
Certified computer-aided cryptography: efficient provably
secure machine code from high-level implementations

José Bacelar Almeida1 Manuel Barbosa1 Gilles Barthe2 François Dupressoir2
1HASLab – INESC TEC and Universidade do Minho

2IMDEA Software Institute

Abstract
We present a computer-aided framework for proving concrete secu-
rity bounds for cryptographic machine code implementations. The
front-end of the framework is an interactive verification tool that
extends the EasyCrypt framework to reason about relational prop-
erties of C-like programs extended with idealised probabilistic op-
erations in the style of code-based security proofs. The framework
also incorporates an extension of the CompCert certified compiler
to support trusted libraries providing complex arithmetic calcula-
tions or instantiating idealised components such as sampling op-
erations. This certified compiler allows us to carry to executable
code the security guarantees established at the high-level, and is
also instrumented to detect when compilation may interfere with
side-channel countermeasures deployed in source code.

We demonstrate the applicability of the framework with the
RSA-OAEP encryption scheme, as standardized in PKCS#1 v2.1.
The outcome is a rigorous analysis of the advantage of an adversary
to break the security of assembly implementations of the algorithms
specified by the standard. The example also provides two contribu-
tions of independent interest: it bridges the gap between computer-
assisted security proofs and real-world cryptographic implementa-
tions as described by standards such as PKCS, and demonstrates
the use of the CompCert certified compiler in the context of cryp-
tographic software development.

1. Introduction
The security of computer and communication infrastructures crit-
ically relies on software implementations of cryptographic stan-
dards. Practitioners implementing such standards face significant
challenges. First, they must resolve all cases of underspecification
and address operational considerations that are often ignored by
standards. Then, they must ensure that the generated code is, not
only correct and efficient, but also respects a programming disci-
pline that minimizes the possibility of side-channel attacks. Such
disciplines, or countermeasures, may be enforced directly over as-
sembly code, or they may be specified and validated over source
code in a language such as C [11]; in this latter case the developer
will either trust the compiler to preserve the countermeasures in
generated code, or further validation is performed. Unfortunately,
there is limited tool support to help practitioners address these is-
sues (see § 6), which makes the development process error-prone.
As a consequence of subtle errors, software implementations may
provide little or no security [15].

Another problematic technological gap for practitioners lies be-
tween the security claimed by cryptographic standards and the con-
crete security bounds derived using provable security [22]. Indeed,
provable security typically relies on an idealized model of com-
putation and elides security-relevant aspects of runtime environ-
ments (e.g. memory management) and implementation details (e.g.

error management). Although this abstraction gap was identified
very early in the development of provable security, principled ap-
proaches narrowing this gap are only starting to emerge. Promi-
nent examples include real-world provable cryptography [17, 31],
which analyzes realistic descriptions of cryptographic algorithms.
However, realism comes at a significant cost: security analyses
in these extended models are vastly more complex, and therefore
more error-prone and more difficult to check. Moreover, the addi-
tional realism achieved by real-world cryptography does not pri-
marily address the aforementioned issues faced by implementers.

In short, there are two significant gaps, with cumulative effects
on the real-world security of cryptographic software implementa-
tions. This paper addresses the challenge of narrowing these gaps.

Technical overview To achieve this goal, we build on two re-
cent and independent developments: computer-aided cryptography,
which provides tool support for provable security, and verified com-
pilation, which delivers machine-checkable evidence of semantic
preservation between source and target programs.

To address the gap between cryptographic proofs and stan-
dards, we extend the EasyCrypt framework [10] to reason about
C-like programs extended with idealised probabilistic operations
in an enhanced security model in which the adversary is given
access to execution traces meant to capture side-channel leakage.
The approach is general, but we focus on the well-known Program
Counter Model [29]. The advantage of this approach is twofold.
Firstly, one can make explicit in the security proof various aspects
of cryptographic scheme specifications that address side-channel
attacks. For example, we are able to check that a specification of a
decryption algorithm does not reveal information about the secret
key by returning a failure value at an early point in its execution.
Secondly, this computational model serves as a reference for the de-
ployment of countermeasures against side-channel attacks through-
out the compilation process. For example, even though modular ex-
ponentiation is treated as a native operation in our high-level com-
putational model, we can make it explicit in its formalization that,
in order to ensure security in the Program Counter Model, the trace
produced by its execution must be independent of its input values.

To address the second issue, of relating cryptographic standards
and their low-level implementations, we leverage the annotation
mechanism and semantic correctness proof of the CompCert com-
piler [26] to prove that security of the C implementation implies se-
curity of the assembly implementation and, particularly, that coun-
termeasures against side-channel attacks are correctly deployed in
the generated assembly code. In addition, we extend CompCert
with the notion of a trusted library providing multi-precision arith-
metic functionality and instantiations of idealised operations. This
allows practitioners to develop and compile their implementations
according to common practices, by providing a clean interface that
specifies the guarantees required from an external library in order
to obtain assembly code that is correct and secure.

1 2013/7/26

The EasyCrypt libraries and formal proofs, the correspond-
ing C code and our extended version of CompCert are avail-
able at https://www.dropbox.com/sh/yk675z6dx7jytek/
UOrMEZYyvq.

Contributions We introduce a software development framework
that allows practitioners to obtain rigorous mathematical guaran-
tees for low-level (PowerPC, ARM and x86) implementations of
cryptographic software. More precisely, our framework enables
practitioners to:

1. formally verify that a C implementation of a cryptographic al-
gorithm is secure in a security model that captures both theoret-
ical security and side-channel leakage.

2. automatically generate an optimised assembly implementation
that is proven to retain the security properties of the C imple-
mentation, namely by correctly deploying side-channel coun-
termeasures suitable for a rigorously defined leakage model.

We illustrate the effectiveness of our framework by proving
security and generating a secure assembly implementation of the
RSA-OAEP encryption scheme, as standardized in PKCS#1 v2.1.
The main challenges in the security proof were the following:

• Formalizing and verifying a security proof taking into account
the exact padding scheme adopted in the standard.
• Carrying out this proof in a computational model that incor-

porates Program Counter Model traces, taking into account the
implementations of all the algorithms specified in the standard,
including encoding and decoding routines, as well as the rec-
ommended and mandated side-channel countermeasures.

The process of generating an assembly implementation of RSA-
OAEP that inherits the security guarantees established at the C level
with EasyCrypt is a fully automatic process using our extended
version of CompCert. We thus believe that our extensions are of
independent interest to cryptographic software developers deploy-
ing side-channel countermeasures at the C level. Intuitively, they
permit validating that assembly code leaks no more information
than the source code via its control flow. This is a non-functional
property that is not known to be offered by CompCert in general
(nor, to the best of our knowledge, by any other C compiler), and
our extension provides this guarantee in the style of translation val-
idation [26]. For example, we have used this feature to check the
assembly code generated by compiling various components in the
NaCl cryptographic library, which includes relevant side-channel
countermeasures at C-level [11].

2. Syntax and security of PKE implementations
Although the techniques we discuss in this paper are generally ap-
plicable to implementations of arbitrary cryptographic primitives,
we will deal only with public-key encryption (PKE) schemes.

We will be concentrating on real-world implementations of this
primitive. This means that, throughout the paper, a PKE scheme
will provide descriptions of the encryption and decryption algo-
rithms as implementations in either C or assembly code. Our notion
of a PKE implementation does not include the key generation al-
gorithm, which will be seen as an abstract algorithm that produces
key pairs, and that is modelled as a family of (efficiently samplable)
distributions Gλ, indexed by the security parameter. We adopt this
simplification for ease of presentation and note that, from a theo-
retical point of view, this is without loss of generality. From a prac-
tical point of view, this is also not a major limitation, as in many
applications key generation is performed in a trusted environment,
using implementations developed independently of the encryption
and decryption algorithms. Nevertheless, we also emphasise that

all our techniques and results can be easily extended to cover the
implementation of the key generation algorithm.

Definition 1 (PKE syntax). A public-key encryption scheme imple-
mentation Π is a tuple (lang,Enc,Dec, `(·)) where:

• lang ∈ {C, asm} indicates the implementation language.
• For each value of λ, EncRand,ROλ (m, pk) implements a determin-

istic polynomial-time encryption algorithm. On input a message
m and a public key pk, this algorithm outputs a return code rc
and a ciphertext c, possibly after making a series of calls to
external functions (oracles) Rand and RO.
• For each value of λ, DecROλ (c, sk) implements a deterministic

polynomial-time decryption algorithm. On input a ciphertext c
and a secret key sk, this algorithm outputs a return code rc and
a message m, possibly after making series of calls to external
function (oracle) RO.
• `pk(·) and `sk(·) are polynomials denoting the length of the octet

strings representing public keys and secret keys, respectively.
• `m(·) and `c(·) are polynomials denoting the (maximum) length

of the octet strings representing messages and ciphertexts out-
put by the decryption and encryption algorithms, respectively.1

Here, Rand(`) returns a random octet string of length `, and
RO(i, `i, `o) gives access to a family of random functions indexed
by (`i, `o), where each function takes an octet string i of length `i
and returns an octet string of length `o. The return codes rc are
chosen from a finite set, and they indicate the success (T) of the
operation or its justified failure (F(·)).

