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ABSTRACT

Given a lattice basis of n vectors in Zn, we propose an al-
gorithm using 12n3 + O(n2) floating point operations for
checking whether the basis is LLL-reduced. If the basis is
reduced then the algorithm will hopefully answer “yes”. If
the basis is not reduced, or if the precision used is not suf-
ficient with respect to n, and to the numerical properties
of the basis, the algorithm will answer “failed”. Hence a
positive answer is a rigorous certificate. For implementing
the certificate itself, we propose a floating point algorithm
for computing (certified) error bounds for the R factor of
the QR factorization. This algorithm takes into account all
possible approximation and rounding errors. The certificate
may be implemented using matrix library routines only. We
report experiments that show that for a reduced basis of ad-
equate dimension and quality the certificate succeeds, and
establish the effectiveness of the certificate. This effective-
ness is applied for certifying the output of fastest existing
floating point heuristics of LLL reduction, without slowing
down the whole process.

Categories and Subject Descriptors: I.1[Symbolic and

Algebraic Manipulation]: Algorithms; F.2.1[Analysis

of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems—Computations on matrices.

General Terms: Algorithms.

Keywords: linear algebra, QR factorization, lattice basis
reducedness, verification algorithm.

1. INTRODUCTION
Our motivation is to develop a certificate for lattice basis re-
ducedness that may be used in cooperation with—possibly
non certified—numerical reduction heuristics such as those
described in [22, 32, 34]. Indeed, floating-point approaches
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are crucial for reducing higher-dimensional lattice bases for
example in cryptography [11, 13], cryptanalysis [2], or in
computational group theory. A reducedness certificate is
necessary when using reduction for proving lattice proper-
ties, or establishing mathematical results. In applications
where only short vectors are expected however, a certificate
may be added if the overhead is neglectible. Hence our two
main constraints are speed and effectiveness. The certificate
has to be fast enough for not slowing down the whole pro-
cess, and the answer should be relevant (“yes”) on a large
class of inputs such as those successfully treated by the re-
duction heuristic. Our approach relies on error bounds for
the R factor of the QR factorization that we discuss first.

Bounding errors for the factor R. Let A be an n × n
invertible integer matrix. The QR factorization (see [12,
Ch. 19]) of A is a factorization A = QR in which the fac-
tor R ∈ Rn×n is an upper triangular matrix, and the factor
Q ∈ Rn×n is orthogonal (QT Q=I). We take the unique fac-
torization such that the diagonal entries of R are positive.
Let F denote a set of floating point numbers such that the
arithmetic operations in F satisfy the IEEE 754 arithmetic
standard [1]. Assume that an approximate floating point

and upper triangular factor eR ∈ Fn×n is given. In §5 we
propose an algorithm for computing a componentwise error

bound for | eR − R| using operations in F only. For a matrix

A = (ai,j), |A| denotes (|ai,j |). Our error bound for | eR−R|
is given by a matrix H ∈ Fn×n such that | eR − R| ≤ H | eR|.
Since floating point numbers are rational numbers, when eR
and H are known, the latter inequality provides a rigourous
mathematical bound for the error.

For understanding the behaviour of the error bounding al-
gorithm better, we recall in §2 some existing numerical per-
tubation analyses for the QR factorization. The necessary
background material may be found in Higham’s book [12].
Then in §3 and §4, we give the mathematical foundations
of our approach. We focus on the componentwise bounds
of [38] that allow us to derive an algorithm based on the
principles of verification (self-validating) methods. On the
latter methods we refer to the rich surveys of Rump [27, 28].
As various experiments in §5 and §6 will demonstrate, the
error bounding algorithm is effective in practice. It provides
relevant bounds for input matrices with appropriate numer-

ical properties. The matrix eR is computed by the modified
Gram-Schmidt orthogonalization—MGS for short—(see [12,
Alg. 19.12]). The cost of the certificate is only 5 times more
than a numerical QR factorization, we mean 10n3 + O(n2)
operations in F. For efficiency, the error bounds are them-
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selves calculated using floating point operations, neverthe-
less, they take into account all possible numerical and round-
ing errors. The reducedness certificate require 2n3 + O(n2)
additional operations. Most of the 12n3 operations actually
correspond to the evaluation of matrix expressions. An effi-
cient implementation may thus rely on fast matrix routines
such as the BLAS [8].

The LLL-reducedness certificate. The effectiveness of
the error bound on | eR − R| allows us to address the second
topic of the paper. To an n×n integer matrix A we associate
the Euclidean lattice L generated by the columns (aj) of
A (for definitions and on algorithmic aspects of lattices we
refer for instance to [6]). From (aj), the LLL algorithm
computes a reduced basis [15], where the reduction is defined
via the GS orthogonalization of a1, a2, . . . , an ∈ Zn. The
GS orthogonalization determines the associated orthogonal
basis a∗

1, a
∗
2, . . . , a

∗
n ∈ Qn by induction, together with factors

µij , using a∗
i = ai −

Pi−1
j=1 µija

∗
j , and µij = 〈ai, a

∗
j 〉/‖a∗

j‖2
2,

1 ≤ j < i. Vectors a1, a2, . . . , an are said proper for η ≥ 1/2
if their GS orthogonalization satisfies

|µij | ≤ η, 1 ≤ j < i ≤ n. (1)

In general one considers η = 1/2. The basis a1, a2, . . . , an of
L is called LLL-reduced with factors δ and η if the vectors
are proper, and if they satisfy the Lovász conditions:

(δ − µ2
i+1,i)‖a∗

i ‖2
2 ≤ ‖a∗

i+1‖2
2, 1 ≤ i ≤ n − 1, (2)

with 1/4 < δ ≤ 1 and 1/2 ≤ η <
√

δ. If A = QR is the QR
factorization of A then we have

j
‖a∗

i ‖2 = rii, 1 ≤ i ≤ n,
µij = rji/rjj , 1 ≤ j < i ≤ n.

