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Abstract

We show how to turn any classifier that classifies

well under Gaussian noise into a new classifier

that is certifiably robust to adversarial perturba-

tions under the ℓ2 norm. While this “randomized

smoothing” technique has been proposed before

in the literature, we are the first to provide a tight

analysis, which establishes a close connection

between ℓ2 robustness and Gaussian noise. We

use the technique to train an ImageNet classifier

with e.g. a certified top-1 accuracy of 49% un-

der adversarial perturbations with ℓ2 norm less

than 0.5 (=127/255). Smoothing is the only ap-

proach to certifiably robust classification which

has been shown feasible on full-resolution Im-

ageNet. On smaller-scale datasets where com-

peting approaches to certified ℓ2 robustness are

viable, smoothing delivers higher certified accura-

cies. The empirical success of the approach sug-

gests that provable methods based on randomiza-

tion at prediction time are a promising direction

for future research into adversarially robust classi-

fication. Code and models are available at http:

//github.com/locuslab/smoothing.

1. Introduction

Modern image classifiers achieve high accuracy on i.i.d.

test sets but are not robust to small, adversarially-chosen

perturbations of their inputs (Szegedy et al., 2014; Biggio

et al., 2013). Given an image x correctly classified by, say,

a neural network, an adversary can usually engineer an ad-

versarial perturbation δ so small that x + δ looks just like

x to the human eye, yet the network classifies x + δ as a

different, incorrect class. Many works have proposed heuris-

tic methods for training classifiers intended to be robust to

adversarial perturbations. However, most of these heuristics

have been subsequently shown to fail against suitably pow-
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Figure 1. Evaluating the smoothed classifier at an input x. Left:

the decision regions of the base classifier f are drawn in differ-

ent colors. The dotted lines are the level sets of the distribution

N (x, σ2I). Right: the distribution f(N (x, σ2I)). As discussed

below, pA is a lower bound on the probability of the top class and

pB is an upper bound on the probability of each other class. Here,

g(x) is “blue.”

.

erful adversaries (Carlini & Wagner, 2017; Athalye et al.,

2018; Uesato et al., 2018). In response, a line of work on

certifiable robustness studies classifiers whose prediction at

any point x is verifiably constant within some set around x
(e.g. Wong & Kolter, 2018; Raghunathan et al., 2018a). In

most of these works, the robust classifier takes the form of a

neural network. Unfortunately, all existing approaches for

certifying the robustness of neural networks have trouble

scaling to networks that are large and expressive enough to

solve problems like ImageNet.

One workaround is to look for robust classifiers that are not

neural networks. In this paper, we analyze an operation we

call randomized smoothing1 which transforms any arbitrary

base classifier f into a new “smoothed classifier” g that is

certifiably robust in ℓ2 norm. Let f be an arbitrary classifier

which maps inputs R
d to classes Y . For any input x, the

smoothed classifier’s prediction g(x) is defined to be the

class which f is most likely to classify the random vari-

able N (x, σ2I) as. That is, g(x) returns the most probable

prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x, σ2I)
as x’s correct class, then the smoothed classifier g will be

1We adopt this term because it has been used to describe as
similar technique in a different context (Duchi et al., 2012).

http://github.com/locuslab/smoothing
http://github.com/locuslab/smoothing
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correct at x. But the smoothed classifier g will also possess

a desirable property that the base classifier may lack: one

can verify that g’s prediction is constant within an ℓ2 ball

around any input x, simply by estimating the probabilities

with which f classifiesN (x, σ2I) as each class. The higher

the probability with which f classifies N (x, σ2I) as the

most probable class, the larger the ℓ2 radius around x in

which g provably returns that class.

Lecuyer et al. (2019) proposed randomized smoothing as

a provable adversarial defense, and used it to train the first

certifiably robust classifier for ImageNet. Subsequently, Li

et al. (2018) proved a stronger robustness guarantee. How-

ever, both of these guarantees are loose, in the sense that

the smoothed classifier g is provably always more robust

than the guarantee indicates. In this paper, we prove the

first tight robustness guarantee for randomized smoothing.

Our analysis reveals that smoothing with Gaussian noise

naturally induces certifiable robustness under the ℓ2 norm.

We suspect that other, as-yet-unknown noise distributions

might induce robustness to other perturbation sets such as

general ℓp norm balls.