We treat implementations as families of algorithms indexed by
the security parameter, which should be interpreted for practical
purposes as admitting that the security parameter must be known
at compile-time. We deviate slightly from the standard approach of
adopting bit-strings as the representation of inputs and outputs to
cryptographic algorithms, and adopt octet strings instead. This is
without loss of generality. We also restrict our attention to PKEs
for which the (maximum) lengths of the inhabitants of the mes-
sage, randomness and ciphertext spaces are fixed in the description
of the scheme (as polynomials in λ) for each value of the security
parameter. This is not without loss of generality, but is a necessary
constraint when dealing with implementations operating in compu-
tational platforms with limited memory, and a natural one to make
when considering cryptographic standards such as RSA-OAEP.

Correctness The correctness of a PKE scheme implementation
requires that the decryption operation inverts the encryption proce-
dure. We present this definition using a code-based approach, and
again emphasise that a scheme Π may be given as a C implemen-
tation or as an assembly implementation. The notion of correctness
is the same in either case.

Definition 2 (PKE correctness). Let game CorrΠ,A be as shown in
Figure 1. The correctness of a PKE scheme Π relative to G requires
that, for all adversaries A and for all λ, we have that

Pr[CorrΠ,G,A(1λ)⇒ T] = 1 .
We note that security games are presented here at a level of

abstraction that omits certain details of the implementations, e.g.,
how parameter passing is handled. Such details are made explicit
in the formalization of the model, as described in the next section.

Security For security, we consider the standard notion of indistin-
guishability under adaptive chosen-ciphertext attacks (IND-CCA),
adapted to fit in our syntactic conventions and with an extension to
capture side channel leakage.

1 We do not restrict the size of the message and ciphertext inputs to these al-
gorithms, and require implementations to check the validity of their lengths.

2 2013/7/26

https://www.dropbox.com/sh/yk675z6dx7jytek/UOrMEZYyvq
https://www.dropbox.com/sh/yk675z6dx7jytek/UOrMEZYyvq

Game CorrΠ,G,A(1
λ):

(pk, sk) ←$ Gλ
m ←$ A(pk, sk)
If |m| > `m(λ) Return T

(rc, c) ←$ EncRand,ROλ (m, pk)
(rc′,m′)← DecROλ (c, sk)
Return rc = T ∧ rc′ = T ∧m′ = m

Figure 1. Game defining the correctness of a PKE scheme.

Definition 3 (IND-CCA security of a PKE implementation). Let
game IND-CCAΠ,G,A be as defined in Figure 2. The IND-CCA
security of a PKE scheme Π relative to G requires that, for all
adversaries A, the following advantage definition is negligible:

Advind-ccaΠ,G,A(λ) := 2 · Pr [IND-CCAΠ,G,A(λ)⇒ T]− 1 .

Game IND-CCAΠ,G,A(1
λ):

b ←$ {0, 1}
(pk, sk) ←$ Gλ
(m0,m1, st) ←$ ADecrypt,RO

1 (pk)

(rc, c∗) ←$ EncRand,ROλ (mb, pk) t

b′ ←$ ADecrypt,RO
2 (c∗, t, st)

Return (|m0| = |m1| ∧ b′ = b)

oracle Decrypt(c):

(rc,m)← DecROλ (c, sk) t
Return (rc,m, t)

Figure 2. Game defining the IND-CCA security of a PKE scheme.
An adversary A is legitimate if A2 does not call Decrypt on c∗.

The t notation in Figure 2 denotes information that is leaked
to the adversary by the execution environment, in addition to the
outputs explicitly produced by the PKE algorithms.2 We recover
the standard definition of security for PKEs when this leakage is
the empty string ε for all algorithms.

Leakage models We will model leakage as a trace of constant
identifiers that reveal some information about the control flow
of the executed algorithm. This approach allows us to capture
some leakage models that are relevant for practical applications,
and can be extended to deal with arbitrary types of leakage by
defining different types of observable events in the semantics of
the implementation languages, and controlling if and how this
information is revealed to the adversary.

For concreteness, we will focus on two leakage models for C
and assembly implementations. The leakage model that we adopt
at the C level is chosen for its simplicity, and can be seen as an adap-
tation of the Program Counter Model [29] (PC) to C programs. The
leakage model that we adopt at the assembly level is the standard
PC model. Informally, these models are defined as follows:

• C leakage. We associate to each branching point in the C
program two observable events with identifiers Event True and
Event False. One such event is added to the (initially empty)
trace whenever a branch is taken, consistently with the Boolean
value of the evaluated branching condition.
• Assembly leakage. Each instruction in the assembly program

is associated with a unique constant identifier, which is added to
the (initially empty) trace whenever this instruction is executed.

2 Consistently with our discussion above, we consider that only Enc and
Dec are executed in environments that are observable by the adversary.

Referring to Figure 2, we will consider adversaries attacking C
implementations and assembly implementations, and receiving the
leakage defined above as extra information. Later in the paper we
will see formalizations of both types of leakage.

RSA-OAEP as described in PKCS#1 We now illustrate the level
of abstraction at which cryptographic algorithms are described in
standards. This will both justify our approach of taking C as a
high-level language for implementing cryptographic algorithms,
and also to facilitate the understanding of its EasyCrypt formal-
ization in the next section. Figure 3 shows the PKCS#1 v2.1 stan-
dard’s description of the encoding function that takes a variable-
length message m, pads it to a fixed-length data blob DB , and
produces the final encoded message EM . OS2IPPKCS, I2OSPPKCS

and RSAEPPKCS are specified in the standard; random and MGF
instantiate the Rand, and RO oracles, respectively.

The scheme, as standardized, is parameterized by two lengths
(which can be seen as the security parameter): k is the length
of the canonical octet string representation of the RSA modulus;
and hLen is the length of the output of the hash function used to
concretely implement the MGF, and to compute label hashes.

Given these parameters, some derived static lengths can be
introduced: dbLen = k − hLen − 1 is the length of the padded
message, or data blob; and maxMLen = dbLen−hLen−1 is the
maximum length of message that can be encrypted.

fun OAEP EncodePKCS(m : octet[]):

PS = 0x00(k−|m|−2∗hLen−2);
DB = dLHash‖PS‖0x01‖m;
seed = random(hLen);
dbMask = MGF(seed , dbLen);
maskedDB = DB ⊕ dbMask ;
seedMask = MGF(maskedDB , hLen);
maskedSeed = seed ⊕ seedMask ;
EM = 0x00‖maskedSeed‖maskedDB ;
return EM ;

fun OAEP EncryptPKCS(m : octet[], pk : pkey):

if (maxMLen < mL)
rc = RC MessageTooLong;

else {
rc = OAEP EncodePKCS(m);
p = OS2IPPKCS(EM);
(rc, c) = RSAEPPKCS(pk , p);
(rc, res) = I2OSPPKCS(c, k);
rc = RC Success; }

return (rc, res);

Figure 3. Standard specification for PKCS#1 encryption

A C-like language In this paper we consider only C programs that
follow a strong programming discipline and respect a strict notion
of safety. The programming discipline forbids expressions with
side-effects, pointer arithmetic, and only allows the programmer
to refer to arrays using the address of their first element (and
carrying an explicit offset value where necessary). Our notion of
safety excludes the standard out-of-bound memory accesses and
arithmetic error conditions, but also behaviours that would fall
in the underspecified parts of the C standard. For simplicity, our
notion of safety also imposes that C implementations terminate for
all possible input values.

We allow static allocation of new arrays, and follow standard
practice to pass output parameters by reference to let C functions
return multiple values, or arrays. In addition, we consider that
the language is equipped with a non-primitive type for arbitrary
precision unsigned integers that are, similarly to arrays, passed by
reference. We equip this type with the usual operations, including
modular arithmetic.

3 2013/7/26

We use the const type modifier to prevent functions from over-
writing parameters passed by reference (arrays, big integers and
pointers to primitive types) that are used purely for input. Purely
for simplicity, we forbid the use of short-circuiting boolean opera-
tors, which introduce potentially unwanted conditional jumps, and
prefer the corresponding bitwise operators.

In addition, as discussed above, we impose that the program-
mer correctly annotates the program with Leak(Event True) and
Leak(Event False) trace extension statements. Correct annotation
means that the next statement in each execution path after a condi-
tional branch is an annotation exposing the corresponding value of
the branching condition (cf. the code in the next section). Seman-
tically, these statements append the corresponding event at the end
of a global trace that is initially empty and can only be manipulated
using the annotation mechanism.

3. Security of C-like code in EasyCrypt
We formalize security proofs using EasyCrypt [9], an SMT-based
interactive prover geared towards proving security properties of
cryptographic schemes. Cryptographic algorithms, oracles and
games are described in a probabilistic imperative language pWhile.
Reduction proofs can then be made by proving probabilistic re-
lational properties of pairs of functions and computing concrete
probability bounds.

Importantly, pWhile’s grammar of expressions can be extended
with user-defined types and functional (pure and total) opera-
tors. The language is equipped with some built-in types, including
booleans, integers, tuples and fixed-length bitstrings. However, the
latter type is insufficient to write, for example, algorithms whose
input are bitstrings whose length is chosen by the adversary. As we
define grammar extensions to model variable-length octet strings
(in fact, polymorphic arrays) below, we write them in a style that
narrows the gap between pWhile and the subset of trace-annotated
C with big integers described above.