(3)

Assuming multiplication of b bit integers within O(b2) bit
operations, a basis of vectors of Euclidean length 2β can
be LLL reduced in O(n5β + n4β3) [31], or O(n6β + n5β2)
(quadratic in fixed dimension) bit operations [21]. Relaxed
notions of reducedness and assuming that integers are multi-
plied within b1+o(1) operations may lead to much better cost
bounds such as (n3.5β2)1+o(1) [36] or (n3β(n + β))1+o(1) bit
operations [32].

We see from (3) that if an approximation eR of R with
error bounds are known, then it may be possible to check
whether (1) and (2) are satisfied. All the above draws the
reducedness certificate that we propose in §6. We fix a set
F of floating point numbers, and perform operations in F

only. For certifying the reducedness of the column basis as-
sociated to A the certificate works in three steps:

i: Numerical computation of a R factor eR: A ≈ eQ eR;

ii: Certified computation of F ∈ Fn×n: | eR − R| ≤ F ;
iii: Certified check of properness and Lovász conditions.

Following the principles of verification algorithms [28], Step i

is purely approximation, and our implementation of Steps ii

and iii is independent of the algorithm used for computing
eR. For taking into account all possible numerical and round-
ing errors, Steps ii and iii use certified computing techniques
(see §5).

In linear algebra, few things are known about the com-
plexity of computing error bounds. A main result in [7]
shows that the problem of computing a certified estimation
of ‖A−1‖ (for a consistent norm) is as difficult as testing
whether the product of two matrices is zero. Since with ran-
domization the matrix product could be verified in O(n2) op-

erations [9], the equivalence of the two problems is unclear.
Verification methods have been developped in [25, 23, 30] for
computing certified error bounds for linear system solution.
In [23] the error bound (normwise) is computed in twice the
time of Gaussian elimination. The verification approach [27,
28] gives an effective alternative to interval arithmetic whose
exponential overestimation of the error would not be appro-
priate [28, §10.7]. In the same spirit, a verification approach
using O(n3) floating point operations is proposed in [24] for
the sign of the determinant (see [14] for a survey on the
topic). We refer also to the verification of positive definite-
ness [29], or on eigenvalue verification [18, 26].

We will use several matrix norms (see [12, Ch. 6]) such as
the Frobenius norm ‖ · ‖F , the 2-norm ‖ · ‖2, or the infinity
norm ‖ · ‖∞ = max1≤i≤n

Pn

j=1 |aij |. For A = BC we have

‖A‖∞ ≤ ‖B‖∞‖C‖∞, and if h = ‖A‖∞ then |A| ≤ H with
hij = h. For a nonsingular matrix A, the matrix condition
number is defined by κp(A) = ‖A‖p‖A−1‖p with p = 2, F or
∞ [12, Th. 6.4]. With the infinity norm we will also use the
Bauer-Skeel condition number cond(A) = ‖|A−1||A|‖∞ ≤
κ∞(A) [12, § 7.2]. Let AT and A−T denote the transpose
matrices of A and A−1.

2. PERTURBATION ANALYSES FOR QR
A fixed precision computation of the QR factorization leads

to an approximate eR. The errors in eR with respect to R are

called the forward errors. The matrix eR is seen as the QR

factor of a perturbation eA = A + E, where E is called the
backward error. The link between backward and forward
errors is made using the condition number of the problem,
hence the condition number for the problem of computing
R. The (relative) condition number of the problem measures
the relative change in the output for a relative change in
the input. A useful tool for estimating the accuracy of the
solution to a problem, is the rule of thumb [12, p. 9]:

forward error <∼ condition number × backward error. (4)

The condition number for R may be defined theoretically,
but it is non trivial to derive expressions that can be used
in practice. Nevertheless, various formulae are proposed in
the literature providing quantities that can be thought as a
condition number for R, we refer for instance to [4]. These
quantities may be very effective in practice in a matrix norm
setting.

Let A = QR and A + E = eA = bQ eR be QR factorizations.
Note that in general for a floating point factorization A ≈
eQ eR, eQ is not orthogonal hence bQ 
= eQ. Let eR = R+F . For
a sufficiently small backward error E, consider the normwise

relative error ǫ = ‖ eA−A‖F /‖A‖2. Then Sun’s [37, Rem. 3.5]
perturbation bounds (see also [35]) give

‖ eR − R‖F /‖R‖2 ≤
√

2κ2(A)ǫ + O(ǫ2). (5)

An improved bound is given by Zha [Theorem 2.1][40] (see
also [4, § 5] and [12, §19.9]) under a componentwise model of

perturbation that we simplify here. Let | eA−A| = |E| = ǫ|A|,
then for sufficiently small ǫ we have:

‖ eR − R‖∞/‖R‖∞ ≤ cncond(R−1)ǫ + O(ǫ2) (6)

where cn is a constant depending on n. Hence the Bauer-
Skeel condition number of R−1 can be considered as a condi-
tion number for the problem of calculating R. This indicates
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that one may potentially loose significant digits (in the re-
sult) linearly with respect to the increase of log cond(R−1),
which is actually a typical behaviour in practice.

