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Abstract Let P ∈ Z[X] be a polynomial of degree p with coefficients in the mono-
mial basis of bit-size bounded by τ . If P is positive on [−1,1], we obtain a certificate
of positivity (i.e., a description of P making obvious that it is positive) of bit-size
O(p4(τ + log2 p)). Previous comparable results had a bit-size complexity exponen-
tial in p and τ (Powers and Reznick in Trans. Am. Math. Soc. 352(10):4677–4692,
2000; Powers and Reznick in J. Pure Appl. Algebra 164:221–229, 2001).

1 Introduction: Certificates of Positivity in the Bernstein Basis

A certificate of positivity on an interval is an algebraic identity certifying the positiv-
ity of a given polynomial on an interval. Certificates of positivity on intervals have
been considered by many authors (see [10, 12] for a bibliography and some historical
remarks). In this paper we concentrate on certificates of positivity in the Bernstein ba-
sis, for which quantitative bounds have been obtained recently [12, 13]. However, the
exponential character of these bounds was unsatisfactory. Our purpose in this paper
is to produce certificates of positivity in the Bernstein basis which are of polynomial
size.

We denote by R a real closed field, and consider polynomials in R[X].
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Let � < r be two elements of R and p be a natural number. The Bernstein polyno-
mials of degree p for �, r are

Bernp,i(�, r) =
(

p

i

)
(r − X)p−i (X − �)i

(r − �)p
, (1)

for i = 0, . . . , p.
Note that

– the Bernstein polynomials for �, r take positive values on (�, r)

– Bernp,0(�, r) is positive at � and Bernp,p(�, r) is positive at r ; and
– the Bernstein polynomials of degree p for �, r form a basis of the vector-space of

polynomials of degree ≤p [1]

If P is a polynomial of degree ≤p, we denote by

b(P,p, �, r) = [b(P,p, �, r)0, . . . , b(P,p, �, r)p],
the ordered list of coefficients of P in the Bernstein basis of degree p for �, r . Note
that b(P,p, �, r)0 is the value of P at � and b(P,p, �, r)p is the value of P at r .

If all the elements of b(P,p, �, r) are positive, the expression of P in the Bernstein
basis of degree d for �, r provides a certificate of positivity for P on [�, r], referred
to as a global certificate of positivity for P on [�, r].

So, if P is of degree p and all the elements of b(P,p,−1,1) are positive, P is
positive on [−1,1]. Unfortunately, the reciprocal is not true: there are polynomials
of degree p which are positive on [−1,1] and some elements of b(P,p,−1,1) are
negative. Consider for example the polynomial

P = 5X2 − 4X + 1.

It is immediate to check that P is positive on [−1,1], but b(P,2,−1,1) = [10,−4,2]
has negative elements. However, since b(P,23,−1,1) is
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with all entries positive, the polynomial P does have a global certificate of positivity
in degree 23 on [−1,1].

Bernstein proved the following result [3].

Theorem 1 (Bernstein’s theorem) f a nonzero univariate polynomial P ∈ R[X] of
degree p is positive on [−1,1], then there exists d ≥ p such that all the elements of
b(P,d,−1,1) are positive.

In other words, by increasing if necessary the degree of the Bernstein basis, a
positive polynomial on [−1,1] always gets a global certificate of positivity.

Bernstein’s theorem is equivalent to a famous result of Pólya about certificates of
positivity for polynomials on the half line [11].
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Theorem 2 (Pólya’s theorem) If a nonzero univariate polynomial P ∈ R[X][X] of
degree p is positive on (0,+∞), then there exists d ≥ p such that all the coefficients
of (1 + X)d−pP are positive.

The equivalence between Bernstein’s theorem and Pólya’s theorem is immediate
through the Goursat transform sending a polynomial P of degree p to

(X + 1)pP

(
1 − X

1 + X

)
,

since monomials Xi are sent to (1 − X)i(1 + X)p−i .
In this paper, we are going to consider certificates of positivity for P on [−1,1]

of a more local nature, using also the Bernstein basis. We keep the initial degree, and
refine the interval, looking for certificates of positivity on subintervals subdividing
[−1,1].

We notice that it is not necessary that all the elements of b(P,d, �, r) are pos-
itive to ensure the positivity of P on [�, r]: if CertPos(b(P, d, �, r)) holds, i.e., all
the elements of b(P,d, �, r) are non-negative, with b(P,d, �, r)0 > 0, b(P,d, �, r)d
> 0, then P is positive on [�, r].

A subdivision L of [−1,1] of length n is an ordered list �0 = −1 < �1 <

· · · < �n = 1. We denote by b(P,p,L) the finite list whose elements are the
b(P,p, �i−1, �i), i = 1, . . . , n. We define CertPos(b(P,p,L)) holds for every i =
1, . . . , n, CertPos(b(P,p, �i−1, �i)) holds.