A C mode for EasyCrypt We extend EasyCrypt with several li-
braries to lower the level of abstraction of specifications to one sim-
ilar to our C-like language. The first of these libraries implements
variable-sized arrays. It provides a polymorphic type α[] and se-
lect (· [·]) and update (· [·] = ·) operators, defined only when used
within the array’s bounds. We let the user declare statically-sized
array variables (var · : ·[·];). For specification purposes, we also de-
fine a length operator (|·|) and write valid(a, o, l) whenever o and
l are non-negative integers and a is an array such that o + l ≤ |a|.
(This guarantees that any access to a with an index i such that
o ≤ i < o + l is within the array bounds, and allows us to express
memory-safety conditions.)

We also introduce a type bigint to distinguish variables meant
to model machine integers from those meant to be implemented
as arbitrary precision integers. The bigint type is equipped with
operators for all operations needed, including comparisons, shifts
and modular operations.

Our third library extension deals with parameter-passing: in
order for our adversaries to have at least as much power over inputs
and outputs as standard IND-CCA adversaries in the context of a C
program, we model, in EasyCrypt, parameter passing by-reference,
where a reference to an array or variable is passed as argument, and
used to return multiple values by side-effect. When a function takes
a parameter of an array or bigint type, we always assume that it
may in fact overwrite that parameter’s contents, unless otherwise
specified using the const type modifier. (We syntactically ensure
that all such parameters that are not used for output are marked as
const.) Conversely, when a parameter of primitive type is meant
to be used as an out-parameter, it should be marked as such using

the out type modifier. Type α out is equipped with a dereference
operator (∗·), and an update statement (∗· = ·;).

Finally, we define in EasyCrypt some constants and operators
that capture the abstract C leakage described in Section 2. Abstract
traces can be the empty trace Zero, the true and false branch events
Event True and Event False, or any combinations of these using
an associative extension operator · ++ · for which Zero is a left
and right neutral element. In functions, oracles and games, we write
Leak(e) to denote the fact that the observable trace is extended to
the right (using ++) with e.

In addition to these basic events, we also consider abstract leak-
age from some of the external functions and big integer primitives.
This allows us to make formal and precise, using axioms, the usual
assumptions on their leakage. We use the t notation introduced
in Section 2 to denote that a particular function call extends the ex-
ecution trace to the right with a trace t that may depend on all of the
call’s arguments. (For algorithms, this trace extension is concrete,
whereas it is kept abstract for chosen big integer primitives and for
the external functions.)

Application to PKCS#1 v2.1 We discuss our implementation of
the PKCS standard based on the encryption algorithm. Details of
the other algorithms and subroutines can be found in Appendix C.

Figure 4 shows our implementation of the encryption algorithm.
Auxiliary algorithms, as well as external functions, are written so
that they return their results by passing a reference to some output
parameters, but otherwise provide the same functionality. The en-
coding algorithm is optimized to save space by reusing its internal
buffers seed and DB once their contents become obsolete. Apart
from the verbosity of using while loops to implement array opera-
tions, this implementation does not differ much from the encoding
function described in the PKCS#1 standard (see Figure 3).

Between lines (3) and (8), the data blob is built, by copying
the default label hash, writing the zero padding and the separator,
and finally copying the message m into it. On line (9), the seed
is sampled uniformly at random. On line (10), the MGF oracle is
called and its result (seedMask) written directly into the output
buffer, and used, in the while loop at (12) to mask the data blob
in place. On line (13), the MGF oracle is queried with the masked
data blob and its result written and used as before to mask the seed.
Finally, on line (16), the first byte of the output buffer is set to 0.

Although it is a rather simple refinement of the specification
shown in Figure 3, this implementation allows us to concretely rea-
son about the leakage traces produced when executing the encryp-
tion algorithm. From a formal point of view, the first steps in our
security and correctness proofs very much reduce the security of
the low-level model to the security of the high-level scheme (aug-
mented with concrete side-channel leakage).

However, even the high-level description displayed in Figure 3
is far removed from the description for which Fujisaki et al. ob-
tained their well-known security proof [21]. We display it for com-
parison in Figure 5. There are three major differences between the
two specifications:

• the standard uses only one random oracle, whereas Fujisaki et
al. use two; for the lengths used in the standard, these are stricly
equivalent, since F and G have disjoint domains.
• to remedy the fact that RSA is not a random permutation over

the entire encoded message space, the standard ensures that it
is always called on plaintexts whose first byte is zero; this has
an incidence on the security and the proof.
• finally, the standard permits the encryption of variable (but

bounded) length messages, using some additional padding to
fixed length; this does not affect theoretical security, but has
led to well-known padding oracle attacks [28, 34] when imple-
mented carelessly.

4 2013/7/26

fun OAEP Encode(res : octet[],m : octet const[],mLen : int):

1: var seed : octet[hLen];
2: var DB : octet[dbLen];
3: i = 0;
4: while (i < hLen) { Leak(Event True);

DB [i] = dLHash [i] ;
i = i + 1; } Leak(Event False);

5: while (i < dbLen −mLen − 1) { Leak(Event True);
DB [i] = 0x00;
i = i + 1; } Leak(Event False);

6: DB [i] = 0x01;
7: i = i + 1;
8: while (i < dbLen) { Leak(Event True);

DB [i] = m [i − dbLen + mLen] ;
i = i + 1; } Leak(Event False);

9: sample octets(seed , 0, hLen);
10: MGF1(res, 1 + hLen, dbLen, seed , 0, hLen);
11: i = 0;
12: while (i < dbLen) { Leak(Event True);

res[1 + hLen + i] = res [1 + hLen + i]⊕DB [i] ;
i = i + 1; } Leak(Event False);

13: MGF1(res, 1, hLen, res, 1 + hLen, dbLen);
14: i = 0;
15: while (i < hLen) { Leak(Event True);

res[1 + i] = res [1 + i]⊕ seed [i] ;
i = i + 1; } Leak(Event False);

16: res[0] = 0x00;
17: return RC Success;

fun OAEP Encrypt(res : octet[],
m : octet const[],mLen : int, pk : pkey):

1: var p, c : bigint;
2: var EM : octet[k];
3: if (maxMLen < mLen) { Leak(Event True);

rc = RC MessageTooLong; }
4: else { Leak(Event False);

rc = OAEP Encode(EM ,m,mLen);
rc = OS2IP(p,EM , k);
rc = RSAEP(c, pk , p);
rc = I2OSP(res, c, k);
rc = RC Success; }

return rc;

Figure 4. Implementation of PKCS#1 v2.1 encryption

Despite these differences, the security proof is relatively easy to
adapt and follows the same general schema. We perform it in a
refinement of the adversary model presented in Section 2, which
gives the adversary more control over output parameters. Oracle
wrappers ensure that adversaries respect memory-safety side con-
ditions when calling the algorithms and environment functions.

fun OAEP Encryptproof(m : octet[], pk : pkey):

r = random(hLen);
s = (m‖0x00hLen)⊕ G(r);
t = r ⊕ H(s);
return RSA(pk , s‖t);

Figure 5. Fujisaki et al.’s specification for OAEP encryption

Security theorem Following Fujisaki et al., we reduce the leakage-
aware IND-CCA security of our PKCS#1 implementation to a vari-
ant of the set partial-domain one-way assumption (s-PDOW) on
RSA. This variant takes into account the fact that the first byte of
the random input is set to 0, and also lets the adversary observe the
leakage produced when evaluating the one-way permutation and

its inverse. More precisely, Figure 6 shows the assumption in game
form, parameterized by a one-way permutation f, a leakage func-
tion leakf , and an adversary B. The leakage function leakf takes a
secret key sk, and outputs a secret key sk` such that, for any chal-
lenge c, the computations of f−1

sk (c) and f−1
sk`

(c) produce the same
execution trace. This key is used in the proof to simulate the trace
produced by computing the decryption algorithm.

Game s-PDOWf,leakf ,G,B(1
λ)

(pk, sk) ←$ G
s ←$ {0, 1}hLen
t ←$ {0, 1}dbLen
c ← fpk(0x00‖s‖t) τ
sk` ← leakf(sk)

T ←$ Bf
−1
sk

(·)(c, τ, sk`)
return t ∈ T

Figure 6. Leakage-aware s-PDOW assumption

Given a one-way permutation f and a leakage function leakf for
it, we define, the s-PDOW advantage of an adversary B against f
relative to G as

Advs-pdowf,leakf ,G,B(λ) := 2 · Pr [s-PDOWf,leakf ,G,B(λ)⇒ T]− 1 .

The validity of assuming that this advantage is negligible de-
pends greatly on the leakage function leakf and the trace produced
when evaluating the permutation f. In particular, when the leakage
function is constant (that is, when the trace produced when evalu-
ating the inverse permutation does not depend on the secret key),
and evaluating the permutation does not leak information about the
plaintext, our s-PDOW game only differs from the one used by
Fujisaki et al. [21] by the fixed first byte of the challenge plaintext.
This only introduces an additional factor 256 in the bound.

We can now state our security theorem for PKCS#1 v2.1 as we
implement it.

