l′,l〉 〈l′, l〉 ∈ E
Ť〈l′,l〉(a) =

⊔
{〈l′′,l〉∈E|reaches(l′,l′′)} T〈l′′,l〉(Ť〈l′,l′′〉(a)) 〈l′, l〉 �∈ E

where the condition reaches(l, l′) stands for the existence of a sequence of labels
l1, . . . , lk with l1 = l and lk = l′ s.t. 〈li, li+1〉 ∈ E , for all i ∈ {1, . . . , k − 1}. The
set E ′0 and the transfer functions T̂ ′ are defined in a similar fashion.

The results of the previous sections extend immediately to program skeletons.

378 G. Barthe and C. Kunz

Let a = S(l), a′ = S(l′), T = T〈l,l′〉 and T ′ = T ′
〈l,l′〉 in:

hyp1:=monotT : P(� b1 � b2) → P(� T (b1) � T (b2))
hyp2:=distribT : P(� T (b1) � T (b2) � T (b1 � b2))

p1:=goal(l′) : � a′ � annot(l′) � annot′(l′)
p2:=hyp1(p1) : � T ′(a′ � annot(l′)) � T ′(annot′(l′))
p3:=justif(l, l′) : � a � T (a′ � annot(l′)) � T ′(a′ � annot(l′))
p5:=elim�(weak�(−, p2), p3) : � a � T (a′ � annot(l′)) � T ′(annot′(l′))
p6:=hyp2 : � T (a′) � T (annot(l′)) � T (a′ � annot(l′))
p7:=axiom : � a � a
p8:=weak�(p6) : � a � T (a′) � T (annot(l′)) � T (a′ � annot(l′))
p9:=intro�(p8, weak�(p6)) : �:� a � T (a′) � T (annot(l′))a � T (a′ � annot(l′))

p10:=elim�(weak�(p5), p9) : � a � T (a′) � T (annot(l′)) � T ′(annot′(l′))
p11:=cS

l : � a � T (a′)
p12:=elim�(p10, p11) : � a � T (annot(l′)) � T ′(annot′(l′))
p13:=weak�(p12) : � a �

�
〈l,l′〉∈E T (annot(l′)) � T ′(annot′(l′))

goal(l):=intro�({p12}〈l,l′〉∈E) : � a �
�

〈l,l′〉∈E T (annot(l′)) �
�

〈l,l′〉∈E T ′(annot′(l′))

Fig. 10. Definition of goal(l) for certificate translation (case f =↑)

Lemma 3. Let 〈S, cI〉 be a certified solution for I s.t dom(S) ⊆ N0. Then
〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 is a certified solution of Î = 〈A, T̂e, f〉.

Proposition 4. Let 〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 be a certified solution of Î = 〈A, T̂e, f〉.
Suppose that for every 〈l1, l2〉 ∈ E ′0 and a ∈ A:

– if f =↑ then justif(l1, l2) : � Ŝ(l1) 	 T̂〈l1,l2〉(a) � T̂ ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) : � T̂ ′〈l1,l2〉(a) � Ŝ(l2) 	 T̂〈l1,l2〉(a)

Then every certified labeling 〈annot, c〉 for G such that dom(annot) ⊆ N0 can be
transformed into a certified labeling 〈annot′, c′〉 for G′, where annot′(l) is defined
as annot(l) 	 S(l) for all l ∈ dom(annot′) = dom(annot) ∩ N ′.

Example. A further simple transformation consists of coalescing the nodes l′2,
l′3 and l′5 to simplify the graph representation. Formally, we use the program
skeletons to cluster the sub-graph constituted by the nodes l′2, l′3 and l′5 into a
single node l′2. Then, we define the transfer function T̂〈l′2,l2〉 = T ′〈l′5,l2〉 (formally,
one should have T〈l′2,l2〉 = T ′〈l′2,l′3〉 ◦ T ′〈l′3,l′5〉 ◦ T ′〈l′5,l2〉 but T ′〈l′2,l′3〉 and T ′〈l′3,l′5〉 are
the identity function). Hence, by a trivial application of Proposition 4, there
exists a certified solution 〈 ˆannot, ĉ〉, for the collapsed program representation
〈N0, E0, lsp〉, s.t. ˆannot(l) = annot(l) for all l ∈ N0.

Proposition 4 can be used to prove preservation of proof obligations for non-
optimizing compilers. Indeed, non-optimizing compilation transforms a graph
representation of a program by splitting each node into a subgraph of more
basic nodes, preserving the overall program structure. Thus, one can coalesce
back the generated subgraphs into a skeleton structure similar to the source

Certificate Translation in Abstract Interpretation 379

program. If we assume that transfer functions of the skeleton representation are
equal to those of the source program (it is not sufficient that the functions are
equivalent w.r.t. �; equality is essential), then proof obligations are preserved
and certificates can be reused without modification.