Randomized smoothing has one major drawback. If f is

a neural network, it is not possible to exactly compute the

probabilities with which f classifies N (x, σ2I) as each

class. Therefore, it is not possible to exactly evaluate the

smoothed classifier g or to exactly compute the radius in

which g is robust. Instead, we present Monte Carlo algo-

rithms for both tasks that are guaranteed to succeed with

arbitrarily high probability.

Despite this drawback, randomized smoothing enjoys sev-

eral compelling advantages over other certifiably robust

classifiers proposed in the literature: it makes no assump-

tions about the base classifier’s architecture, it is simple to

implement and understand, and, most importantly, it per-

mits the use of arbitrarily large neural networks as the base

classifier. In contrast, other certified defenses do not cur-

Table 1. Approximate certified accuracy on ImageNet. Each row

shows a radius r, the best hyperparameter σ for that radius, the

approximate certified accuracy at radius r of the corresponding

smoothed classifier, and the standard accuracy of the corresponding

smoothed classifier. To give a sense of scale, a perturbation with

ℓ2 radius 1.0 could change one pixel by 255, ten pixels by 80, 100

pixels by 25, or 1000 pixels by 8. Random guessing on ImageNet

would attain 0.1% accuracy.

ℓ2 RADIUS BEST σ CERT. ACC (%) STD. ACC(%)

0.5 0.25 49 67
1.0 0.50 37 57
2.0 0.50 19 57
3.0 1.00 12 44

Figure 2. The smoothed classifier’s prediction at an input x (left)

is defined as the most likely prediction by the base classifier on

random Gaussian corruptions of x (right; σ = 0.5). Note that this

Gaussian noise is much larger in magnitude than the adversarial

perturbations to which g is provably robust. One interpretation

of randomized smoothing in high dimension is that these large

random perturbations “drown out” small adversarial perturbations.

rently scale to large networks. Indeed, smoothing is the only

certified adversarial defense which has been shown feasible

on the full-resolution ImageNet classification task.

We use randomized smoothing to train state-of-the-art certi-

fiably ℓ2-robust ImageNet classifiers; for example, one of

them achieves 49% provable top-1 accuracy under adver-

sarial perturbations with ℓ2 norm less than 127/255 (Table

1). We also demonstrate that on smaller-scale datasets like

CIFAR-10 and SHVN, where competing approaches to cer-

tified ℓ2 robustness are feasible, randomized smoothing can

deliver better certified accuracies, both because it enables

the use of larger networks and because it does not constrain

the expressivity of the base classifier.

2. Related Work

Many works have proposed classifiers intended to be ro-

bust to adversarial perturbations. These approaches can

be broadly divided into empirical defenses, which empiri-

cally seem robust to known adversarial attacks, and certified

defenses, which are provably robust to certain kinds of ad-

versarial perturbations.

Empirical defenses The most successful empirical de-

fense to date is adversarial training (Goodfellow et al.,

2015; Kurakin et al., 2017; Madry et al., 2018), in which

adversarial examples are found during training (often using

projected gradient descent) and added to the training set.

Unfortunately, it is typically impossible to tell whether a

prediction by an empirically robust classifier is truly robust

to adversarial perturbations; the most that can be said is that

a specific attack was unable to find any. In fact, many heuris-

tic defenses proposed in the literature were later “broken”

by stronger adversaries (Carlini & Wagner, 2017; Athalye

et al., 2018; Uesato et al., 2018; Athalye & Carlini, 2018).
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Aiming to escape this cat-and-mouse game, a growing body

of work has focused on defenses with formal guarantees.

Certified defenses A classifier is said to be certifiably ro-

bust if for any input x, one can easily obtain a guarantee that

the classifier’s prediction is constant within some set around

x, often an ℓ2 or ℓ∞ ball. In most work in this area, the

certifiably robust classifier is a neural network. Some works

propose algorithms for certifying the robustness of generi-

cally trained networks, while others (Wong & Kolter, 2018;

Raghunathan et al., 2018a) propose both a robust training

method and a complementary certification mechanism.