Theorem 1 (Security of PKCS#1 v2.1). Let Π be our implemen-
tation of the standard. For all key generation algorithm G, and
IND-CCA adversary A making at most qD queries to the decryp-
tion oracle and qG queries to the random oracle with `i = hLen
and `o = dbLen , we build a s-PDOW adversary B against RSA
such that:

Advind-ccaΠ,G,A(λ) ≤ Advs-pdowRSA,leakRSA,G,B(λ) +
2qDqG + qG − qD

28hLen

The proof is formalized in EasyCrypt, and relies on several as-
sumptions on the leakage produced by the library and environment
functions. The assumption on modular exponentiation is formal-
ized using the leakRSA function. All other arithmetic functions are
implicitly assumed to produce constant leakage traces. The ran-
dom oracle and random sampling operations are assumed to pro-
duce leakage traces that depend only on their length parameters.

4. Security-aware compilation
Our goal is to take a C implementation such as that described in
the previous section and compile it to an assembly implementation
that retains the security properties that were established (or are
simply assumed to hold) for the source code. A natural question
that arises is then: what properties must the C compiler guarantee
to ensure that the assembly implementation is secure based on the
assumption that the C implementation is secure?

The classical notion of correctness for any compiler is known as
semantic preservation. Intuitively, this property guarantees that, for
any given source program S, the compiler will produce a compiled
program T that operates consistently with the semantics of S.

5 2013/7/26

Consistency is defined based on the observable behaviour of a
program, which can be a simple relation on input states and output
states, or it can be a more complex notion including observable
events occurring during program evaluation. A bit more formally,
let us denote the evaluation of a program P over inputs ~p, resulting
in outputs ~o and observable behaviour B as P (~p) ⇓ (~o,B). Then,
semantic preservation could be written as

∀B, ~p, ~o, T (~p) ⇓ (~o,B) =⇒ S(~p) ⇓ (~o,B)

This means essentially that any observable behaviour of the tar-
get program is observable in the source program. Furthermore, if
the source language is deterministic (i.e., it has no intrinsic non-
determinism and it interacts with a deterministic environment) then
this also gives an implication in the reverse direction [26].

Here we introduce a notion of security-aware semantic preser-
vation that refines the previous high-level notion. We also prove
that, when enforced by a C compiler, this new notion is sufficient
to guarantee that, not only the functionality of the source program is
preserved, but also its security. We call C compilers that are proven
to enforce this type of semantic preservation security-aware. In the
next section we will show how we have extended CompCert to
enable the security-aware compilation of C implementations.

Observable behaviour of an implementation The observable be-
haviours that we will consider for security-aware compilation will
include, not only the leakage that is provided to the adversary, but
also all the interactions of the implementation with the environment
via Rand and RO. Formally, we see behaviours B as sequences of
observable events ν, B ::= ε | ν.B , where we consider events of
the following types:

ν ::= const(id) | Rand(v, `) | RO(v, i, `i, `o) .

Intuitively, const(id) will correspond to a leakage event. In the case
of C implementations, the identifier id will be either T or F, sig-
nalling the evaluation of a branching condition similarly to what
was described in the previous section. In the case of assembly im-
plementations, the identifier id will contain the unique identifier
(PC address) of the instruction being executed, according to the
program counter model. Rand events signal a call to an external
random sampling function, including the length and output of the
random octet string that was obtained from the environment. Sim-
ilarly, RO events reveal the full details of an interaction with an
external function representing the idealised MGF function.

We will refer to the projection of a behaviour that retains only
the const events as const(B). Similarly, we will refer to the pro-
jection that excludes the const events as coins(B). We can now
present our notion of security-aware semantic preservation.

Definition 4 (Security-aware semantic preservation). Take PKE
implementation Π = (C,Enc,Dec, `(·)) in C. We say that assembly
implementation π = (asm,Enc′,Dec′, `(·)) securely preserves the
semantics of Π if there exists an efficient deterministic simulator S
such that the following two conditions hold

∀λ,BΠ, Bπ,m, pk, c, rc.

coins(BΠ) = coins(Bπ) ∧ Enc′
Rand,RO
λ (m, pk) ⇓ (rc, c, Bπ)⇒

EncRand,ROλ (m, pk) ⇓ (rc, c, BΠ) ∧
const(Bπ) = S(Enc,Enc′, const(BΠ)) .

∀λ,BΠ, Bπ, c, sk,m, rc.

coins(BΠ) = coins(Bπ) ∧ Dec′
RO
λ (c, sk) ⇓ (rc,m, Bπ)⇒

DecROλ (c, sk) ⇓ (rc,m, BΠ) ∧
const(Bπ) = S(Dec,Dec′, const(BΠ)) .

The intuition is the following. Consider behaviours BΠ and Bπ
where the randomness taken by the C implementation from the
environment matches that taken by the assembly implementation.

Then, for all possible parameter inputs, the assembly implementa-
tion must produce an output that is consistent with that of the C
implementation. Furthermore, it must be possible to simulate the
PC trace of the assembly implementation, given only the leakage
of the C implementation.

The next theorem establishes that security-aware semantic
preservation implies that PKE correctness is preserved in compila-
tion. The proof is a direct reduction and is presented in Appendix A.

Theorem 2. Take PKE implementations Π = (C,Enc,Dec, `(·))
and π = (asm,Enc′,Dec′, `(·)). Suppose that Π is a correct PKE
implementation. Then, if π securely preserves the semantics of Π,
it is also correct.

The next theorem shows that security-aware semantic preserva-
tion guarantees that security is preserved by compilation, i.e., that
the assembly implementation will be secure against adversaries that
get program counter leakage, assuming that the C implementation
is secure in the leakage model described in the previous section.

Theorem 3. Take PKE implementations Π = (C,Enc,Dec, `(·))
and π = (asm,Enc′,Dec′, `(·)). Suppose that Π is an IND-CCA
secure PKE implementation. Then, if π securely preserves the se-
mantics of Π, it also is IND-CCA secure .

The proof is presented in Appendix B, and it hinges on the fol-
lowing observation on security-aware semantic preservation. Con-
ceptually, what we are doing in Definition 4 when we quantify over
behaviours BΠ and Bπ is to quantify over all random coins taken
by the implementations, and to ensure that the same coins are pro-
vided to both Π and π. This can also be seen as quantifying over a
set of deterministic environments, each of them providing a possi-
ble value of the random coins. Interestingly, in this case, and given
that our source implementation language is a deterministic subset
of C, we get that security-aware semantic preservation also gives an
implication in the reverse direction [26]. In other words, in addition
to the implication shown in Definition 4, we also get the following:
for each deterministic environment and for each input ~p, the source
program has a single observable behaviour which maps to the sin-
gle observable behaviour in the compiled assembly code (which is
also deterministic). In a nutshell, this means that one can directly
reduce the security of the assembly implementation to the security
of the C implementation, provided that leakage can be simulated.

5. Rendering CompCert security-aware
In this section we show how we extended the CompCert certified
compiler [26] and used it to perform this type of security aware
compilation.

Background on CompCert. CompCert is a formally verified
optimizing C compiler [26]. It produces target code with strong
correctness guarantees and reasonable efficiency when compared
to general purpose compilers. CompCert supports the C language
(with almost complete coverage of the ISO C 90 / ANSI C stan-
dard) and produces assembly code for the PowerPC, ARM, and
IA32 (x86 32-bits) architectures. CompCert is mostly implemented
in Coq, and its development is subdivided into 19 compiler phases,
each of which builds a semantic preservation proof between seman-
tically defined intermediate languages.

Formally, CompCert’s correctness theorem establishes the
strong notion of semantic preservation that was introduced in the
beginning of Section 4, referred in CompCert terminology as a
backward simulation. This guarantees that, if a source program P C

is successfully compiled into P asm, then the observable behaviour
of this last program is an admissible behaviour of the original pro-
gram. The proof of this result is based on a formalization of the
semantics of both the compiler’s source and target languages (C

6 2013/7/26

and assembly), as well as of all the compiler passes. Behaviours
are captured by a possibly infinite sequence of events that model
interactions of the program with the outside world, such as accesses
to volatile variables, calls to system libraries, or user defined events
(so called annotations).

The need for CompCert extensions. There are various aspects
in which we needed to enhance both the functionality of CompCert
and the formal correctness guarantees that it provides in order to
guarantee security-aware semantic preservation. In the remainder
of this section we will begin by identifying precisely what Com-
pCert does and does not provide in this direction, and then explain
in detail how we have implemented the necessary extensions.

CompCert’s semantic preservation result establishes guarantees
very close to Definition 4: conditioning on similar interactions
with the environment, the observable behaviour for the compiled
assembly program matches the observable behaviour of the source
C program. However, the following caveats need to be addressed
before applying the results of Section 4:

• Expressiveness of CompCert behaviours. The notion of ob-
servable behaviour of a C program and an assembly program
in CompCert is conceptually more general than the one we
adopted in the previous section. It considers, for example, the
possibility that programs go wrong or do not terminate. How-
ever, it is more restrictive in the sense that, on one hand it con-
siders only programs with a well-defined entry point (the main
function) and does not include support for the Rand and RO
events that we require (as these imply exposing or updating the
values of memory regions).
• Absence of a leakage model. CompCert behaviours do not

have an associated intrinsic notion of side-channel leakage (nei-
ther at the C nor at the assembly levels). Although it is possi-
ble to emulate such leakage using annotations directly placed
over the source code, there is no way to guarantee that the tar-
get code would have an observable behaviour that follows the
instrumented semantics conventions of the PC model that we
have described in the previous sections. This means that there
is no straightforward way to capture the simulation of PC traces
that we require for security-aware compilation.
• Complex data types. The common practice in the implementa-

tion of cryptographic software is to split the development in two
parts: i. a trusted number theory library that extends the high-
level language of choice with the complex data types required
for public-key cryptography; and ii. code that implements a spe-
cific scheme by relying on the functionality of the trusted li-
brary. As described in Section 3, we also adopt this approach
at the EasyCrypt level, by writing C code that relies on opera-
tors that carry out multi-precision integer calculations. A set of
axioms describes important properties for these operators, sim-
ilarly to what happens to other C native data types such as octet
strings. Conceptually, we see this as an extension to C that adds
support for an additional data type, which means that the se-
mantics of C as formalized in CompCert need to be extended
for our purposes.

