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Abstract

This paper introduces the concept of certificateless public key cryptography (CL-PKC).
In contrast to traditional public key cryptographic systems, CL-PKC does not require the
use of certificates to guarantee the authenticity of public keys. It does rely on the use
of a trusted third party (TTP) who is in possession of a master key. In these respects,
CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other
hand, CL-PKC does not suffer from the key escrow property that seems to be inherent in
ID-PKC. Thus CL-PKC can be seen as a model for the use of public key cryptography
that is intermediate between traditional certificated PKC and ID-PKC.

We make concrete the concept of CL-PKC by introducing certificateless public key
encryption (CL-PKE), signature and key exchange schemes. We also demonstrate how
hierarchical CL-PKC can be supported. The schemes are all derived from pairings on
elliptic curves. The lack of certificates and the desire to prove the schemes secure in the
presence of an adversary who has access to the master key requires the careful development
of new security models. For reasons of brevity, the focus in this paper is on the security
of CL-PKE. We prove that our CL-PKE scheme is secure in a fully adaptive adversarial
model, provided that an underlying problem closely related to the Bilinear Diffie-Hellman
Problem is hard.

1 Introduction

The main difficulty today in developing secure systems based on public key cryptography is not
the problem of choosing appropriately secure algorithms or implementing those algorithms.
Rather, it is the deployment and management of infrastructures to support the authenticity of
cryptographic keys: there is a need to provide an assurance to the user about the relationship
between a public key and the identity (or authority) of the holder of the corresponding private
key. In a traditional Public Key Infrastructure (PKI), this assurance is delivered in the form of
certificate, essentially a signature by a Certification Authority (CA) on a public key [1]. The
problems of PKI technology are well documented, see for example [22]. Of note are the issues
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associated with certificate management, including revocation, storage and distribution and
the computational cost of certificate verification. These are particularly acute in processor or
bandwidth-limited environments [13].

Identity-based public key cryptography (ID-PKC), first proposed by Shamir [32], tackles
the problem of authenticity of keys in a different way to traditional PKI. In ID-PKC, an
entity’s public key is derived directly from certain aspects of its identity, for example, an
IP address belonging to a network host, or an e-mail address associated with a user. Pri-
vate keys are generated for entities by a trusted third party called a private key generator
(PKG). The first fully practical and secure identity-based public key encryption scheme was
presented in [6]. Since then, a rapid development of ID-PKC has taken place. There now
exist identity-based key exchange protocols (interactive [31] as well as non-interactive [33]),
signature schemes [10, 23, 26], hierarchical schemes [20] and a host of other primitives. It has
also been illustrated in [11, 25, 34] how ID-PKC can be used as a tool to enforce what might
be termed “cryptographic work-flows”, that is, sequences of operations (e.g. authentications)
that need to be performed by an entity in order to achieve a certain goal.

The direct derivation of public keys in ID-PKC eliminates the need for certificates and
some of the problems associated with them. On the other hand, the dependence on a PKG who
uses a system-wide master key to generate private keys inevitably introduces key escrow to ID-
PKC systems. For example, the PKG can decrypt any ciphertext in an identity-based public
key encryption scheme. Equally problematical, the PKG could forge any entity’s signatures
in an identity-based signature scheme, so ID-PKC cannot offer true non-repudiation in the
way that traditional PKI can. The escrow problem can be solved to a certain extent by
the introduction of multiple PKGs and the use of threshold techniques, but this necessarily
involves extra communication and infrastructure. Moreover, the compromise of the PKG’s
master key could be disastrous in an ID-PKC system, and usually more severe than the
compromise of a CA’s signing key in a traditional PKI. For these reasons, it seems that
the use of ID-PKC may be restricted to small, closed groups or to applications with limited
security requirements.

1.1 Certificateless Public Key Cryptography

In this paper, we introduce a new paradigm for public key cryptography, which we name
certificateless public key cryptography (CL-PKC). Our concept grew out of a search for public
key schemes that do not require the use of certificates and yet do not have the built-in key
escrow feature of ID-PKC. The solution we propose enjoys both of these properties; in this way,
it is a model for the use of public key cryptography that is intermediate between traditional
PKI and ID-PKC. Our concept shares some features in common with the self-certificated keys
of [21, 27] and with Gentry’s recently proposed certificate-based encryption [19].

We demonstrate that our concept of CL-PKC can be made real by specifying certificate-
less encryption, signature and key exchange schemes. We prove that the encryption scheme
is secure in a new and appropriate model, given the hardness of an underlying computational
problem. We also demonstrate how certificateless hierarchical schemes can be supported. Our
certificateless schemes are all built from bilinear maps on groups. In practice these will be
implemented using Weil and Tate pairings on elliptic curves, and the security will rest on a
computational problem related to the Bilinear Diffie-Hellman Problem (BDHP).
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1.2 Defining CL-PKC

We sketch the defining characteristics of CL-PKC.

A CL-PKC system still makes use of TTP which we name the key generating centre
(KGC). By way of contrast to the PKG in ID-PKC, this KGC does not have access to entities’
private keys. Instead, the KGC supplies an entity A with a partial private key DA which the
KGC computes from an identifer IDA for the entity and a master key. Note that we will often
equate A with its identifier IDA. The process of supplying partial private keys should take
place confidentially and authentically: the KGC must ensure that the partial private keys are
delivered securely to the correct entities. Identifiers can be arbitrary strings.

The entity A then combines its partial private key DA with some secret information
to generate its actual private key SA. In this way, A’s private key is not available to the
KGC. The entity A also combines its secret information with the KGC’s public parameters
to compute its public key PA. Note that A need not be in possession of SA before generating
PA: all that is needed to generate both is the same secret information. The system is not
identity-based, because the public key is no longer computable from an identity (or identifier)
alone.

Entity A’s public key might be made available to other entities by transmitting it along
with messages (for example, in a signing application) or by placing it in a public directory
(this would be more appropriate for an encryption setting). But no further security is applied
to the protection of A’s public key. In particular, there is no certificate for A’s key. To encrypt
a message to A or verify a signature from A, entity B makes use of PA and IDA.

A more formal model for certificateless public key encryption (CL-PKE) will be given in
Section 3. Much of this model is also applicable for our other certificateless primitives.

1.3 An Adversarial Model for CL-PKC

Because of the lack of authenticating information for public keys (in the form of a certificate,
for example), we must assume that an adversary can replace A’s public key by a false key of
its choice. This might seem to give the adversary tremendous power and to be disastrous for
CL-PKC. However, we will see that an active adversary who attacks in this way gains nothing
useful: without the correct private key, whose production requires the partial private key and
therefore the cooperation of the KGC, an adversary will not be able to decrypt ciphertexts
encrypted under the false public key, produce signatures that verify with the false public key,
and so on. (Formally, in the encryption setting, the adversary will not be able to distinguish
the encryptions of distinct messages of his choice.)

Of course, we must assume that the KGC does not mount an attack of this type: armed
with the partial private key and the ability to replace public keys, the KGC could impersonate
any entity in generating a private/public key pair and then making the public key available.
Thus we must assume that, while the KGC is in possession of the master key and hence all
partial private keys, it is trusted not to replace entities’ public keys. However, we assume that
the KGC might engage in other adversarial activity, eavesdropping on ciphertexts and making
decryption queries, for example. In this way, users invest roughly the same level of trust in
the KGC as they would in a CA in a traditional PKI – it is rarely made explicit, but such a
CA is always assumed not to issue new certificates binding arbitrary public keys and entity
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combinations of its choice, and especially not for those where it knows the corresponding
private key! When compared to ID-PKC, the trust assumptions made of the trusted third
party in CL-PKC are much reduced: in ID-PKC, users must trust the PKG not to abuse its
knowledge of private keys in performing passive attacks, while in CL-PKC, users need only
trust the KGC not to actively propagate false public keys.

The word roughly here merits further explanation. In a traditional PKI, if the CA forges
certificates, then the CA can be identified as having misbehaved through the existence of two
valid certificates for the same identity. This is not the case in our schemes: a new public key
could have been created by the legitimate user or by the KGC, and it cannot be easily decided
which is the case. The terminology of [21] is useful here: our schemes achieve trust level 2,
whereas a traditional PKI reaches trust level 3. However, we can further strengthen security
against a malicious KGC in our schemes by allowing entities to choose identifiers IDA which
bind together their public keys and identities. Now the existence of two different, working
public keys for the same identity will identify the KGC as having misbehaved in issuing both
corresponding partial private keys. Details of this modification can be found in Section 5.1.
With this binding in place, our schemes do reach trust level 3.

In Section 3, we will present an adversarial model for CL-PKE which captures these
capabilities in a formal way. The model we present there is a natural generalization of the
fully adaptive, multi-user model of [6] to the CL-PKC setting, and involves two distinct types
of adversary: one who can replace public keys at will and another who has knowledge of the
master key but does not replace public keys. Given our detailed development of this model,
the adaptations to existing models that are needed to produce adversarial models for our
other certificateless primitives become straightforward.

1.4 Implementation and Applications of CL-PKC

Our presentation of CL-PKC schemes will be at a fairly abstract level, in terms of bilinear
maps on groups. However, the concrete realization of these schemes using pairings on elliptic
curves is now becoming comparatively routine, after the work of [2, 3, 6, 7, 9, 15, 17, 18] on
implementation of pairings and selection of curves with suitable properties. All the schemes
we present use a small number of pairing calculations for each cryptographic operation, and
some of these can usually be eliminated when repeated operations involving the same identities
take place. Public and private keys are small in size: two elliptic curve points for the public
key and one for the private key.

The infrastructure needed to support CL-PKC is lightweight when compared to a tradi-
tional PKI. This is because, just as with ID-PKC, the need to manage certificates is completely
eliminated. This immediately makes CL-PKC attractive for low-bandwidth, low-power sit-
uations, for example, mobile security applications, where the need to transmit and check
certificates has been identified as a significant limitation [13]. However, it should be pointed
out that recently introduced signatures schemes enjoying very short signatures [9] could be
used to significantly decrease the size of certificates and create a lightweight PKI. Our CL-
PKC signature scheme can also support true non-repudiation, because private keys remain in
the sole possession of their legitimate owners.

Revocation of keys in CL-PKC systems can be handled in the same way as in ID-PKC
systems. In [6] the idea of appending validity periods to identifiers IDA is given as one
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convenient solution. In the context of CL-PKC, this ensures that any partial private key, and
hence any private key, has a limited shelf-life.

As will become apparent, our CL-PKC schemes are actually very closely related to ex-
isting pairing-based ID-PKC schemes. One consequence of this is that any infrastructure
deployed to support pairing-based ID-PKC (e.g. a PKG) can also be used to support our
CL-PKC schemes too: in short, the two types of scheme can peacefully co-exist. In fact,
an entity can be granted a private key for a pairing-based ID-PKC scheme and immediately
convert it into a private key for our CL-PKC scheme. In this way, an entity who wishes
to prevent the PKG exploiting the escrow property of an identity-based system can do so,
though at the cost of losing the identity-based nature of its public key.

Although our CL-PKC schemes are no longer identity-based, they do enjoy the property
that an entity’s private key can be determined after its public key has been generated and
used. This is a useful feature. An entity B can encrypt a message for A using A’s chosen
public key and an identifier IDA of B’s choice. This identifier should contain A’s identity but
might also contain a condition that A must demonstrate that it satisfies before the KGC will
deliver the corresponding partial private key (which in turn allows A to compute the right
private key for decryption). For example, this condition might be that A has a valid driver’s
licence. The encrypted message then might be A’s new insurance document. In this way, B
can create a “cryptographic work-flow” that A must carry out before being able to access
some information. This kind of application cannot be easily supported using certificate-based
systems, because in those systems, the temporal ordering of private key before public key and
certificate is fixed. For more applications of work-flows, see [25, 34].

1.5 Related Work

Our work on CL-PKC owes much to the pioneering work of Boneh and Franklin [6, 7] on
identity-based public key encryption. In fact, our CL-PKE scheme is derived from the scheme
of [6] by making a very simple modification (albeit, one with far-reaching consequences). Our
security proofs require significant changes and new ideas to handle our new types of adversary.
Likewise, our signature, key exchange and hierarchical schemes also arise by adapting existing
ID-PKC schemes.

Another alternative to traditional certificate-based PKI called self-certified keys was
introduced by Girault [21] and further developed in [27, 29]. The schemes presented in
[21, 27, 29] are structurally somewhat similar to our CL-PKC schemes. In a self-certified
scheme, an entity chooses its private key x and corresponding public key y and delivers y to a
TTP. The TTP combines y with the identity ID of that entity to produce a witness w. This
witness may just be the TTP’s signature on some combination of y and ID as in [21], part
of a signature as in [27], or the result of inverting a trapdoor one-way function based on y
and ID [29]. Given w, ID and the TTP’s public key, any party can extract y, while only the
TTP can produce the witness w from y and ID. The schemes offer implicit certification, in
that the authenticity of a public key is verified implicitly through the subsequent use of the
correct private key.

As in CL-PKC, self-certified keys enable the use of public key cryptography without
traditional certificates. However, it can be argued that the witness in a self-certified scheme
is really just a lightweight certificate linking ID and y. Our CL-PKC schemes do not have such
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witnesses. The self-certified schemes have an advantage over our level 2 CL-PKC schemes in
that the communication between an entity and the TTP need not be confidential: there are
no partial private keys to be transported to entities. On the other hand, the private key needs
to be chosen before the public key can be generated (unlike CL-PKC and ID-PKC schemes),
so the elegant applications of CL-PKC to controlling work-flows cannot be realized in self-
certified systems. Nor do the self-certified schemes enjoy security proofs. Indeed Saeednia
[30] has recently pointed out a basic flaw in the scheme of [21] which allows a cheating TTP to
extract an entity’s private key; the consequence is that far larger (and less efficient) parameters
are needed to create a secure scheme.