Certification methods are either exact (a.k.a “complete”) or

conservative (a.k.a “sound but incomplete”). In the context

of ℓp norm-bounded perturbations, exact methods take a

classifier g, input x, and radius r, and report whether or

not there exists a perturbation δ within ‖δ‖ ≤ r for which

g(x) 6= g(x+ δ). In contrast, conservative methods either

certify that no such perturbation exists or decline to make a

certification; they may decline even when it is true that no

such perturbation exists. Exact methods are usually based

on Satisfiability Modulo Theories (Katz et al., 2017; Carlini

et al., 2017; Ehlers, 2017; Huang et al., 2017) or mixed

integer linear programming (Cheng et al., 2017; Lomuscio

& Maganti, 2017; Dutta et al., 2017; Fischetti & Jo, 2018;

Bunel et al., 2018). Unfortunately, no exact methods have

been shown to scale beyond moderate-sized (100,000 acti-

vations) networks (Tjeng et al., 2019), and networks of that

size can only be verified when they are trained in a manner

that impairs their expressivity.

Conservative certification is more scalable. Some conser-

vative methods bound the global Lipschitz constant of the

neural network (Gouk et al., 2018; Tsuzuku et al., 2018;

Anil et al., 2019; Cisse et al., 2017), but these approaches

tend to be very loose on expressive networks. Others mea-

sure the local smoothness of the network in the vicinity of a

particular input x. In theory, one could obtain a robustness

guarantee via an upper bound on the local Lipschitz con-

stant of the network (Hein & Andriushchenko, 2017), but

computing this quantity is intractable for general neural net-

works. Instead, a panoply of practical solutions have been

proposed in the literature (Wong & Kolter, 2018; Wang et al.,

2018a;b; Raghunathan et al., 2018a;b; Wong et al., 2018;

Dvijotham et al., 2018b;a; Croce et al., 2019; Gehr et al.,

2018; Mirman et al., 2018; Singh et al., 2018; Gowal et al.,

2018; Weng et al., 2018a; Zhang et al., 2018). Two themes

stand out. Some approaches cast verification as an opti-

mization problem and import tools such as relaxation and

duality from the optimization literature to provide conserva-

tive guarantees (Wong & Kolter, 2018; Wong et al., 2018;

Raghunathan et al., 2018a;b; Dvijotham et al., 2018b;a).

Others step through the network layer by layer, maintaining

at each layer an outer approximation of the set of activations

reachable by a perturbed input (Mirman et al., 2018; Singh

et al., 2018; Gowal et al., 2018; Weng et al., 2018a; Zhang

et al., 2018). None of these local certification methods have

been shown to be feasible on networks that are large and

expressive enough to solve modern machine learning prob-

lems like the ImageNet classification task. Also, all method

either assume specific network architectures (e.g. ReLU

activations or a layered feedforward structure) or require

extensive customization for new network architectures.

Related work involving noise Prior works have proposed

using a network’s robustness to Gaussian noise as a proxy

for its robustness to adversarial perturbations (Weng et al.,

2018b; Ford et al., 2019), and have suggested that Gaussian

data augmentation could supplement or replace adversar-

ial training (Zantedeschi et al., 2017; Kannan et al., 2018).

Smilkov et al. (2017) observed that averaging a classifier’s

input gradients over Gaussian corruptions of an image yields

very interpretable saliency maps. The robustness of neural

networks to random noise has been analyzed both theo-

retically (Fawzi et al., 2016; Franceschi et al., 2018) and

empirically (Dodge & Karam, 2017). Finally, Webb et al.

(2019) proposed a statistical technique for estimating the

noise robustness of a classifier more efficiently than naive

Monte Carlo simulation; we did not use this technique since

it appears to lack formal high-probability guarantees. While

these works hypothesized relationships between a neural net-

work’s robustness to random noise and the same network’s

robustness to adversarial perturbations, randomized smooth-

ing instead uses a classifier’s robustness to random noise to

create a new classifier robust to adversarial perturbations.

Randomized smoothing Randomized smoothing has

been studied previously for adversarial robustness. Sev-

eral works (Liu et al., 2018; Cao & Gong, 2017) proposed

similar techniques as heuristic defenses, but did not prove

any guarantees. Lecuyer et al. (2019) used inequalities

from the differential privacy literature to prove an ℓ2 and

ℓ1 robustness guarantee for smoothing with Gaussian and

Laplace noise, respectively. Subsequently, Li et al. (2018)

used tools from information theory to prove a stronger ℓ2 ro-

bustness guarantee for Gaussian noise. However, all of these

robustness guarantees are loose. In contrast, we prove a tight

robustness guarantee in ℓ2 norm for randomized smoothing

with Gaussian noise.

3. Randomized smoothing

Consider a classification problem from R
d to classes Y .