Identities (5) and (6) provide first order estimations of the
errors. They could be extended for giving strict bounds on
the forward error. Hence they are essential for estimating
the normwise loss of accuracy. Nevertheless, the loss of ac-
curacy on individual entries (needed for the certificate) may
not be deduced from these identities. Matrix norms may
largely overestimate the actual componentwise error in most
cases. Normwise bounds much sharper than (5) and (6) may
be found, especially in [5, 4]. It would be interesting to study
how they could lead to practical componentwise bounds.

3. COMPONENTWISE BOUNDS FOR R
We now present the mathematical view and justification of
the error bounding algorithm of §5. Given A ∈ Rn×n invert-

ible, and an upper triangular matrix eR ∈ Rn×n, we bound

| eR − R| where R is the unknown QR factor of A.
Rather than on the rule of thumb of previous section, our

error bounding algorithm will be based on the componen-
twise bounds of Sun [38]. Our use of Sun’s results is in
the spirit of the verification methods. In particular, the er-
ror bounding algorithm is oblivious of the algorithm that is

used for computing eR. Our bound computation may be ap-
pended to any numerical QR algorithm, and does not rely
on backward error bounds that would be have been needed
in (4). Indeed, backward error bounds are known for spe-
cific QR algorithms such as Householder or GS (see Theo-
rems 19.4 and 19.13 in [12]), but may not be available in the
general case. Note that the strict componentwise analysis
of Sun [38, § 4] for QR also relies on the backward error.

For being oblivious of the algorithm that has produced eR,
we rather resort to Sun’s study of the Cholesky factoriza-
tion [38, § 4]. If B ∈ Rn×n is symmetric positive definite,
then there is a unique upper triangular R ∈ Rn×n with
positive diagonal entries, such that B = RT R. This fac-
torization is called the Cholesky factorization [12, Th. 10.1].
It holds that A = QR is a QR factorization if and only if
B = AT A = RT R is a Cholesky factorization. One has
κ2(A

T A) = (κ2(A))2, however we implement the certificate

of §6 using QR for computing eR, and use the Cholesky point
of view only for computing the error bound.

For a matrix A ∈ Rn×n, the spectral radius ρ(A) is the
maximum of the modules of the eigenvalues of A. We denote
by triu(A) the upper triangular part of A, we mean that
triu(A) = (tij) with tij = aij if i ≤ j, and tij = 0 otherwise.
The following theorem is [38, Th. 2.1].

Theorem 3.1. For B, eB ∈ Rn×n symmetric positive def-

inite matrices, let R and eR be the Cholesky factors of B and
eB. Let E = eB−B, and G = | eR−T E eR−1|. Then if ρ(G) < 1

we have | eR − R| ≤ triu(G(I − G)−1)| eR|.

Let us apply Theorem 3.1 with B = AT A and eB = eAT eA.

Using eA = bQ eR and bQT bQ = I , we get:

G = | eR−T ( eAT eA − AT A) eR−1| = | eR−T AT A eR−1 − I |.
Going back to the R factor of the QR factorization we then
have the following corollary to Theorem 3.1

Theorem 3.2. For A ∈ Rn×n an invertible matrix, let R

be the QR factor of A. Let eR ∈ Rn×n be upper triangular

and invertible, and G = | eR−T AT A eR−1 − I |. Then if ρ(G) <
1, we have

| eR − R| ≤ triu(G(I − G)−1)| eR|. (7)

Proof. Since eR is invertible, eB = eRT eR is positive defi-
nite, the same holds for B = AT A. By construction R and
eR are the Cholesky factors of B and eB. It suffices to apply
Theorem 3.1 for concluding.

Few things are known about the (mathematical) quality of
bound (7) over R. Furthermore, both additional method (for

bounding eR−1 and triu(G(I −G)−1)) and arithmetic errors
will be introduced for the finite precision evaluation of the
bound. We produce an error bounding algorithm that is
not fully analyzed, the experiments of §5 will however give a
precise idea of its practical behaviour and effectiveness. For
illustrating bound (7) over R, let us consider some examples.

The calculations have been done in Maple [19], either ex-
actly or with high precision. Let H = triu(G(I−G)−1) such

that (7) is | eR − R| ≤ H | eR|. On random matrices (randsvd

type [12, Ch. 28], n = 200), with eR computed with double
precision floating point numbers (64 bit numbers) via the
MGS algorithm, we typically get the following. If A with
cond(R−1) ≈ 105 then ‖H‖∞ ≈ 2 · 10−9. This leads to

the knowledge that eR approximates R with (relative) ac-
curacy ≈ 10−10 (10−13 for the diagonal entries that play a
key role for the Lovász test). If cond(R−1) ≈ 4 · 1013 then
‖H‖∞ ≈ 3 · 10−3, and R is known with accuracy of about
10−2 (2 · 10−5 on the diagonal). The ratio between the es-
timation and the true error is less than 4 on the diagonal.
Consider also the matrix quoted from [4, Eq. 5.4]:

A1 =

"
1 1 − 10−10

1 1 + 10−10

#
,

with cond(R−1) ≈ 2 · 1010. We compute the matrix eR in
Matlab [17], and obtain over R the error bound:

| eR − R| ≤
"

3.5 · 10−12 3.5 · 10−12

0 7.4 · 10−17

#
. (8)

The matrix R is known with accuracy of about 2.5 · 10−12

on the first row, and 5.25 · 10−7 for r22. On the first row
the error is overestimated by a factor of about 3.6 · 104.
Notwithstanding the fact that the accuracy of the bound
produced by Theorem 3.1 is penalized by the particular form

of the matrix, the estimation of the accuracy of eR remains
very good. We refer to [39] for some additional examples.