Recent work of Gentry [19] exploits pairings to simplify certificate revocation in tradi-
tional PKI systems. In Gentry’s model, an entity B’s private key consists of two components:
a first component which that entity chooses for itself and keeps private, and a component
which is time-dependent and is issued to B on a regular basis by a CA. Matching the two
private key components are two public key components. The first of these is chosen by B’s
while the second can be computed by A using only some public parameters of the scheme’s
CA together with the current time value and the assumed value of B’s public key. Because of
the structure of the CBE scheme, A is then assured that B can only decrypt if he is in pos-
session of both private components. Thus the second private component acts as an implicit
certificate for relying parties: one that a relying party can be assured is only available to B
provided that B’s certification has been issued for the current time period by the CA. This
approach provides an implicit revocation mechanism for PKIs: notice that there is no need
for A to make any status checks on B’s public key before encrypting a message for B; rather
A’s assurance that only B can decrypt comes through trusting the CA to properly update
and distribute the second components of private keys.

Gentry’s scheme is presented in the context of a traditional PKI model, whereas our
work departs from the traditional PKI and ID-PKC models to present a new paradigm for
the use of public-key cryptography. However, the two models are conceptually rather similar:
both make use of keys that are composed of two parts, one chosen by an entity for itself and
the other coming from a trusted authority. In fact, it is possible to modify Gentry’s work to
divorce it from the setting of a traditional PKI. In the reverse direction, we can modify our
scheme to provide CBE functionality by the simple expedient of including expiry information
and public keys in identity strings. The details of these modifications are beyond the scope
of this paper.

Thus the two models, developed independently1, are closely related. However, there do
remain major differences: our security model assumes an adversary who can extract partial
private keys and change public keys even for the challenge identity, whereas Gentry’s model,
in which the equivalent of partial private keys are already public and bind the public keys
to identities, models the adversary slightly differently. Gentry’s model requires an adversary
to give private keys to the simulator (a rather unusual requirement, though one that can be
removed for the specific scheme in [19]). We circumvent this requirement by extending the
concept of knowledge extraction to the situation with multiple public keys under the control
of the adversary. Moreover, the concrete realizations of the two models are different.

1Our work was begun in Autumn 2002, and a version of it presented at a local research seminar in November

2002. The first we became aware of Gentry’s work was at the Eurocrypt 2003 conference in May 2003, by which

time our work as presented here was substantially complete except for some details in the security proofs.
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1.6 Overview of the Paper

Throughout the paper, we focus mostly on certificateless public key encryption for the sake
of brevity. Section 2 gives some background definitions for bilinear maps and associated
computational problems that we need. In Section 3, we define in detail the notion of a certifi-
cateless public key encryption (CL-PKE) scheme, giving a formal model for the capabilities
of adversaries and a definition of security. Then in Section 4, we give a concrete CL-PKE
scheme and state our result about its security; this result is proved in the appendix. After
this, Section 5 sketches certificateless signature, authenticated key exchange and hierarchical
schemes. Section 6 concludes the paper.

2 Background Definitions

Throughout the paper, G1 denotes an additive group of prime order q and G2 a multiplicative
group of the same order. We let P denote a generator of G1. For us, a pairing is a map
e : G1 × G1 → G2 with the following properties:

1. The map e is bilinear: given Q, W, Z ∈ G1, we have

e(Q, W + Z) = e(Q, W ) · e(Q, Z) and e(Q + W, Z) = e(Q, Z) · e(W, Z).

Consequently, for any a, b ∈ Zq, we have

e(aQ, bW ) = e(Q, W )ab = e(abQ, W ) etc.

2. The map e is non-degenerate: e(P, P ) 6= 1G2
.

3. The map e is efficiently computable.

Typically, the map e will be derived from either the Weil or Tate pairing on an elliptic
curve over a finite field. We refer to [2, 3, 6, 7, 9, 15, 17, 18] for a more comprehensive
description of how these groups, pairings and other parameters should be selected in practice
for efficiency and security. We note that all our schemes can be adapted to the situation where
two different groups are involved on the left-hand side of the pairing map. This increases the
range of curves over which our schemes can be realised.

We also introduce here the computational problems that will form the basis of security
for our CL-PKC schemes.

Bilinear Diffie-Hellman Problem (BDHP): Let G1, G2, P and e be as above. The
BDHP in 〈G1, G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with uniformly random choices of
a, b, c ∈ Z

∗
q , compute e(P, P )abc ∈ G2. An algorithm A has advantage ǫ in solving the BDHP

in 〈G1, G2, e〉 if

Pr
[

A(〈P, aP, bP, cP 〉) = e(P, P )abc
]

= ǫ.

Here the probability is measured over the random choices of a, b, c ∈ Z
∗
q and the random

bits of A.

Generalized Bilinear Diffie-Hellman Problem (GBDHP): Let G1, G2, P and e be as
above. The GBDHP in 〈G1, G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with uniformly random
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choices of a, b, c ∈ Z
∗
q , output a pair 〈Q ∈ G

∗
1, e(P, Q)abc ∈ G2〉. An algorithm A has advantage

ǫ in solving the GBDHP in 〈G1, G2, e〉 if

Pr
[

A(〈P, aP, bP, cP 〉) = 〈Q, e(P, Q)abc〉
]

= ǫ.

Here the probability is measured over the random choices of a, b, c ∈ Z
∗
q and the random

bits of A.

Notice that the BDHP is a special case of the GBDHP in which the algorithm outputs
the choice Q = P . While the GBDHP may appear to be in general easier to solve than the
BDHP because the solver gets to choose Q, we know of no polynomial-time algorithm for
solving either when the groups G1, G2 and pairing e are appropriately selected. If the solver
knows s ∈ Z

∗
q such that Q = sP , then the problems are of course equivalent. The GBDHP

is related to generalized versions of the computational Diffie-Hellman problems in G1 and
G2 in the same way that the BDHP is related to the standard computational Diffie-Hellman
problem in those groups [6, 17].

BDH Parameter Generator: As in [6], a randomized algorithm IG is a BDH parameter
generator if IG: (1) takes security parameter k ≥ 1, (2) runs in polynomial time in k, and (3)
outputs the description of groups G1, G2 of prime order q and a pairing e : G1 × G1 → G2.
Formally, the output of the algorithm IG(1k) is 〈G1, G2, e〉.

Our security proofs will yield reductions to the BDHP or GBDHP in groups generated by
a BDH parameter generator IG. To make statements about the security of our schemes, we
will assume that there is no polynomial time algorithm with a non-negligible (in k) advantage
in solving the BDHP or GBDHP in groups generated by IG. Our reductions to BDHP and
GBDHP can be made concrete.

3 Certificateless Public Key Encryption

In this section we present a formal definition for a certificateless public key encryption (CL-
PKE) scheme. We also examine the capabilities which may be possessed by the adversaries
against such a scheme and give a security model for CL-PKE.

A CL-PKE scheme is specified by seven randomized algorithms: Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Encrypt and Decrypt:

Setup: This algorithm takes security parameter k and returns the system parameters params
and master-key. The system parameters includes a description of the message space M and
ciphertext space C. Usually, this algorithm is run by the KGC. We assume throughout that
params are publicly and authentically available, but that only the KGC knows master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and an identifier
for entity A, IDA ∈ {0, 1}∗, as input. It returns a partial private key DA. Usually this
algorithm is run by the KGC and its output is transported to entity A over a confidential
and authentic channel.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier IDA

as inputs and outputs A’s secret value xA.

8



Set-Private-Key: This algorithm takes params, an entity A’s partial private key DA and
A’s secret value xA as input. The value xA is used to transform DA into the (full) private
key SA. The algorithm returns SA.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA as input and
from these constructs the public key PA for entity A.

Normally both Set-Private-Key and Set-Public-Key are run by an entity A for itself,
after running Set-Secret-Value. The same secret value xA is used in each. Separating them
makes it clear that there is no need for a temporal ordering on the generation of public and
private keys in our CL-PKE scheme. Usually, A is the only entity in possession of SA and
xA, and xA will be chosen at random from a suitable and large set.

Encrypt: This algorithm takes as inputs params, a message M ∈ M, and the public key PA

and identifier IDA of an entity A. It returns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure. This will always occur in the event that PA does not have
the correct form. In our scheme, this is the only way an encryption failure will occur.

Decrypt: This algorithm takes as inputs params, C ∈ C, and a private key SA. It returns a
message M ∈ M or a message ⊥ indicating a decryption failure.

Naturally, we insist that output M should result from applying algorithm Decrypt with
inputs params, SA on a ciphertext C generated by using algorithm Encrypt with inputs
params, PA, IDA on message M .

3.1 Security model for CL-PKE

Given this formal definition of a CL-PKE scheme, we are now in a position to define adver-
saries for such a scheme. The standard definition for security for a public key encryption
scheme involves indistinguishability of encryptions against a fully-adaptive chosen ciphertext
attacker (IND-CCA) [4, 14, 28]. In this definition, there are two parties, the adversary A and
the challenger C. The adversary operates in three phases after being presented with a random
public key. In Phase 1, A may make decryption queries on ciphertexts of its choice. In the
Challenge Phase, A chooses two messages M0, M1 and is given a challenge ciphertext C∗ for
one of these two messages Mb by the challenger. In Phase 2, A may make further decryption
queries, but may not ask for the decryption of C∗. The attack ends with A’s guess b′ for the
bit b. The adversary’s advantage is defined to be Adv(A) = 2(Pr[b′ = b] − 1

2).

This model was strengthened for ID-PKC in [6] to handle adversaries who can extract
the private keys of arbitrary entities and who choose the identity IDch of the entity on whose
public key they are challenged. This extension is appropriate because the compromise of some
entities’ private keys should not affect the security of an uncompromised entity’s encryptions.

Here, we extend the model of [6] to allow adversaries who can extract partial private
keys, or private keys, or both, for identities of their choice. Given that our scheme has no
certificates, we must further strengthen the model to allow for adversaries who can replace
the public key of any entity with a value of their choice. We must also consider carefully
how a challenger should respond to key extraction and decryption queries for identities whose
public keys have been changed.

Here then is a list of the actions that a general adversary against a CL-PKE scheme may
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carry out and a discussion of each action.

1. Extract partial private key of A: C responds by running algorithm
Partial-Private-Key-Extract to generate the partial private key DA for entity A.

2. Extract private key for A: As in [6], we allow our adversary A to make requests for
entities’ private keys. If A’s public key has not been replaced then C can respond by
running algorithm Set-Private-Key to generate the private key SA for entity A (first
running Set-Secret-Value for A if necessary). But it is unreasonable to expect C to
be able to respond to such a query if A has already replaced A’s public key. Also as
in [6], we insist that A does not at any point extract the private key for the selected
challenge identity IDch.

3. Request public key of A: Naturally, we assume that public keys are available
to A. On receiving a first request for A’s public key, C responds by running al-
gorithm Set-Public-Key to generate the public key PA for entity A (first running
Set-Secret-Value for A if necessary).

4. Replace public key of A: A can repeatedly replace the public key PA for any entity
A with any value P ′

A of its choice. In our concrete CL-PKE schemes, our public keys
will have a certain structure that is used to test the validity of public keys before
any encryption. We assume here that the adversary’s choice P ′

A is a valid public key;
this assumption can be removed (and our schemes remain secure) at the cost of some
additional complexity in our definitions. Note that in our schemes, any entity can easily
create public keys that are valid. The current value of an entity’s public key is used by
C in any computations (for example, preparing a challenge ciphertext) or responses to
A’s requests (for example, replying to a request for the public key). We insist that A
cannot both replace the public key for the challenge identity IDch before the challenge
phase and extract the partial private key for IDch in some phase – this would enable
A to receive a challenge ciphertext under a public key for which it could compute the
private key.

5. Decryption query for ciphertext C and entity A: If A has not replaced the public
key of entity A, then C responds by running the algorithm Set-Private-Key to obtain
the private key SA, then running Decrypt on ciphertext C and private key SA and
returning the output to A. However, if A has already replaced the public key of A, then
in following this approach, C will (in general) not decrypt using a private key matching
the current public key. So C’s reply to A’s decryption query is likely to be incorrect.
Indeed C most likely will not even know what the private key matching the current
public key is! In defining our security model for CL-PKE, we have two options: we
could simply accept that these decryptions will be incorrect, or we can insist that C
should somehow properly decrypt ciphertexts even for entities whose public keys have
been replaced. The former option could be argued for on grounds of reasonableness:
after all, how can C be expected to provide correct decryptions when A gets to choose
the public key? On the other hand, the latter option results in a more powerful security
model, because now decryption queries made under public keys that have been changed
will potentially be far more useful to A. For this reason, we adopt the latter option
for our model, even though it substantially complicates our proofs of security. (These
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decryptions will be handled using special purpose knowledge extractors in our security
proofs.) Naturally, as in [6], we prohibit A from ever making a decryption query on the
challenge ciphertext C∗ for the combination of identity IDch and public key Pch that
was used to encrypt Mb. However A is, for example, allowed to replace the public key
for IDch with a new value and then request a decryption of C∗, or to change another
entity A’s public key to Pch (or any other value) and then request the decryption of C∗

for entity A.