As discussed above, randomized smoothing is a method for

constructing a new, “smoothed” classifier g from an arbitrary

base classifier f . When queried at x, the smoothed classifier

g returns whichever class the base classifier f is most likely
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to return when x is perturbed by isotropic Gaussian noise:

g(x) = argmax
c∈Y

P(f(x+ ε) = c) (1)

where ε ∼ N (0, σ2I)

An equivalent definition is that g(x) returns the class c
whose pre-image {x′ ∈ R

d : f(x′) = c} has the largest

probability measure under the distribution N (x, σ2I). The

noise level σ is a hyperparameter of the smoothed classifier

g which controls a robustness/accuracy tradeoff; it does not

change with the input x. We leave undefined the behavior

of g when the argmax is not unique.

We will first present our robustness guarantee for the

smoothed classifier g. Then, since it is not possible to

exactly evaluate the prediction of g at x or to certify the ro-

bustness of g around x, we will give Monte Carlo algorithms

for both tasks that succeed with arbitrarily high probability.

3.1. Robustness guarantee

Suppose that when the base classifier f classifiesN (x, σ2I),
the most probable class cA is returned with probability pA,

and the “runner-up” class is returned with probability pB .

Our main result is that smoothed classifier g is robust around

x within the ℓ2 radius R = σ
2 (Φ

−1(pA)−Φ
−1(pB)), where

Φ−1 is the inverse of the standard Gaussian CDF. This result

also holds if we replace pA with a lower bound pA and we

replace pB with an upper bound pB .

Theorem 1. Let f : R
d → Y be any deterministic or

random function, and let ε ∼ N (0, σ2I). Let g be defined
as in (1). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (2)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (3)

We now make several observations about Theorem 1:

• Theorem 1 assumes nothing about f . This is crucial

since it is unclear which well-behavedness assump-

tions, if any, are satisfied by modern deep architectures.

• The certified radius R is large when: (1) the noise level

σ is high, (2) the probability of the top class cA is high,

and (3) the probability of each other class is low.

• The certified radius R goes to ∞ as pA → 1 and

pB → 0. This should sound reasonable: the Gaussian

distribution is supported on all of Rd, so the only way

that f(x + ε) = cA with probability 1 is if f = cA
almost everywhere.

Both Lecuyer et al. (2019) and Li et al. (2018) proved ℓ2
robustness guarantees for the same setting as Theorem 1, but

with different, smaller expressions for the certified radius.

However, our ℓ2 robustness guarantee is tight: if (2) is all

that is known about f , then it is impossible to certify an ℓ2
ball with radius larger than R. In fact, it is impossible to

certify any superset of the ℓ2 ball with radius R:

Theorem 2. Assume pA + pB ≤ 1. For any perturbation

δ with ‖δ‖2 > R, there exists a base classifier f consistent

with the class probabilities (2) for which g(x+ δ) 6= cA.

Theorem 2 shows that Gaussian smoothing naturally in-

duces ℓ2 robustness: if we make no assumptions on the base

classifier beyond the class probabilities (2), then the set of

perturbations to which a Gaussian-smoothed classifier is

provably robust is exactly an ℓ2 ball.

The complete proofs of Theorems 1 and 2 are in Appendix

A. We now sketch the proofs in the special case when there

are only two classes.

Theorem 1 (binary case). Suppose pA ∈ ( 12 , 1] satisfies

P(f(x + ε) = cA) ≥ pA. Then g(x + δ) = cA for all

‖δ‖2 < σΦ−1(pA).

Proof sketch. Fix a perturbation δ ∈ R
d. To guarantee

that g(x + δ) = cA, we need to show that f classifies the

translated Gaussian N (x + δ, σ2I) as cA with probability

> 1
2 . However, all we know about f is that f classifies

N (x, σ2I) as cA with probability ≥ pA. This raises the

question: out of all possible base classifiers f which classify

N (x, σ2I) as cA with probability ≥ pA, which one f∗

classifiesN (x+δ, σ2I) as cA with the smallest probability?

One can show using an argument similar to the Neyman-

Pearson lemma (Neyman & Pearson, 1933) that this “worst-

case” f∗ is a linear classifier whose decision boundary is

normal to the perturbation δ (Figure 3):

f∗(x′) =

{

cA if δT (x′ − x) ≤ σ‖δ‖2Φ
−1(pA)

cB otherwise
(4)

This “worst-case” f∗ classifies N (x + δ, σ2I) as cA with

probability Φ
(

Φ−1(pA)−
‖δ‖2

σ

)

. Therefore, to ensure that

even the “worst-case” f∗ classifiesN (x+δ, σ2I) as cA with

probability > 1
2 , we solve for those δ for which

Φ

(

Φ−1(pA)−
‖δ‖2
σ

)

>
1

2

which is equivalent to the condition ‖δ‖2 < σΦ−1(pA).