The fact that CertPos(b(P,p,L)) holds is referred to as a local certificate of pos-
itivity for P on [−1,1].

The difference between local and global certificates of positivity is illustrated by
the following example.

We consider again P = 5X2 − 4X + 1, and notice that P has a local certificate of
positivity since CertPos(b(P,p,L)) holds, with L = [−1,0,1/2,1],

b(P,2,L) = [[10,3,1][1,0,1/4], [1/4,1/2,2]],
which reads as

– b(P,2,−1,0) = [10,3,1]
– b(P,2,0,1/2) = [1,0,1/4]
– b(P,2,1/2,1) = [1/4,1/2,2]
It is clear that the local certificate of positivity given by b(P,2,L) is shorter than the
global certificate of positivity given by b(P,23,−1,1) discussed earlier.

The reason b(P,2,L) is shorter than b(P,23,−1,1) is that the various subinter-
vals defined by L are of different length, short intervals being concentrated on parts
of | − 1,1] where the sign of P is not obvious. This adaptability is the key to shorter
positivity certificates.

The purpose of the paper is to prove the existence of local certificates of positivity,
shorter (of polynomial size rather than of exponential size) than the global ones in the
integer case. The paper is organized as follows. In Sect. 2 we prove the existence of a
local certificate of positivity in any real closed field. In Sect. 3 we prove, in the integer
case, the existence of a local certificate of positivity of size polynomial in the degree
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and the bit-size of the coefficients. In Sect. 4 we compare the size of the global and
local certificates and prove that the global certificates can indeed be exponentially
big. Finally, in Sect. 5, we prove that our local of certificate can be used to produce a
Positivstellensatz identity of size polynomial in d and τ .

2 Certificates of Positivity in a General Real Closed Field

In this section we prove that while global certificates of positivity do not always exist
in a general real closed field, local certificates of positivity always do.

We first prove that in a nonarchimedean real closed field R, Bernstein’s theo-
rem does not hold. For this purpose, we exhibit a very simple P ∈ R[X], positive
on [−1,1], and such that there does not exist d ∈ N such that all the elements of
b(P,d,−1,1) are positive.

Example 1 Let R be a nonarchimedean real closed field and ε an element of R which
is infinitesimal, i.e., positive and smaller than any positive rational number. It is clear
that the polynomial P = (1 − ε)X2 + ε is positive on [−1,1]. However, we are go-
ing to prove that for every d ∈ N, there exists a negative element in b(P,d,−1,1).
Indeed, we have b(P,2,−1,1) = [1,2ε − 1,1], thus for any d ≥ 2

2dP = (
(1 − X)2 + (4ε − 2)(1 − X)(X + 1) + (X + 1)2)((1 − X) + (X + 1))d−2.

Hence, if n ≤ d − 2,
(

d

n

)
b(P,d,−1,1)n =

(
d − 2

n − 2

)
+

(
d − 2

n − 1

)
(4ε − 2) +

(
d − 2

n

)
. (2)

– If d is even, taking n = d/2, it follows from (2) that

b(P,d,−1,1)n = dε − 1

d − 1
.

– If d is odd, taking n = (d − 1)/2, it follows from (2) that

b(P,d,−1,1)n = (d + 1)ε − 1

d
.

Since ε is infinitesimal and d ∈ N, b(P,d,−1,1)n < 0 in both cases for any natural
number d .

We now prove the existence of local certificates of positivity in a general real
closed field R. Given �, r in R, we denote by C(�, r) ⊂ R2 the open disk with di-
ameter [�, r], i.e., the open disk with center ( �+r

2 ,0) and radius �−r
2 and identify the

algebraically closed field C = R[i] with R2.
We use the following classical result (see [1], Theorem 10.44(a), noticing that the

separability hypothesis is not necessary for (a)). We denote by Var(a) the number of
sign variations in a list of numbers a.
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Theorem 3 If P has no root in C(�, r), then Var(b(P,p, �, r)) = 0.

Theorem 4 (Existence of local certificates of positivity) If P ∈ R[X] of degree p

is positive on [−1,1], then there exists a subdivision L of [−1,1], of length at most
p + 1 such that CertPos(b(P,p,L)) holds.

Proof Let y1 < · · · < yr , 2r ≤ p, be the elements of [−1,1] which are the projections
of a set of roots Zj , j = 1, . . . , r of P in C = R[i].

If y1 �= −1 and yr �= 1, let δ > 0 be not greater than (y1 + 1), (1 − yr),
minj=1...r, z∈Zj

|z − yj | and minj=1...r−1(yj+1 − yj ). Define n = 2r + 1, �0 =
−1, �2j−1 = yj − δ, �2j = yj + δ, j = 1, . . . , r , �2r+1 = 1. Since, for i = 1, . . . , n,
P has no root in C(�i−1, �i), CerPos(b(P,p, �i−1, �i)) holds by Theorem 3 [1].