We also want to consider adversaries who are equipped with master-key, in order to
model security against an eavesdropping KGC. As discussed in Section 1, we do not allow
such an adversary to replace public keys: in this respect, we invest in the KGC the same level
of trust as we do in a CA in a traditional PKI. So we will distinguish between two adversary
types, with slightly different capabilities:

CL-PKE Type I Adversary: Such an adversary AI does not have access to master-key.
However, AI may request public keys and replace public keys with values of its choice, extract
partial private and private keys and make decryption queries, all for identities of its choice.
As discussed above, we make several natural restrictions on such a Type I adversary:

1. AI cannot extract the private key for IDch at any point.

2. AI cannot request the private key for any identity if the corresponding public key has
already been replaced.

3. AI cannot both replace the public key for the challenge identity IDch before the challenge
phase and extract the partial private key for IDch in some phase.

4. In Phase 2, AI cannot make a decryption query on the challenge ciphertext C∗ for the
combination of identity IDch and public key Pch that was used to encrypt Mb.

CL-PKE Type II Adversary: Such an adversary AII does have access to master-key,
but may not replace public keys of entities. Adversary AII can compute partial private keys
for itself, given master-key. It can also request public keys, make private key extraction
queries and decryption queries, both for identities of its choice. The restrictions on this type
of adversary are:

1. AII cannot replace public keys at any point.

2. AII cannot extract the private key for IDch at any point.

3. In Phase 2, AII cannot make a decryption query on the challenge ciphertext C∗ for the
combination of identity IDch and public key Pch that was used to encrypt Mb.

Chosen ciphertext security for CL-PKE: We say that a CL-PKE scheme is semantically
secure against an adaptive chosen ciphertext attack (“IND-CCA secure”) if no polynomi-
ally bounded adversary A of Type I or Type II has a non-negligible advantage against the
challenger in the following game:
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Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives
A the resulting system parameters params. If A is of Type I, then the challenger keeps
master-key to itself, otherwise, it gives master-key to A.

Phase 1: A issues a sequence of requests, each request being either a partial private key
extraction, a private key extraction, a request for a public key, a replace public key command
or a decryption query for a particular entity. These queries may be asked adaptively, but are
subject to the rules on adversary behaviour defined above.

Challenge Phase: Once A decides that Phase 1 is over it outputs the challenge identity
IDch and two equal length plaintexts M0, M1 ∈ M. Again, the adversarial constraints given
above apply. In particular, IDch cannot be an identity for which the private key has been
extracted. Moreover, if A is of Type I, then IDch cannot be an identity for which both the
public key has been replaced and the partial private key extracted. The challenger now picks
a random bit b ∈ {0, 1} and computes C∗, the encryption of Mb under the current public key
Pch for IDch. If the output of the encryption is ⊥ , then A has immediately lost the game (it
has replaced a public key with one not having the correct form). Otherwise, C∗ is delivered
to A.

Phase 2: A issues a second sequence of requests as in Phase 1, again subject to the rules on
adversary behaviour above. In particular, no private key extraction on IDch is allowed, and, if
A is of Type I, then the partial private key for IDch cannot be extracted if the corresponding
public key was replaced in Phase 1. Moreover, no decryption query can be made on the
challenge ciphertext C∗ for the combination of identity IDch and public key Pch that was used
to encrypt Mb.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′. We
define A’s advantage in this game to be Adv(A) := 2(Pr[b = b′] − 1

2).

4 CL-PKE Schemes from Pairings

In this section, we describe a pair of CL-PKE schemes. Our first scheme, BasicCL-PKE,
is analogous to the scheme BasicIdent of [6], and is included only to serve as a warm-up
for our main scheme FullCL-PKE. The main scheme is in turn an analogue of the scheme
FullIdent of [6] and is IND-CCA secure, assuming the hardness of the GBDHP. We prove
this in Theorem 1.

4.1 A Basic CL-PKE Scheme

We describe the seven algorithms needed to define BasicCL-PKE. We let k be a security
parameter given to the Setup algorithm and IG a BDH parameter generator with input k.

Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1, G2, e〉 where G1 and G2 are groups of some
prime order q and e : G1 × G1 → G2 is a pairing.

2. Choose an arbitrary generator P ∈ G1.

3. Select a master-key s uniformly at random from Z
∗
q and set P0 = sP .
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4. Choose cryptographic hash functions H1 : {0, 1}∗ → G
∗
1 and H2 : G2 → {0, 1}n. Here n

will be the bit-length of plaintexts.2

The system parameters are params= 〈G1, G2, e, n, P, P0, H1, H2〉. The master-key is
s ∈ Z

∗
q . The message space is M = {0, 1}n and the ciphertext space is C = G1 × {0, 1}n.

Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈ {0, 1}∗,
and carries out the following steps to construct the partial private key for entity A with
identifier IDA:

1. Compute QA = H1(IDA) ∈ G
∗
1.

2. Output the partial private key DA = sQA ∈ G
∗
1.

The reader will notice that the partial private key of entity A here is identical to that
entity’s private key in the schemes of [6]. Also notice that A can verify the correctness of the
Partial-Private-Key-Extract algorithm output by checking e(DA, P ) = e(QA, P0).

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier IDA

as inputs. It selects xA ∈ Z
∗
q at random and outputs xA as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, an entity A’s partial private key
DA and A’s secret value xA ∈ Z

∗
q . It transforms partial private key DA to private key SA by

computing SA = xADA = xAsQA ∈ G
∗
1.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z
∗
q as inputs

and constructs A’s public key as PA = 〈XA, YA〉, where XA = xAP and YA = xAP0 = xAsP .

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and public key
PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G
∗
1 and that the equality e(XA, P0) = e(YA, P ) holds. If not,

output ⊥ and abort encryption.

2. Compute QA = H1(IDA) ∈ G
∗
1.

3. Choose a random value r ∈ Z
∗
q .

4. Compute and output the ciphertext:

C = 〈rP, M ⊕ H2(e(QA, YA)r)〉.

Notice that this encryption operation is identical to the encryption algorithm in the
scheme BasicIdent of [6], except for the check on the structure of the public key in step 1
and the use of YA in place of P0 = Ppub in step 4.

Decrypt: Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private key SA,
compute and output:

V ⊕ H2(e(SA, U)).

2Note that n needs to grow at least as fast as k in order to obtain security in an OWE model for this

scheme. We do not specify n as a function of the group size q or the security parameter k, however, taking

n ≈ log
2
q in concrete instantiations would be appropriate.
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Notice that if 〈U = rP, V 〉 is the encryption of M for entity A with public key PA =
〈XA, YA〉, then we have:

V ⊕ H2(e(SA, U)) = V ⊕ H2(e(xAsQA, rP ))
= V ⊕ H2(e(QA, xAsP )r)
= V ⊕ H2(e(QA, YA)r)
= M,

so that decryption is the inverse of encryption. Again, the similarity to the decryption oper-
ation of BasicIdent should be apparent.

We have presented this scheme to help the reader understand our FullCL-PKE scheme,
and so we do not analyse its security in detail. It can be shown that BasicCL-PKE is secure
in a One-Way Encryption (OWE) model, in which Type I and II adversaries have the same
capabilities regarding public and private keys as in our fully adaptive model in Section 3,
but where they do not make decryption queries, and where the challenge to the adversary is
simply to decrypt a challenge ciphertext. The security relies on the hardness of the GBDHP
and assumes H1 and H2 are random oracles. In essence, the detailed analysis shows that
security against Type II adversaries can be reduced to the difficulty of computing the value
e(QA, xAsP )r. Because a Type II adversary has s but not xA, this is equivalent to the BDHP
on input 〈P, QA, U, XA〉. Likewise, security against a Type I adversary who does not know
s but who might replace YA by a new value Y ′

A can be reduced to the GBDHP on input
〈P, QA = aP, U = rP, P0 = sP 〉, with solution Y ′

A, e(P, Y ′
A)sra. We omit the details.

4.2 A Full CL-PKE Scheme

Now that we have described our basic CL-PKE scheme, we add chosen ciphertext security to
it, adapting the Fujisaki-Okamoto padding technique [16]. The algorithms for FullCL-PKE

are as follows:

Setup: Identical to Setup for BasicCL-PKE, except that we choose two additional crypto-
graphic hash functions H3 : {0, 1}n × {0, 1}n → Z

∗
q and H4 : {0, 1}n → {0, 1}n.

Now the system parameters are params= 〈G1, G2, e, n, P, P0, H1, H2, H3, H4〉. The
master-key and message space M are the same as in BasicCL-PKE. The ciphertext space is
now C = G1 × {0, 1}2n.

Partial-Private-Key-Extract: Identical to BasicCL-PKE.

Set-Secret-Value: Identical to BasicCL-PKE.

Set-Private-Key: Identical to BasicCL-PKE.

Set-Public-Key: Identical to BasicCL-PKE.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and public key
PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G
∗
1 and that the equality e(XA, P0) = e(YA, P ) holds. If not,

output ⊥ and abort encryption.

2. Compute QA = H1(ID) ∈ G
∗
1.
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3. Choose a random σ ∈ {0, 1}n.

4. Set r = H3(σ, M).

5. Compute and output the ciphertext:

C = 〈rP, σ ⊕ H2(e(QA, YA)r), M ⊕ H4(σ)〉.

Decrypt: Suppose C = 〈U, V, W 〉 ∈ C. To decrypt this ciphertext using the private key SA:

1. Compute V ⊕ H2(e(SA, U)) = σ′.

2. Compute W ⊕ H4(σ
′) = M ′.

3. Set r′ = H3(σ
′, M ′) and test if U = r′P . If not, output ⊥ and reject the ciphertext.

4. Output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see that decrypting
C will result in an output M ′ = M . We note that W can be replaced by W = EH4(σ)(M)
where E denotes a semantically secure symmetric key encryption scheme as in [16] (though
our security proofs will require some modifications to handle this case). This concludes the
description of FullCL-PKE.

4.3 Security of the scheme FullCL-PKE

We have the following theorem about the security of FullCL-PKE.

Theorem 1 Let hash functions H1, H2, H3 and H4 be random oracles. Suppose further that
there is no polynomially bounded algorithm that can solve the GBDHP in groups generated by
IG with non-negligible advantage. Then FullCL-PKE is IND-CCA secure.

This theorem follows from a sequence of lemmas that are proved in the appendices. It
can be made into a concrete security reduction relating the advantage ǫ of a Type I or Type
II attacker against FullCL-PKE to that of an algorithm to solve GBDHP or BDHP. We omit
the rather unaesthetic expressions which result.

The proof strategy for Theorem 1 is in two parts, depending on the type of the adversary.

For a Type II adversary, we first show that the security of FullCL-PKE can be reduced
to the security of a related (normal) public key encryption scheme HybridPub in the usual
IND-CCA model. We then use the results of [16] to reduce the security of HybridPub to that
of a second public key encryption scheme BasicPub against OWE adversaries. Finally, we
are able to relate the security of BasicPub to the hardness of the BDHP.

The proof of Theorem 1 for a Type I attacker is significantly more complicated. Essen-
tially, this is because we have to handle the possibility that a Type I adversary may extract
partial private keys as well as replace public keys. The replacement of public keys compli-
cates the handling of decryption queries. We cannot directly apply the results of [16] in this
situation; instead we first provide a reduction relating the security of FullCL-PKE to that of
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HybridPub in an extended IND-CPA model in which adversaries may alter the public key
presented by the challenger. This reduction makes use of special-purpose knowledge extrac-
tion algorithm to handle decryption queries. Thereafter, we reduce the security to that of
BasicPub against similarly extended OWE adversaries. We are then able to relate security
to the hardness of the GBDHP. For details, see the appendices.

5 Further CL-PKC Schemes

In this section, we sketch a number of other CL-PKC primitives: a signature scheme based
on the identity-based scheme of [23], a key exchange protocol which improves on the security
offered by the schemes of [12, 33], and hierarchical and proxy encryption schemes. We begin
by outlining an alternative key generation technique which enhances the resilience of our
schemes against a cheating KGC and allows for non-repudation of certificateless signatures.

5.1 An Alternative Key Generation Technique

Up to this point, we have assumed that the KGC is trusted to not replace the public keys
of users and to only issue one copy of each partial private key, to the correct recipient. This
may involve an unacceptable level of trust in the KGC for some users. Our current set up
also allows users to create more than one public key for the same partial private key. This
can be desirable in some applications, but undesirable in others.

Here we sketch a simple binding technique which ensures that users can only create one
public key for which they know the corresponding private key. In our technique, an entity
A must first fix its secret value xA and its public key PA = 〈XA, YA〉. We then re-define
QA to be QA = H1(IDA‖PA) – now QA binds A’s identifier and public key. The partial
private key delivered to entity A is still DA = sQA and the private key created by A is still
xsQA. However, these are also now bound to A’s choice of public key. This binding effectively
restricts A to using a single public key, since A can now only compute one private key from
DA.

This technique has a very important additional benefit: it reduces the degree of trust
that users need to have in the KGC in our certificateless schemes. In short, the technique
raises many of our schemes to trust level 3 in the trust hierarchy of [21], the same level as is
enjoyed in a traditional PKI.

In our original scheme, a cheating KGC could replace an entity’s public key by one for
which it knows the secret value without fear of being identified. We have assumed up to this
point that no KGC would engage in such an action, and that users must trust the KGC not
to do so. Note that this action is not equivalent to a CA forging a certificate in a traditional
PKI: the existence of two valid certificates would surely implicate the CA (though the CA
could perhaps revoke the entity’s original certificate first).