Theorem 2 is a simple consequence: for any δ with ‖δ‖2 >
R, the base classifier f∗ defined in (4) is consistent with (2);

yet if f∗ is the base classifier, then g(x+ δ) = cB .
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Figure 3. Illustration of f∗ in two dimensions. The concentric

circles are the density contours of N (x, σ2I) and N (x+ δ, σ2I).
Out of all base classifiers f which classify N (x, σ2I) as cA (blue)

with probability ≥ pA, such as both classifiers depicted above,

the “worst-case” f∗, which classifies N (x + δ, σ2I) as cA with

minimal probability, is the classifier depicted on the right: a linear

classifier with decision boundary normal to the perturbation δ.

Figure 5 (left) plots our ℓ2 robustness guarantee against

the guarantees derived in prior work. Observe that our

R is much larger than that of Lecuyer et al. (2019) and

moderately larger than that of Li et al. (2018). Appendix I

derives the other two guarantees using this paper’s notation.

Linear base classifier A two-class linear classifier

f(x) = sign(wTx + b) is already certifiable: the distance

from any input x to the decision boundary is |wTx+b|/‖w‖,
and no perturbation δ with ℓ2 norm less than this distance

can possibly change f ’s prediction. In Appendix B we show

that if f is linear, then the smoothed classifier g is identical

to the base classifier f . Moreover, we show that our bound

(3) will certify the true robust radius |wTx+ b|/‖w‖, rather

than a smaller, overconservative radius. Therefore, when f
is linear, there always exists a perturbation δ just beyond the

certified radius which changes g’s prediction.

Noise level can scale with image resolution Since our

expression (3) for the certified radius does not depend ex-

plicitly on the data dimension d, one might worry that ran-

domized smoothing is less effective for images of higher

resolution — certifying a fixed ℓ2 radius is “less impressive”

for, say, a 224× 224 image than for a 56× 56 image. How-

ever, as illustrated by Figure 4, images in higher resolution

can tolerate higher levels σ of isotropic Gaussian noise be-

fore their class-distinguishing content gets destroyed. As

a consequence, in high resolution, smoothing can be per-

formed with a larger σ, leading to larger certified radii. See

Appendix G for a more rigorous version of this argument.

3.2. Practical algorithms

We now present practical Monte Carlo algorithms for eval-

uating g(x) and certifying the robustness of g around x.

More details can be found in Appendix C.

3.2.1. PREDICTION

Evaluating the smoothed classifier’s prediction g(x) re-

quires identifying the class cA with maximal weight in the

categorical distribution f(x+ ε). The procedure described

in pseudocode as PREDICT draws n samples of f(x + ε)
by running n noise-corrupted copies of x through the base

classifier. Let ĉA be the class which appeared the largest

number of times. If ĉA appeared much more often than any

other class, then PREDICT returns ĉA. Otherwise, it abstains

from making a prediction. We use the hypothesis test from

Hung & Fithian (2019) to calibrate the abstention threshold

so as to bound by α the probability of returning an incorrect

answer. PREDICT satisfies the following guarantee:

Proposition 1. With probability at least 1 − α over the

randomness in PREDICT, PREDICT will either abstain or

return g(x). (Equivalently: the probability that PREDICT

returns a class other than g(x) is at most α.)

The function SAMPLEUNDERNOISE(f , x, num, σ) in the

pseudocode draws num samples of noise, ε1 . . . εnum ∼
N (0, σ2I), runs each x + εi through the base classifier f ,

and returns a vector of class counts. BINOMPVALUE(nA,

nA +nB , p) returns the p-value of the two-sided hypothesis

test that nA ∼ Binomial(nA + nB , p).

Even if the true smoothed classifier g is robust at radius R,

PREDICT will be vulnerable in a certain sense to adversarial

perturbations with ℓ2 norm slightly less than R. By engi-

neering a perturbation δ for which f(x+ δ + ε) puts mass

just over 1
2 on class cA and mass just under 1

2 on class cB ,

an adversary can force PREDICT to abstain at a high rate. If

this scenario is of concern, a variant of Theorem 1 could be

proved to certify a radius in which P(f(x+ δ+ ε) = cA) is

larger by some margin than maxc 6=cA P(f(x+ δ + ε) = c).

