
Certification of Automated Termination Proofs�

Evelyne Contejean1, Pierre Courtieu2, Julien Forest2, Olivier Pons2,
and Xavier Urbain2

1 LRI, Université Paris-Sud, CNRS, INRIA Futurs, Orsay F-91405
2 CÉDRIC – Conservatoire national des arts et métiers

Abstract. Nowadays, formal methods rely on tools of different kinds: proof as-
sistants with which the user interacts to discover a proof step by step; and fully
automated tools which make use of (intricate) decision procedures. But while
some proof assistants can check the soundness of a proof, they lack automa-
tion. Regarding automated tools, one still has to be satisfied with their answers
Yes/No/Donotknow, the validity of which can be subject to question, in par-
ticular because of the increasing size and complexity of these tools.

In the context of rewriting techniques, we aim at bridging the gap between
proof assistants that yield formal guarantees of reliability and highly automated
tools one has to trust. We present an approach making use of both shallow and
deep embeddings. We illustrate this approach with a prototype based on the CiME
rewriting toolbox, which can discover involved termination proofs that can be
certified by the COQ proof assistant, using the COCCINELLE library for rewriting.

1 Introduction

Formal methods play an increasingly important role when it comes to guaranteeing
good properties for complex, sensitive or critical systems. In the context of proving,
they rely on tools of different kinds: proof assistants with which the user interacts step
by step, and fully automated tools which make use of (intricate) decision procedures.

Reducing the cost of formal proofs amounts to using more and more automation.
However, while some proof assistants can check the soundness of a proof, one still
has to be satisfied with the answer of automated tools. Yet, since application fields
include possibly critical sectors as security, code verification, cryptographic protocols,
etc., reliance on verification tools is crucial.

Some proof assistants, like COQ [28], need to check mechanically the proof of each
notion used. Among the strengths of these assistants are firstly a powerful specification
language that can express both logical assertions and programs, hence properties of
programs, and secondly a highly reliable procedure that checks the soundness of proofs.

For instance, COQ or ISABELLE/HOL [26] have a small and highly reliable ker-
nel. In COQ, the kernel type-checks a proof term to ensure the soundness of a proof.
Certified-programming environments based on these proof assistants find here an addi-
tional guarantee. Yet, among the weaknesses of these assistants, one may regret the lack
of automation in the proof discovery process. Automation is indeed difficult to obtain
in this framework: the proof assistant has to check a property proven by an external

� Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 148–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Certification of Automated Termination Proofs 149

procedure before accepting it. Therefore, such a procedure has to return a proof trace
checkable by the assistant.

We want to meet the important need of proofs delegation for some properties in
the framework of rewriting techniques. We will focus on generic ways to provide
reasonably-sized proof traces for complex properties, for instance termination.

Termination is the property of a program any execution of which always yields a re-
sult. Fundamental when recursion and induction are involved, it is an unavoidable pre-
liminary for proving many various properties of a program. Confluence of a rewriting
system, for instance, becomes decidable when the system terminates. More generally,
proving termination is a boundary between total and partial correctness of programs.
Hence, automating termination is of great interest for provers like COQ, in which func-
tions can be defined only if they are proven to be terminating.

The last decade has been very fertile w.r.t. automation of termination proofs, and
yielded many efficient tools (APROVE [17], CiME [8], JAMBOX [15], TPA [22],
TTT [20] and others) referenced on the website of the Termination Competition [24].
Some of them display nice output for human reading. However, there is still a clear
gap between proof assistants that provide formal guarantees of reliability and highly
automated tools that do not. In the sequel, we aim at bridging this gap.

We present here a methodology for the particularly important challenge of automat-
ically generating proof traces in the domain of first order term rewrite systems and in
particular for termination proofs of such systems. We do not restrict to classical ap-
proaches of all-shallow embedding or, like Color [4], of all-deep embedding to model
properties or techniques. Instead we use a mixed approach so as to get the best of both
worlds. We implemented our principles and methodology within the rewrite tool box
CiME 2.99. This version uses parts of the termination engine of CiME2.04; with our
mixed approach it can certify (with COQ) termination proofs of more than 370 prob-
lems (i.e. approximately 34.5% of the TPDB 3.2 directory TRS excluding termination
modulo equational theories), and using involved criteria. This is made possible thanks
to a COQ library for rewriting (COCCINELLE) developed by E. Contejean in our project.

Problem

Certificate
Compilation

Trace generation

Required

CiME

COQ

COCCINELLE

We make our notations precise and give some prerequisites about first order term
rewriting and about the COQ proof assistant in Section 2. Then, in Section 3, we present
our modelling of termination of rewriting in COQ, which mixes deep and shallow em-
beddings in order to take benefits of both. We briefly present the COQ library COC-
CINELLE developed in the project to that purpose. In section 4 we present the certifi-
cation of proofs using involved criteria such as Dependency Pairs [1] with graphs re-
finement, mixing orderings based on polynomial interpretations [23] or RPO [10] with
AFS [1]. We shall adopt the end-user point of view and provide some experimental

150 E. Contejean et al.

results of CiME 2.99 in Section 5. Eventually we briefly compare with related works
and conclude in Section 6.