Now, with our binding technique in place, a KGC who replaces an entity’s public key will
be implicated in the event of a dispute: the existence of two working public keys for an identity
can only result from the existence of two partial private keys binding that identity to two
different public keys; only the KGC could have created these two partial private keys. Thus
our binding technique makes the KGC’s replacement of a public key apparent and equivalent
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to a CA forging a certificate in a traditional PKI. Theorem 1 still applies for our CL-PKE
scheme with this binding in place because of the way in which H1 is modelled as a random
oracle. Notice too that with this binding in place, there is no longer any need to keep partial
private keys secret: informally, knowledge of the key DA = sQA does not help an adversary
to create the unique private key SA = xsQA that matches the particular public key PA that
is bound to DA.

The binding technique can be applied to the primitives in this section too. For example,
it ensures a stronger form of non-repudiation than is otherwise possible for our certificateless
signature scheme in Section 5.2: without the binding, an entity could always repudiate a
signature by producing a second working public key and claiming that the KGC had created
the signature using the first public key.

Even with this binding in place, the security analysis of our original encryption scheme
(in which an adversary can replace public keys) is still important: it models the scenario where
an adversary temporarily replaces the public key PA of an entity A with a new value P ′

A in an
attempt to obtain a ciphertext which he can distinguish, and then resets the public key. In
this case, our proof shows that the adversary does not gain any advantage in a distinguishing
game unless he has access to the matching partial private key D′

A = sH1(IDA‖P
′
A). In turn,

this partial private key should not be made available by the KGC. Of course, nothing can
prevent a KGC from mounting an attack of this type, but the same applies for the CA in a
traditional PKI.

5.2 A Certificateless Signature Scheme

We will describe a certificateless public-key signature (CL-PKS) scheme that is based on a
provably secure ID-PKC signature scheme of [23].

In general, a CL-PKS scheme can be specified by seven algorithms: Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Sign and Verify. These are similar to the algorithms used to define a CL-PKE scheme:
Setup and params are modified to include a description of the signature space S,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and
Set-Public-Key are just as before and Sign and Verify are as follows:

Sign: This algorithm takes as inputs params, a message M ∈ M to be signed and a private
key SA. It outputs a signature Sig ∈ S.

Verify: This algorithm takes as inputs params, a message M ∈ M, the identifier IDA and
public key PA of an entity A, and Sig ∈ S as the signature to be verified. It outputs valid,
invalid or ⊥ .

Given this general description, we now outline a CL-PKS scheme:

Setup: This is identical to Setup for our scheme BasicCL-PKE, except that now there is only
one hash function H : {0, 1}∗×G2 → Z

∗
q and params is 〈G1, G2, n, e, P, P0, H〉. The signature

space is defined as S = G1 × Z
∗
q .

Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and
Set-Public-Key: Identical to BasicCL-PKE.

Sign: To sign M ∈ M using the private key SA, perform the following steps:

17



1. Choose random a ∈ Z
∗
q .

2. Compute r = e(aP, P ) ∈ G2.

3. Set v = H(M, r) ∈ Z
∗
q .

4. Compute U = vSA + aP ∈ G1.

5. Output as the signature 〈U, v〉.

Verify: To verify a purported signature 〈U, v〉 on a message M ∈ M for identity IDA and
public key 〈XA, YA〉:

1. Check that the equality e(XA, P0) = e(YA, P ) holds. If not, output ⊥ and abort verifi-
cation.

2. Compute r = e(U, P ) · e(QA,−YA)v.

3. Check if v = H(M, r) holds. If it does, output valid, otherwise output invalid.

5.3 A Certificateless Authenticated Key Agreement Protocol

A number of identity-based two party key-agreement protocols have been described [12, 33].
All the session keys created in Smart’s protocol [33] can trivially be recovered by the TA. The
protocol of [33] was later modified by Chen and Kudla [12] to eliminate this escrow capability.
However, the TA in the protocol of [12] can still perform a standard man-in-the-middle attack
by replacing one ephemeral value with a value of its choice, and can thus impersonate any
entity in an undetectable way.

Here we introduce a certificateless key agreement protocol which is only vulnerable to
such a man-in-the-middle attack if, in addition to replacing an ephemeral value, a user-specific
long-term public key is also replaced. If keys are produced using our binding technique, then
such a man-in-the-middle attack mounted by the KGC will leave evidence exposing the KGC’s
actions.

The initialization for our certificateless key agreement scheme is formally specified using
five algorithms: Setup, Partial-Private-Key-Extract, Set-Secret-Value,
Set-Private-Key and Set-Public-Key. These are the same as in BasicCL-PKE.

Entities A and B who wish to agree a key first each choose random values a, b ∈ Z
∗
q .

Given these initializations, the protocol is as follows:

Protocol messages:
A→B: TA = aP , 〈XA, YA〉 (1)
B→A: TB = bP , 〈XB, YB〉 (2)

After the above messages are exchanged, both users check the validity of each other’s
public keys in the usual way (so A checks e(XB, P0) = e(YB, P ), etc.). Then A computes
KA = e(QB, YB)a · e(SA, TB) and B computes e(QA, YA)b · e(SB, TA). It is easy to see that
K = KA = KB is a key shared between A and B; to ensure forward security, A and B instead
use the shared key H(K‖abP ) where H is a suitable hash function.
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The protocol uses only two passes and is bandwidth-efficient. Bandwidth utilization can
be reduced further if the same entities agree many keys: then transmission of only fresh TA, TB

is needed in each protocol run. Each side computes four pairings; this can be reduced to one
pairing each if the same entities agree many keys. The protocol is therefore competitive with
those of [12, 33]. Key confirmation can be added with extra protocol passes.

5.4 Hierarchical CL-PKE

In [20], Gentry and Silverberg improved the work of [24] by introducing a totally collusion-
resistant, hierarchical, ID-based infrastructure for encryption and signatures. Such an infras-
tructure spreads the workload of master servers and produces levels which can be used to
support short lived keys, for example. However, the hierarchical schemes of [20] still have an
undesirable escrow property. Here, we adapt the hierarchical encryption scheme of [20] to our
certificateless setting and eliminate the key escrow.

In general, a hierarchical CL-PKE (HCL-PKE) scheme has a root KGC and a hierarchy of
entities. Each entity other than the KGC is associated with a level t ≥ 1 in the hierarchy and
with a string ID-tuple which identifies that entity’s ancestors in the hierarchy. The ID-tuple
string for an entity at level t with identity IDt is 〈ID1, ID2, . . . , IDt〉. An HCL-PKE scheme is
specified by seven algorithms: Setup, Partial-Private-Key-Extract, Set-Secret-Value,
Set-Private-Key, Set-Public-Key, Encrypt and Decrypt. Rather than outline the general
function of each algorithm, we present a concrete scheme, BasicHCL-PKE, whose descrip-
tion should make the general operation of an HCL-PKE scheme clear. The algorithms for
BasicHCL-PKE are as follows.

Setup: This algorithm is identical to Setup for BasicCL-PKE, except that now the ciphertext
space for a level t ciphertext is Ct = G

t
1 × {0, 1}n. The system parameters are params=

〈G1, G2, e, n, P, P0, H1, H2〉. For ease of presentation, we denote the master-key by x0 instead
of s (so we have P0 = x0P ).

Partial-Private-Key-Extract: This algorithm is usually executed by a level t − 1 entity
IDt−1 for a child entity IDt at level t. When t = 1, this algorithm is executed by the root
KGC for ID1. It takes as input the ID-tuple 〈ID1, ID2, . . . , IDt〉 and carries out the following
steps to construct the partial private key for IDt:

1. Compute Qt = H1(ID1‖ID2‖ . . . ‖IDt) ∈ G
∗
1.

2. Output IDt’s partial private key Dt where

Dt = Dt−1 + xt−1Qt =
t

∑

i=1

xi−1Qi.

The key Dt must be transported to IDt over a confidential and authentic channel.

Set-Secret-value: This algorithm takes as inputs params and level t entity’s ID-tuple

〈ID1, ID2, . . . , IDt〉 as inputs. It selects xt ∈ Z
∗
q at random and outputs xt as IDt’s secret

value.

Set-Private-Key: As for BasicCL-PKE, except that the private key for IDt is denoted by St.
So St = xtDt.
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Set-Public-Key: As for BasicCL-PKE, except that the public key for IDt is denoted by
Pt = 〈Xt, Yt〉. So Yt = x0Xt = x0xtP .

Encryption: To encrypt M ∈ M for identity IDt at level t ≥ 1 with ID-tuple

〈ID1, ID2, . . . , IDt〉, perform the following steps:

1. For each 1 ≤ i ≤ t, check that the equality e(Xi, P0) = e(Yi, P ) holds. If any check fails,
output ⊥ and abort encryption.

2. Compute Qi = H1(ID1‖ID2‖ . . . ‖IDi) ∈ G
∗
1 for each 2 ≤ i ≤ t.

3. Choose a random r ∈ Z
∗
q .

4. Compute and output the ciphertext:

C = 〈U0, U2, . . . , Ut, V 〉 = 〈rP, rQ2, rQ3, . . . , rQt, M ⊕ H2(e(Q1, Yt)
r)〉 ∈ Ct.

Notice that to encrypt a message for a level t entity IDt, the values Qi and hence identities
IDi of all the ancestors of IDt are needed.

Decryption: Suppose C = 〈U0, U2, . . . , Ut, V 〉 ∈ Ct is a BasicHCL-PKE ciphertext for a level t
entity with ID-tuple 〈ID1, ID2, . . . IDt〉. Let the public keys of IDi’s ancestors be Pi = 〈Xi, Yi〉
(1 ≤ i < t). Then to decrypt the ciphertext C using the private key St, compute and output:

V ⊕ H2

(

e(St, U0)
∏t

i=2 e(xtXi−1, Ui)

)

.

Using properties of the bilinear map e, we have:

e(St,U0)
∏

t

i=2
e(xtXi−1,Ui)

= e(xt

∑t
i=1 xi−1Qi, rP ) ·

∏t
i=2 e(xtxi−1P, rQi)

−1

= e(xt

∑t
i=1 xi−1Qi, rP ) · e(−

∑t
i=2 xtxi−1Qi, rP )

= e(xtx0Q1, rP )
= e(Q1, xtx0P )r

= e(Q1, Yt)
r

so that decryption is the inverse of encryption.

This completes our description of BasicHCL-PKE. It is straightforward to adapt this
scheme as we did in building FullCL-PKE from BasicCL-PKE, to obtain a scheme that is
secure against fully-adaptive chosen ciphertext attackers. We must assume here that no
ancestor IDk of our level t entity IDt replaces the public key of IDt. Even with the extra
binding step in place, our hierarchical schemes do not offer a true equivalent of trust level 3:
although it is then possible to detect that a public key has been replaced by an ancestor, it
is not possible to pinpoint exactly which ancestor is responsible. (Moreover, we cannot allow
partial private keys to be made public in this setting as this would enable any adversary to
mount a successful key attack by replacing the public key of IDt – finding this attack is left
as an exercise for the reader.) We note that an extension of the hybrid PKI/ID-PKC scheme
of [11] has stronger security guarantees. However, this approach still requires certification for
intermediate entities, and our primary focus is on completely certificate-free infrastructures.

The CL-PKS scheme of Section 5.2 can also be adapted to produce a hierarchical, cer-
tificateless signature scheme.
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5.5 Proxy Decryption

We demonstrate how our HCL-PKE scheme BasicHCL-PKE supports two kinds of proxy
decryption: an entity A with identifier IDt at level t ≥ 1 can efficiently delegate decryption
to either a proxy at level t−1 (if t ≥ 2) or a proxy at level t+1. This is an important feature
because the decryption and encryption costs in our HCL-PKE scheme grow roughly linearly
with t, so that an unacceptably high computational burden may be placed on entities located
low in the hierarchy.

To prepare a ciphertext C = 〈U0, U2, . . . , Ut, V 〉 for proxy decryption, entity A with
identifier IDt located at level t transforms C by appending some fixed keying information and
a string proxy to it to obtain a new ciphertext:

Cproxy = 〈C, 〈xtX1, xtX2, . . . , xtXt−1〉, proxy〉.

Here, the value of proxy depends on whether decryption is being delegated to an entity at
level t − 1 or t + 1. So we have two cases:

Proxy at level t − 1:

1. A sets proxy= 〈xtU0〉 and forwards Cproxy to level t − 1 entity B with identifier IDt−1.

2. B decrypts Cproxy as follows:

V ⊕ H2

(

e(Dt−1 + xt−1Qt, xtU0)
∏t

i=2 e(xtXi−1, Ui)

)

= V ⊕ H2

(

e(St, U0)
∏t

i=2 e(xtXi−1, Ui)

)

= M.

Proxy at level t + 1:

1. A sets proxy= 〈xtU0, e(xtQt+1, xtU0)〉 and forwards Cproxy to level t + 1 entity B with
identifier IDt+1.

2. B decrypts Cproxy as follows:

V ⊕H2

(

e(Dt+1, xtU0)

e(xtQt+1, xtU0) ·
∏t

i=2 e(xtXi−1, Ui)

)

= V ⊕H2

(

e(St, U0)
∏t

i=2 e(xtXi−1, Ui)

)

= M.

Notice that the proxy capability that A delegates is one-time only: in each of our two
cases, to perform decryption, B needs a component xtU0 that depends both on the ciphertext
and on A’s secret. Of course, our proxy schemes shield A’s secret xt and private key St from
all entities, including the proxy. Notice also that the proxy ciphertext in our level t+1 proxy
scheme contains enough information allowing it to be decrypted by our level t − 1 proxy. So
proxy ciphertexts produced for A’s children can also be decrypted by A’s parent.