3.2.2. CERTIFICATION

Evaluating and certifying the robustness of g around an

input x requires not only identifying the class cA with maxi-

mal weight in f(x+ ε), but also estimating a lower bound

pA on the probability that f(x + ε) = cA and an upper

bound pB on the probability that f(x+ ε) equals any other

class. Doing all three of these at the same time in a sta-

tistically correct manner requires some care. One simple

Figure 4. Left to right: clean 56 x 56 image, clean 224 x 224 image,

noisy 56 x 56 image (σ = 0.5), noisy 224 x 224 image (σ = 0.5).
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Pseudocode for certification and prediction

# evaluate g at x
function PREDICT(f , σ, x, n, α)

counts← SAMPLEUNDERNOISE(f , x, n, σ)

ĉA, ĉB ← top two indices in counts

nA, nB ← counts[ĉA], counts[ĉB]

if BINOMPVALUE(nA, nA + nB , 0.5) ≤ α return ĉA
else return ABSTAIN

# certify the robustness of g around x
function CERTIFY(f , σ, x, n0, n, α)

counts0← SAMPLEUNDERNOISE(f, x, n0, σ)
ĉA ← top index in counts0

counts← SAMPLEUNDERNOISE(f, x, n, σ2)
pA ← LOWERCONFBOUND(counts[ĉA], n, 1− α)

if pA > 1
2 return prediction ĉA and radius σΦ−1(pA)

else return ABSTAIN

solution is presented in pseudocode as CERTIFY: first, use

a small number of samples from f(x + ε) to take a guess

at cA; then use a larger number of samples to estimate pA;

then simply take pB = 1− pA.

Proposition 2. With probability at least 1 − α over the

randomness in CERTIFY, if CERTIFY returns a class ĉA
and a radius R (i.e. does not abstain), then g predicts ĉA
within radius R around x: g(x+ δ) = ĉA ∀ ‖δ‖2 < R.

The function LOWERCONFBOUND(k, n, 1−α) in the pseu-

docode returns a one-sided (1 − α) lower confidence in-

terval for the Binomial parameter p given a sample k ∼
Binomial(n, p).

Certifying large radii requires many samples Recall

from Theorem 1 that R approaches∞ as pA approaches 1.

Unfortunately, it turns out that pA approaches 1 so slowly

with n that R also approaches∞ very slowly with n. Con-

sider the most favorable situation: f(x) = cA everywhere.

This means that g is robust at radius∞. But after observing

n samples of f(x + ε) which all equal cA, the tightest (to

our knowledge) lower bound would say that with probabil-

ity least 1 − α, pA ≥ α(1/n). Plugging pA = α(1/n) and

pB = 1− pA into (3) yields an expression for the certified

radius as a function of n: R = σΦ−1(α1/n). Figure 5

(right) plots this function for α = 0.001, σ = 1. Observe

that certifying a radius of 4σ with 99.9% confidence would

require ≈ 105 samples.

3.3. Training the base classifier

Theorem 1 holds regardless of how the base classifier f is

trained. However, in order for g to classify the labeled ex-

ample (x, c) correctly and robustly, f needs to consistently

classify N (x, σ2I) as c. In high dimension, the Gaussian
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Figure 5. Left: Certified radius R as a function of pA (with pB =
1− pA and σ = 1) under all three randomized smoothing bounds.

Right: A plot of R = σΦ−1(α1/n) for α = 0.001 and σ = 1.

The radius we can certify with high probability grows slowly with

the number of samples, even in the best case where f(x) = cA
everywhere.

distributionN (x, σ2I) places almost no mass near its mode

x. As a consequence, when σ is moderately high, the distri-

bution of natural images has virtually disjoint support from

the distribution of natural images corrupted by N (0, σ2I);
see Figure 2 for a visual demonstration. Therefore, if the

base classifier f is trained via standard supervised learning

on the data distribution, it will see no noisy images during

training, and hence will not necessarily learn to classify

N (x, σ2I) with x’s true label. Indeed, we observed empiri-

cally that when neural network base classifiers are trained

on noiseless data, they cannot recognize noisy images.