2 Preliminaries

2.1 Rewriting

We assume the reader familiar with basic concepts of term rewriting [13, 2] and ter-
mination, in particular with the Dependency Pairs (DP) approach [1]. We recall usual
notions, and give notations. A signature F is a finite set of symbols with arities. Let X
be a countable set of variables; T (F , X) denotes the set of finite terms on F and X .
Λ(t) is the symbol at root position in term t. We write t|p for subterm of t at position p
and t[u]p for term t where t|p has been replaced by u. Substitutions are mappings from
variables to terms and tσ denotes the application of a substitution σ to a term t.

A term rewriting system (TRS for short) over a signature F is a set R of rewrite rules
l → r with l, r ∈ T (F , X). A TRS R defines a monotonic relation →R closed under
substitution (aka a rewrite relation) in the following way: s →R t (s reduces to t) if
there is a position p such that s|p = lσ and t = s[rσ]p for a rule l → r ∈ R and a
substitution σ. In the following, we shall omit systems and positions that are clear from
the context. We denote the reflexive-transitive closure of a relation → by →�. Symbols
occurring at root position in the left-hand sides of rules in R are said to be defined, the
others are said to be constructors.

A term is R-strongly normalizing (R-SN) if it cannot reduce infinitely many times for
the relation defined by System R1. A rewrite relation terminates if any term is SN. Ter-
mination is usually proven with the help of reduction orderings [11] or ordering pairs
with dependency pairs. The set of unmarked dependency pairs2 of a TRS R, denoted
DP (R) is defined as {〈u, v〉 such that u → t ∈ R and t|p = v and Λ(v) is defined}. An
ordering pair is a pair (�, >) of relations over T (F , X) such that: 1) � is a stable and
monotonic quasi-ordering, i.e. reflexive and transitive, 2) > is a stable strict ordering,
i.e. irreflexive and transitive, and 3) > · � = > or � · > = >. An ordering pair is
well-founded if there is no infinite strictly decreasing sequence t1 > t2 > . . .

2.2 The COQ Proof Assistant

The COQ proof assistant is based on type theory and features: 1) A formal language
to express objects, properties and proofs in a unified way; all these are represented as
terms of an expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [9].
λ-abstraction is denoted fun x:T => t, and application is denoted t u. 2) A proof
checker which checks the validity of proofs written as CIC-terms. Indeed, in this frame-
work, a term is a proof of its type, and checking a proof consists in typing a term. The
tool’s correctness relies on this type checker, which is a small kernel of 5 000 lines of
OBJECTIVE CAML code.

For example the following simple terms are proofs of the following (tautological)
types (remember that implication arrow → is right associative): the identity function

1 When R is clear from the context, we shall write SN.
2 For readability’s sake we detail only unmarked DP, see Sec. 4.4 for how we deal with marks.

Certification of Automated Termination Proofs 151

fun x:A => x is a proof of A → A, and fun (x:A) (f:A→ B) => f x is a proof
of A → (A → B) → B.

A very powerful feature of COQ is the ability to define inductive types to express in-
ductive data types and inductive properties. For example the following inductive types
define the data type nat of natural numbers, O and S (successor) being the two con-
structors3, and the property even of being an even natural number.

Inductive nat : Set := | O : nat | S : nat → nat.
Inductive even : nat → Prop := | even_O : even O
| even_S : ∀n : nat, even n → even (S (S n)).

Hence the term even_S (S (S O)) (even_S O (even_O)) is of type
even (S (S (S (S O)))) so it is a proof that 4 is even.

2.3 Termination in COQ

We focus in this paper on termination. This property is defined in COQ standard li-
brary as the well-foundedness of an ordering. Hence we model TRS as orderings in the
following. This notion is defined using the accessibility predicate. A term t : A is ac-
cessible for an ordering < if all its predecessors are, and < is well-founded if all terms
of type A are accessible (R y x stands for y < x):

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=
| Acc_intro : (∀ y : A, R y x → Acc R y) → Acc R x

Definition well_founded (A : Type) (R : A → A → Prop) :=
∀ a : A, Acc R a.

This inductive definition contains both the basis case (that is when an element has no
predecessor w.r.t. the relation R) and the general inductive case. For example, in a re-
lation R on bool defined by R true false, true is accessible because it has no pre-
decessor, and so is false because its only predecessor is true. Hence Acc R true

and Acc R false are provable, hence well-founded R is provable.
The usual ordering < is not well-founded over the integers, there are infinite descend-

ing chains as for example . . . − (n + 1) < −n < −(n− 1) < . . . < −1 < 0. However,
it is possible to reason by well-founded induction over the integer using a well-founded
relation <wf defined by x <wf y if |x| < |y| or (|x| = |y| and x > 0 > y).
The relation is of the form: 0 <wf 1 <wf −1 <wf 2 <wf −2 <wf . . .

3 Modelling Termination of Rewriting in COQ

If R is the relation modelling a TRS R, we should write R u t (which means u < t)
when a term t rewrites to a term u. For the sake of readability we will use as much as
possible the COQ notation: t -[R]> u (and t -[R]*> u for t →∗ u) instead.