4. TOWARD AN IMPLEMENTATION
Theorem 3.2 is the foundation of our error bounding algo-
rithm. It involves several quantities that need further study
before deriving an implementation in §5. We decompose the

computation of the bound on | eR − R| into four main steps.

We recall that at this point, only A and eR are known.

Step 1. Invertibility check of eR. For dealing with
eR−1 in a certified way, which is a non trivial question in
fixed precision, we use the verification solution of Oishi and
Rump [23]. We compute a purely numerical approximate

inverse V ≈ eR−1 (by numerical triangular inversion). Then

we know from [23] that eR is invertible if

‖ eRV − I‖∞ < 1. (9)
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Step 2. Bounding G. For bounding G, we are also in-

spired by [23] and introduce W = eRV (≈ I). We have

G = | eR−T AT A eR−1 − I |
= |W−T (V T AT AV − W T W )W−1)|
≤ |W−T | · |V T AT AV − W T W | · |W−1|.

In the inequality above, if eR is close to R and V is close to
eR−1, then both V T AT AV and W T W are close to identity.
Hence it is natural to pursue with:

G ≤ |W−T | · |(V T AT AV − I) − (W T W − I)| · |W−1|
which gives

G ≤ |W−T |·(|(V T AT AV −I)|+|(W TW−I)|)·|W−1|. (10)

We will use (10) for computing a certified bound for G. The

products involving A, V , and W = eRV will be bounded
directly by interval techniques. It remains to bound |W−1|.
We expect W to be close to I , and may use a specific ap-
proximation. We have |W−1| = |(I − (I − W ))−1| (see [23,

Introduction]). Then, when eR is invertible,

|W−1| = |I + (I − W ) + (I − W )2 + . . . |
≤ |2I − W |+ |(I − W )2| · |I + (I − W ) + . . . |.

Using that the entries of |I−W |2·|I+(I−W )+(I−W )2+. . . |
are bounded by the infinity norm, and since W is triangular,
it follows that

|W−1| ≤ |2I − W |+ T
„

‖I − W‖2

1 − ‖I − W‖∞

«
(11)

where, for x ∈ R, T (x) denotes the upper triangular matrix
whose entries on the diagonal and above are equal to x. Note
that the invertibility check (9) ensures that 1−‖I−W‖∞ >
0. The absolute value |W−1| could have been bounded di-
rectly using 1/(1−‖I −W‖∞), but introducing the infinity
norm only in the second order terms leads to a much better
bound in our experiments.

The matrix manipulations we have done for obtaining (10)
and (11) follow some keys to the design of verification meth-
ods. We especially refer to [28, p. 211] where the introduc-
tion of small factors is recommended. We have introduced
the matrices V T AT AV − I and W T W − I whose absolute
bounds are expected to be small when eR ≈ R and W ≈ I .
On the other hand, in (11), |2I −W | is expected to be close
to I , and remaining terms are second order terms (see also
the analysis for α in [23, §5]).
Step 3. Bounding the spectral radius of G. For any
consistent matrix norm we have ρ(A) ≤ ‖A‖. With the
above bound on G, we will simply test whether

‖G‖∞ < 1 (12)

for asserting that ρ(G) < 1 in Theorem 3.2. This test could
certainly be sharpened in future versions of the certificate.

Step 4. Bounding | eR −R|. Once a bound on G is known
it remains to bound H = triu(G(I − G)−1). Similarly to
(11) we will use:

H ≤ triu(G) + T
„

‖G‖2
∞

1 − ‖G‖∞

«
. (13)

Note that using the spectral radius check (12) ensures that
1 − ‖G‖∞ > 0.

5. ERROR BOUNDING ALGORITHM
Let F be a set of floating point numbers such that the arith-
metic operations in F satisfy the IEEE 754 standard. A

and eR are now matrices in Fn×n (in general, the entries
of R are not in F). We carry the four steps of §4 over to
F for bounding the error. The checks (9) and (12), and
inequalities (10), (11), and (13), only involve matrix multi-
plications, additions, subtractions, and divisions by a scalar.

Certified bounds for matrix expressions. We denote
by fl(x) the value of an arithmetic expression x computed by
arithmetic in F. For instance, for a, b ∈ F, fl(a+b/c) denotes
the result in F with the addition and division performed in F.
In the text, an arithmetic expression on floating point num-
bers denotes the exact value in R. For instance a + b ∈ R is
the result of the addition in R. The abolute value, the max,
and the negation are exact operations: for a, b ∈ F, fl(|a|) =
|a|, fl(max{a, b}) = max{a, b}, fl(−a) = −a. We can use the
possibility of changing the rounding mode. We essentially
follow Rump’s approach [28], and Oishi & Rump [23]. We
use the statements “round(down)” and “round(up)”1, all
operations after such a statement are rounded downwards
or upwards, respectively, until the next call to round. For
a, b ∈ F, a bound r on |a op b| for op ∈ {+,−,×,÷} may be
computed as follows. The program