Therefore, in this paper we follow Lecuyer et al. (2019) and

train the base classifier with Gaussian data augmentation at

variance σ2. A justification for this procedure is provided in

Appendix F. However, we suspect that there may be room to

improve upon this training scheme, perhaps by training the

base classifier so as to maximize the smoothed classifier’s

certified accuracy at some tunable radius r.

4. Experiments

In adversarially robust classification, one metric of interest

is the certified test set accuracy at radius r, defined as the

fraction of the test set which g classifies correctly with a pre-

diction that is certifiably robust within an ℓ2 ball of radius r.

However, if g is a randomized smoothing classifier, comput-

ing this quantity exactly is not possible, so we instead report

the approximate certified test set accuracy, defined as the

fraction of the test set which CERTIFY classifies correctly

(without abstaining) and certifies robust with a radius R ≥ r.

Appendix D shows how to convert the approximate certified

accuracy into a lower bound on the true certified accuracy

that holds with high probability over the randomness in

CERTIFY. However Appendix H.2 demonstrates that when

α is small, the difference between these two quantities is

negligible. Therefore, in our experiments we omit the step

for simplicity and report approximate certified accuracies.
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Figure 6. Approximate certified accuracy attained by randomized

smoothing on CIFAR-10 (top) and ImageNet (bottom). The hyper-

parameter σ controls a robustness/accuracy tradeoff. The dashed

black line is an upper bound on the empirical robust accuracy of

an undefended classifier with the base classifier’s architecture.

In all experiments, unless otherwise stated, we ran CERTIFY

with α = 0.001, so there was at most a 0.1% chance that

CERTIFY returned a radius in which g was not truly robust.

Unless otherwise stated, when running CERTIFY we used

n0 = 100 Monte Carlo samples for selection and n =
100,000 samples for estimation.

In the figures above that plot certified accuracy as a function

of radius r, the certified accuracy always decreases gradually

with r until reaching some point where it plummets to zero.

This drop occurs because for each noise level σ and number

of samples n, there is a hard upper limit to the radius we can

certify with high probability, achieved when all n samples

are classified by f as the same class.

ImageNet and CIFAR-10 results We applied random-

ized smoothing to CIFAR-10 (Krizhevsky, 2009) and Im-

ageNet (Deng et al., 2009). On each dataset we trained

several smoothed classifiers, each with a different σ. On

CIFAR-10 our base classifier was a 110-layer residual

network; certifying each example took 15 seconds on an

NVIDIA RTX 2080 Ti. On ImageNet our base classifier

was a ResNet-50; certifying each example took 110 seconds.

We also trained a neural network with the base classifier’s

architecture on clean data, and subjected it to a DeepFool ℓ2
adversarial attack (Moosavi-Dezfooli et al., 2016), in order

to obtain an empirical upper bound on its robust accuracy.

We certified the full CIFAR-10 test set and a subsample of

500 examples from the ImageNet test set.
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Figure 7. Comparison betwen randomized smoothing and Wong

et al. (2018). Each green line is a small resnet classifier trained and

certified using the method of Wong et al. (2018) with a different

setting of its hyperparameter ǫ. The purple line is our method

using the same small resnet architecture as the base classifier; the

blue line is our method with a larger neural network as the base

classifier. Wong et al. (2018) gives deterministic robustness guar-

antees, whereas smoothing gives high-probabaility guaranatees;

therefore, we plot here the certified accuracy of Wong et al. (2018)

against the “approximate” certified accuracy of smoothing.

Figure 6 plots the certified accuracy attained by smoothing

with each σ. The dashed black line is the empirical upper

bound on the robust accuracy of the base classifier architec-

ture; observe that smoothing improves substantially upon

the robustness of the undefended base classifier architecture.

We see that σ controls a robustness/accuracy tradeoff. When

σ is low, small radii can be certified with high accuracy, but

large radii cannot be certified. When σ is high, larger radii

can be certified, but smaller radii are certified at a lower ac-

curacy. This observation echoes the finding in Tsipras et al.

(2019) that adversarially trained networks with higher ro-

bust accuracy tend to have lower standard accuracy. Tables

of these results are in Appendix E.

Figure 8 (left) plots the certified accuracy obtained using our

Theorem 1 guarantee alongside the certified accuracy ob-

tained using the analogous bounds of Lecuyer et al. (2019)

and Li et al. (2018). Since our expression for the certified

radius R is greater (and, in fact, tight), our bound delivers

higher certified accuracies. Figure 8 (middle) projects how

the certified accuracy would have changed had CERTIFY

used more or fewer samples n (under the assumption that the

relative class proportions in counts would have remained

constant). Finally, Figure 8 (right) plots the certified accu-

racy as the confidence parameter α is varied. Observe that

the certified accuracy is not very sensitive to α.