The wanted final theorem stating that R is terminating has the following form:

Theorem well_founded_R: well_founded R.

3 Note that this notion of constructors is different from the one in Section 2.1.

152 E. Contejean et al.

Since we want certified automated proofs, the definition of R and the proof of this theo-
rem are discovered and generated in COQ syntax with full automation by our prototype.
In order to ensure that the original rewriting system R terminates, the only things the
user has to check is firstly that the generated relation R corresponds to R (which is easy
as we shall see in Section 3.2), and secondly that the generated COQ files do compile.

3.1 Shallow vs Deep Embedding

In order to prove properties on our objects (terms, rewriting systems, polynomial inter-
pretations. . .), we have to model these objects in the proof assistant by defining a theory
of rewriting. There are classically two opposite ways of doing this: shallow embedding
and deep embedding. When using shallow embedding, one defines ad hoc translations
for the different notions, and proves criteria on the translation of each considered sys-
tem. For instance TRSs will be inductive definitions with one constructor per rule.

When using deep embedding, one defines generic notions for rewriting and proves
generic criteria on them, and then instantiates notions and criteria on the considered
system. Both shallow and deep embedding have advantages and drawbacks. On the
plus side of shallow embedding are: an easy implementation of rewriting notions, and
the absence of need of meta notions (as substitutions or term well-formedness w.r.t. a
signature). On the minus side, one cannot certify a criterion but only its instantiation
on a particular problem, which often leads to large scripts and proof terms. Regarding
deep embedding, it usually leads (not always as we explain below) to simpler scripts
and proof terms since one can reuse generic lemmas but at the cost of a rather technical
first step consisting in defining the generic notions and proving generic lemmas.

We present here an hybrid approach where some notions are deep (Σ-algebra, RPO)
and others are shallow (rewriting system, dependency graphs, polynomial interpreta-
tions). The reason for this is mainly due to our proof concern which makes sometimes
deep embedding not worth the efforts it requires: some premises of generic lemmas,
which have to be proven on each considered problem, are as hard (if not harder) to
prove than the shallow lemmas themselves. We will show that using both embeddings
in a single proof is not a problem, and moreover that we can take full benefit of both.

3.2 The COCCINELLE Library

The deep part of the modelling is formalised in a public COQ library called COC-
CINELLE [6]. To start with, it contains a modelling of the mathematical notions needed
for rewriting, such as term algebras, generic rewriting, generic and AC equational the-
ories and RPO with status. It contains also proofs of properties of these notions, for
example that RPO is well-founded whenever the underlying precedence is.

Moreover COCCINELLE is intended to be a mirror of the CiME tool in COQ;
this means that some of the types of COCCINELLE (terms, etc.) are translated from
CiME (in OBJECTIVE CAML) to COQ, as well as some functions (AC matching)4.

4 It should be noticed that COCCINELLE is not a full mirror of CiME: some parts of CiME
are actually search algorithms for proving for instance equality of terms modulo a theory
or termination of TRSs. These search algorithms are much more efficient when written in
OBJECTIVE CAML than in COQ, they just need to provide a trace for COCCINELLE.

Certification of Automated Termination Proofs 153

Translating functions and proving their full correctness obviously provide a certifica-
tion of the underlying algorithm. Note that some proofs may require that all objects
satisfying a certain property have been built: for instance in order to prove local conflu-
ence of a TRS, one need to get all critical pairs, hence a unification algorithm which is
complete5.

Since module systems in OBJECTIVE CAML and COQ are similar, both CiME and
COCCINELLE have the same structure, except that CiME contains only types and func-
tions whereas COCCINELLE also contains properties over these types and functions.

Terms. A signature is defined by a set of symbols with decidable equality, and a func-
tion arity mapping each symbol to its arity.

The arity is not simply an integer, it mentions also whether a symbol is free of arity
n, AC or C (of implicit arity 2) since there is a special treatment in the AC/C case.

Inductive arity_type : Set :=
| Free : nat → arity_type | AC : arity_type | C : arity_type.

Module Type Signature.
Declare Module Export Symb : decidable_set.S.
Parameter arity : Symb.A → arity_type.

End Signature.

Up to now, our automatic proof generator does not deal with AC nor C symbols,
hence in this work all symbols have an arity Free n. However, AC/C symbols are used
in other parts of COCCINELLE, in particular the formalisation of AC matching [5].

A term algebra is a module defined from its signature F and the set of variables X.

Module Type Term.
Declare Module Import F : Signature.
Declare Module Import X : decidable_set.S.

Terms are defined as variables or symbols applied to lists of terms. Lists are built
from two constructors nil and ::, and enjoy the usual [x ; y; ...] notation.

Inductive term : Set :=
| Var : variable → term | Term : symbol → list term → term.

This type allows to share terms in a standard representation as well as in a canonical
form; but this also implies that terms may be ill-formed w.r.t. the signature. The module
contains decidable definitions of well-formedness. However, the rewriting systems we
consider do not apply on ill-formed terms, so we will not have to worry about it to prove
termination.