The special cases where y1 = −1 or yr = 1 are similar. �

Remark 1 If F is an ordered field, R its real closure and P ∈ F [X], the statement
of Theorem 4 is not valid with the extra property “the elements of L belong to F ”.
Indeed, let F = R(ε) ordered by ε > 0 and smaller than any positive r ∈ R, and R〈ε〉
its real closure, i.e., the field of algebraic Puiseux series with coefficients in R ([1],
Corollary 2.98). Take P = X4 + 2ε2X2 − 2εX2 + ε4 + 2ε3 + ε2, whose roots are
±√

ε ± iε. So, P is positive on [−1,1]. For �, r in R(ε) with −1 ≤ � <
√

ε < r ≤ 1,
denoting by �, r the real numbers infinitely close to �, r , we have � ≤ 0, r > 0. One
can compute—using, for example, SARAG [5]—that

b(P,4, �, r) =
[
ε2 + · · · , ?,−ε

3
r2 + · · · , ?, r4 + · · ·

]
, if � = 0,

b(P,4, �, r) = [
�

4 + · · · , �3
r + · · · , �2

r2 + · · · , �r3 + · · · , r4 + · · ·], if � < 0,

where +· · · stands for “+ terms of higher order in ε”, and ? for a quantity whose sign
is not determined. It is easy to check that b(P, �, r) has two sign changes if � = 0,
and b(P, �, r) has four sign changes if � < 0. So for every choice of �, r in R(ε)

with −1 ≤ � <
√

ε < r ≤ 1, CertPos(P,4, �, r) does not hold, which implies that, for
every subdivision L with elements in R(ε), CertPos(P,4,L) does not hold.

On the other hand, taking L = [−1,−√
ε − ε,−√

ε + ε,
√

ε − ε,
√

ε + ε,1], the
proof of Theorem 4 implies that CertPos(P,4,L) does hold, with some elements of
L belonging to R〈ε〉 \ R(ε), and this can be checked by a direct computation.

3 Local Certificates of Positivity in the Case of Integer Coefficients

Let P ∈ Z[X] be a polynomial of degree p with coefficients in the monomial basis of
bit-size bounded by τ (i.e., the absolute values of the coefficients of P are <2τ ). The
purpose of this section is to construct a local certificate of positivity for P on [−1,1]
whose size is polynomial in p and τ .

We introduce the following notation. If L is a rational subdivision of [−1,1]
of length n (i.e., a subdivision with elements in Q) and C = (c1, . . . , cn) ∈ (Q+)n,
we denote by b(CP,p,L) the list b(ciP ,p, �i−1, �i) for i = 1, . . . , n. We say
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that CertPos Z(b(CP,p,L)) holds if CertPos(b(CP,p,L)) holds and, for every
i = 1, . . . , n and every j = 0, . . . , p, b(P,p, �i−1, �i) ∈ Z.

In this section we give, if P ∈ Z[X] is positive on [−1,1], an algorithm con-
structing L and C such that CertPosZ(b(CP,p,L)) holds, with the bit-size of
CertPosZ(b(CP,p,L)) polynomial in p and τ .

More precisely, we consider a polynomial P ∈ Z[X] and construct

– a certificate of positivity if the polynomial is positive on [−1,1]
– a certificate of negativity if the polynomial is negative on [−1,1] and
– a point x of [−1,1] such that P(x) = 0, otherwise

The algorithm decides first whether P has a root on [−1,1] and if it is not the case
proceeds by dichotomy, in a way similar to the Real Root Isolation Algorithm (see
[1], Algorithm 10.4).

The algorithm used to compute the Bernstein coefficients on a subinterval is a
straightforward variant of the classical De Casteljau Algorithm avoiding denomina-
tors, named Special Bernstein Coefficients (cf. [1], Algorithm 10.3 for the subdivi-
sion in two equal segments, the general case being a straightforward generalization)
with complexity O(p2). A fast algorithm in Õ(p) with the same output can also be
designed (see [1], Remark 10.39), where Õ(p) = p log(p)O(1).

Algorithm 1 (Certificate of positivity)

• Input: a nonzero polynomial P ∈ Z[X].
• Output:

– POS if P > 0 on [−1,1], a rational subdivision L of [−1,1] of length n ≤ p+1,
and C ∈ (Q+)n+1 such that CertPosZ(b(CP,p,L)).

– NEG if P < 0 on [−1,1], a rational subdivision L of [−1,1] of length n ≤ p+1,
and C ∈ (Q+)n+1 such that CertPosZ(b(−CP,p,L)).

– Otherwise, a value x such that P(x) = 0, or a segment [�, r] and a divisor Q of
P such that Q(�)Q(r) < 0.

• Procedure:
– Preparatory Phase

∗ Apply the Real Root Isolation Algorithm to P ([1], Algorithm 10.4) and de-
cide whether there is a root of P between −1 and 1.