Comparison to baselines We compared randomized

smoothing to three baseline approaches for certified ℓ2 ro-

bustness: the duality approach from Wong et al. (2018),

the Lipschitz approach from Tsuzuku et al. (2018), and the
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Figure 8. Experiments with randomized smoothing on ImageNet with σ = 0.25. Left: certified accuracies obtained using our Theorem 1

versus those obtained using the robustness guarantees derived in prior work. Middle: projections for the certified accuracy if the number

of samples n used by CERTIFY had been larger or smaller. Right: certified accuracy as the failure probability α of CERTIFY is varied.

approach from Weng et al. (2018a); Zhang et al. (2018).

The strongest baseline was Wong et al. (2018); we defer the

comparison to the other two baselines to Appendix H.

In Figure 7, we compare the largest publicly released model

from Wong et al. (2018), a small resnet, to two randomized

smoothing classifiers: one which used the same small resnet

architecture for its base classifier, and one which used a

larger 110-layer resnet for its base classifier. First, observe

that smoothing with the large 110-layer resnet substantially

outperforms the baseline (across all hyperparameter set-

tings) at all radii. Second, observe that smoothing with the

small resnet also outperformed the method of Wong et al.

(2018) at all but the smallest radii. We attribute this latter re-

sult to the fact that neural networks trained using the method

of Wong et al. (2018) are “typically overregularized to the

point that many filters/weights become identically zero,” per

that paper. In contrast, the base classifier in randomized

smoothing is a fully expressive neural network.

Prediction It is computationally expensive to certify the

robustness of g around a point x, since the value of n in

CERTIFY must be very large. However, it is far cheaper

to evaluate g at x using PREDICT, since n can be small.

For example, when we ran PREDICT on ImageNet (σ =
0.25) using n = 100, making each prediction only took

0.15 seconds, and we attained a top-1 test accuracy of 65%

(Appendix E).

As discussed earlier, an adversary can potentially force PRE-

DICT to abstain with high probability. However, it is rela-

tively rare for PREDICT to abstain on the actual data dis-

tribution. On ImageNet (σ = 0.25), PREDICT with failure

probability α = 0.001 abstained 12% of the time when n =
100, 4% when n = 1000, and 1% when n = 10,000.

Empirical tightness of bound When f is linear, the

bound in Theorem 1 is tight, in that there always exists a

class-changing perturbation just beyond the certified radius.

Since deep neural networks are not linear, we empirically as-

sessed the tightness of our bound by subjecting an ImageNet

randomized smoothing classifier (σ = 0.25) to a projected

gradient descent-style adversarial attack. For each example,

we ran CERTIFY with α = 0.01, and, if the example was

correctly classified and certified robust at radius R, we tried

finding an adversarial example for g within radius 1.5R and

within radius 2R. We succeeded 17% of the time at radius

1.5R and 53% of the time at radius 2R. See Appendix J.3

for more details on the attack.

5. Conclusion

Theorem 2 establishes that smoothing with Gaussian noise

naturally confers adversarial robustness in ℓ2 norm: if we

have no knowledge about the base classifier beyond the dis-

tribution of f(x+ ε), then the set of perturbations to which

the smoothed classifier is provably robust is precisely an ℓ2
ball. We suspect that smoothing with other noise distribu-

tions may lead to similarly natural robustness guarantees for

other perturbation sets such as general ℓp norm balls.

Our strong empirical results suggest that randomized

smoothing is a promising direction for future research

into adversarially robust classification. Most empirical ap-

proaches (except PGD adversarial training) have been “bro-

ken,” and provable approaches based on certifying neural

network classifiers have not been shown to scale to networks

of modern size. It seems to be computationally infeasible to

reason in any sophisticated way about the decision bound-

aries of a large, expressive neural network. Randomized

smoothing circumvents this problem: the smoothed classi-

fier is not itself a neural network, though it leverages the

discriminative ability of a neural network base classifier. To

make the smoothed classifier robust, one need simply make

the base classifier classify well under noise. In this way,

randomized smoothing reduces the unsolved problem of

adversarially robust classification to the comparably solved

domain of supervised learning.
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