The term module type contains other useful definitions and properties that we
omit here for the sake of clarity. The COCCINELLE library contains also a functor
term.Make which, given a signature and a set of variables, returns a module of type
Term. We will not show its definition here.

Module Make (F1 : Signature) (X1 : decidable_set.S) : Term.

5 Local confluence is not part of COCCINELLE yet.

154 E. Contejean et al.

Rewriting systems. TRSs provided as sets of rewrite rules are not modelled directly in
COCCINELLE. Instead, as explained in the introduction of this section, we use orderings
built from any arbitrary relation R : relation term (by definition relation A is
A → A → Prop). The usual definition can be retrieved obviously from a list of
rewrite rules (i.e. pairs of terms) R by defining R as:

∀s, t ∈ T (F , X), s -[R]> t ⇐⇒ (s → t) ∈ R
The COCCINELLE library provides a module type RWR which defines a reduction

relation (w.r.t. the "rules" R) and its properties.

Module Type RWR.
Declare Module Import T : Term.

The first step toward definition of the rewrite relation is the closure by instantiation:

Inductive rwr_at_top (R : relation term) : relation term :=
| instance : ∀t1 t2 sigma, t1 -[R]> t2

→ (apply_subst sigma t1) -[rwr_at_top R]> (apply_subst sigma t2).

Then we define a rewrite step as the closure by context of the previous closure. Notice
the use of mutual inductive relations to deal with lists of terms.

(∗∗ One step at any position. ∗)
Inductive one_step (R : relation term) : relation term :=
| at_top : ∀t1 t2, t1 -[rwr_at_top R]> t2 → t1 -[one_step R]> t2
| in_context : ∀f l1 l2, l1 -[one_step_list R]> l2

→ (Term f l1 -[one_step R]> Term f l2)
with one_step_list (R : relation term): relation (list term) :=
| head_step : ∀t1 t2 l, t1 -[one_step R]> t2

→ (t1 :: l -[one_step_list R]> t2 :: l)
| tail_step : ∀t l1 l2, l1 -[one_step_list R]> l2

→ (t :: l1) -[one_step_list R]> (t :: l2).

This module type contains properties declared using the keyword Parameter. This
means that to build a module of this type, one must prove these properties. For instance
it contains the following property stating that if t1 →+ t2 then t1σ →+ t2σ

6 for any
substitution σ.

Parameter rwr_apply_subst :
∀ R t1 t2 sigma, t1 -[rwr R]> t2 →
(apply_subst sigma t1 -[rwr R]> apply_subst sigma t2).

The library contains a functor rewriting.Make building a module of type RWR

from a module T of type Term. This functor builds in particular the proof of all prop-
erties required by RWR. For an R representing the rules of the TRS under consideration,
the final theorem we want to generate is:

Theorem well_founded_R: well_founded (one_step R).

To ensure that one_step R corresponds to the original TRS R, it suffices for the
user to perform the easy check that R corresponds to the set of rules defining R.

6 The transitive closure of one_step is defined as rwr in COCCINELLE.

Certification of Automated Termination Proofs 155

Note that since the datatype term represents any Σ-algebra (via application of the
functor Make), we can say that terms are represented in a deep embedding. However,
to simplify proofs, we avoid using substitutions by quantifying on subterms as much as
possible. That makes our use of the type term slightly more shallow on this point.

4 Generation of Proof Traces

We will illustrate our approach by presenting proof generation techniques at work on a
small example in our prototype, namely CiME 2.99. While being based on the CiME2
tool box, this prototype does not certify all its predecessor’s termination power. For
instance, modular criteria [29] and termination modulo equational theories are not sup-
ported yet. In the following, we restrict to (marked/unmarked) Dependency Pairs [1]
with/without graphs refinements. The orderings we deal with include strictly the or-
derings that CiME generates: (non-linear) polynomial interpretations (section 4.6) and
RPO with status7 (section 4.7).

4.1 Global Structure of a Generated Proof

A close look at different termination tools reveals a common underlying methodology
which we use as the skeleton of our generated proofs. It consists in deriving recursively
from a relation R a set of other relations Ri such that if all Ris are terminating, then so is
R. For instance, this structure appears explicitly with the processors [18] of APROVE.

This recursive decomposition is done using termination criteria like DP criteria,
(complex) graph criteria, modular criteria, etc. Some tools may use some backtracking
but if the procedure succeeds, it means that an implicit tree was built:

<
<1 (poly. interp.)

{. . . 〈t1,i, u1,i〉 . . .}

<
<2 (RPO)

{. . . 〈t2,1,i, u2,1,i〉 . . . }
<3 (poly. interp.)

{. . . 〈t2,2,i, u2,2,i〉 . . . }
<

{. . . 〈t2,i, u2,i〉 . . . }
SUB-GRAPH

Rdp = {. . . 〈t i, ui〉 . . . }
GRAPH

Rinit = {. . . li → ri . . . }
DP

This tree is rooted by the initial problem, namely the initial rewriting system and the
first termination criterion used. Each intermediate node is also labelled by a relation and
the termination criterion used to decompose the node into its children. Finally each leaf
must be labelled by a relation Ri and a well-founded ordering which includes it.