6 Conclusions

In this paper we introduced the concept of certificateless public key cryptography, a model for
the use of public key cryptography that is intermediate between the identity-based approach

21



and traditional PKI. We showed how our concept can be realized by specifying a certificateless
public key encryption (CL-PKE) scheme that is based on bilinear maps. The scheme enjoys
short public and private keys. We showed that our CL-PKE scheme is secure in an appropriate
model, assuming that the generalized Bilinear Diffie-Hellman Problem (GBDHP) is hard.
We also rounded out our treatment by briefly presenting a number of other certificateless
primitives: a signature scheme, key agreement protocol, a hierarchical encryption scheme and
proxy decryption schemes.

In future work, we intend to develop security models and proofs for these other primitives.
We fully expect that certificateless versions of yet more primitives can be devised by adapting
existing identity-based schemes. A fruitful area of research may be special-purpose signature
schemes [5, 8, 35]. Finally, we anticipate that pairings will give birth to further models for
the use of public key cryptography. Our work and the recent work of [19] certainly point in
this direction.
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Appendix A: Proofs of Security for FullCL-PKE

A.1 Two Public Key Encryption Schemes

We define two public key encryption schemes BasicPub and HybridPub. These will be used
as tools in our security proof for FullCL-PKE.

BasicPub: This scheme is specified by three algorithms: Key-Generation, Encrypt and
Decrypt.

Key-Generation:

1. Run IG to generate 〈G1, G2, e〉 with the usual properties. Choose a generator P ∈ G1.

2. Pick a random Q ∈ G
∗
1, a random s ∈ Z

∗
q and a random x ∈ Z

∗
q .

3. Set P0 = sP , X = xP , Y = xsP and S = xsQ.

4. Choose a cryptographic hash function H2 : G2 → {0, 1}n.

The message and ciphertext spaces for BasicPub are M = {0, 1}n and C = G1 ×{0, 1}n. The
public key is 〈G1, G2, e, n, P, P0, X, Y, Q, H2〉 and the private key is S = xsQ.

Encrypt: To encrypt M ∈ M, do the following:

1. Check that the equality e(X, P0) = e(Y, P ) holds. If not, output ⊥ and abort encryption.
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2. Choose a random r ∈ Z
∗
q .

3. Set the ciphertext to be:

C = 〈rP, M ⊕ H2(e(Q, Y )r)〉.

Decrypt: Let C = 〈U, V 〉 ∈ C be the ciphertext. To decrypt C using private key S, compute:

V ⊕ H2(e(S, U)) = M.

It is easy to see that Decrypt is the inverse function to Encrypt.

HybridPub: This scheme is obtained by applying the hybridisation construction of [16] to
BasicPub. Again, this scheme is specified by three algorithms: Key-Generation, Encrypt
and Decrypt.

Key-Generation: This algorithm is identical to that for BasicPub, except that we choose
two additional hash functions H3 : {0, 1}n × {0, 1}n → Z

∗
q and H4 : {0, 1}n → {0, 1}n.

Now the public key is 〈G1, G2, e, n, P, P0, X, Y, Q, H2, H3, H4〉. The private key is still
S = xsQ, the message space is still M = {0, 1}n, but the ciphertext space is now C =
G1 × {0, 1}2n.

Encrypt: To encrypt M ∈ M, perform the following steps:

1. Check that the equality e(X, P0) = e(Y, P ) holds. If not, output ⊥ and abort encryption.

2. Choose a random σ ∈ {0, 1}n.

3. Set r = H3(σ, M).

4. Compute and output the ciphertext:

C = 〈rP, σ ⊕ H2(e(Q, Y )r), M ⊕ H4(σ)〉.

Decrypt: To decrypt C = 〈U, V, W 〉 ∈ C using private key S, do the following:

1. Compute V ⊕ H2(e(S, U)) = σ′.

2. Compute W ⊕ H4(σ
′) = M ′.

3. Set r′ = H3(σ
′, M ′) and test if U = r′P . If not, output ⊥ and reject the ciphertext.

4. Output M ′ as the decryption of C.

A.2 Adversaries for BasicPub and HybridPub

Here we define adversaries appropriate to the schemes BasicPub and HybridPub, remembering
that we want to model attackers who can replace public keys, or who may know the value s.

We recall the definition of OWE security for a standard public key encryption scheme
from [6]: the adversary A is given a random public key Kpub and a ciphertext C which is
the encryption of a random message M under Kpub. The adversary’s goal is to recover M
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and A is said to have advantage ǫ in attacking the system if Pr[A(Kpub, C) = M ] = ǫ. The
adversary is called an OWE adversary.

We define AII to be a Type II OWE adversary against BasicPub if AII is an OWE
adversary against BasicPub in the sense defined above, but is also in possession of the value
s. We define a Type I OWE adversary AI against BasicPub as follows: AI is given a random
public key Kpub for BasicPub; AI then decides if it wishes to change the parameters 〈X, Y 〉
in that public key to a valid pair 〈X ′, Y ′〉 of its choice. The (possibly new) public key K ′

pub

is then used by the challenger to encrypt a random message M to produce a ciphertext
C. Note that this ciphertext may be ⊥ , in which case the adversary has failed. The
adversary’s goal is to recover M ; AI is said to have advantage ǫ in attacking the system
if Adv(AI) := Pr[AI(K

′
pub, C) = M ] is equal to ǫ.

Next we define IND-CPA and IND-CCA adversaries for HybridPub. A Type II IND-
CCA adversary for HybridPub is simply the usual IND-CCA adversary against this public
key encryption scheme, as defined in [4], except that the adversary is also given the value s.
A Type I IND-CCA adversary AI for HybridPub is a slightly modified version of the usual
IND-CCA adversary: AI may repeatedly replace the public key components 〈X, Y 〉 by a valid
pair 〈X ′, Y ′〉 of its choice. All the challenger’s replies to AI ’s decryption queries, as well as the
result of encrypting Mb in the Challenge Phase, should be with respect to the current value
of the public key. If the challenger’s encryption algorithm outputs ⊥ during the encryption of
Mb, then AI has failed. As usual, AI ’s task is to output a guess b′ for bit b and its advantage
Adv(AI) is defined to be 2(Pr[b′ = b] − 1

2). Type I and II IND-CPA adversaries are defined
in exactly the same way, except that the adversary is not given any access to the decryption
oracle.

A.3: Statements of Lemmas

We present a series of lemmas. Theorem 1 for Type I adversaries follows by combining
Lemmas 2, 3, 4, 5 and 8. Similarly, Theorem 1 for Type II adversaries follows by combining
Lemmas 6, 7 and 8.

Lemma 2 Suppose that H1, H2, H3 and H4 are random oracles and that there exists an
IND-CCA Type I adversary AI against FullCL-PKE. Suppose AI has advantage ǫ, runs in
time t, makes qi queries to Hi (1 ≤ i ≤ 4) and makes qd decryption queries. Then there
is an algorithm B which acts as either a Type I or a Type II adversary against HybridPub.
Moreover, B either has advantage at least ǫλqd/4q1 when playing as a Type I adversary,
or has advantage at least ǫλqd/4q1 when playing as a Type II adversary. B runs in time
t+O((q3 +q4)qdt

′). Here t′ is the running time of the BasicCL-PKE encryption algorithm and

1 − λ ≤ (q3 + q4) · ǫOWE(t + O((q3 + q4)qdt
′, q2) + ǫGBDHP(t + O((q3 + q4)qdt

′) + 3q−1 + 2−n+1,

where ǫOWE(T, q′) denotes the highest advantage of any Type I or Type II OWE adversary
against BasicPub which operates in time T and makes q′ hash queries to H2, and ǫGBDHP(T )
denotes the highest advantage of any time T algorithm to solve GBDHP in groups of order q
generated by IG.

Lemma 3 Suppose that H3 and H4 are random oracles. Let AI be a Type I IND-CPA
adversary against HybridPub which has advantage ǫ and makes q4 queries to H4. Then there
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exists a Type I OWE adversary A′
I against BasicPub which runs in time O(time(AI)) and

has advantage at least ǫ/2(q3 + q4).

Lemma 4 Suppose that H3 and H4 are random oracles. Let AI be a Type II IND-CPA
adversary against HybridPub which has advantage ǫ and makes q4 queries to H4. Then there
exists a Type II OWE adversary A′

I against BasicPub which runs in time O(time(AII)) and
has advantage at least ǫ/2(q3 + q4).

Lemma 5 Suppose that H2 is a random oracle. Suppose there exists a Type I OWE adversary
AI against BasicPub which makes at most q2 queries to H2 and which has advantage ǫ. Then
there exists an algorithm B to solve the GBDHP which runs in time O(time(AI)) and has
advantage at least (ǫ − 1

2n )/q2.

Lemma 6 Suppose that H1 is a random oracle and that there exists an IND-CCA Type II
adversary AII on FullCL-PKE with advantage ǫ which makes at most q1 queries to H1. Then
there is an IND-CCA Type II adversary on HybridPub with advantage at least ǫ/q1 which
runs in time O(time(AII)).

The following lemma is easily proven using [16, Theorem 14], noting that s can be made
available to Type II adversaries against HybridPub and BasicPub simply by including it in
public keys. Doing so converts these adversaries into normal IND-CCA and OWE adversaries
against HybridPub and BasicPub respectively.

Lemma 7 Suppose that H3, H4 are random oracles. Let AII be a Type II IND-CCA adver-
sary against HybridPub which has advantage ǫ, makes qd decryption queries, q3 queries to
H3 and q4 queries to H4. Then there exists a Type II OWE adversary A′

II against BasicPub
with

time(A′
II) = time(AII) + O(n(q3 + q4))

Adv(A′
II) ≥ 1

2(q3+q4)

(

(ǫ + 1)(1 − q−1 − 2−n)qd − 1
)

.

Here, we have used the fact that HybridPub is 1/q-uniform in the sense of [16, Definition
5].

Lemma 8 Suppose that H2 is a random oracle. Suppose there exists a Type II OWE adver-
sary AII against BasicPub which makes at most q2 queries to H2 and which has advantage ǫ.
Then there exists an algorithm B to solve the BDHP which runs in time O(time(AII)) and
has advantage at least (ǫ − 1

2n )/q2.

A.4: Proofs of Lemmas

Proof of Lemma 2: This proof is complicated. It may be useful to read the proof of Lemma
6 and then return to this proof.

Let AI be a Type I IND-CCA adversary against FullCL-PKE. Suppose AI has advantage
ǫ, runs in time t, makes qi queries to random oracle Hi (1 ≤ i ≤ 4) and makes qd decryption
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queries. We show how to construct from AI an adversary B that acts either as a Type I IND-
CCA adversary against HybridPub or as a Type II IND-CCA adversary against HybridPub.
We assume that challengers CI , CII for both types of game are available to B.

Adversary B begins by choosing a random bit c and an index I uniformly at random
with 1 ≤ I ≤ q1. If c = 0, then B chooses to play against CI and aborts CII . Here, B will
build a Type I IND-CPA adversary against HybridPub and fails against CII . When c = 1, B
chooses to play against CII and aborts CI . Here, B will build a Type II IND-CPA adversary
against HybridPub and fails against CI . In either case, C will denote the challenger against
which B plays for the remainder of this proof.

We let H denote the event that AI chooses IDI as the challenge identity IDch. We let F0

denote the event that AI extracts the partial private key for entity IDI and F1 denote the
event that AI replaces the public key of entity IDI at some point in its attack.

The general strategy of the proof is as follows. If c = 0 and the event F0 occurs, B will
have to abort and will be unsuccessful. If F0 does not occur, and if the event H does occur,
then B’s success probability will be related to that of AI . On the other hand, if c = 1 and
event F1 occurs, B will again have to abort and will be unsuccessful. If F1 does not occur,
but H does occur, then B’s success probability will again be related to that of AI . Overall,
we will show that B’s advantage in its mixed-game strategy is non-negligible if A’s is. It is
then easy to see that B has a non-negligible advantage for at least one of the two game types.

If c = 0, then C is a Type I challenger for HybridPub and begins by supplying B with
a public key Kpub = 〈G1, G2, e, n, P, P0, X, Y, Q, H2, H3, H4〉. If c = 1, then C is a Type II
challenger and so supplies B with a public key Kpub together with the value s such that
P0 = sP .

Then B simulates the algorithm Setup of FullCL-PKE for AI by supplying AI with
params= 〈G1, G2, e, n, P, P0, H1, H2, H3, H4〉. Here H1 is a random oracle that will be con-
trolled by B.

Adversary AI may make queries of the random oracles Hi, 1 ≤ i ≤ 4, at any time during
its attack. These are handled as follows:

H1 queries: B maintains a list of tuples 〈IDi, Qi, bi, xi, Xi, Yi〉 which we call the H1 list. The
list is initially empty, and when AI queries H1 on input ID ∈ {0, 1}∗, B responds as follows:

1. If ID already appears on the H1 list in a tuple 〈IDi, Qi, bi, xi, Xi, Yi〉, then B responds
with H1(ID) = Qi ∈ G

∗
1.

2. If ID does not already appear on the list and ID is the I-th distinct H1 query made
by AI , then B picks bI at random from Z

∗
q , outputs H(ID) = bIQ and adds the entry

〈ID, bIQ, bI ,⊥ , X, Y 〉 to the H1 list.

3. Otherwise, when ID does not already appear on the list and ID is the i-th distinct
H1 query made by AI where i 6= I, B picks bi and xi at random from Z

∗
q , outputs

H(ID) = biP and adds 〈ID, biP, bi, xi, xiP, xiP0〉 to the H1 list.