∗ If the answer is YES, return
→ A value x such that P(x) = 0.
→ Or a divisor Q of P (in fact the separable part of P computed in the Real

Root Isolation Algorithm) and a segment [�, r] such that Q(�)Q(r) < 0
which are intermediate results computed by the Real Root Isolation Al-
gorithm applied to P .

– Otherwise compute c ∈ Q
+ such that b = b(cP,−1,1) ∈ Z

p+1 ([1], Corol-
lary 10.30). If P(−1) = b0 < 0, replace P by −P . Place [[−1,1], c, b(cP,p,

−1,1)] in M .
– Dichotomy Phase. Initialize N = ∅. While M is nonempty:

– Remove an element [[�, r], c, b(cP,p, �, r)] from M .
– If Var(b(cP,p, �, r)) = 0, add [[�, r], c, b(cP,p, �, r)] to N .
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– Otherwise compute b(c′P,p, �,m) and b(c′P,p,m, r), with m = (� + r)/2,
using Special Bernstein Coefficients Algorithm with input b(cP,p, �, r), and
add

([�,m], c′, b(c′P,p, �,m)), ([m,r], c′, b(c′P,p,m, r))

to M .
– Output N .

– Compression Phase. Initialize L = [−1], C = T := ∅. While N is nonempty:
– If N has one single element, place it at the end of T .
– Otherwise, remove from N its first element [[�, r], c, b(cP,p, �, r)].
– Apply Special Bernstein Coefficients Algorithm to [[�, r], c, b(cP,p, �, r)]

and the end point m of the segment associated to the first element of N to get
b(c′P,p, �,m) ∈ Z

p+1.
– If Var(b(c′P,�,m)) = 0, replace the first element of N by

[[�,m], c′, b(c′P,�,m)].
– Otherwise, place r at the end of L, c at the end of C and b(cP,p, �, r) at the

end of T .
– If b0 > 0, return POS and b(cP,p,L) = T .
– If b0 < 0, output NEG and b(cP,p,L) = −T .

Example 2 Let us explain the process of Algorithm 1 for P = X4 + (8X − 1)2.
The Real Root Isolation Algorithm first decides that P has no root on [−1,1]. The

dichotomy phase proceeds as follows:

– Var(b(3P/2,4,−1,1) = [123,12,−29,−12,75]) = 2, so it is necessary to refine
[−1,1].

– The elements of b(3P,4,−1,0) = [246,135,59,15,3] are all positive, while
Var(b(3P,4,0,1) = [3,−9,11,63,150]) = 2, so it is necessary to refine [0,1].

– Var(b(324P,4,0,1/2) = [48,−48,−16,144,435]) = 2, so it is necessary to re-
fine [0,1/2], while the elements of b(324P,4,1/2,1) = [435,726,1148,1704,

2400] are all positive.
– Var(b(328P,4,0,1/4) = [768,0,−256,0,771]) = 2, so it is necessary to refine

[0,1/4], while the elements of b(328P,4,1/4,1/2) = [771,1542,2828,4632,

6960] are all positive.
– The isolation phase stops since the elements of b(3212P,4,0,1/8) = [12288,6144,

2,048,0,3], and b(3212P,4,1/8,1/4) = [3,6,2060,6168,12336] are all posi-
tive.

So we obtained a local certificate of positivity for P .
Finally, this certificate is compressed in L = [−1,0,1/8,1], C = [3,3212,3212]

and b(CP,p,L) is

[[246,135,59,15,3], [12288,6144,2048,0,3], [3,24,100544,302592,614400]].

Theorem 5 Let P ∈ Z[X] be a univariate polynomial of degree p with coefficients
of bit-size bounded by τ .
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The binary complexity of Algorithm 1 is Õ(p4τ 2) using fast algorithms.
If P > 0 on [−1,1], Algorithm 1 gives a certificate of positivity of bit-size

O(p4(τ + log2 p)).
If P < 0 on [−1,1], Algorithm 1 gives a certificate of negativity of bit-size

O(p4(τ + log2 p)).
If there exist x ∈ [−1,1] such that P(x) = 0, Algorithm 1 provides either a ratio-

nal number x such that P(x) = 0, or rational numbers �, r such that Q(�)Q(r) < 0
with Q a divisor of P . The rational numbers x, �, r have numerators and denomina-
tors of bit-size at most O(p(τ + log2 p)).

Proof The complexity of the Preparatory Phase is O(p5(τ + log2 p)2) using classical
arithmetic, and Õ(p4τ 2) using fast algorithms (see [1], pp. 377–378).

For the case where P does not vanish on [−1,1], there are O(p(τ + log2 p))

calls to the Special De Casteljau Algorithm in the Dichotomy Phase according to the
complexity analysis of the Real Root Isolation Algorithm by [6] (see [1], p. 377),
and Theorem 3. The bit-size of the Bernstein coefficients in each node is O(p2(τ +
log2 p)) (see [1], pp. 377–378), since the elements of L are of the form �′/2k with �′
an integer of bit-size at most k and k is estimated by O(p(τ + log2 p)). Moreover,
there are O(p2) additions (resp. Õ(p) arithmetic operations if fast algorithms are
used) to perform at each node. The complexity of the Dichotomy Phase is O(p5(τ +
log2 p)2) using classical arithmetic (resp. Õ(p4τ 2) using fast algorithms) (see [1],
pp. 377–378).