The tree structure is reflected in the generated file. Indeed, for each criterion step
(R replaced by sufficient conditions {Ri}), we will generate a lemma of the form:

Lemma wf_R_if_wf_Ri : well_founded R1 → well_founded R2 ...
→ well_founded R.

The proof of this lemma depends on the termination criterion used (Sec. 4.4 and 4.5).
Each time a leaf is proven using an ordering, we generate a lemma of the form:

Lemma wf_Ri : well_founded Ri.

7 To date, CiME can discover polynomials and LPO with AFS.

156 E. Contejean et al.

The proof is made by induction on the ordering built by the automated tool. Once all
leaves have been proven this way, one can easily build the proof of the initial termination
property by applying lemmas from leaves to the root:

Lemma final: well_founded R.
Proof. apply (wf_R_if_wf_Ri wf_R1 wf_R2 ...). Qed.

4.2 The Running Example

We illustrate our method with a very simple TRS R = Rack ∪Radd (over a signature F)
where Rack computes the Ackerman function on Peano integers, and Radd computes ad-
dition on binary integers. Digits are denoted as postfix operators (_)0 and (_)1, whereas
is the constant 0 seen as a number, shared between binary and Peano integers.

R

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rack

{
ack(#, y) → s(y) ack(s(x), #) → ack(x, s(#))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

Radd

⎧
⎨

⎩

(#)0 → # # + x → x x + # → x
(x)0 + (y)0 → (x + y)0 (x)1 + (y)0 → (x + y)1
(x)0 + (y)1 → (x + y)1 (x)1 + (y)1 → ((x + y) + (#)1)0

4.3 Generation of the TRS Definition

For sake of clarity we will use COQ notations that are different than in previous sections:
Term X (Y::Z::...::nil) will now be denoted by X(Y,Z...).

The generation of the Σ-algebra corresponding to a signature in the automated tool
is straightforward. We show here the signature corresponding to the Σ-algebra of F .
Notice the module type constraint <: Signature making COQ check that definitions
and properties of SIGMA_F comply with Signature as defined in Section 3.2.

Module SIGMA_F <: Signature.
Inductive symb : Set := | # : symb | s : symb ...
Module Export Symb.

Definition A := symb.
Lemma eq_dec : ∀f1 f2 : symb, {f1 = f2} + {f1 <> f2}...

End Symb.
Definition arity (f:symb) : arity_type :=

match f with | # => Free 0 | s => Free 1... end.
End SIGMA_F.

We define a module VARS for variables, apply functors building the term algebra
and rewrite system on it, and then the rewriting system corresponding to R:

Module Import TERMS := term.Make(SIGMA)(VARS).
Module Import Rwr := rewriting.Make(TERMS).
Inductive R_rules : term → term → Prop :=
| R0 : ∀V1 : term, ack(#,V1) -[R_rules]> s(V1)...
Definition R := Rwr.one_step R_rules.

Notice that from now on notation T -[R]> U denotes that T rewrites to U in the
sense of Section 2.1, i.e. there exists two subterms t and u at the same position in
respectively T and U, such that R u t (see the definition of one_step in section 3.2).

Certification of Automated Termination Proofs 157

4.4 Criterion: Dependency Pairs

The (unmarked) dependency pairs of R generated by CiME are the following:

〈ack(s(x), #), ack(x, s(#))〉
〈ack(s(x), s(y)), ack(x, ack(s(x), y))〉 〈ack(s(x), s(y)), ack(s(x), y)〉
〈(x)1 + (y)0, x + y〉 〈(x)0 + (y)1, x + y〉 〈(x)0 + (y)0, x + y〉 〈(x)0 + (y)0, (x + y)0〉
〈(x)1 + (y)1, x + y〉 〈(x)1 + (y)1, (x + y) + (#)1〉 〈(x)1 + (y)1, ((x + y) + (#)1)0〉

An inductive relation representing the dependency chains [1] is built automatically.
A step of this relation models the (finite) reductions by R in the strict subterms of DP
instances (e.g. x0 →� s(V0), . . .) and one step of the relevant dependency pair. We
illustrate this on 〈ack(s(x), #), ack(x, s(#))〉 with σ = {x �→ V0}:

Inductive DPR : term → term → Prop :=
| DPR0: ∀x0 x1 V0, x0 -[R]*> s(V0) → x1 -[R]*> #

→ ack(x0,x1) -[DPR]> ack(V0,s(#))

The main lemma on DPs fits in the general structure we explained on Section 4.1:

Lemma wfR_if_wfDPR: well_founded DPR → well_founded R.

The proof follows a general scheme due to Hubert [21]. It involves several nested
inductions instantiating the proof of the criterion in the particular setting of DPR and R.

Note that we can also prove this lemma in the case of an enhancement of DPs by
Dershowitz [12] consisting in discarding DPs whose rhs is a subterm of the lhs8.

Marked symbols. A refinement of the DP criterion consists in marking head symbols
in lhs and rhs of dependency pairs in order to relax ordering constraints. We simply
generate the symbol type with two versions of each symbol and adapt the definition of
orderings. The proof strategy needs no change.