Notice that with this specification of H1, the FullCL-PKE partial private key for IDi (i 6= I) is
equal to biP0 while the public key for IDi is 〈xiP, xiP0〉 and the private key for IDi is xibiP0.
These can all be computed by B when c = 0. Additionally, when c = 1 (so B has s), B can
compute sbIQ, the partial private key of IDI .
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H2 queries: Any H2 queries made by AI are passed to C to answer. We do need to assume
in the course of the proof that H2 is a random oracle.

H3 and H4 queries: Adversary B passes AI ’s H3 and H4 queries to C to answer, but keeps
lists 〈σj , Mj , H3,j〉 and 〈σ′

i, H4,i〉 of AI ’s distinct queries and C’s replies to them.

Phase 1: After receiving params from B, AI launches Phase 1 of its attack, by making a
series of requests, each of which is either a partial private key extraction for an entity, a
private key extraction for an entity, a request for a public key for an entity, a replacement
of a public key for an entity or a decryption query for an entity. We assume that AI always
makes the appropriate H1 query on the identity ID for that entity before making one of these
requests. B replies to these requests as follows:

Partial Private Key Extraction: Suppose the request is on IDi. There are three cases:

1. If i 6= I, then B replies with biP0.

2. If i = I and c = 0, then B aborts.

3. If i = I and c = 1, then B replies with sbIQ.

Private Key Extraction: Suppose the request is on IDi. We can assume that the public
key for IDi has not been replaced. There are two cases:

1. If i 6= I, then B outputs xibiP0.

2. If i = I, then B aborts.

Request for Public Key: If the request is on IDi then B returns 〈Xi, Yi〉 by accessing the
H1 list.

Replace Public Key: Suppose the request is to replace the public key for IDi with value
〈X ′

i, Y
′
i 〉. (We know that this will be a valid public key, i.e. a key satisfying e(X ′

i, P0) =
e(Y ′

i , P )). There are two cases:

1. If i = I and c = 1, then B aborts.

2. Otherwise, B replaces the current entries Xi, Yi in the H1 list with the new entries
X ′

i, Y
′
i . If i = I, then B makes a request to its challenger C to replace the public key

components 〈X, Y 〉 in Kpub with new values 〈X ′
I , Y

′
I 〉.

Decryption Queries: Suppose the request is to decrypt ciphertext 〈U, V, W 〉 for IDℓ, where
(as discussed in Section 3), the private key that should be used is the one corresponding to
the current value of the public key for IDi. Notice that even when ℓ = I, B cannot make
use of C to answer the query, because B is meant to be an IND-CPA adversary. Instead B
makes use of an algorithm KE to perform all the decryptions. This algorithm, essentially a
knowledge extractor in the sense of [4, 16], is not perfect, but as we shall show below, the
probability that it decrypts incorrectly is sufficiently low that it can be used in place of a true
decryption algorithm making use of private keys. Algorithm KE is defined as follows:

Algorithm KE: The input to the algorithm is a ciphertext C = 〈U, V, W 〉, an identity IDℓ

and the current value of the public key 〈Xℓ, Yℓ〉. We assume that KE also has access to the
H3 and H4 lists. KE operates as follows:
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1. Find all triples 〈σj , Mj , H3,j〉 on the H3 list such that

〈U, V 〉 = BasicCL-PKE-EncryptIDℓ,〈Xℓ,Yℓ〉
(σj ; H3,j).

Here, BasicCL-PKE-EncryptIDA,〈XA,YA〉(M ; r) denotes the BasicCL-PKE encryption of
message M for IDA using public key 〈XA, YA〉 and random value r. Collect all these
triples in a list S1. If S1 is empty, output ⊥ and halt.

2. For each triple 〈σj , Mj , H3,j〉 in S1, find all pairs 〈σ′
i, H4,i〉 in the H4 list with σj = σ′

i.
For each such match, place 〈σj , Mj , H3,j , H4,i〉 on a list S2. If S2 is empty, then output
⊥ and halt.

3. Check in S2 for an entry such that W = Mj ⊕H4,i. If such an entry exists, then output
Mj as the decryption of 〈U, V, W 〉. Otherwise, output ⊥ .

We will show that KE correctly decrypts with high probability in Lemma 9.

Challenge Phase: At some point, AI should decide to end Phase 1 and pick IDch and two
messages m0, m1 on which it wishes to be challenged. We can assume that IDch has already
been queried of H1 but that AI has not extracted the private key for this identity. Algorithm
B responds as follows. If IDch 6= IDI then B aborts. Otherwise IDch = IDI and B gives C
the pair m0, m1 as the messages on which it wishes to be challenged. C responds with the
challenge ciphertext C ′ = 〈U ′, V ′, W ′〉, such that C ′ is the HybridPub encryption of mb under
Kpub for a random b ∈ {0, 1}. Then B sets C∗ = 〈b−1

I U ′, V ′, W ′〉 and delivers C∗ to AI . It
is easy to see that C∗ is the FullCL-PKE encryption of mb for identity IDI under public key
〈XI , YI〉. We let 〈Xch, Ych〉 denote the particular value of the public key for identity IDch

during the challenge phase (AI may change this value in Phase 2 of its attack).

Phase 2: B continues to respond to AI ’s requests in the same way as it did in Phase 1.
However the usual restrictions on AI ’s behaviour apply in this phase.

Guess: Eventually, AI should make a guess b′ for b. Then B outputs b′ as its guess for b. If
AI has used more than time t, or attempts to make more than qi queries to random oracle
Hi or more than qd decryption queries, then B should abort AI and output a random guess
for bit b (in this case algorithm KE has failed to perform correctly at some point).

Analysis: Now we analyze the behavior of B and AI in this simulation. We claim that if
algorithm B does not abort during the simulation and if all of B’s uses of the algorithm KE
result in correct decryptions, then algorithm AI ’s view is identical to its view in the real
attack. Moreover, if this is the case, then 2(Pr[b = b′] − 1

2) ≥ ǫ. This is not hard to see:
B’s responses to all hash queries are uniformly and independently distributed as in the real
attack. All responses to AI ’s requests are valid, provided of course that B does not abort and
that KE performs correctly. Furthermore, the challenge ciphertext C∗ is a valid FullCL-PKE

encryption of mb under the current public key for identity IDch, where b ∈ {0, 1} is random.
Thus, by definition of algorithm AI we have that 2(Pr[b = b′] − 1

2) ≥ ǫ.

So we must examine the probability that B does not abort during the simulation given
that the algorithm KE performs correctly. Examining the simulation, we see that B can abort
for one of four reasons:

0. Because c = 0 and the event F0 occurred during the simulation.
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1. Because c = 1 and event F1 occurred during the simulation.

2. Because AI made a private key extraction on IDI at some point.

3. Or because AI chose IDch 6= IDI .

We name the event (c = i) ∧ Fi as Hi for i = 0, 1. We also name the last two events
here as F2 and F3. Of course, F3 is the same as event ¬H. Now AI makes q1 queries of H1

and chooses IDch from amongst the responses IDi, while B’s choice of I is made uniformly
at random from the set of q1 indices i. So the probability that IDch = IDI is equal to 1/q1.
Hence Pr[H] = 1/q1. Notice too that the event ¬F3 implies the event ¬F2 (if AI chooses
IDch = IDI , then no private key extraction on IDI is allowed). Gathering this information
together, we have:

Pr[B does not abort] = Pr[¬H0 ∧ ¬H1 ∧ ¬F2 ∧ ¬F3]
= Pr[¬H0 ∧ ¬H1|H] · Pr[H]
= 1

q1
· Pr[¬H0 ∧ ¬H1|H].

Notice now that the events H0 and H1 are mutually exclusive (because one involves c = 0
and the other c = 1). Therefore we have

Pr[¬H0 ∧ ¬H1|H] = 1 − Pr[H0|H] − Pr[H1|H].

Moreover,
Pr[Hi|H] = Pr[(c = i) ∧ Fi|H]

= Pr[Fi|(H ∧ (c = i))] · Pr[c = i]
= 1

2 Pr[Fi|H]

where the last equality follows because the event Fi|H is independent of the event c = i. So
we have

Pr[B does not abort] =
1

q1

(

1 −
1

2
Pr[F0|H] −

1

2
Pr[F1|H]

)

.

Finally, we have that Pr[F0∧F1|H] = 0 because of the rules on adversary behaviour described
in Section 3 (an adversary cannot both extract the partial private key and change the public
key of the challenge identity). This implies that Pr[F0|H] + Pr[F1|H] ≤ 1. Hence we see that

Pr[B does not abort] ≥
1

2q1
.

Now we examine the probability that algorithm KE correctly handles all of AI ’s qd

decryption queries. We will show in Lemma 9 below that the probability that KE correctly
replies to individual decryption queries is at least λ, where λ is bounded as in the statement
of this lemma.

It is now easy to see that B’s advantage is at least ǫ
2q1

λqd . It follows that either B’s
advantage as a Type I adversary against HybridPub or B’s advantage as a Type II adversary
against HybridPub is at least ǫ

4q1
λqd . The running time of B is time(AI) + qd · time(KE) =

t + O((q3 + q4)qdt
′) where t′ is the running time of the BasicCL-PKE encryption algorithm.

This completes the proof of the lemma.
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Lemma 9 In the simulation in the proof of Lemma 2, Algorithm KE correctly replies to
individual decryption queries with probability at least λ where

1 − λ ≤ (q3 + q4) · ǫOWE(t + O((q3 + q4)qdt
′, q2) + ǫGBDHP(t + O((q3 + q4)qdt

′) + 3q−1 + 2−n+1.

Here t is the running time of adversary AI , t′ is the running time of the BasicCL-PKE en-
cryption algorithm, ǫOWE(T, q′) denotes the highest advantage of any Type I or Type II OWE
adversary against BasicPub which operates in time T and makes q ′ hash queries to H2, and
ǫGBDHP(T ) denotes the highest advantage of any algorithm to solve GBDHP in time T in
groups of order q generated by IG.

Proof of Lemma 9: Our proof is closely modelled on the proof of [16, Lemma 11], but differs
in several key respects: we need to build an algorithm which handles multiple public keys,
and the algorithm can be asked to decrypt the challenge ciphertext (but under a different
identity/public key combination from the challenge identity).

We recall that queries to KE come in the form of a ciphertext C = 〈U, V, W 〉, an identity
IDℓ and the current value of the public key 〈Xℓ, Yℓ〉 for that identity. We also assume that KE
has access to the H3 and H4 lists as they stand at the point where the decryption query is
made. We model the fact that AI obtains a challenge ciphertext by considering an additional
list of ciphertexts Y in our proof. This list is empty until the challenge phase and thereafter
consists of just the challenge ciphertext C∗ = 〈U∗, V ∗, W ∗〉. The proof of [16, Lemma 11]
generalises this to larger sets Y, but this special case is sufficient for our purposes.

We define a sequence of events:

• Inv is the event that there exists some C ′ = 〈U ′, V ′, W ′〉 ∈ Y and some 〈σj , Mj , H3,j〉
on the H3 list or some 〈σ′

i, H4,i〉 on the H4 list such that the BasicCL-PKE decryption of
〈U ′, V ′〉 under the private key corresponding to IDch, 〈Xch, Ych〉 is equal to σj or σ′

i. (For
us, Inv has zero probability until after a non-abortive challenge phase in AI ’s attack
because Y is empty up to this point.)

• L1 is the event that S1 is non-empty.

• L2 is the event that S2 is non-empty.

• Find is the event that there exists an entry 〈σj , Mj , H3,j , H4,i〉 in S2 such that W =
Mj ⊕ H4,i.

• Fail is the event that the output of algorithm KE is not the decryption of C under the
private key corresponding to identity IDℓ and public key 〈Xℓ, Yℓ〉.

We want to bound the probability of the event Fail. To do so, we follow the proof of [16,
Lemma 11] and define combined events:

1 = Inv,
00 = ¬Inv ∧ ¬L1,
010 = ¬Inv ∧ L1 ∧ ¬L2,
0110 = ¬Inv ∧ L1 ∧ L2 ∧ ¬Find,
0111 = ¬Inv ∧ L1 ∧ L2 ∧ Find.
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Now we have:

Pr[Fail] = Pr[Fail|1] · Pr[1] + Pr[Fail|00] · Pr[00] + Pr[Fail|010] · Pr[010]
+Pr[Fail|0110] · Pr[0110] + Pr[Fail|0111] · Pr[0111]

≤ Pr[1] + Pr[Fail|00] + Pr[Fail|010] + Pr[Fail|0110] + Pr[Fail|0111].

We proceed to bound each of the terms in the above inequality.

Claim: Pr[1] ≤ (q3 + q4) · ǫOWE(time(B), q2). Here ǫOWE(T, q′) denotes the highest advantage
of any Type I or Type II OWE adversary against BasicPub which operates in time T and
makes q′ hash queries to H2, while time(B) denotes the running time of adversary B in the
proof of Lemma 2.

We sketch how to construct an OWE adversary B′ against BasicPub by adapting ad-
versary B in the proof of Lemma 2. Our adversary B′ will have a chance of being successful
provided that the event Inv occurs in the course of AI ’s attack. When c = 0, B′ will be of
Type I, and when c = 1, of Type II. The running time of the adversary will be the same as
that of B. The existence of this adversary will be used to bound the probability of the event
Inv.