4.4 Second-Order Analysis-Based Optimizations

Proposition 3 does not cover optimizations that rely on analyses such as variable
liveness to justify their result. This motivates the following mild generalization,
in which the transformation is justified w.r.t. a composition operator.

Proposition 5. Let � : A × A → A be a composition operator s.t. for every
a1, a2, b1, b2 ∈ A there exists a certificate

monot� : P(� a1 � a2) → P(� b1 � b2) → P(� a1 � b1 � a2 � b2)

Let 〈S, cS〉 be a certified solution for I s.t. for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) : � S(l1) � T〈l1,l2〉(a) � T ′〈l1,l2〉(a � S(l2));
– if f =↓ then justif(l1, l2) : � T ′〈l1,l2〉(a � S(l1)) � S(l2) � T〈l1,l2〉(a)

Then, provided the certificate monotT defined in Fig. 7 exist for all a1, a2 ∈
A, every certified labeling 〈annot, c〉 for G can be transformed into a certified
labeling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) � S(l) for every node l in
dom(annot′) = dom(annot) ∩ N ′.

Example. Finally, we perform liveness analysis on program variables and remove
assignments to dead variables. The resulting program is given in Figure 9. The
remaining of this subsection is devoted to an explanation of the analysis, and to
a justification of the transformation.

Assuming a standard program semantics, we say that a variable is live at a
certain program point if its value will be needed in the future. An intensional
definition classifies a variable x as live at a program node l if there is a path from
l that reaches an expression referring to x, without traversing an assignment to
x. We prefer to use a more extensional interpretation of liveness, inspired by
Benton’s Relational Hoare Logic [5], identifying a declaration of a set of live
variables as a relational proposition. To this end, we generalize the abstract
domain A of the certificate infrastructure to include relational propositions. An
abstract domain A is relational if the associated satisfaction relation |=A is a
subset of (Env × Env) × A. Hence, a relational proposition will be interpreted
as a relation on execution environments. Formally, the extension consists on
partitioning the domain of variables by attaching to each of them an index 〈1〉
or 〈2〉. The set of transfer functions is also modified accordingly; for instance, the
substitution φ[e/x] corresponding to the assignment x:=e at node l, is replaced
by the substitution φ[e〈1〉/x〈1〉][

e〈2〉/x〈2〉], where e〈i〉 is the result of indexing every
variable occurring at e with 〈i〉.

Then, we define γ(X) =
∧

v∈X v〈1〉 = v〈2〉 as an interpretation of the fact that
all variables in X are live. In order to generate a certificate for the optimized

380 G. Barthe and C. Kunz

program, we apply Proposition 5, using as composition operator over relational
propositions the function � defined as

φ � ψ = ∃x1, . . . , xk. φ[x
1
〈2〉/x] . . . [x

k
〈2〉/x] ∧ ψ[x

1
〈1〉/x] . . . [x

k
〈1〉/x]

where {x1, . . . , xk} are the set of variables in φ or ψ. The interpretation of the
composition operator is that if X declares the set of live variables, then γ(X) �φ
is the result of existentially quantifying away from φ the variables that are not
live.

By Proposition 1, we know that a certified solution 〈γ ◦ live, c′′〉 exists s.t.
live(l1) = {x, y}, live(l′2) = {x, y, c} and live(l) = {x, y, c, x′, y′} for l �∈ {l1, l

′
2}.

Since node l1 contains an assignment to variables x′ and y′ and these variables
are not live in node l′2, we may safely simplify the statement by removing such
assignments. From Proposition 5 we can transform the current certified solution
by assuming the certificate

justif(l1, l′2) : � γ(live(l1)) � T〈l1,l′2〉(φ) � T ′〈l1,l′2〉(γ(live(l′2)) � φ) .

For readability, if φ is a non-relational proposition, γ(X) � φ is equivalently de-
noted ∃y1, . . . , ym. φ where {y1, . . . , ym} = Var − X . Then, the goal of the cer-
tificate justif(l1, l′2) can be interpreted as � φ[1/c][x/x′][y/y′] � (∃x′, y′. φ)[1/c].