4.5 Criterion: Dependency Pairs with Graph

Not all DPs can follow one another in a dependency chain: one may consider the graph
of possible sequences of DPs (dependency graph). This graph is not computable, so one
uses graphs containing it. We consider here Arts & Giesl’s simple approximation [1].

The graph criterion [1] takes benefit from working on the (approximated) graph. In
its weak version, it consists in providing for each strongly connected component (SCC)
an ordering pair that decreases strictly for all its nodes, and weakly for all rules. In its
strong version, it considers cycles:

Theorem 1 (Arts and Giesl [1]). A TRS R is terminating iff for each cycle P in its
dependency graph there is a reduction pair (�P , �P) such that: (1) l �P r for any
l → r ∈ R, (2) s �P t for any 〈s, t〉 ∈ P , and (3) s �P t for at least one pair in P .

In practice, our tool uses a procedure due to Middledorp and Hirokawa [19] which
splits recursively the graph into sub-components using different orders. The proof uses
shallow embedding. One reason for this choice is that a generic theorem for a complex

8 Such DPs cannot occur in minimal chains. Thus they can be discarded.

158 E. Contejean et al.

graph criterion is not easy to prove since it involves a substantial part of graph theory
(e.g. the notion of cycle). Moreover, verifying the premises of such a theorem amounts
to checking that all SCCs found by the prover are really SCCs and that they are ter-
minating, but also to proving that it found all SCCs of the graph. That is tedious. On
the contrary, using shallow embedding we use these facts implicitly by focusing on the
termination proof of each component.

Weak version. The first thing we generate is the definition of each component as com-
puted by CiME. To illustrate the graph criterion on our example we may take the whole
system R. CiME detects two components (sub0 with some DPs of Radd, sub1 with
some DPs of Rack): we generate the two corresponding sub-relations of DPR.

Inductive DPR_sub0 : term → term → Prop :=
| DPR_sub00: ∀x0 x1 V0, x0 -[R]*> s(V0) → x1 -[R]*> #
→ ack(x0,x1)-[DPR_sub0]> ack(V0,s(#)) (∗<ack(s(V0),#) , ack(V0,s(#))>∗)...
Inductive DPR_sub1 : term → term → Prop := ...

The following lemma states the criterion and fits the general structure in Section 4.1.

Lemma wf_DPR_if_wf_sub0_sub1 : well_founded DPR_sub0 →
well_founded DPR_sub1 → well_founded DPR.

The proof of these lemmas uses the idea that if we collapse each SCC into one node,
they form a DAG on which we can reason by cases on the edges in a depth-first fashion.

Strong version. In addition, when the strong version of the criterion is used, the ter-
mination of each sub-component may itself be proven from the termination of smaller
components, each one with a different ordering. Due to lack of space, we will not go
into the details of this methodology.

It remains to conclude by providing well-suited ordering pairs.

4.6 Orderings: Polynomial Interpretations

In our framework a polynomial interpretation is defined as a recursive function on terms.
CiME outputs an interpretation for the SCC sub0 (other symbols are mapped to 0):

[#]= 0; [0](X0)= X0 + 1; [1](X0)= X0 + 1; [+](X0,X1)= X1 + X0;

From this interpretation we produce a measure: term → Z:

Fixpoint measure_DPR_sub0 (t:term) {struct t} : Z :=
match t with
| Var _ => 0 | # => 0
| 0(x0) => measure_DPR x0 + 1 | 1(x0) => measure_DPR x0 + 1
| plus (x0, x1) => measure_DPR x1 + measure_DPR x0 | _ => 0
end.

Notice that although our term definition is a deep embedding, the measure is defined
as if we were in a shallow embedding9. Indeed it is defined by a direct recursive func-
tion on terms and does not refer to polynomials, substitutions or variables (x0 above

9 In particular it is completely handled by the trace generation part of CiME since our library
COCCINELLE focuses on deep embedding.

Certification of Automated Termination Proofs 159

is a COQ variable, it is not a rewriting variable which would be of the form Var n).
This choice makes, once again, our proofs simpler to generate. In a deep embedding
we would need a theory for polynomials, and a generic theorem stating that a polyno-
mial on positive integers with positive factors is monotonic. But actually this property
instantiated on measure_DPR_sub0 above can be proven by a trivial induction on t.
So again the effort of a deep embedding is not worth this effort. The following lemma
proves the well-foundedness of measure_DPR_sub0:

Lemma Well_founded_DPR_sub0 : well_founded DPR_sub0.

which is equivalent to ∀ x, Acc DPR x. This is proven firstly by induction on the
value of (measure_DPR_sub0 x), then by cases on each DP of DPR_sub0, finally
by applying the induction hypothesis using the fact that each pair is decreases w.r.t.
measure_DPR_sub0. One concludes by polynomial comparison. It is well known that
the comparison of non-linear polynomials on N is not decidable in general. We have a
decision procedure for the particular kind of non linear polynomials CiME produces.

4.7 Orderings: RPO

The COCCINELLE library formalises RPO in a generic way, and proves it to be well-
suited for ordering pairs. RPO is defined using a precedence (a decidable strict ordering
prec over symbols) and a status (multiset/lexicographic) for each symbol.