round(down); r = fl(a op b)
round(up); r = fl(a op b); r = max{|r|, |r|} (14)

leads to r and r such that r ≤ a op b ≤ r, and to r ∈ F such
that |a op b| ≤ r. The IEEE standard ensures that r and r
are the best possible bounds in F. This may be extended to
the matrix operation AB−C with A, B, C ∈ Fn×n. If AB is
implemented using only additions and multiplications, then
the program

round(down); R = fl(AB − C)
round(up); R = fl(AB − C); R = max{|R|, |R|} (15)

where the maximum is taken componentwise, provides R ≤
AB − C ≤ R, and R ∈ Fn×n such that |AB − C| ≤ R.
For bounding more general matrix expressions we will use a
midpoint-radius matrix representation [28, §10.9]. Assume
that M and N are two matrices known to be in intervals
[M, M ] and [N, N ], respectively. Then the program [28,
Fig. 10.22]

round(up); mM = fl((M + M)/2); rM = fl(mM − M)
mN = fl((N + N)/2); rN = fl(mN − N)

round(down); R = fl(mM × mN − I)
round(up); R = fl(mM × mN − I)

R = fl(max{|R|, |R|} + |mM | × rN

+ rM × (|mN | + rN ))

computes R such that |M × N − I | ≤ R. The two lat-
ter programs allow to use fast matrix routines such as the
BLAS ones [28, §10.9]). Other matrix operations that we
perform are additions, products, divisions by scalars, and
infinity norms for matrices with positive entries. With no
subtraction certified bounds can be computed with directed
rounding using (14). For upper bounds on divisions by a
floating point number 1−g, we first compute an upper bound
for −(g − 1). Other approaches for certified matrix compu-
tations could be considered. We refer to Rump [28] for a
1 fesetround(FE DOWNWARD) and fesetround(FE UPWARD)
in C language.
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general discussion on this topic, and for the efficiency of the
approach chosen here. Using above certified techniques, the
four computational steps of §4 are implemented directly. We
obtain the following operation count.

Theorem 5.1. Let A ∈ Fn×n, and eR ∈ Fn×n upper tri-

angular be given. The error bounding algorithm computes a

matrix F ∈ Fn×n such that | eR − R| ≤ F , where R is the

unknown QR factor of A, in 10n3 + O(n2) floating point

operations.

We omit the proof here (see [39, §6.2]) which consists in ele-
mentary dense and triangular matrix manipulations. A QR
factorization typically costs 2n3+O(n2) (GS or Householder
approaches). Hence we are able to compute a certified error

bound | eR−R| at the cost of only five approximate factoriza-
tions. We have implemented the algorithm in C. The error
bounding program takes as input two floating point matrices

A and eR and always returns a matrix F . The entries of F
are finite floating numbers if the program is able to certify

that eR is invertible, that the spectral radius of G is less than
one, and if no overflow is produced. Otherwise, the entries
of F may be equal to infinity.

Computational results. Our results correspond to the
application of Theorem 5.1 with double precision floating
point numbers. Here and in §6 the condition numbers and
the “true errors” have been computed with high precision
using Mpfr [20]. We study the behaviour of the certified
error bound by looking at its value and accuracy (with re-
spect to the true error), especially when the dimension and
the condition number increase. We mainly focus on the ex-
ponent k such that relative error is in 10−k, k expresses the

number of significant decimal digits we certify for eR.

For the matrix A1 of Section 3, and eR from Matlab, we
compute the bound

| eR − R| ≤
"

6.7 · 10−11 6.7 · 10−11

0 5 · 10−16

#
.

Comparing to (8), we see that the finite precision estimator
we propose is only slightly overestimating the best bound
that could be obtained by the method.

For next results, eR is computed with the MGS algorithm
using double precision as for the estimator. Our tests use ten
matrix samples. We first illustrate the value of the certified

bound with respect to the dimension.
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Figure 5.1: Certified ‖H‖∞ for random A, κ2(A) ≈ 103.

Figures 5.1 and 5.2 are for random input matrices A (randsvd
type [12, Ch. 28]). We keep the condition number almost

constant when the dimension increase. We draw the in-
finity norm of H such that | eR − R| ≤ H | eR|, and the cer-
tified maximum relative error on the diagonal, we mean
maxi |erii − rii|/|erii|. We see that ‖H‖∞ increases linearly
with n. The loss of accuracy on the diagonal is approxi-
mately quadratic in n (we use a logarithmic scale for the y
axis on Figure 5.2).
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Figure 5.2: Certified maximum relative error on R for
random A, κ2(A) ≈ 103 (y axis with logarithmic scale).