The correctness of the compression phase is clear since if �i and �j in L are such
that there exists no root z of P with real part in [�i−1, �j ], CertPos(b(P,p, �i−1, �j ))

holds by Theorem 3. There are at most p + 1 intervals output since there are at most
p/2 elements of L if p is even (resp. (p − 1)/2 elements of L if p is odd) such that
there exists a root z of P with real part in [�i−1, �i], so the total number of coefficients
in b(cP,p,L) is O(p2). In the Compression Phase, there are O(p(τ + log2 p)) calls
to the Special Bernstein Coefficients Algorithm; the number of arithmetic operations
in each call is O(p2) (resp. Õ(p) if fast algorithms are used) and the bit-size of
the integers are O(p2(τ + log2 p)). The complexity of the Compression Phase is
O(p7(τ + log2 p)3) (resp. Õ(p4τ 2) using fast algorithms).

Finally, the binary complexity of Algorithm 1 is O(p7(τ + log2 p)3) (resp.
Õ(p4τ 2) using fast algorithms).

Since the total number of coefficients in b(cP,p,L) is O(p2), and the bit-size of
the integers in b(cP,p,L) is O(p2(τ + log2 p)), it follows that the bit-size of the
certificate of positivity is at most O(p4(τ + log2 p)) when P > 0 on [−1,1].

The statement in the case P vanishes on [−1,1] is clear given the bit-size esti-
mates of the subdivision. �

4 Comparison Between Global and Local Certificates of Positivity

In this section we compare in theory and in practice our local certificate with the
global one obtained by Bernstein’s theorem and prove that our result provides an
improvement from exponential to polynomial size. We consider P ∈ Z[X) of degree
p with coefficients of bit-size bounded by τ , and denote by ν the bit-size of the de-
gree p.
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If P is positive on [−1,1], the smallest natural number d such that all the coeffi-
cients of b(P,d,−1,1) are positive is called the Bernstein degree of P . Powers and
Reznick proved in [13] a quantitative bound on the Bernstein degree, estimating it
by

p(p − 1)

2

M

λ
, (3)

where p is the degree of P , λ is the minimum of P(x) on [−1,1] and M is
the maximum value of the elements of b(P,p,−1,1). Note that the estimate
p(p−1)

2
M
λ

− p given in [13] needs to be corrected as in (3) [14]. We shall see that
such a bound is exponential in the degree p and the bit-size τ , and that the corre-
sponding certificate of positivity can indeed be exponentially large in some special
cases.

4.1 Estimates on the Minimum of a Polynomial as a Function of p and τ

We now estimate the minimum of P ∈ Z[X] positive on [−1,1] in terms of the para-
meters p and τ and exhibit situations where this estimation is almost sharp.

We denote by ν the bit-size of p.

Theorem 6 If P ∈ Z[X] is positive on [−1,1], its minimum on [−1,1] is at least
2−2p(1+τ+ν)+(τ+1).

In order to estimate the minimum of P(x), we consider the polynomial

(Y ) =
∏

z∈Zer(P ′,C)

Y − P(z),

whose roots in C = R[i] are the values of P at the elements of Zer(P ′,C), i.e., the
roots of P ′ in C.

Using classical results on resultants (see [1], for example), we obtain

Q = ResX

(
P − Y,P ′) = det(SY ) ∈ Z[Y ],

where

SY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap · · · · · · · · · a1 a0 − Y 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 ap · · · · · · · · · a1 a0 − Y

pap · · · · · · · · · a1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 pap · · · · · · · · · a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We denote by S the classical Sylvester matrix of P and P ′, i.e.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap · · · · · · · · · a1 a0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 ap · · · · · · · · · a1 a0

pap · · · · · · · · · a1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 pap · · · · · · · · · a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The proof of Theorem 6 relies on two lemmas.

Lemma 1 Let M be a square matrix of size 2p − 1 such that each of its (p − 1) first
rows contains at most p + 1 nonzero coefficients with absolute value estimated by 2τ ,
and such that its p last rows contains at most p nonzero coefficients with absolute
value estimated by p2τ . Then

|det(M)| ≤ 2(2p−1)τ+(4p−1)ν/2.

Proof Using Hadamard’s bound (see [1])

|det(M)| ≤
√(

(p + 1)22τ
)p−1(

pp222τ
)p

.

Since p < 2ν , we get the claim. �

Lemma 2 The coefficients of Q are estimated by 2p(2τ+2ν+1)−(τ+ν/2+1).