5 Related Work

Certified solutions. Abstraction Carrying Code (ACC) is an instance of PCC
where programs come with a solution in an abstract interpretation that can be
used to specify the consumer policy [1]. ACC is closely related to our notion
of certified solution; in fact, one may view the latter as a natural extension of
ACC to settings where the pre-order relation is either undecidable, or expensive
to compute, and where the use of certificates is required in order to check solu-
tions. Besson et al [6] have recently developed a program analysis framework in
which certificates are used to verify inclusions between elements of the abstract
domain of polyhedra. Their analysis is also an instance of a certified solution.
Rival [12,13] proposed a method to translate the result of a static analysis along
program compilation. Result validation is restricted to post-fixpoint checking,
i.e. there is no notion of certificate.

Certifying analyzers. We are aware of two previous works on certifying, or proof-
producing, program analyses. Both consider the backwards case. Seo, Yang and
Yi [15] consider a generic backwards abstract interpretation for a simple imper-
ative language and provide an algorithm that automatically constructs safety
proofs in Hoare logic from abstract interpretation results. Chaieb [7] considers a
flow chart language equipped with a weakest precondition calculus, and provides
sufficient conditions of the existence of certificates for solutions of backwards
abstract interpretations. The technique was applied in the context of a certified
PCC infrastructure [16].

Certificate Translation in Abstract Interpretation 381

Certificate translation. Müller and co-workers [2,10] define a proof transforming
compiler for sequential Java. They consider Hoare logics for source and bytecode
programs, and transform a correct derivation for a Java program into a correct
derivation for the JVM program obtained by non-optimizing compilation.

Saabas and Uustalu [14] develop type-based methods to establish the existence
of certifying analyzers and certificate transformers. They illustrate the feasibility
of their method by explaining in detail two particular transformations: common
subexpression elimination and dead variable elimination. They demonstrate the
correctness of both transformations, by derivability of Hoare logic proofs, and
provide an algorithm to transform a Hoare proof of the original program to a
Hoare proof of the transformed program.

6 Conclusion

We have provided a crisp formalization of certificate translation in a mild ex-
tension of abstract interpretation in which solutions carry a certificate of their
correctness. Our formalization allows us to give a rational reconstruction of our
earlier work, and to establish the scalability of certificate translation. In order
to further demonstrate the benefits of our framework, we show that certificate
translation scales to concurrent languages, to relational program logics, which
have been used to prove information flow properties, and that similar techniques
can be used to justify hybrid certificates, that combine simultaneously several
verification methods.

Acknowledgments. We are grateful to David Pichardie, Tamara Rezk and the
referees for their constructive comments. This work is partially supported by the
EU project MOBIUS.

References

1. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 380–397.
Springer, Heidelberg (2005)

2. Bannwart, F.Y., Müller, P.: A program logic for bytecode. In: Spoto, F. (ed.)
Electronic Notes in Theoretical Computer Science, vol. 141, pp. 255–273. Elsevier,
Amsterdam (2005)

3. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing
compilers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, Springer, Heidelberg (2006)

4. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005.
LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2006)

5. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) Principles of Programming Lan-
guages, pp. 14–25. ACM Press, New York (2004)

6. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational
program analysis. Technical report, IRISA (2007)

382 G. Barthe and C. Kunz

7. Chaieb, A.: Proof-producing program analysis. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 287–301. Springer, Heidelberg
(2006)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages, pp. 269–282 (1979)

10. Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt
termination. Technical Report 565, ETH Zurich (2007)

11. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119. ACM Press, New York (1997)

12. Rival, X.: Abstract Interpretation-Based Certification of Assembly Code. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 41–55. Springer, Heidelberg (2002)

13. Rival, X.: Symbolic Transfer Functions-based Approaches to Certified Compilation.
In: Principles of Programming Languages, pp. 1–13. ACM Press, New York (2004)

14. Saabas, A., Uustalu, T.: Type systems for optimizing stack-based code. In: Huis-
man, M., Spoto, F. (eds.) Bytecode Semantics, Verification, Analysis and Trans-
formation. Electronic Notes in Theoretical Computer Science, vol. 190(1), pp. 103–
119. Elsevier, Amsterdam (2007)

15. Seo, S., Yang, H., Yi, K.: Automatic Construction of Hoare Proofs from Abstract
Interpretation Results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp.
230–245. Springer, Heidelberg (2003)

16. Wildmoser, M., Chaieb, A., Nipkow, T.: Bytecode analysis for proof carrying code.
In: Spoto, F. (ed.) Bytecode Semantics, Verification, Analysis and Transformation.
Electronic Notes in Theoretical Computer Science, vol. 141, Elsevier, Amsterdam
(2005)

	Certificate Translation in Abstract Interpretation
	Introduction
	Certified Solutions
	Certifying Analyzers
	Certificate Translation
	Code Duplication
	Subgraph Transformation
	Program Skeletons
	Second-Order Analysis-Based Optimizations

	Related Work
	Conclusion