Such small increase rates—that are typical for numerical al-
gorithm forward errors themselves—demonstrate a first as-
pect of the effectiveness of our finite precision bounds. The
certified general maximum error maxij |erij − rij |/|erij | in-
creases faster. It typically grows from 10−7 to 10−5 for the
dimensions considered here. We need further investigation
especially for a better understanding of the influence of the

product H | eR|, and of the magnitudes in R.
We discuss next the accuracy of the certified bound with re-

spect to the exact error (not the quality of the QR algorithm
itself). In addition to randsvd matrices we also consider
random integer matrices with entries of absolute values less
than 103. The condition numbers κ∞(A) are varying from
about 104 to 106. On dimension 1500, the maximum exact
relative error on R has order 10−10 to 10−9. We certify this
error by returning an error bound of order 10−6 to 10−5.
With respect to the dimension, we observe that the fast cer-
tified bound overestimates the componentwise error by a
factor of order of about 103 for n = 200 to 105 for n = 1500.
Restricted to the diagonal entries, the overestimation goes
from about 102 to less than 104. This shows that even with
condition numbers and dimensions that can be here quite
large, we are able to certify at least four or five significant
decimal digits for every entries of R, and at least 9 digits
on the diagonal. On matrices with small condition number
(Matlab gallery(’orthog’) [12, Chapter 28]) the quality
of the certified bound may be remarkably good and stable.
For dimensions between 60 and 500, and cond(R−1) ≈ 3
(κ∞ ≤ 200), we most of the time obtain an overestimation
between 15 and 22 (and more than 12 certified significant

decimal digits in eR).
We may now ask the question of the sensitivity of the qual-

ity of the certified error bound with respect to the condition

number of the input matrix.

n 30 40 50 60 70
κ∞(A) 1.1 · 106 7.8 · 107 4.8 · 109 2.8 · 1011 1.5 · 1013

qerr 281 161 103 140 152
Dig. 10 9 7 5 4

Figure 5.3: Quality of the bound for Kahan matrices.

365



We first report that the quality maybe be very good even for
matrices with high condition number. For Figure 5.3 we use
A = QAK ∈ Fn×n. The matrices Q are random orthogonal
from the Matlab gallery function [12, Chapter 28]. The
matrices AK are Kahan upper triangular matrices with aii =
(sin θ)i−1, aij = −(sin θ)i−1 cos θ for j > i, and θ = 1.2. We
give the ratio qerr of the certified relative error bound and
the true error (max), and the number of significant decimal

digits certified in eR.
In general, the quality of the bound may depend on the

condition number. Consider for instance the relative er-
ror ratio qerr for several small matrices (n = 10). For a
Chebyshev Vandermonde-like (nearly orthogonal, κ∞ ≈ 13),
qerr ≈ 11. We have qerr ≈ 14 for Toeplitz and symmetric
positive definite matrices (κ∞ ≈ 700). On the Pascal ma-
trix (κ∞ ≈ 8 · 109) we get qerr ≈ 25, and about 1600 for
the Hilbert matrix (κ∞ ≈ 3.5 · 1013). Figure 5.4 is more
general. The overestimation of certified error bound seems
to increase quite slowly with the condition number.

C
er

ti
fi

ed
 b

o
u

n
d

 /
 t

ru
e 

er
ro

r

number 
Condition

Figure 5.4: Error ratio qerr with respect to κ∞(A)
on randsvd matrices of dimension n = 200.

We see that the conditions in which we return finite bounds
are clearly linked with the numerical properties of A. Let us
give two examples for the impossibility to certify the spec-
tral radius using (12). We return finite bounds for the error
for the Pascal matrix of dimension 14 (κ∞ ≈ 3.8 · 1014,
‖G‖∞ ≈ 0.06). For n = 15 the algorithm produces infinity
bounds. On randsvd matrices of dimension 40, the algo-
rithm is effective until κ∞ ≈ 3 ·1014 with ‖G‖∞ ≈ 0.9. Note
that in double precision, with relative rounding unit 2−53

(the backward error is larger in general), and for a relative
forward error less than 1, the rule of thumb (4) advocates
for a condition number less than 1016.

The certified bound is computed with finite precision,
hence inherently, it overestimates the true error. However,
for realistic dimensions and condition numbers (with respect
to the precision), the overestimation is mastered. It follows
that in general, many significant digits are certified in the

approximate QR factor eR. The latter is a key to the appli-
cation of the fast bound to the reducedness certificate.

6. LLL REDUCEDNESS CERTIFICATE
To A ∈ Zn×n we associate the Euclidean lattice L gener-
ated by the columns (aj) of A. About lattices the reader
may refer for instance to [6]. Since the seminal Lenstra-
Lenstra-Lovász algorithm [15], the lattice basis reduction
problem receives much attention. In particular, floating-
point variants that lead to very fast reduction approaches
have been invented. See the work of Nguyen and Stehlé [21,
34], of Schnorr [32], and references therein. Most of float-
ing point variants lead to powerful heuristics, especially à la

Schnorr-Euchner [33], that are implemented in most of com-
puter algebra and number theory systems. Our aim here is
not to study the basis reduction itself. We focus on the
reducedness. Indeed, a fast heuristic may not certify that
the output basis is reduced (still working very well), and it
is worthwhile to study the problem of checking a posteri-

ori whether a given basis is reduced or not. The notion of
reduction we consider is the LLL reduction [15].