In the remainder of this section we will explain how we have
extended CompCert to eliminate the previous caveats.

Adding support for additional external operations A difficulty
that arises when we try to base our results on CompCert’s seman-
tic preservation guarantee is how to handle the environment that
was setup in the EasyCrypt formalization. This includes primitives
for sampling values, the choice of appropriate hash functions to
instantiate the oracles, and other support functionality. This is an
important issue, since we do not want to impose an a-priori com-
mitment on these choices — this would, not only weaken (spe-

cialize) the guarantees offered by the implementation, but also it
would not match what is the common practice in the implementa-
tion of cryptographic software. The semantics formalized in Com-
pCert support calls to system libraries, but these calls are assumed
to leave the memory state unaltered. This makes them inappropriate
to model the environment we require. Consequently, our first exten-
sion to CompCert is a mechanism for declaring external functions
that may impact the memory.

Our solution is an extension of the treatment adopted by Com-
pCert for system-calls. A call to a system library triggers an observ-
able event that registers the name of the called function, its argu-
ments, and an additional value that represents the result (provided
by the execution environment). In order to address functions that
change the memory state, we have introduced a new event whose
arguments are byte-arrays containing data read-from/written-to
specified memory regions. For that, we have implemented a simple
mechanism to specify the memory footprint of an external function.
We allow the arguments of each function to be either a primitive C
type or a pointer to a memory region that is either read or written.
The size of regions is declared by an expression that is allowed to
refer to other (int) arguments. As an example, consider the dec-
laration of the sample octets and random oracle functions that
instantiate the Rand and RO oracles in our PKCS implementation:

#pragma libspec sample_octets : OutPtr #1, Int -> Void
extern void sample_octets(unsigned char *,size_t);
#pragma libspec random_oracle :

OutPtr #1, Int, InPtr #3, Int -> Void
extern void random_oracle(unsigned char *,

size_t, unsigned char *, size_t);

In the first line, the pragma directive informs CompCert that the
first argument is a pointer to a memory region written by the
function. The size of the region is given by the integer passed as
second argument. This mechanism is implemented in a general way
that allows specifying arbitrary functions that feed output memory
regions to the environment and fill input memory regions with data
collected from the environment. More precisely, the semantics of a
function declared using this mechanism is defined to:

1. read the memory regions and other input arguments;
2. ask the environment for a byte-array with size equal to the sum

of the output sizes;
3. split the obtained array in the required pieces, and write them

in the corresponding memory regions;
4. produce an event with arguments as described above.

By extending the correctness result of CompCert to cover these ex-
ternal functions, it follows that the observable behaviour of a source
program will be preserved in the assembly code, for any instantia-
tion of these functions. However, in the context of security-aware
compilation, one must recall that these functions are actually ide-
alised constructions that are used in the security proofs. It is critical
to the security of the final implementation that the instantiation of
these functions complies as much as possible with the assumptions
that are made explicit in the EasyCrypt proof. In other words, these
functions must be trustworthy in order to obtain assembly-level se-
curity, and this is why we named this mechanism TrustedLib.

In the particular case of the RSA-OAEP implementation the
above discussion implies that, in line with standard cryptographic
practice, it is up to the end-user to instantiate sample octets with a
function that provides good quality randomness, and to follow the
recommentations in the PKCS standard for the instantiation of the
mask generation function that we model as a random oracle. Fur-
thermore, the assumptions regarding the leakage of these external
functions that are axiomatized in EasyCrypt should also be satis-
fied by the instantiation.

Correctness of the cryptographic API. There is a mismatch be-
tween what it means for a compiled program to be correct under the

7 2013/7/26

CompCert formalization and our notion of correctness. In Com-
pCert, the meaning of a C program is the behaviour of executing
a specific entry-point: the main function. Our notion of correct-
ness imposes instead the correctness (in terms of input/output be-
haviour) of all the functions acting as entry points of the function-
ality formalized in EasyCrypt: we call this the correctness of the
cryptographic API. To bridge the gap between these two notions,
we have anchored our correctness result on a C entry-point with
the following shape:

Function main()
id← read()
~p← read()
o← id(~p)
write(o)

This generic entry point reads the identifier of the function to eval-
uate (in the case of a PKE implementation this means either Enc
or Dec). It then uses external functions read and write to obtain in-
put values for the function from the environment, and to externalise
the corresponding outputs.3 This pattern registers every possible in-
put/output behaviour of each function as an admissible behaviour
of the program. Hence, the correctness result of CompCert ensures
preservation of this behaviour along the compilation process.

The main function is added to the cryptographic implementa-
tion to ensure that the translation to assembly is explicitly captured
by the correctness theorem of CompCert. This function can be dis-
carded from the assembly code, since the implementation is itself
intended to be used as a library by some higher level application.

Adding support for a big-number library The implementation
of public-key cryptography code often requires the use of big-
number libraries to carry out complex algebraic computations such
as modular exponentiation. For example, a typical implementation
of RSA-OAEP will delegate the big-number computations to a
(often pre-compiled) library such as GMP.4 From the developers’
point of view, this can be seen as extending C with a new data type
and native operations that provide support for big integers.

One possible approach to handle such external libraries would
be to use the TrustedLib mechanism to equip our framework with
external functions, which would leave it to the environment to pro-
vide the big-integer operators.5 However, this would not match the
setting we have captured in the EasyCrypt formalization, in which
we consider a well-defined intended semantics for these operations
Furthermore, the correctness and security of the C implementation
depend crucially on the correct implementation of these functions
(otherwise, the axioms assumed in the EasyCrypt theory might not
be validated). For this reason, we have opted to include the nec-
essary big-integer operations as new built-in operations in Com-
pCert, with a fully defined semantics, which we see as a contract
on the library that we will use for linking with our program. Once
again we must trust the library that instantiates these operations to
correctly implement those contracts, which would ideally be ad-
dressed through formal verification. Unfortunately, the complexity
of state-of-art libraries such as GMP make such an enterprise an
enormous effort (although results obtained on smaller libraries [32]
and in specific algorithms [12] provide confidence on feasibility in
a near future).

Technically, the formalization of the semantics of the big-
number builtin operations is a refinement of that presented for

3 In the case of our example, the inputs and outputs are simply octet strings
of various lengths, which means that the read and write functions can be
also implemented using the external function mechanism described above.
4 http://gmplib.org
5 In fact, we have used that mechanism to specify all the GMP low-level
integer API.

the TrustedLib functions, in which the transformations on the state
are fully specified, and where the events signalling communication
with the environment are ommitted. The transformations on the
state are described in three steps: i. reading the big-integer word
representations of all the inputs and converting them into integers
(using the SSReflect library [23]); ii. performing the operations
over the integers; and iii. converting back into the memory repre-
sentation and storing the results. A consequence of our approach
is that we needed to commit to a concrete representation of big-
integers. We use a 230 radix representation, stored as an array of
32-bit machine integers. This means that we use 30-bits in each
machine word for storage, where the remaining two bits should
always be kept at zero at the function boundaries (functions may
internally and temporarily cause these bits to be non-zero). Our
formalization is flexible enough to enable straightforward adapta-
tion to other representations. The formalization of the big-number
library as built-in operations in CompCert has the additional ad-
vantage of automatically extending the CompCert interpreter to
support these operations, which may be useful for debugging.

Our framework includes an instantiation of the big-number li-
brary that was developed for illustrative purposes, adapted from the
Long Integer Package (LIP) library by Arjen Lenstra.6 One of our
concerns was to ensure that all the big-integer operations comply
with the leakage requirements imposed by the EasyCrypt proof: the
leakage should be constant and independent of the concrete inputs
passed to the functions. To this end, we have incorporated a stan-
dard countermeasure against side-channel attacks, and simplified
the library to consider only unsigned integers and use static mem-
ory allocation. All the routines have been modified so that there is
no data-dependent branching and memory indexing as explained,
for example, in [11]. This means that all functions in the library ex-
ecute in constant time and access the same memory addresses, re-
gardless of the input data. Integers are stored in statically declared
arrays of pre-defined size, which means that the maximum range of
the integers that will be manipulated by the program must be known
in advance, and must be provided at the time of compilation. For
our example, we have aimed at 4096-bit RSA keys, represented
using 137 words. We note that fixing the maximum length of inte-
gers is consistent with our assumption that the security parameter
is known at compile time, and the formal semantics that we have
added in CompCert captures exactly the behaviour of our library.
Although the functionality of our library is not formally verified,
we have used a Frama-C plug-in [8] to check that the side-channel
countermeasures are correctly deployed.