In fact B′ is almost identical to B. The only differences are that B′ is given by its
challenger C ′ a BasicPub public key 〈G1, G2, e, n, P, P0, X, Y, Q, H2〉 (and the value s when
c = 1), that B′ now answers AI ’s H3 and H4 queries for itself (keeping lists of all queries made
by AI and its own replies), and that B′ responds to AI ’s request for a challenge ciphertext
with C∗ = 〈b−1

I U ′, V ′, W ∗〉 where 〈U ′, V ′〉 is a BasicPub challenge ciphertext given to B′ by
C′ and W ∗ is chosen uniformly at random from {0, 1}n. Notice too that if AI changes the
key of IDI , then B′ relays the appropriate changes to C ′, and that B′ uses the algorithm KE
to handle AI ’s decryption queries (so the responses may be incorrect).

Eventually AI outputs a bit b′. If necessary (when AI runs for too long or makes too
many hash queries), B′ stops AI . Note that B′ may also be forced to stop because it cannot
respond to a particular query from AI . After stopping for whatever reason, B′ chooses a
random value σ from amongst the σj on the H3 list and the σ′

i on the H4 list and outputs
this random choice.

It can be argued that, up to the point where Inv occurs in B′’s simulation, the two
simulations B and B′ are indistinguishable to AI . So the probability that Inv occurs in B′’s
simulation is exactly the same that it does in B’s. Because of the relationship between the
BasicPub and FullCL-PKE public keys, it can also be seen that if event Inv occurs, then B ′

has probability 1/(q3+q4) of outputting the correct BasicPub decryption of 〈U ′, V ′〉. Here we
are using the fact that if Inv occurs, then Y is non-empty, so that we must have IDch = IDI .
So B′’s overall success probability is at least Pr[Inv]/(q3 + q4). But this is not greater than
the highest success probability of any OWE adversary of Type I or II against BasicPub that
operates in the same time as B′ and that makes q2 hash queries. Since the running time of
B′ is the same as that of B, the claim follows.

Claim: Pr[Fail|00] ≤ 2/q + 2−n + ǫGBDHP(time(B)). Here ǫGBDHP(T ) denotes the highest
advantage of any algorithm to solve GBDHP in time T in groups generated by IG.

We analyse the event Fail|00 as follows. Here KE outputs ⊥ because S1 is empty, but
this is an incorrect decryption. So in fact there exists a message M such that C = 〈U, V, W 〉
encrypts M under IDℓ, 〈Xℓ, Yℓ〉. It is easy to see that, because 〈U, V 〉 is a valid BasicCL-PKE
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ciphertext for IDℓ, 〈Xℓ, Yℓ〉, there exist unique σ ∈ {0, 1}n and r ∈ Z
∗
q such that:

〈U, V 〉 = BasicCL-PKE-EncryptIDℓ,〈Xℓ,Yℓ〉
(σ; r).

Since S1 is empty, we deduce that H3 has not been queried on an input containing σ.

We consider two cases: either a valid C 6= C∗ has been produced by AI from a message
M using coins r = H3(σ, M) without σ having been queried of H3, or in fact C = C∗ and
this query occurs after the challenge phase. In the former case, it is easy to see that C will
be a valid ciphertext with probability at most 1/q, because a valid ciphertext C = 〈U, V, W 〉
will have U = rP where r ∈ Z

∗
q is the output of random oracle H3 on a query not made by

AI .

We consider the latter case, where C = C∗ is a valid ciphertext, further. Now KE can only
ever be queried on this ciphertext for a combination of identity and public key IDℓ, 〈Xℓ, Yℓ〉
not equal to IDch, 〈Xch, Ych〉 because of the rules on adversary behaviour. We also know that
IDch = IDI (because to receive this query, B must not have aborted at the challenge phase).
Suppose then that

C∗ = 〈r∗P, σ∗ ⊕ H2(e(bIQ, Ych)
r∗), mb ⊕ H4(σ

∗)〉

where r∗ = H3(σ
∗, mb) and, as usual, 〈Xch, Ych〉 denotes the value of IDch’s public key at the

time when the challenge ciphertext was computed. The values σ∗, H4(σ
∗) and r∗ are unknown

to B and KE (since B’s challenger produces C∗). Since C = C∗, we have rP = U = U∗ = r∗P
and so r = r∗. The probability that σ 6= σ∗ is 1/q. For suppose that σ 6= σ∗. Then we have
H3(σ, M) = r = r∗ = H3(σ

∗, mb), giving equal outputs for random oracle H3 from distinct
inputs. The probability of this event is 1/q. So with probability 1 − 1/q, we have σ = σ∗.
But then we must have

H2(e(Qℓ, Yℓ)
r) = H2(e(bIQ, Ych)

r∗).

If these inputs to H2 are unequal then we have a collision of the random oracle H2, an event
of probability 2−n. So with probability 1 − 2−n, we have

e(Qℓ, Yℓ)
r = e(bIQ, Ych)

r∗

and hence, since r = r∗,
e(Qℓ, Yℓ) = e(bIQ, Ych).

Now suppose that ℓ = I. Then we would have e(bIQ, YI) = e(bIQ, Ych) from which we
can deduce that YI = Ych. Now because 〈XI , YI〉 and 〈Xch, Ych〉 are valid public keys, we
know that YI = sXI and Ych = sXch. It follows that XI = Xch. Thus we have that the
combination IDℓ, 〈Xℓ, Yℓ〉 is equal to IDch, 〈Xch, Ych〉. From this contradiction, we deduce that
ℓ 6= I.

Now we can write Qℓ = bℓP , Ych = sXch and:

e(P, Yℓ) = e(Q, sXch)
b−1

ℓ
bI , ℓ 6= I.

Given this analysis, we sketch how to construct an algorithm B′ that, with high proba-
bility, solves random instances of GBDHP in groups generated by IG, so long as the event
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Fail|00 occurs. Our algorithm B′ is almost identical to B. Suppose B′ is tasked with solving
the BDHP or GBDHP on input 〈P, fP, gP, hP 〉 in 〈G1, G2, e〉.

Recall that B selects a random bit c and then requests a HybridPub public key from C.
Instead, B′ creates its own public key. When c = 0, B′ chooses x at random from Z

∗
q and

sets Kpub = 〈G1, G2, e, n, P, P0 = fP, X = xP, Y = xP0, Q = gP, H2, H3, H4〉. When c = 1,
B′ chooses s at random from Z

∗
q and sets Kpub = 〈G1, G2, e, n, P, P0 = sP, X = fP, Y =

sfP, Q = gP, H2, H3, H4〉. The only other difference to B’s simulation is that B′ needs to
carry out those tasks which B formerly passed on to C. These are: responding to H3 and H4

queries; tracking any changes to Kpub; and creating a HybridPub challenge ciphertext. These
are all dealt with in the obvious way.

It is clear that B′’s simulation is indistinguishable from that of B, so the probability that
the event Fail|00 occurs in B′’s simulation is the same as in B’s. But when this event does

occur and C = C∗, then our analysis above shows that the equality e(P, Yℓ) = e(Q, sXch)
b−1

ℓ
bI

for ℓ 6= I holds with probability (1 − q−1)(1 − 2−n). Here s = f when c = 0 and s is the

value chosen at random by B′ when c = 1. In the case c = 0, we see that 〈Xch, e(hP, Yℓ)
bℓb

−1

I 〉
is a solution to the GBDHP for input 〈P, fP, gP, hP 〉. When c = 1, we know that AI has
not changed the values Xch = X, Ych = Y at any point in its attack (otherwise B′ would

have aborted). Then we have e(P, Yℓ) = e(Q, X)b−1

ℓ
bIs and we see that 〈P, e(hP, Yℓ)

bℓb
−1

I
s−1

〉
is a solution to the GBDHP for input 〈P, fP, gP, hP 〉. (Note that here we actually have a
solution to the BDHP.) In either case, B′ can compute the appropriate solution simply by
waiting for AI to make a decryption query on C = C∗. If AI does not make such a query in
the course of its attack, then B′ outputs a random guess for the solution to the GBDHP. The
result is an algorithm that solves GBDHP in groups generated by IG, runs in time bounded
by time(B) and is almost always successful when C = C∗ and the event Fail|00 occurs. Any
such algorithm has success probability at most ǫGBDHP(time(B)).

A straightforward probability analysis of the events in the above discussion now shows
that:

Pr[Fail|00] ≤ 2/q + 2−n + ǫGBDHP(time(B)).

The claim follows.

Claim: Pr[Fail|010] = 2−n. In this situation, KE outputs ⊥ because S2 is empty, but this is
an incorrect decryption. So in fact there exists a message M such that C = 〈U, V, W 〉 encrypts
M under IDℓ, 〈Xℓ, Yℓ〉. Now it is easy to see that, because 〈U, V 〉 is a valid BasicCL-PKE

ciphertext for IDℓ, 〈Xℓ, Yℓ〉, there exist unique σ ∈ {0, 1}n and r ∈ Z
∗
q such that:

〈U, V 〉 = BasicCL-PKE-EncryptIDℓ,〈Xℓ,Yℓ〉
(σ; r).

But S1 is non-empty, so we also have:

〈U, V 〉 = BasicCL-PKE-EncryptIDℓ,〈Xℓ,Yℓ〉
(σj ; H3,j)

for some j. This implies that σ = σj and r = H3,j . Since S2 is empty, we can deduce that H4

has not been queried at σ. Yet we must have W = M ⊕ H4(σ) if C is a proper encryption
of M . The probability of this event occurring is exactly 2−n and this bounds the probability
that KE incorrectly outputs ⊥ .

Claim: Pr[Fail|0110] = 1/q. Here KE outputs ⊥ because a failure occurs at step 3 , but this
is an incorrect decryption. Arguing as in the previous claim, we deduce that there exists a
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message M such that C = 〈U, V, W 〉 encrypts M under IDℓ, 〈Xℓ, Yℓ〉, using unique σ ∈ {0, 1}n

and r ∈ Z
∗
q . Moreover, there exists a j with σ = σj and r = H3,j . Now S2 is non-empty, so

there exists an entry 〈σj , Mj , H3,j , H4,i〉 on the S2 list with σ′
i = σj = σ.

Now suppose that 〈σ, M〉 has been queried of H3. Then we would also have an entry
〈σ, M, H3,j , H4,i〉 on the S2 list. But since C is the encryption of M , we would also have
W = M ⊕ H4,i. Then KE would output M instead of ⊥ . This contradiction shows that
〈σ, M〉 has not been queried of H3. Yet we must have H3(σ, M) = r = H3,j if C is a proper
encryption of M . The probability of this event occurring is exactly 1/q and this bounds the
probability that KE incorrectly outputs ⊥ . Notice that this argument can be used to correct
a small flaw in the corresponding part of the proof of [16, Lemma 11].

Claim: Pr[Fail|0111] = 0. Here, KE outputs a message Mj whose encryption under the
combination IDℓ, 〈Xℓ, Yℓ〉 yields the ciphertext C with random oracles H3 and H4 as defined
in B’s simulation. Therefore the decryption of C is Mj , and KE never fails in this situation.
The claim follows.

Gathering together each of these claims, we finally obtain

Pr[Fail] ≤ (q3 + q4) · ǫOWE(time(B), q2) + ǫGBDHP(time(B)) + 3q−1 + 2−n+1.

The running time of B is time(AI)+qd ·time(KE) = t+O((q3+q4)qdt
′), where t′ is the running

time of the BasicCL-PKE encryption algorithm. This completes the proof of the lemma.

Proof of Lemma 3: Let AI be a Type I IND-CPA adversary against HybridPub which
has advantage ǫ, runs in time t and makes q4 queries to H4. We construct a Type I OWE
adversary B against BasicPub. Let C denote a challenger against such a B. C begins by
supplying B with a public key 〈G1, G2, e, n, P, P0, X, Y, Q, H2〉. Algorithm B creates from this
a public key Kpub = 〈G1, G2, e, n, P, P0, X, Y, Q, H2, H3, H4〉 for HybridPub and delivers it to
AI . Here, H3 and H4 will be random oracles under the control of B.

Now AI begins Phase 1 of its attack. During this phase, B records any changes that AI

makes to the public key components 〈X, Y 〉. B handles AI ’s H3 and H4 queries using lists
as follows. To respond to an H3 query on input 〈σ, M〉 ∈ {0, 1}n × {0, 1}n, B first checks if
σ = σj and M = Mj for some index j corresponding to an entry 〈σj , Mj , H3,j〉 already on
the H3 list. If it is, then B responds with H3,j . Otherwise, B chooses H uniformly at random
from Z

∗
q and places 〈σ, M, H〉 on the H3 list. Likewise, to respond to an H4 query on input

σ ∈ {0, 1}n, B first checks if σ = σ′
i for some index i corresponding to an entry 〈σ′

i, H4,i〉
already on the H4 list. If it is, then B responds with H4,i. Otherwise, B chooses H uniformly
at random from {0, 1}n and places 〈σ, H〉 on the H4 list.

Eventually AI outputs a pair of messages m0, m1 on which it wishes to be challenged. If
AI has changed the public key components 〈X, Y 〉, then B passes these changes to C (recall
that B is of Type I, so is entitled to change these components before receiving its challenge
ciphertext). Then B requests of C a BasicPub ciphertext C ′ = 〈U ′, V ′〉. This challenge
ciphertext will be the encryption of some message σ∗ using the current value of the public
key, and it is B’s task to recover σ∗.

Adversary B now chooses a random W ∗ ∈ {0, 1}n, sets C∗ = 〈U ′, V ′, W ∗〉 and delivers
C∗ to AI as the HybridPub challenge ciphertext.

AI now executes Phase 2 of its attack. B responds to AI ’s H3 and H4 queries as before
and continues to record changes to public key components made by AI . After at most q3
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queries to H3, q4 queries to H4 or after at most time t, AI should output a bit b′. If it does
not, then B just aborts AI .