We propose here an algorithm that takes as input an in-
vertible matrix A ∈ Zn×n, and tests the LLL reducedness
of the basis formed by the columns of A. We have seen that
this consists in testing the two conditions (1) and (2). Let
R be the QR factor of A. If the aj are proper, we mean

|ri,j |/ri,i ≤ η, 1 ≤ i < j ≤ n, (16)

and if the Lovász conditions
q

δ − (ri,i+1/ri,i)
2 ri,i ≤ ri+1,i+1, 1 ≤ i ≤ n − 1, (17)

are satisfied, then the basis a1, . . . , an of L is called LLL re-
duced with parameters (δ, η). The latter holds for 1/4 <

δ ≤ 1 and 1/2 ≤ η <
√

δ. The principle of the algo-

rithm is to compute an approximate eR together with er-
ror bounds (using the floating point algorithm of §5), then
to test (16) and (17). The integer entries of A may not

be in F (we use Gmp [10]), nevertheless, for computing eR
we may take eA by direct conversion to F. Since eR will be
an approximation anyway, this does not really influence the

quality of subsequent computations. Then eR is computed
by the MGS algorithm, and we apply Theorem 5.1 for a cer-
tified error bound. The only expression where A is involved
is (10), where the computation of AV using (15) is needed.
The problem of conversion to F is solved here by rounding
upwards and downwards during the conversion integer to
floating point. We mean that we introduce a small inter-
val such that A ∈ [A−, A+] with A−, A+ ∈ Fn×n, and we
evaluate A−V and A+V in (15). Therefore the error bound
F ∈ Fn×n we compute by Theorem 5.1 is actually such that

|R− eR| ≤ F for R the QR factor of any A ∈ [A−, A+]. Once
F is known, for fixed i and j, we test (16) by resorting to
the bounding techniques of §5:

round(down); η = fl(η); ti = fl((ri,i − fi,i) × η)
round(up); tj = fl(|ri,j | + fi,j)

test tj ≤ ti?

with temporary variables ti and tj . Recall that the diagonal
entries of R are positive. Similarly, for a fixed i, we test (17)
using:

round(up); ti = fl(ri,i + fi,i); δ = fl(δ);
round(down); ti+1 = fl(ri+1,i+1 − fi+1,i+1)

t = −
`
fl(((|ri,i+1| − fi,i+1)/ti)

2) − δ
´
;

round(up); t = fl(
√

t × ti)
test t ≤ ti+1?

(18)

with temporary variables t and ti. In practice, for mini-
mizing the cost induced by the changes of rounding mode,
loops are put between the round instructions. In addition to
the 10n3 + O(n2) operations for computing F using Theo-
rem 5.1, the reducedness test requires 2n3+O(n2) operations

for computing an approximate factor eR.

Theorem 6.1. Let A ∈ Zn×n invertible and parameters

(δ, η) be given. The reducedness certificate certifies in 12n3+
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O(n2) floating point operations that the column lattice of A
is LLL reduced with parameters (δ, η), or returns “failed”.

Note that the rectangular case A ∈ Zm×n should not dif-
fer in a significant way. The ingredients we use (especially
Section 3) carry over to the case m > n.

The reducedness is certified when the error bound com-
puted for | eR − R| is finite, when no overflow or underflow
occur during the test, and when the basis is reduced. The
cost of the certificate is roughly the one of six floating point
QR factorizations. Therefore in general, the reducedness
test should be much faster than the reduction process itself
(see the cost bounds in the introduction), and may be ap-
pended to any reduction heuristic program.

Computational results. As previously we use double pre-
cision floating point numbers. Figures 6.1-6.3 show certified
bounds that we obtain for errors and quantities involved in
the reducedness test. We have manipulated lattices using
Magma [16], the LLL reduction implementation is based on
the work of Nguyen and Stehlé [21, 34].

The first family of reduced bases we consider are obtained
by the reduction of random integer matrices. The bases are
reduced for the classical LLL parameters (δ, η) = (3/4, 1/2)
in Figure 6.1, and (δ, η) = (0.99, 0.5001) for a stronger reduc-
tion in Figure 6.2. Since the numerical quality of the tested
bases is good (κ∞(A) ≤ 106), the reducedness certificate is
highly efficient. The certified error is very small, and hence
the tests are passed except in exceptional cases. We look at
the smallest difference diffmin = tk−t = mini{ti+1−t} whose
positiveness has to be certified in (18). The certificate has
lots of room since the absolute errors on t and tk = ‖a∗

k‖2

are much smaller.

n 40 200 500 1000

κ∞(A) 4.7·102 2.4·104 1.8·105 9·105

diffmin 18 10 13 23
Abs. err. on ‖a∗

k‖2 7.5·10−12 3·10−10 1.5·10−9 1.2·10−8

maxij µij 0.4997 0.499994 0.49991 0.49999

Rel. err. on |rij | 2.8·10−11 8.6·10−9 1.5·10−7 3·10−5

Figure 6.1: On (3/4, 1/2)-reduced bases from random
integer matrices with entries on 103 bits, max |aij | ≤ 1000.

Exceptional cases will rather occur when testing properness.
Indeed, testing reducedness may be an ill-posed problem
because of the possible equalities in (16) and (17). An ill-
posed case with say η = 1/2, is for example a reduced basis
with µij = 1/2 for some i, j. Therefore the algorithm will
rather be used for certifying that a (δ, η)-reduced basis is a
(δ− ǫ1, η+ ǫ2)-reduced basis for small ǫ1, ǫ2. The latter does
not really affect the relevant certified informations provided
by the reduction.

n 40 200 500 1000

diffmin 4.8·10−2 7.7·10−2 5.3·10−2 7.3·10−2

Abs. err. on ‖a∗

k‖2 9.4·10−14 6·10−12 4·10−11 2·10−10

Figure 6.2: On (0.99, 0.501)-reduced bases from random
integer matrices with entries on 10 bits, max |aij | ≤ 10.