Dealing with side-channel leakage The last extension to Com-
pCert concerns the need to satisfy the part of Definition 4 imposing
that traces generated by the assembly code in the PC model can be
simulated from the leakage model we adopted for C programs.

The annotation mechanism of CompCert allows us to extend
standard C code with dummy statements that, when evaluated,
give rise to events that externalize arbitrary constant identifiers
making them visible in the observable behaviour of the program.
This means that a direct translation of the EasyCrypt code into
CompCert taking advantage of these annotations gives rise to a
C program whose observable behaviour includes (among the other
events that may be signalled) a trace of all the conditional jumps
taken by the program. Furthermore, CompCert guarantees that the
same exact traces will be observable in the assembly program.

It is obvious that, by inspecting the sequence of events that re-
ports which conditional jumps were taken, one can reconstruct the
entire control flow of the C program. However, the same cannot be
said for the control flow of the assembly program: indeed, Com-
pCert is only guaranteed to preserve the observable behaviour of

6 http://www.win.tue.nl/~klenstra/

8 2013/7/26

http://gmplib.org
http://www.win.tue.nl/~klenstra/

the C program, and many possible assembly programs can achieve
this. In particular, there may be assembly programs which are in-
secure in the PC model (i.e. that leak sensitive information via the
control flow) and still have an observable behaviour that matches
that of the original C program. In other words, it may not be possi-
ble to fully determine the sequence of program counter values taken
by an assembly implementation solely from the observable condi-
tional jumps taken by the C program. However, in order to achieve
security-aware compilation, this is precisely what we require.

Instead of proving that each of the compiler passes does not in-
troduce spurious branching, we have implemented a simple static
analysis on the generated assembly program that establishes the
desired property. Our analysis is formalized in Coq as a translation
validation that checks, for every conditional branch instruction in
the assembly code, that i. all execution paths arising from that in-
struction go through an annotation; and ii. that these annotations
give rise to events that externalize (pairwise) distinct constant iden-
tifiers. This is sufficient to ensure that the observable behaviour of
the program fully reflects the choice of the execution path, and we
have formalized and proved in Coq the following theorem that es-
tablishes the soundness of the translation validation.

Theorem 4 (PC trace simulatability). Let S be an assembly pro-
gram that passes the translation validation described above. Let
also s1 and s2 be memory states s.t. s1 ≡PC s2; and, letB1 andB2

be behaviours s.t. B1 ∼ann B2, 〈S; s1〉 ⇓ B1, and 〈S; s2〉 ⇓ B2.
Then, for any states s′1, s

′
2 and traces t1, t2 we have that

s1
t1−→ s′1 ∧ s2

t2−→ s′2 =⇒ s′1 ≡PC s′2 .

Here, states s1, s2 are PC-equivalent (s1 ≡PC s2) when they
agree on the value stored in the PC register and have the same call
stack, and behaviours B1, B2 are annotation-equivalent (B1 ∼ann

B2) when they exhibit the same (possibly infinite) sequence of an-
notation events. The above theorem shows that the sequence of
PC values in the evaluation of an assembly program that passes
the translation validation is fully determined by the sequence of
constant identifiers revealed via annotations in the observable be-
haviour. More precisely, the theorem expresses this result in the
style of a non-interference result: if a program is validated by the
test, then any two instances of it that exhibit the same annotations
on their behaviour, are guaranteed to proceed in lockstep, i.e., the
next PC value can always be determined from the observable trace.

The above theorem treats the execution of external calls and
other compiler builtins as atomic steps. The soundness of the vali-
dation depends on the assumption that these external functions have
precisely the same property (a compiler warning collects the identi-
fiers of all these functions to remind the user of this fact). From the
perspective of the end-user, the test is triggered by a new command-
line option -max-annot. When the validation fails, no executable is
produced and an error is emitted pointing to the branch of the (bad)
assembly program that fails the check.

The following corollary relates the theorem above to the notion
of semantic preservation in Definition 4.

Corollary 5 (Informal). Consider a PKE implementation that,
when it is compiled with CompCert, gives rise to an assembly
program that passes the translation validation check. Then, the
compilation performed by CompCert enforces Definition 4.

The proof of this corollary follows directly from the fact that
the correctness theorem for CompCert guarantees that Definition 4
is satisfied, provided that simulator S can be constructed. The the-
orem above guarantees the correctness of the trivial simulator that
looks ahead to the potential executions of the assembly program,
until it finds the annotation that reveals the correct execution paths.

Using CompCert for security-aware compilation To summarize
the above discussions, we have extended CompCert with a num-
ber of features and adapted the correctness result of the compiler
to accommodate these extensions. This means that CompCert will
preserve the observable behaviours of source C programs that rely
on an arbitrary TrustedLib. We have also shown that the transla-
tion validation step that we have added to the compiler guaran-
tees that simulation of PC traces is possible for accepted assem-
bly programs. Putting these two results together, we conclude that
our version of CompCert provides security-aware compilation by
guaranteeing semantic preservation according to Definition 4. This
means that, by the Theorems proved in Section 4, compiling a cryp-
tographic implementation from C code to assembly, one obtains the
following guarantees:

1. Assuming that the C implementation is secure in a side-channel
aware security model such as the one described in Section 2;

2. Compiling the C implementation with the generic main entry
point using CompCert and activating the translation validation
stage;

3. Assuming that the TrustedLib functions are instantiated with a
secure and correct library that satisfies the requirements speci-
fied in the security proof;

4. Then, if compilation does not fail, the assembly implementation
is correct and secure against real-world adversaries that attack
the scheme in the PC model.

Experimental results We have performed an evaluation of the
performance of the assembly code produced by CompCert when
used for security-aware compilation. Our goals were three-fold: i.
to evaluate whether or not the translation validation check might re-
ject the assembly produced by CompCert (in which case the com-
piler might not be preserving the side-channel countermeasures);
ii. to evaluate whether the annotation of C source-code with the
leakage tags might damage the performance of the code produced
by CompCert; and iii. to compare the efficiency of the secure code
produced by CompCert when compared to GCC. We have con-
ducted our evaluation in a standard PC with an IA32 architecture.
In addition to the PKCS implementation described here, we have
also evaluated the entire NaCl library core [11].

Our findings were the following. We have not encountered any
example where the assembly code generated from properly anno-
tated and secure C code was rejected due to transformations per-
formed by CompCert. On the other hand, there were several cases
where the transformation validation stage led us to identify points
in the C code where there might be potential leakage problems
(mostly associated with the compilation of composed Boolean ex-
pressions). Furthermore, when comparing the performance of val-
idated assembly code with that produced by CompCert from non-
annotated C code, there were no significant deviations in perfor-
mance. These findings indicate that CompCert behaves well in the
preservation of the class of side-channel countermeasures that we
considered in this paper, when they are deployed at the C level.

Regarding the overall performance of generated code, we com-
pared the following scenarios:

1. Arithmetic library and verified PKCS code compiled with Com-
pCert,

2. Library compiled with GCC linked with PKCS code compiled
with CompCert,

3. Library and PKCS code compiled with GCC.

Figure 7 shows some selected benchmarking results, normalized
with respect to the performance of non-optimized GCC output. We
found that, as would be expected, the code produced in 1) is slower
than that produced in 3). However, the code produced in 2) is just

9 2013/7/26

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

NaCl	 box	 NaCl	 secretbox	 PKCS	

gcc	 -‐O0	

CompCert	

gcc	 -‐O1	

Figure 7. Benchmarking results

as fast as the code produced in 3). This indicates that the penalty
for using CompCert is mostly due to compiling the library, and
could be reduced by relying on a trusted (hopefully verified) pre-
compiled off-the-shelf arithmetic library.

Our findings are consistent with the known reports on Com-
pCert benchmarking when comparing CompCert with unopti-
mized GCC code: the former outperforms the latter by roughly
a factor of 2. When comparing with GCC at optimization level 1,
we have found that CompCert is at least 30% slower. These re-
sults are slightly worse than previously reported values [27], which
put this value at roughly 15%. We attribute this discrepancy to the
domain-specific nature of our code, namely to side-channel coun-
termeasures and intensive use of arithmetic and bit-wise operations.
In the case of PKCS, we have also considered the case where the
trusted library is pre-compiled and linked with the outputs of Com-
pCert and GCC. In this case, CompCert performs as well as GCC
at optimization level 1, which shows that most of the speedups of
GCC are being achieved in the optimization of the trusted library.

6. Concluding remarks
We have developed library extensions to EasyCrypt that enable the
development of cryptographic security proofs directly on a large
subset of the C language, in an extended security model where the
adversary is given access to execution traces modelling PC security.
We have extended the CompCert certified compiler with a mecha-
nism for reasoning about programs relying on trusted libraries, as
well as a translation validation stage based on CompCert’s annota-
tion mechanism. We have shown that these mechanisms along with
a trusted library providing arithmetic operations and instantiations
of idealised operations are enough to preserve correctness and PC
security guarantees from a source C program down to its compiled
assembly executable. We have also shown the independent value
of the new CompCert extensions for compiling third-party C pro-
grams whilst preserving their claimed PC security properties.

Related work Our work lies at the intersection of computer-aided
cryptography and certified compilation; we refer the readers to [13]
and [26] for recent accounts of these fields, and focus this related
work section on the verification of cryptographic implementations,
and the formal treatment of side-channels.