Proof It is clear that Q = det(SY ) is a polynomial in Y of degree p − 1. In order to
compute the bit-size of the coefficients of Q, we consider an arbitrary

f : {1, . . . , p − 1} → {0,1}
and denote by Sf the matrix in which a0 is replaced by −1 in the ith row of the
Sylvester matrix S when f (i) = 1. Denoting by

n(f ) = #{i | f (i) = 1},

Q(Y ) =
∑

f ∈{1,...,p−1}→{0,1}
Yn(f ) det(Sf ).

The coefficient of Y i in Q is the sum of at most 2p−1 determinants Sf . Applying
Lemma 1, we get that the coefficients of Q are bounded by

2p−12(2p−1)τ+(4p−1)ν/2 = 2p(2τ+2ν+1)−(τ+ν/2+1). �
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Proof of Theorem 6 The minimum of P on [−1,1] is obtained either at −1 or 1, or
at a root of P ′ in (−1,1), and the corresponding minimum value of P is a nonzero
root of Q.

The values of P at −1 and 1 are nonzero integers.
According to Cauchy’s bound [1], the nonzero root with smallest absolute value λ

of

Q = cp−1X
p−1 + · · · + cqXq, p − 1 > q,cp−1cq �= 0

is bigger than (
∑

q≤i≤p−1| ci

cq
|)−1. Using Lemma 2,

λ ≥ 1

p2p(2τ+2ν+1)−(τ+ν/2+1)
≥ 2−2p(τ+ν+1)+(τ+1).

This concludes the proof. �

Remark 2 Our result is very slightly better than a recent result due to Bugeaud and
Mignotte [4].

Example 3 The estimate of Theorem 6 is rather accurate. Following a suggestion by
Bugeaud and Mignotte [4], we consider the family of polynomials

A(k,p) = X2p + (
2kX − 1

)2
.

For every k,p, the minimum of A(k,p) is close to the estimation of Theorem 6.
Indeed, τ = 2k, and the minimum of A(k,p) on [−1,1] is smaller than the value
2−pτ obtained at x = 2−k , and depends exponentially on p and τ .

4.2 Comparison Between the Size of Local and Global Certificates of Positivity

Coming back to the bound of Powers and Reznick we have established that the Bern-
stein degree is estimated by

p(p − 1)2p(2τ+3ν+3)+ν+2, (4)

using the estimation on λ given by Theorem 6 and L ≤ 2pν+p+τ+ν ([1], by Corollary
10.30, paying a special attention to the constants involved in the O). Note that the
bound given by (4) is exponential in τ and p in contrast with the bound of Theorem
5 which is polynomial in τ and p.

Let us examine now examples where this exponential gap is really present.

4.2.1 Size of Certificates of Positivity with Respect to the Bit-Size

Powers and Reznick’s bound (3) is sharp, as proved [13] where they provide a family
of polynomials of degree 2 index by k ∈ N, namely

Pk = (
2k − 1

)
X2 + 1

for which the Bernstein degree is precisely 2k − 1. So, this proves the existence a
family of polynomials for which the Bernstein certificate of positivity is exponential
in τ = k.
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On the other hand, the local certificate of positivity given by Theorem 5 is partic-
ularly short because it is linear in τ = k. More precisely our certificate of positivity
for Pk is the following: L = [−1,0,1], b(Pk,2,L) = [[2k,1,1], [1,1,2k]], which
means

– b(Pk,2,−1,0) = [2k,1,1]
– b(Pk,2,0,1) = [1,1,2k]

4.2.2 Size of Certificates of Positivity with Respect to the Degree

We prove now that the situation is similar with respect to the degree.
The family of polynomials

A(k,p) = X2p + (
2kX − 1

)2

introduced earlier has a very small minimum and appears thus as a good test family
for the comparison between the size of the certificate of positivity given by Theorem 5
and the certificate of positivity given by Bernstein’s theorem. Numerical experiments
performed using SARAG [5] do indicate that the difference between the sizes of the
two certificates is huge even for small degrees.

For example, when k = 1:

– When p = 1, A(1,1) = 5X2 − 4X + 1 is the example already considered in the
introduction, the Bernstein degree is 23.

– When p = 2, A(1,2) = X4 + (2X−1)2, its Bernstein degree is 82, the coefficients
of (1311795/2)A(1,2) in the Bernstein basis of degree 82 for −1,1 are

6558975,6303015,6054955,5814558,5581593,5355835,5137065,4925070,

4719643,4520583,4327695,4140790,3959685,3784203,3614173,3449430,

3289815,3135175,2985363,2840238,2699665,2563515,2431665,2303998,

2180403,2060775,1945015,1833030,1724733,1620043,1518885,1421190,

1326895,1235943,1148283,1063870,982665,904635,829753,757998,689355,

623815,561375,502038,445813,392715,342765,295990,252423,212103,

175075,141390,111105,84283,60993,41310,25315,13095,4743,358,45,

3915,12085,24678,41823,63655,90315,121950,158713,200763,248265,

301390,360315,425223,496303,573750,657765,748555,846333,951318,

1063735,1183815,1311795
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while our certificate of positivity is given by L = [−1,0,1/2,1], C = [3,48,48]
and

b(CA(1,2),4,L) = [[30,18,11,6,3], [48,24,8,0,3], [3,6,20,48,96]].
We can in fact prove that the Bernstein degree of A(1,p) is exponential in p.