Inductive status_type: Set := Lex:status_type | Mul:status_type.
Module Type Precedence.
Parameter (A: Set)(prec: relation A)(status: A → status_type).
Parameter prec_dec : ∀a1 a2 : A, {prec a1 a2} + {∼prec a1 a2}.
Parameter prec_antisym : ∀s, prec s s → False.
Parameter prec_transitive : transitive A prec.

End Precedence.

A module type for an RPO should be built from a term algebra and a precedence:

Module Type RPO.
Declare Module Import T : term.Term.
Declare Module Import P : Precedence with Definition A:= T.symbol.

The library contains a functor rpo.Make building an RPO from two modules of
type Term and Precedence. It also builds among other usual properties of RPO,
the proof that if the precedence is well-founded, then so is the RPO. This part of the
library is in a deep embedding style. Proofs of termination using RPOs are very easy to
generate as it is sufficient to generate the precedence, the proof that it is well-founded
and to apply the functor rpo.Make. It should be noticed that the fact that the generic
RPO uses a strict precedence and a comparison from left to right in the lexicographic
case is not a restriction in practice: a simple translation from terms to terms mapping
equivalent symbols onto the same symbol, and performing the wanted permutation over
the subterms under a given lexicographic symbol is both monotonic and stable. Hence
the relation defined by comparing the translations of terms by the generic RPO still has
the desired properties.

160 E. Contejean et al.

The generated definition of the RPO used for proving well-foundedness of sub1 is:

Module precedence <: Precedence.
Definition A : Set := symb.
Definition prec (a b:symb) : Prop :=

match a,b with | s,ack => True | _,_ => False end.
Definition status: symb → status_type:= fun x => Lex.
Lemma prec_dec: ∀a1 a2: symb, {prec a1 a2}+{∼ prec a1 a2}. ...
Lemma prec_antisym: ∀s, prec s s → False. ...
Lemma prec_transitive: transitive symb prec. ...

End precedence.

And as previously:Lemma Well_founded_DPR_sub1 : well_founded DPR_sub1.

Argument filtering systems The use of Dependency Pairs allows a wide choice of order-
ings by dropping the condition of strict monotonicity. Regarding path orderings, this can
be achieved using argument filtering systems (AFS) [1]. We define AFSs as fixpoints
and apply them at comparison time. This does not affect the (COQ) proof scheme.

5 Results and Benchmarks

CiME 2.99 can be downloaded and tested from the A3PAT website10. Once the system
is defined, we have to choose the termination criterion and the orderings. For instance,
we may select DP with graphs refinement and both linear polynomials (bound 2) and
RPO with AFSs, then ask CiME to check termination and generate the proof trace:

CiME> termcrit "dp"; termcrit "nomarks"; termcrit "graph";
CiME> polyinterpkind {("linear",2);("rpo",1)}; termination R;
CiME> coq_certify_proof "example.v" R;

We used the Termination Problems Data Base11 v3.2 as challenge. Until now we
have produced a COQ certificate for 374 TRS that CiME proves terminating without us-
ing modular technique or AC termination12; this number rises over 545 on TPDB v4.0.
We will now give some details on our experiments. We give below, depending on the
use of graphs, the average and max. sizes of compiled COQ proofs, as well as the av-
erage compilation time (together with the number of problem solved) using marks on
a 2GHz, 1GB machine, running Linux. RPO + Pol. means that selected orderings for
proof search are RPOs and polynomials.

with graph without graph
s. av. s. max t. av (nb) s. av. s. max t. av (nb)

RPO 3.6MB 9.09MB 9.9s (228) 3.64MB 5.31MB 7.8s (196)
Linear Pol. 0.72MB 12.27MB 7.8s (295) 0.42MB 4.89MB 2.5s (225)
Simple Pol. 0.84MB 12.40MB 10.1s (314) 0.45MB 1.26MB 6.3s (264)
RPO + Pol. 1.20MB 12.30MB 10.6s (374) 0.69MB 4.91MB 8.7s (300)

10 http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html
11 http://www.lri.fr/~marche/tpdb
12 Not all the systems of the TPDB are terminating. Some are proven by the full termination

engine of CiME 2.04 using techniques for which CiME 2.99 does not produce a certificate yet.

http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html
http://www.lri.fr/~marche/tpdb

Certification of Automated Termination Proofs 161

6 Related Works and Conclusion

There are several works to be mentioned w.r.t. the communication between automated
provers and COQ. Amongst them, the theorem-prover ZÉNON [14], based on tableaux,
produces COQ proof terms as certificates. ELAN enjoys techniques to produce COQ

certificates for rewriting [25]. Bezem describes an approach regarding resolution [3].
However, these systems do not tackle the problem of termination proofs.

To our knowledge the only other approach to generate termination certificates for
rewriting systems relies on the CoLoR/Rainbow libraries [4]. In this approach, term
algebras and TRSs are handled via an embedding even deeper than in COCCINELLE,
since a TRS is given by a set of pairs of terms. Rainbow is a relatively efficient tool
thanks to orderings built with matrix interpretations (which we don’t handle yet). But it
does not handle the following techniques: enhanced or marked dependency pairs, com-
plex graphs, RPO with AFS. We think that adding these techniques to CoLoR/Rainbow
will be hard, due to the pure deep embedding approach. There are currently 167 out of
864 termination problems in TPDB (v3.2) proven by TPA [22] and certified by CoL-
oR/Rainbow using polynomial interpretations and the webpage mentions 237 problems
certified using matrix interpretations.