Machine-checked correctness proofs of implementations of cry-
potographic primitives have been well-studied, using techniques
ranging from equivalence checking [33], to verifying compila-
tion [30], to deductive program verification [5] and interactive
theorem proving [1]. However, these techniques are focused on
functional correctness and do not attempt to formally carry prov-
able security guarantees to the implementations.

Some proposals have been made towards obtaining compu-
tational security guarantees of implementations of cryptographic
primitives and protocols. These are based on deductive verifica-
tion [18], code generation [16], model extraction [4], refinement
type systems [20], or static information-flow analysis [25]. How-

ever, these techniques focus on source program verification and do
not explicitly address executable code, nor side-channel attacks.

In addition to being a core area of research in practical cryptog-
raphy, side-channel attacks and countermeasures have been studied
extensively in related areas, namely in the setting of programming
languages [2, 3, 24, 35] and of theoretical cryptography [6, 19].
These works provide a more general account of side-channel at-
tacks, either by considering a more precise computational model,
e.g. with caches, or by providing a more abstract treatment of
side-channels. However, they typically reason in a single setting—
source code, assembly code, or an abstract model of computation.
In contrast, we precisely relate the leakage properties of primitives
to the security of algorithms and their executable implementations.

Our work is also related to ongoing efforts to formalize pro-
gramming languages and compilers. In particular, the idea of har-
nessing a general-purpose verification tool with the CompCert
compiler appears in the Verified Software Toolchain [7], and exten-
sions of CompCert with arithmetic libraries are considered in [14].

Directions for further work We intend to leverage the develop-
ments of this paper to build a verified software toolchain for cryp-
tographic implementations.

A first step towards this goal is to provide automated support
for the C mode of EasyCrypt; we are confident that the additional
complexity introduced by low-level considerations can be managed
automatically to a large extent. Automation is also instrumental for
the feasibility of security proofs in alternative leakage models. For
example, we would like to investigate stronger leakage models in
which the adversary could observe the list or set of memory ad-
dresses accessed during the execution of an algorithm, as well as
weaker leakage models in which the adversary could observe the
number of operations performed during the execution of an algo-
rithm. Dealing with these alternative models would also require
extending EasyCrypt with further libraries and to extend the new
translation validation stage in CompCert to guarantee the preser-
vation of countermeasures adequate for these leakage models.

The security notions we have formalized are at least as strong
as the standard notion of IND-CCA security, and thus inherit the
composability properties of this standard notion. A natural (and
ongoing) extension of our results is to look at previous work on
the composition of cryptographic protocols (e.g., Universal Com-
posability) and leverage them to produce verified implementations
of higher-level protocols. The major challenges here reside on the
style of cryptographic proofs that need to be formalized, which rely
on a simulation paradigm. Also interesting for future work is the
interaction of side-channel leakage at the IND-CCA level with the
security of higher-level protocols.

Finally, we did not tackle the correctness properties of the big-
integer trusted library that we use to extend C. We leave it as an
interesting challenge for future work to evaluate the impact of side-
channel countermeasures on the feasibility of formally verifying
the correctness of such a multi-precision arithmetic library.

Acknowledgements
This work is supported by ONR Grant N000141210914, Amarout
II grant FP7 Marie Curie Actions-COFUND 291803, by National
Funds through the FCT - Fundação para a Ciência e a Tecnolo-
gia (Portuguese Foundation for Science and Technology) within
project ENIAC/2224/2009 and by ENIAC Joint Undertaking under
grant agreement number 120224.

We are grateful to Benjamin Grégroire and Santiago Zanella-
Béguelin for early discussions on the OAEP proof and its Easy-
Crypt formalization.

10 2013/7/26

References
[1] Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying

assembly with formal security proofs: The case of BBS. Sci. Comput.
Program., 77(10-11):1058–1074, 2012.

[2] J. Agat. Transforming out timing leaks. In Proceedings of POPL’00,
pages 40–53, 2000.

[3] Johan Agat and David Sands. On confidentiality and algorithms.
In IEEE Symposium on Security and Privacy, pages 64–77. IEEE
Computer Society, 2001.

[4] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Computa-
tional verification of C protocol implementations by symbolic execu-
tion. In ACM Conference on Computer and Communications Security,
pages 712–723. ACM, 2012.

[5] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and
Bárbara Vieira. Deductive verification of cryptographic software. In-
novations in Systems and Software Engineering, 6(3):203–218, 2010.

[6] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage
resilience and the bounded retrieval model. In Kaoru Kurosawa, editor,
ICITS, volume 5973 of Lecture Notes in Computer Science, pages 1–
18. Springer, 2009.

[7] Andrew W. Appel. Verified software toolchain - (invited talk). In
ESOP’11, volume 6602 of Lecture Notes in Computer Science, pages
1–17. Springer, 2011.

[8] Manuel Barbosa, editor. Deliverable 5.4: Certified shared library
core. Computer Aided Cryptography Engineering (CACE FP7 EU
Project), 2011. http://www.cace-project.eu.

[9] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago
Zanella-Béguelin. Computer-aided security proofs for the working
cryptographer. In Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 71–90, Heidelberg,
2011. Springer.

[10] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago
Zanella-Béguelin. Beyond provable security. Verifiable IND-CCA se-
curity of OAEP. In Topics in Cryptology – CT-RSA 2011, volume
6558 of Lecture Notes in Computer Science, pages 180–196, Heidel-
berg, 2011. Springer.

[11] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security im-
pact of a new cryptographic library. In Alejandro Hevia and Gregory
Neven, editors, Progress in Cryptology - LATINCRYPT 2012, volume
7533 of Lecture Notes in Computer Science, pages 159–176. Springer
Berlin Heidelberg, 2012.

[12] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of
GMP square root. Journal of Automated Reasoning, 29(3-4):225–252,
2002.

[13] Bruno Blanchet. Security protocol verification: Symbolic and com-
putational models. In Pierpaolo Degano and Joshua D. Guttman, ed-
itors, Principles of Security and Trust - First International Confer-
ence, POST 2012, volume 7215 of Lecture Notes in Computer Science,
pages 3–29. Springer, 2012.

[14] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. A Formally-Verified C Compiler Supporting Floating-
Point Arithmetic. In Arith - 21st IEEE Symposium on Computer
Arithmetic, pages 107–115. IEEE, 2013.

[15] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Ver-
cauteren. Practical realisation and elimination of an ecc-related soft-
ware bug attack. In Orr Dunkelman, editor, CT-RSA, volume 7178 of
Lecture Notes in Computer Science, pages 171–186. Springer, 2012.

[16] David Cadé and Bruno Blanchet. Proved generation of implementa-
tions from computationally secure protocol specifications. In POST,
volume 7796 of Lecture Notes in Computer Science, pages 63–82.
Springer, 2013.

[17] Jean Paul Degabriele, Kenneth Paterson, and Gaven Watson. Provable
security in the real world. Security Privacy, IEEE, 9(3):33–41, may-
june 2011.

[18] François Dupressoir, Cédric Fournet, and Andrew D. Gordon. Proving
computational security with a general-purpose C verifier. In submis-
sion.

[19] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryp-
tography. In 49th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2008, pages 293–302, Washington, 2008. IEEE
Computer Society.

[20] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular
code-based cryptographic verification. In ACM Conference on Com-
puter and Communications Security, pages 341–350. ACM, 2011.

[21] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques
Stern. RSA-OAEP is secure under the RSA assumption. In Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 260–274. Springer, 2001.

[22] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984.

[23] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale
Reflection Extension for the Coq system. Rapport de recherche RR-
6455, INRIA, 2008.

[24] Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. Automatic Quan-
tification of Cache Side-Channels. In Proc. 24th International Con-
ference on Computer Aided Verification (CAV ’12), pages 564–580.
Springer, 2012.

[25] Ralf Küsters, Tomasz Truderung, and Juergen Graf. A framework for
the cryptographic verification of Java-like programs. In CSF, pages
198–212. IEEE, 2012.

[26] Xavier Leroy. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2006, pages 42–54, New York, 2006. ACM.

[27] Xavier Leroy, editor. The CompCert C verified compiler: Documenta-
tion and user’s manual. INRIA Paris-Rocquencourt, 2013.

[28] James Manger. A chosen ciphertext attack on RSA optimal asym-
metric encryption padding (OAEP) as standardized in PKCS #1 v2.0.
In Advances in Cryptology – CRYPTO 2001, volume 2139 of Lec-
ture Notes in Computer Science, pages 230–238, Heidelberg, 2001.
Springer.

[29] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.
The program counter security model: Automatic detection and re-
moval of control-flow side channel attacks. In ICISC, volume 3935 of
Lecture Notes in Computer Science, pages 156–168. Springer, 2005.

[30] Lee Pike, Mark Shields, and John Matthews. A verifying core for a
cryptographic language compiler. In ACL2, pages 1–10. ACM, 2006.

[31] Phillip Rogaway. Practice-oriented provable security and the social
construction of cryptography. Unpublished essay, 2009.

[32] Sabine (formerly Fischer) Schmaltz. Formal verification of a big
integer library including division. Master’s thesis, Saarland University,
2007.

[33] Eric Whitman Smith and David L. Dill. Automatic formal verification
of block cipher implementations. In FMCAD, pages 1–7. IEEE, 2008.