Let us express b(A(1,p),2N,0,1)N , and prove that it is negative for any N <

22p−1 + p.
Since X2p = X2p(X + (1 − X))2N−2p ,

b
(
X2p,2N,0,1

)
N

=
(2N−2p

N−2p

)
(2N

N

) = (2N − 2p)!N !
(N − 2p)!(2N)!

= N(N − 1) · · · (N − 2p + 1)

2N(2N − 1) · · · (2N − 2p + 1)
.

Similarly since (2X − 1)2 = (X − (1 − X))2(X + (1 − X))2N−2,

b
(
(2X − 1)2,2N,0,1

)
N

= 2
((2N−2

N−2

) − (2N−2
N−1

))
(2N

N

)

= 2
(2N − 2)!N !

(N − 2)!(2N)! − 2
(2N − 2)!N !2

(N − 1)!2(2N)!
= N − 1

2N − 1
− N

(2N − 1)

= −1

(2N − 1)
.

Let us prove that

N(N − 1) · · · (N − 2p + 1)

2N(2N − 1) · · · (2N − 2p + 1)
− 1

(2N − 1)
< 0,

or equivalently

(N − 1) · · · (N − 2p + 1) < 2(2N − 2) · · · (2N − 2p + 1) (5)

when N < p + 22p−1.
Indeed, since N − p − i < N − 1 − i, for i ∈ N,

(N − 1) · · · (N − 2p + 1) < (N − 1)(N − 2)2 · · · (N − p)2

and, since 2(N − i) < 2N − 2i + 1, for i ∈ N,

22p(N − 1)(N − 2)2 · · · (N − p)2

= 2(2N − 2)(2N − 4)2 · · · (2N − 2p + 2)2(2N − 2p)2

< 2(2N − 2)(2N − 3) · · · (2N − 2p + 1)(2N − 2p).
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So, if 2N − 2p < 22p , or equivalently N < 22p−1 + p, (5) holds.
Since, with 2N = 22p + 2p − 2, b(A(1,p),2N,0,1)N < 0, it is clear that there is

at least one negative coefficient in b(A(1,p),N,−1,1), by De Casteljau Algorithm
and so the Bernstein degree of A(1,p) is bigger than 22p + 2p − 1.

5 Positivstellensatz Identity of Polynomial Size

We now explain how, when P of degree ≤p, p even, is positive on [−1,1], the local
positivity certificate b(cP,p,L) can be used to provide a positivstellensatz identity
[2, 16] certifying that P is positive on [−1,1]. We shall prove that the degree of this
positivstellensatz identity is O(p2) when P ∈ R[X], where R is a general real closed
field, and the bit-size of the identity is O(p4(τ + log2 p)) when P ∈ Z[X].

It follows from Theorem 4 that if P is positive on [−1,1], there exists a sub-
division L = [−1 = �0,�1, . . . , �n = 1] of [−1,1] of length n ≤ p + 1 such that
CertPos(b(P,p,L)) holds. We can suppose without loss of generality that all the
elements of b(P,p, �i−1, �i) are positive, doubling if necessary the number of inter-
vals. Indeed, if CertPos(b(P,p, �, r)) holds and m = (� + r)/2, it is easy to see that
all the elements of b(P,p, �,m) and b(P,p,m, r) are positive. We can also suppose
without loss of generality that n is odd, subdividing if necessary one of the intervals.

Denoting by ai the minimum of the bi,j = b(P,p, �i−1, �i)j , j = 0, . . . , p, the
identity

P =
p∑

j=0

bi,j Bernp,j (�i−1, �i) = ai +
p∑

j=0

(bi,j − ai)Bernp,j (�i−1, �i)

can be rewritten as

ai +
p/2∑
j=0

(bi,2j − ai)Bernp,2j (�i−1, �i) − P

= −
p/2∑
j=1

(bi,2j−1 − ai)Bernp,2j−1(�i−1, �i). (6)

Multiplying together these n ≤ 2p + 3 identities, we obtain

a + T − SP = −U,

where

→ a + T = ∑
I⊂{1,...n}
�(I )odd

∏
i∈I (ai + ∑p/2

j=0(bi,2j − ai)Bernp,2j (�i−1, �i))P
n−�(I ),

with a = ∏n
i=1 ai is a positive number and T is sum of squares of degree at

most np,
→ S = ∑

I⊂{1,...n}
�(I ) even

∏
i∈I (ai +∑p/2

j=0(bi,2j −ai)Bernp,2j (�i−1, �i))P
n−�(I )−1 is sum

of squares of degree at most (n − 1)p,
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→ U = ∏n
i=1(

∑p/2
j=1(bi,2j−1 − ai)Bernp,2j−1(�i−1, �i)) is a sum of components of

degree at most np of the form Q2(X + 1)j (1 − X)k with j ≤ p, k ≤ p, j and k

odd, since n is odd and, for every i = 1, . . . , n − 1, and every j ′ and k′ odd,

(X − �i)
j ′

(�i − X)k
′ = −(X − �i)

j ′+k′

is the opposite of a square.