Let q′3 denote the number of H3 queries and q′4 the number of H4 queries made in AI ’s
attack. Notice that q′3 ≤ q3 and q′4 ≤ q4. Now B picks an element uniformly at random from
the set {σj : 1 ≤ j ≤ q′3} ∪ {σ′

i : 1 ≤ i ≤ q′4} and outputs that element as its guess for σ∗.

This completes the description of the algorithm B. Next we evaluate B’s advantage.

Let H denote the event that AI queries either H3 or H4 on an input including σ∗ and
let R denote the event that AI is successful in a real attack, so ǫ = 2(Pr[R] − 1/2).

Now if H does not occur in a real attack (i.e. an attack against a proper HybridPub

challenger), then AI ’s probability of success is exactly 1/2. For in a real attack, we have
W ∗ = mb ⊕ H4(σ

∗) wherein the uniformly distributed output of random oracle H4 on input
σ∗ is used to encrypt mb. But if H does not occur, then AI has not queried H4 at this input
σ∗ and so, in AI ’s view, either of messages m0, m1 is equally likely to have been encrypted.

Hence:
1/2 + ǫ/2 = Pr[R]

= Pr[R|H] Pr[H] + Pr[R|¬H] Pr[¬H]
≤ Pr[H] + 1

2 .

Hence Pr[H] ≥ ǫ/2. Notice that B’s simulation is indistinguishable from AI ’s view in a real
attack, up to at least the point where H occurs. Therefore the probability that H occurs in
B’s simulation is exactly the same as in a real attack and so is at least ǫ/2. But if H occurs,
then B’s probability of success is at least 1/(q′3 + q′4) ≥ 1/(q3 + q4), because B outputs a
random choice from the list of H3 and H4 queries and at least one of these is equal to σ∗

when H occurs. Hence B’s probability of success is at least ǫ/2(q3 + q4). Notice that the
running time of B is of the same order as that of AI . This completes the proof.

Proof of Lemma 4: The proof of this lemma is almost identical to that of Lemma 3 and is
omitted.

Proof of Lemma 5: Let AI be a Type I OWE adversary against BasicPub who makes at
most q2 queries to random oracle H2 and who has advantage ǫ. We show how to construct
an algorithm B which interacts with AI to solve the GBDHP.

Suppose B has as inputs 〈G1, G2, e〉 and 〈P, aP, bP, cP 〉 (where a, b, c ∈ Z
∗
q are unknown

to B). Let D = e(P, P )abc ∈ G2 denote the solution to the BDHP on these inputs. Algorithm
B creates a public key 〈G1, G2, e, n, P, P0, X, Y, Q, H2〉 for AI by taking x ∈ Z

∗
q at random,

setting P0 = aP , X = xP , Y = xP0 and Q = bP . B then gives this key to AI . AI may
choose to reset the pair 〈X, Y 〉 to another pair 〈X ′, Y ′〉. B then checks if the public key
satisfies e(X ′, P0) = e(Y ′, P ). If not, then B outputs ⊥ and stops the simulation. In this
event, AI has failed. Otherwise, B sets U = cP , chooses V randomly from {0, 1}n, and gives
AI the challenge ciphertext C = 〈U, V 〉.

Notice that if ⊥ is not output, then the public key must have components 〈X ′ = x′P, Y ′ =
x′aP 〉 for some x′, and the corresponding (unknown) private key is x′abP . Then the (un-
known) decryption of C is M = V ⊕ H2(e(P, x′P )abc) = V ⊕ H2(D

x′
). Hence a solution

〈X ′, Dx′
〉 to the GBDHP can be derived from examining AI ’s choice of public key and H2

queries.

To simulate H2 queries by AI , B maintains a list of pairs 〈Zj , H2,j〉. To respond to an
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H2 query Z, B first checks if Z = Zj for some Zj already on the list. If it is, then B responds
with H2,j . Otherwise, B chooses H uniformly at random from {0, 1}n and places 〈Z, H〉 on
the H2 list.

Eventually, AI will output its guess M ′ for the decryption of C. Now B chooses a random
pair 〈Zj , H2,j〉 from the H2 list and outputs the pair 〈X ′, Zj〉 as the solution to the GBDHP.
(If the list is empty, B just outputs a random pair from G1 × G2.)

It is easy to see that AI ’s view in B’s simulation is the same as in a real attack. So AI ’s
advantage in this simulation will be ǫ. We let H be the event that Dx′

is queried of H2 during
B’s simulation and R denote the event that AI ’s choice of public key components 〈X ′, Y ′〉
passes the test (so ⊥ is not output). We let δ denote the probability that event H occurs.
Now

ǫ = Pr[(M ′ = M) ∧R]
= Pr[(M ′ = M) ∧R|H] Pr[H] + Pr[(M ′ = M) ∧R|¬H] Pr[¬H]
≤ δ + 1

2n (1 − δ)

where we have used the fact that if H does not occur, then H2 has not been queried on input
Dx′

so that AI ’s view must be independent of the value of M .

Rearranging, we see that δ ≥ ǫ − 1
2n . Since B’s output is of the form 〈X ′, Zj〉 with Zj

chosen randomly from the H2 list, we see that B’s success probability is at least δ/q2. The
lemma follows.

Proof of Lemma 6: Let AII be a Type II IND-CCA adversary against FullCL-PKE. Suppose
AII has advantage ǫ and makes q1 queries to random oracle H1. We show how to construct
from AII a Type II IND-CCA adversary B against HybridPub. The construction is similar
to the one used in the proof of [6, Lemma 4.6 ].

Let C denote the challenger against our IND-CCA adversary B for HybridPub. C begins
by supplying B with a public key Kpub = 〈G1, G2, e, n, P, P0, X, Y, Q, H2, H3, H4〉 and the
value s such that P0 = sP . Adversary B mounts an IND-CCA attack on the key Kpub using
help from AII as follows.

First of all B chooses an index I with 1 ≤ I ≤ q1. Then B simulates the algorithm Setup

of FullCL-PKE for AII by supplying AII with params= 〈G1, G2, e, n, P, P0, H1, H2, H3, H4〉
and the value s as master-key. Here H1 is a random oracle controlled by B.

Adversary AII may make queries of H1 at any time. These are handled as follows:

H1 queries: B maintains a list of tuples 〈IDj , Qj , bj , xj〉 which we call the H1 list. The list
is initially empty, and when AII queries H1 on input ID, B responds as follows:

1. If ID already appears on the H1 list in a tuple 〈IDi, Qi, bi, xi〉, then B responds with
H1(ID) = Qi ∈ G

∗
1.

2. If ID does not already appear on the list and ID is the I-th distinct H1 query made by
AII , then B picks bI at random from Z

∗
q , outputs H1(ID) = bIQ and adds 〈ID, bIQ, bI ,⊥ 〉

to the H1 list.

3. Otherwise, when ID does not already appear on the list and ID is the i-th distinct
H1 query made by AII where i 6= I, B picks bi and xi at random from Z

∗
q , outputs

H1(ID) = biP and adds 〈ID, biP, bi, xi〉 to the H1 list. Notice that the private key for
IDi is xisbiP = xisQi, which can be computed by B.
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Phase 1: Now AII launches Phase 1 of its attack, by making a series of requests, each of
which is either a private key extraction, a request for a public key for a particular entity,
or a decryption query. (Recall that a Type II adversary cannot replace public keys and can
make partial private key extraction queries for himself given s.) We assume that AII always
makes the appropriate H1 query on ID before making one of these requests for that identity.
B replies to these requests as follows:

Private Key Extraction: If the request is on IDI then B aborts. Otherwise, if the request
is on IDi with i 6= I, then B outputs xisQi.

Request for Public Key: If the request is on IDI then B returns 〈X, Y 〉. Otherwise, if the
request is on IDi for some i with i 6= I, then B returns 〈xiP, xisP 〉.

Decryption Queries: If the request is to decrypt 〈U, V, W 〉 under the private key for IDI ,
then B relays the decryption query 〈bIU, V, W 〉 to C. It is easy to see that the FullCL-PKE

decryption of 〈U, V, W 〉 under the (unknown) private key for IDI is equal to the HybridPub

decryption of 〈bIU, V, W 〉 under the (unknown) private key corresponding to Kpub. Hence C’s
response to B’s request can be relayed to AII . On the other hand, if the request is to decrypt
〈U, V, W 〉 under the private key for IDi (i 6= I), then B can perform this decryption himself
using the private key xisbiP for IDi.

Challenge Phase: At some point, AII decides to end Phase 1 and picks IDch and two
messages M0, M1 on which it wants to be challenged. We can assume that IDch has already
been queried of H1 but that AII has not extracted the private key for this identity. Algorithm
B responds as follows. If IDch 6= IDI then B aborts. Otherwise IDch = IDI and B gives C
the pair M0, M1 as the messages on which it wishes to be challenged. C responds with the
challenge ciphertext C ′ = 〈U ′, V ′, W ′〉, such that C ′ is the HybridPub encryption of Mb under
Kpub for a random b ∈ {0, 1}. Then B sets C∗ = 〈b−1

I U ′, V ′, W ′〉 and delivers C∗ to AII . It
is not hard to see that C∗ is the FullCL-PKE encryption of Mb for identity IDI (with public
key 〈X, Y 〉).

Phase 2: B continues to respond to requests in the same way as it did in Phase 1. Of course,
we now restrict AII to not make private key extraction requests on IDch. If any decryption
query relayed to C is equal to the challenge ciphertext C ′ then B aborts.

Guess: Eventually, AII will make a guess b′ for b. B outputs b′ as its guess for b.

Now we analyze the behavior of B and AII in this simulation. We claim that if algorithm
B does not abort during the simulation then algorithm AII ’s view is identical to its view in
the real attack. Moreover, if B does not abort then 2(Pr[b = b′] − 1

2) ≥ ǫ.

We justify this claim as follows. B’s responses to H1 queries are uniformly and inde-
pendently distributed in G

∗
1 as in the real attack. All responses to AII ’s requests are valid,

provided of course that B does not abort. Furthermore, the challenge ciphertext C∗ is a valid
FullCL-PKE encryption of Mb where b ∈ {0, 1} is random. Thus, by definition of algorithm
AII we have that 2(Pr[b = b′] − 1

2) ≥ ǫ.

The probability that B does not abort during the simulation remains to be calculated.
Examining the simulation, we see that B can abort for three reasons: (1) because AII made
a private key extraction on IDI at some point, (2) because AII did not choose IDch = IDI , or
(3) because B relayed a decryption query on C ′ = 〈U ′, V ′, W ′〉 to C in Phase 2.

Because of the way that B converts ciphertexts, this last event happens only if AII queries
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B on the ciphertext C∗ = 〈b−1
I U ′, V ′, W ′〉 in Phase 2. However, this is exactly AII ’s challenge

ciphertext on which AII is forbidden from making a decryption query. So this event never
occurs in B’s simulation. We name the remaining events that can cause B to abort as E1 and
E2.

Notice that the event ¬E2 implies the event ¬E1 (if AII chooses IDch equal to IDI , then
no private key extraction on IDI is allowed). Hence we have

Pr[B does not abort] = Pr[¬E1 ∧ ¬E2]
= Pr[¬E2] · Pr[¬E1|¬E2]
= Pr[¬E2]
= 1/q1

where the last equality follows from B’s random choice of I being independent of AII ’s choice
of IDch.

Thus we see that B’s advantage is at least ǫ/q1 and the proof is complete.

Proof of Lemma 8: Let AII be a Type II OWE adversary against BasicPub who makes at
most q2 queries to random oracle H2 and who has advantage ǫ. We show how to construct
an algorithm B which interacts with AII to solve the BDHP.

Suppose B has as inputs 〈G1, G2, e〉 and 〈P, aP, bP, cP 〉 (where a, b, c ∈ Z
∗
q are unknown

to B). Let D = e(P, P )abc ∈ G2 denote the solution to the BDHP on these inputs. Algorithm
B creates a public key 〈G1, G2, e, n, P, P0, X, Y, Q, H2〉 for AII by taking s ∈ Z

∗
q at random,

setting P0 = sP , X = aP , Y = saP and Q = bP . B then gives this public key and s to AII .
B now sets U = cP , chooses V randomly from {0, 1}n, and gives AII the challenge ciphertext
C = 〈U, V 〉.

Notice that the (unknown) private key is now absP and the (unknown) decryption of C
is M = V ⊕ H2(D

s). Hence the solution D to the BDHP can be derived from examining
AII ’s H2 queries.

To simulate H2 queries by AII , B acts exactly as in the proof of Lemma 5.

Eventually, AII will output its guess M ′ for the decryption of C. Now B chooses a

random pair 〈Zj , H2,j〉 from the H2 list and outputs Zs−1 mod q
j ∈ G2 as the solution to the

BDHP. (If the list is empty, B just outputs a random element of G2.)

It is easy to see that AII ’s view in B’s simulation is the same as in a real attack. So
AII ’s advantage in this simulation will be ǫ. We let H be the event that Ds is queried of H2

during B’s simulation and let δ denote the probability that event H occurs. Now

ǫ = Pr[M ′ = M ]
= Pr[M ′ = M |H] Pr[H] + Pr[M ′ = M |¬H] Pr[¬H]
≤ δ + 1

2n (1 − δ)

where we have used the fact that if H does not occur, then H2 has not been queried on input
Ds, so that AII ’s view must be independent of the value of M .

Rearranging, we see that δ ≥ ǫ − 1
2n . Since B’s output is of the form Zs−1 mod q

j with Zj

chosen randomly from the H2 list, we see that B’s success probability is at least δ/q2. The
lemma follows.
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