We presented a methodology to make automated termination tools generate traces
in a proof assistant format. The approach is validated by a prototype generating COQ

traces. The performances of the prototype on the examples of the TPDB database are
promising. Our approach is easy to extend, in particular because extensions may be
done in deep or shallow embedding.

To apply this methodology on different tools and targeted proof assistants, one needs
a termination trace language. An ongoing work in the A3PAT group is to define a more
general language that can even tackle proofs of various rewriting properties such as
termination, confluence (which needs termination), equational proofs [7], etc. We think
that a good candidate could be based on the tree structure we explained on Section 4.1.

One particularly interesting follow-up of this work is the possibility to plug auto-
mated termination tools as external termination tactics for proof assistants. Indeed ter-
mination is a key property of many algorithms to be proven in proof assistants. More-
over, in type theory based proof assistants like COQ, one cannot define a function with-
out simultaneously proving its termination. This would allow to define functions whose
termination is not obvious without the great proof effort it currently needs.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science 236, 133–178 (2000)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)

3. Bezem, M., Hendriks, D., de Nivelle, H.: Automated proof construction in type theory using
resolution. J. Autom. Reasoning 29(3-4), 253–275 (2002)

4. Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: Color, a coq library
on rewriting and termination. In: Geser and Sondergaard [16]

5. Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA 2004.
LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)

162 E. Contejean et al.

6. Contejean, E.: Coccinelle (2005), http://www.lri.fr/∼contejea/Coccinelle/
coccinelle.html

7. Contejean, E., Corbineau, P.: Reflecting proofs in first-order logic with equality. In: Nieuwen-
huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 7–22. Springer, Heidelberg (2005)

8. Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with
cime. In: Rubio [27], pp. 71–73, http://cime.lri.fr

9. Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG-88. LNCS, vol. 417, Springer, Heidelberg (1990)

10. Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3),
279–301 (1982)

11. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1), 69–115
(1987)

12. Dershowitz, N.: Termination Dependencies. In: Rubio [27] Technical Report DSIC II/15/03,
Univ. Politécnica de Valencia, Spain

13. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)

14. Doligez, D.: Zenon. http://focal.inria.fr/zenon/
15. Endrullis, J.: Jambox, http://joerg.endrullis.de/index.html.
16. Geser, A., Sondergaard, H. (eds.).: Extended Abstracts of the 8th International Workshop on

Termination, WST’06 (August 2006)
17. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination proofs in

the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, Springer, Heidelberg (2006)

18. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Depen-
dency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

19. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)

20. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005.
LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)

21. Hubert, T.: Certification des preuves de terminaison en Coq. Rapport de DEA, Université
Paris 7, In French (September 2004)

22. Koprowski, A.: TPA, http://www.win.tue.nl/tpa
23. Lankford, D.S.: On proving term rewriting systems are Noetherian.Technical Report

MTP-3, Mathematics Department, Louisiana Tech. Univ., (1979) Available at http://
perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

24. Marché, C., Zantema, H.: The termination competition 2006. In Geser and Sondergaard [16],
http://www.lri.fr/~marche/termination-competition/

25. Nguyen, Q.H., Kirchner, C., Kirchner, H.: External rewriting for skeptical proof assistants.
J. Autom. Reasoning 29(3-4), 309–336 (2002)

26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283,
Springer, Heidelberg (2002)

27. Rubio, A., (ed.).: Extended Abstracts of the 6th International Workshop on Termination,
WST’03, Technical Report DSIC II/15/03, Univ. Politécnica de Valencia, Spain (June 2003)

28. The Coq Development Team. The Coq Proof Assistant Documentation – Version V8.1, (Feb-
ruary 2007), http://coq.inria.fr.

29. Urbain, X.: Modular and incremental automated termination proofs. Journal of Automated
Reasoning 32, 315–355 (2004)

http://www.lri.fr/$sim $contejea/Coccinelle/coccinelle.html
http://www.lri.fr/$sim $contejea/Coccinelle/coccinelle.html
http://cime.lri.fr
http://focal.inria.fr/zenon/
http://joerg.endrullis.de/index.html
http://www.win.tue.nl/tpa
http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
http://www.lri.fr/~marche/termination-competition/
http://coq.inria.fr

	Certification of Automated Termination Proofs
	Introduction
	Preliminaries
	Rewriting
	The Coq Proof Assistant
	Termination in Coq

	Modelling Termination of Rewriting in Coq
	Shallow vs Deep Embedding
	The COCCINELLE Library

	Generation of Proof Traces
	Global Structure of a Generated Proof
	The Running Example
	Generation of the TRS Definition
	Criterion: Dependency Pairs
	Criterion: Dependency Pairs with Graph
	Orderings: Polynomial Interpretations
	Orderings: RPO

	Results and Benchmarks
	Related Works and Conclusion