[34] Falko Strenzke. Manger’s attack revisited. In Miguel Soriano, Sihan
Qing, and Javier López, editors, Information and Communications
Security, volume 6476 of Lecture Notes in Computer Science, pages
31–45. Springer Berlin Heidelberg, 2010.

[35] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-
based control and mitigation of timing channels. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’12), pages 99–110. ACM, 2012.

A. Proof of Theorem 2
Proof. The proof is a direct reduction, where we show that any ad-
versary A that contradicts the correctness of the assembly imple-
mentation would imply an adversary A′ that contradicts the cor-
rectness of Π. Let us take A′ to be A itself.

By the correctness of Π, we know that for all possible interac-
tions with Rand and RO, all honestly generated pk and sk, and all
valid m that may be output byA′ we have that encryption is always

11 2013/7/26

http://www.cace-project.eu

successful and that, for some ciphertext c

(T, c) = EncRand,RO(m, pk) ∧ (T,m) = DecRO(c, sk)

Now suppose that A succeeds in the correctness game for the
assembly implementation. Then it must be the case that, for some
interaction with Rand and RO, honestly generated pk and sk, and
some valid m output by A, we would have that encryption fails or
that, for some ciphertext c

(T, c) = EncRand,RO(m, pk) ∧ (T,m) 6= DecRO(c, sk)

The semantic preservation of π tells us that, conditioning on each
possible interaction with Rand and RO, and on any inputs, what-
ever output is observed by A in Enc′ and Dec′ would also be ob-
servable in the C implementations. However, this would contradict
the correctness assumption on Π, which concludes the proof.

B. Proof of Theorem 3
Proof. The proof is a direct reduction, where we show that any ad-
versary A that contradicts the security of the assembly implemen-
tation would imply an adversary A′ that contradicts the security of
the C implementation. We present algorithm A′ in Figure 8. For
simplicity we omit the simulation of the random oracle, in which
A′ simply relays the adversaries queries to its own oracle. This
means that the proof actually holds in the standard model.

AdversaryA′1(pk):

(m0,m1, st) ←$ ADecrypt(·)
1 (pk)

Return (m0,m1, st)

AdversaryA′2(c∗, tΠ, st):
tπ = S(Enc,Enc′, tΠ)

b′ ←$ ADecrypt(·)
2 (c∗, tπ , st)

Return b′

oracle Decrypt(c):
Call IND-CCAΠ,A.Decrypt(c) to get (rc,m, tΠ)
tπ = S(Dec,Dec′, tΠ)
Return (rc,m, tπ)

Figure 8. An attacker against the C implementation

The intuition is the following: algorithmA′ uses simulator S to
translate the leakage obtained at the C level to that expected byA at
the assembly level. Apart from that,A simply passes the outputs of
A′ to its own environment, and returns the results without change.
Note that this is possible because the semantic domains of both C
and assembly programs is the same.

Our first observation is that the input to A1 is identically dis-
tributed to that in the real attack game against the assembly im-
plementation. We aim to show that the simulation that A′ offers
of the decryption oracle and the challenge ciphertext are perfect,
so that A’s advantage is directly translated into an attack on the
specification. We begin with the decryption oracle. We show that,
for any ciphertext produced by the adversary in the attack against
the assembly implementation, A′ responds with the correct reply.
Consider any given query c placed by the adversary. We knowA is
expecting the answer to be computed as

(rc,m)← Dec′
RO
λ (c, sk) tπ

Now, the fact that π preserves the semantics of Π means that, con-
ditioning on any interaction with the environment, the C implemen-
tation will produce exactly the same result (rc,m). Since we know

that A′ computes its answer by using its own oracle (note that the
legitimacy of A implies that A′ is also legitimate in its decryption
oracle queries) it follows that (rc,m) are correctly simulated. Fur-
thermore, we also see that A′ can provide S with all the inputs it
requires to simulate the correct PC trace for A, and so the simula-
tion of the decryption oracle is perfect.

At this point we know that the messages m0 and m1 produced
by A are identically distributed to what would occur in the real
attack game against π. In particular, these messages can be output
by A′ as legal outputs in its attack against Π.

To complete the proof, it suffices to show that the challenge
ciphertext is correctly simulated byA′. This follows from a similar
argument to that used for the simulation of the decryption oracle.
We know A expects the challenge ciphertext to be computed as

c∗ ←$ Enc′
Rand,RO
λ (mb, pk) tπ

Again, the semantic preservation property gives us that the output
produced at the C level for the same inputs is distributed identically
to whatA is expecting and, furthermore, that S provides the correct
PC trace. Now, since the view of A′ is perfectly simulated by A, it
follows thatA will succeed in breaking Π with the same advantage
as A′. This concludes the proof.

C. PKCS#1 v2.1 implementation

fun OS2IP(res : bigint, x : octet const[], len : int):

var rc : rcode; var aux : bigint; var counter : int;
octet to bigint(res, x [0]); counter = 1;
while (counter ≤ len + 1) { Leak(Event True);

bigint lshift 8(res, res);
octet to bigint(aux , x [counter]);
bigint add(res, res, aux);
counter = counter + 1; } Leak(Event False);

return RC Success;

fun I2OSP(res : octet[], x : bigint const, l : int):

var rc : rcode; var aux , x ′ : bigint; var counter : int;
bigint copy(x ′, x); counter = 1;
while (counter ≤ l) { Leak(Event True);

res[l − counter] = bigint to octet(res);
bigint rshift 8(x ′, x ′);
counter = counter + 1; } Leak(Event False);

bigint zero(aux);
if (bigint lt(aux , x ′)) { Leak(Event True);

rc = RC IntegerTooLarge; }
else { Leak(Event False); rc = RC Success; }
return rc;

fun RSAEP(res : bigint, pk : pkey const,m : bigint const):

var rc : rcode; var n, e : bigint;
rc = OS2IP(n,modulus p(pk), k);
rc = OS2IP(e, exponent p(pk), k);
if (bigint lt(m,n)) { Leak(Event True);

bigint modexp(res,m, e,n) τ ; rc = RC Success; }
else { Leak(Event False); bigint zero(res);

rc = RC MessageRepresentativeOutOfRange; }
return rc;

12 2013/7/26

fun RSADP(res : bigint, sk : skey const, c : bigint const):

var rc : rcode; var n, e : bigint;
rc = OS2IP(n,modulus s(sk), k);
rc = OS2IP(d , exponent s(sk), k);
if (bigint lt(c,n)) { Leak(Event True);
bigint modexp(res, c, d ,n) τ ; rc = RC Success; }

else { Leak(Event False); bigint zero(res);
rc = RC CipherTextRepresentativeOutOfRange; }

return rc;

fun OAEP Decode(res : octet[], len : int out,EM : octet const[]):

var rc : rcode; var b : bool; var i , j : int;
var seed : octet[hLen]; var DB : octet[dbLen];
MGF1(seed , 0, hLen,EM , 1 + hLen, dbLen);
i = 0;
while (i < hLen) { Leak(Event True);

seed [i] = EM [1 + i]⊕ seed [i] ; ;
i = i + 1; } Leak(Event False);

MGF1(DB , 0, dbLen, seed , 0, hLen);
i = 0;
while (i < dbLen) { Leak(Event True);

DB [i] = EM [1 + hLen + i]⊕DB [i] ;
i = i + 1; } Leak(Event False);

i = hLen; j = hLen; b = true;
while (i < dbLen − 1) { Leak(Event True);

b = b ∧DB [i] = 0x00;
j = j + bool to int(b);
i = i + 1; } Leak(Event False);

i = 0; b = true;
while (i < hLen) { Leak(Event True);

b = b ∧DB [i] = dLHash [i] ;
i = i + 1; } Leak(Event False);

if (b ∧DB [j] = 0x01 ∧ EM [0] = 0x00) { Leak(Event True);
∗len = dbLen − j − 1; i = 0;
while (i < ∗len) { Leak(Event True);

res[i] = DB [i + j + 1] ;
i = i + 1; } Leak(Event False);

rc = RC Success; }
else { Leak(Event False);
∗len = 0; rc = RC DecryptionError ; }

return rc;

fun OAEP Decrypt(res : octet[], rOff : int, rLen : int out,
sk : skey const,
c : octet const[], cOff : int, cLen : int):

var rc : rcode; var i : int; var ic, im : bigint;
var EM : octet[k]; var m : octet[maxMLen];
if (cLen = k) { Leak(Event True);

rc = OS2IP(ic, c, cOff , k);
rc = RSADP(im, sk , ic);
if (rc 6= RC Success) { Leak(Event True);

rc = RC DecryptionError ; }
else { Leak(Event False);

rc = I2OSP(EM , 0, im, k);
∗rLen = maxMLen;
rc = EME OAEP Decode(m, rLen,EM);
i = 0;
while (i < ∗rLen) { Leak(Event True);

res[rOff + i] = m [i] ;
i = i + 1; } Leak(Event False); }

else { Leak(Event False); rc = RC DecryptionError ; }
return rc;

13 2013/7/26

	Introduction
	Syntax and security of PKE implementations
	Security of C-like code in EasyCrypt
	Security-aware compilation
	Rendering CompCert security-aware
	Concluding remarks
	Proof of Theorem 2
	Proof of Theorem 3
	PKCS#1 v2.1 implementation