A second type of reduced bases on which we have run the cer-
tificate comes from the problem of computing a good floating
point coefficient polynomial approximation to a function [3].
Reduced bases with parameters (3/4, 1/2) may have inte-
ger entries as large as 1080. The certificate has always suc-
ceeded. With n = 18 and with κ∞(A) ≈ 4·1012, the smallest

difference diffmin = t − tk has been around 2.4 · 1076 with
certified absolute error 1.95 · 1062. The maximum of the µij

has been certified to be less than 0.493. With n = 31 and
κ∞(A) ≈ 8·1013, we have certified an absolute error 3.2·1053

for diffmin ≈ 1.7 · 1067. Thanks to a maximum relative error
| eR − R| certified to be less than 0.2 (only 6 · 10−15 on the
diagonal) we have also checked that max µij ≤ 0.4991.

The first main source of failure of the certificate is the
failure of the error bounding algorithm when the precision
is too small compared to the numerical quality of the tested
basis. We have run the certificate on a third class of re-
duced bases. These bases are obtained by the reduction of
“random” (knapsack type) lattice bases in the sense of [22,
§3.4]. Here the non reduced bases have random integers of
103 bits in the knapsack weight row. The reduced bases in
input of the certificate are dense with integers as large as
1045 for n = 75, and 1020 for n = 300. We use the pa-
rameters (δ, η) = (3/4, 1/2) and (δ, η) = (0.99, 0.5001). The
choice (δ, η) = (0.99, 0.5001) produces better reduced bases
as shown by κ∞ in Figure 6.3 (for a same non reduced basis).
Until dimension 175 the certificate is very likely to succeed
since the maximum certified relative error is small. On sev-
eral tenths of trials, the certificate never failed, with a cer-
tified max |µij | as close to 1/2 (with η = 1/2) as 0.4999916.

n 75 125 150 175

(δ1, η1), κ∞(A) 6·105 2.3·108 1.3·1010 2·1011

diffmin 1.3·1037 4.2·1020 3·1015 1.2·1012

Rel. err. on |rij | 1.3·10−9 2.2·10−6 2.1·10−5 6.3·10−3

(δ2, η2), κ∞(A) 2.4·104 4·105 4·107 9·108

Rel. err. on |rij | 5.1·10−10 3.9·10−8 6·10−7 9.5·10−6

Figure 6.3: On “random” reduced bases, max |aij | goes
from 1045 (n = 50) down to 1025 (n = 175),

(δ1, η1) = (3/4, 1/2) and (δ2, η2) = (0.99, 0.5001).

Beyond dimension 175 with this type of reduced basis, the
certificate starts to fail. On dimension 200 with a condition-
ing about 1012 with (3/4, 1/2), the error bound on the rela-
tive error approaches 1. The properness with η = 1/2 may
become impossible to check, and ask for a certificate with
η = 1/2 + ǫ, say η = 0.5001. Note that the Lovász test (18)
seems to fail later thanks to much better error bounds on
the diagonal. On dimension 300 for (3/4, 1/2) the quality
of the reduced bases is too deteriorated (κ∞ ≈ 1019), and
the error bounding algorithm fails with the impossibility of
having a small spectral radius for G. Nevertheless, on a
typical example for dimension 300 with a (0.99, 0.5001) re-
duced basis, the error bounding algorithm remains effective
(κ∞ ≈ 2.5 · 1013, ‖H‖∞ ≈ 0.6). The certificate may not
be able to certify the actual reducedness of the basis, for
example with mini{ti − t} ≈ −4.12 · 108, and a too big ab-
solute error bound 4.42 · 108. By changing the certificate
parameters to (δ− ǫ1, η+ ǫ2) = (0.985, 0.515), the certificate
succeeds again, and therefore is still able to certify a relevant
information on the basis. The limitations of the certificate
deserve to be further investigated, especially in relation with
those identified in [22] for the reduction itself.

7. CONCLUSIONS
Between numerical approximation and computer algebra,
we propose a certificate for an (exact) algebraic/geometric
property—the LLL reducedness of a lattice basis. This work,
based on the fast computation of certified error bounds,
inherits from the verification methods approach. Thanks
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to the IEEE arithmetic standard the floating point errors
do not put a curb on the objective of certification. They
may rather be mastered and used for accelerating the pro-
grams. The foreground of our study is to understand the
compromise between the cost and the quality/effectiveness
of bounds and certificates, for instance, may we hope for an
O(n2) effective certificate? Computer arithmetics come in
the background, where floating point computation, multi-
precision, verification identities, intervals, and exact com-
putation are collaborative tools.

We think that our study raises several directions that de-
serve further investigations. The error bounding problem
and its finite precision implementation should be better un-
derstood and improved, diagonal scaling and other approx-
imate QR factorizations should be introduced. The useful-
ness of taking into account the algorithm used for comput-

ing eR should be studied (in a more restrictive verification
approach). Could the reducedness be certified without re-
sorting to the QR factorization?

To our knowledge, the minimum precision required for a
proven LLL variant is 1.6n+o(n) with the L2 algorithm [21,
22] (δ close to 1 and η close to 1/2). Our experiments show
we may certify reducedness for dimensions much higher than
this worst-case limit (nmax ≤ 53/1.6 ≈ 33). However, the
precision required as a function of the dimension remains to
be studied. The certificate is very effective for a use com-
plementary to reduction heuristics, it seems worth studying
its extensions to reduction algorithms and reducedness cer-
tificates with adaptative precision, and sensitive to the nu-
merical quality of the input basis.
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