In other words

a − SP + T + U = 0. (7)

This is a positivstellensatz identity [2, 16] certifying that P(x) > 0 on [−1,1].
Indeed, if we suppose that there exists x such that P(x) ≤ 0,−1 ≤ x ≤ 1, evaluating
(7) at x gives a contradiction

a + b = 0

with a positive and b non-negative elements of R.
So we have proved the following result.

Theorem 7 If P ∈ R[X] is > 0 on [−1,1], of degree ≤ p where p is even, there
exists a positivstellensatz identity

a − SP + T + U = 0, (8)

certifying the positivity of P on [−1,1], where a is a positive element of R, S and T

are sum of squares in R[X] of degree at most p(2p + 3), and U is the sum of finite
number of components of degree at most p(2p + 3) of the form Q2(1 −X)j (X + 1)k

with j ≤ p, k ≤ p, Q ∈ R[X].

Theorem 8 If P ∈ Z[X] is > 0 on [−1,1], of degree ≤ p where p is even, there
exists a positivstellensatz identity

a − SP + T + U, (9)

certifying the positivity of P on [−1,1], where a is a positive integer, S and T are sum
of squares in Z[X] of degree at most p(2p + 3), and U is the sum of finite number of
components of degree at most p(2p+3) of the form Q2(1−X)j (X+1)k with j ≤ p,
k ≤ p, Q ∈ Z[X]. Moreover the total bit-size in (8) is at most O(p4(τ + log2 p)).

Proof The only change to perform to the construction of (8) is to replace (6) by

ai − ciP +
p/2∑
j=0

(bi,2j − ai)Bernp,2j (�i−1, �i)

= −
p/2∑
j=1

(bi,2j−1 − ai)Bernp,2j−1(�i−1, �i), (10)
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with ci ∈ N, ci �= 0. The result is an immediate consequence of the bit-size estimate
O(p2(τ + log2 p)) on the elements of b(cP,p,L) given in the proof of Theorem 5
and of the construction of (8). �

Remark 3 Note that this method does not give degree estimates for positivstellensatz
identities in the field generated by the coefficients of P (even though such rational
positivstellensatz do exist [2, 16]) since by Remark 1 it is really necessary to use
subdivisions with endpoints in R in the construction.

6 Future Work and Open Problems

(a) In this paper we concentrated on certificates of positivity in the Bernstein basis.
But there are other kind of certificates of positivity on an interval. For instance the
following holds [8–10] (for a proof see [17], p. 4).

Theorem 9 If a nonzero univariate polynomial P ∈ R[X] of degree p is positive on
[−1,1], then

– If p = 2m there exist A ∈ R[X] of degree m and B ∈ R[X] of degree m − 1, with
A and (1 − X2)B not vanishing simultaneously on [−1,1], such that

P = A2 + (X − 1)(1 + X)B2. (11)

– If p = 2m + 1 there exist A and B in R[X] of degree m, with (1 − X)A and
(1 + X)B not vanishing simultaneously on [−1,1], such that

P = (X − 1)A2 + (1 + X)B2. (12)

Note that the Markov/Lukacs result provides a global certificate of positivity with-
out increasing the degree, which is valid for a general real closed field. It would be
quite interesting to study the size of the certificate of positivity provided by (11) and
(12) and compare it to the size of our local certificates of positivity. In the case of
integer coefficients, the coefficients of A and B can be chosen to be real algebraic
numbers, and it should be possible to estimate the degree and bit-size of the polyno-
mials in Z[X] defining these real algebraic numbers.

(b) Given the results obtained in the univariate case, it is natural to wonder whether
there are efficient local certificates of positivity in the multivariate case as well. For
global certificates of positivity, the situation is well understood: Pólya’s theorem is
valid in the multivariate case and the quantitative results of Powers and Reznick hold
also in this case, and it is possible to extend the definition of Bernstein polynomials
to a simplex and to prove a multivariate Bernstein’s theorem in this case [13]. The ex-
istence of local certificates of positivity is rather easy [7], at least in the archimedean
case, using approximation properties of Bernstein coefficients [15] instead of real
root isolation. However, no good quantitative bound is known for these local certifi-
cates in the integer case, the main missing ingredient seems to be a generalized notion
of sign variation having subadditivity properties with respect to subdivision (see [1],
Proposition 10.41).
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