
Published as a conference paper at ICLR 2020

CERTIFIED DEFENSES FOR ADVERSARIAL PATCHES
∗

Ping-yeh Chiang†, Renkun Ni†, Ahmed Abdelkader, Chen Zhu
University of Maryland, College Park
{pchiang,rn9zm,akader,chenzhu}@cs.umd.edu

Christoph Studer
Cornell University
studer@cornell.edu

Tom Goldstein
University of Maryland, College Park
tomg@cs.umd.edu

ABSTRACT

Adversarial patch attacks are among one of the most practical threat models
against real-world computer vision systems. This paper studies certified and
empirical defenses against patch attacks. We begin with a set of experiments
showing that most existing defenses, which work by pre-processing input images
to mitigate adversarial patches, are easily broken by simple white-box adver-
saries. Motivated by this finding, we propose the first certified defense against
patch attacks, and propose faster methods for its training. Furthermore, we ex-
periment with different patch shapes for testing, obtaining surprisingly good ro-
bustness transfer across shapes, and present preliminary results on certified de-
fense against sparse attacks. Our complete implementation can be found on:
https://github.com/Ping-C/certifiedpatchdefense.

1 INTRODUCTION

Despite the great success of neural networks for vision problems, they are easily fooled by adversarial
attacks in which the input to a machine learning model is modified with the goal of manipulating its
output. Research in this area is largely focused on norm-bounded attack (Madry et al., 2017; Tramèr
& Boneh, 2019; Shafahi et al., 2019), where the adversary is allowed to perturb all pixels in an image
provided that the ℓp-norm of the perturbation is within prescribed bounds. Other adversarial models
were also proposed, such as functional (Laidlaw & Feizi, 2019), rotation/translation (Engstrom et al.,
2017), and Wasserstein (Wong et al., 2019), all of which allow modification to all pixels.

Whole-image perturbations are unrealistic for modeling ”physical-world” attacks, in which a real-
world object is modified to evade detection. A physical adversary usually modifies an object using
stickers or paint. Because this object may only occupy a small portion of an image, the adversary
can only manipulate a limited number of pixels. As such, the more practical patch attack model
was proposed (Brown et al., 2017). In a patch attack, the adversary may only change the pixels in a
confined region, but is otherwise free to choose the values yielding the strongest attack. The threat to
real-world computer vision systems is well-demonstrated in recent literature where carefully crafted
patches can fool a classifier with high reliability (Brown et al., 2017; Karmon et al., 2018), make
objects invisible to an object detector (Wu et al., 2019; Lee & Kolter, 2019), or fool a face recognition
system (Sharif et al., 2017). In light of such effective physical-world patch attacks, very few defenses
are known to date.

In this paper, we study principled defenses against patch attacks. We begin by looking at existing
defenses in the literature that claim to be effective against patch attacks, including Local Gradient
Smoothing (LGS) (Naseer et al., 2019) and Digital Watermarking (DW) (Hayes, 2018). Similar to
what has been observed for whole-image attacks by (Athalye et al., 2018), we show that these patch
defenses are easily broken by stronger adversaries. Concretely, we demonstrate successful white-box
attacks, where the adversary designs an attack against a known model, including any pre-processing
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steps. To cope with such potentially stronger adversaries, we train a robust model that produces a
lower-bound on adversarial accuracy. In particular, we propose the first certifiable defense against
patch attacks by extending interval bound propagation (IBP) defenses (Gowal et al., 2018; Mirman
et al., 2018). We also propose modifications to IBP training to make it faster in the patch setting.
Furthermore, we study the generalization of certified patch defenses to patches of different shapes,
and observe that robustness transfers well across different patch types. We also present preliminary
results on certified defense against the stronger sparse attack model, where a fixed number of possibly
non-adjacent pixels can be arbitrarily modified (Modas et al., 2019).

2 PROBLEM SETUP

We consider a white-box adversary that is allowed to choose the location of the patch (chosen from a
set L of possible locations) and can modify pixels within the particular patch (chosen from the set P)
similar to (Karmon et al., 2018). An attack is successful if the adversary changes the classification
of the network to a wrong label. In this paper, we are primarily interested in the patch attack robust
accuracy (adversarial accuracy for short) as defined by

E
x∼X

min
p∈P,l∈L

X [f(A(x, p, l); θ) = y], (1)

where the operator A places the adversarial patch p on a given image x at location l, f is a neural
network with parameter θ, X is a distribution of images, and X is a characteristic function that takes
value 1 if its argument is true, and 0 otherwise.

In this model, the strength of the adversary can vary depending on the set of possible patches allowed,
and the type of perturbation allowed within the patch. In what follows, we assume the standard setup
in which the adversary is allowed any perturbation that maintains pixel intensities in the range [0, 1].
Unless otherwise noted, we also assume the patch is restricted to a square of prescribed size. We
consider two different options for the set L of possible patch locations. First, we consider a weak
adversary that can only place patches at the corner of an image. We find that even this weak model is
enough to break existing patch defenses. Then, we consider a stronger adversary with no restrictions
on patch location, and use this model to evaluate our proposed defenses. Note that an adversary,
when restricted to modify only a square patch at location l in the image, has the freedom to modify
any non-square subset of these pixels. In other words, a certified defense against square patch attacks
also provably subverts any non-square patch attack that fits inside a small enough square.

In general, calculating the adversarial accuracy (1) is intractable due to non-convexity. Common
approaches try to approximate it by solving the inner minimization using a gradient-based method.
However, in Section 3, we show that depending on how the minimization is solved, the upper bound
could be very loose: a model may appear to be very robust, but fail when faced with a stronger attack.
To side-step the arms race between attacks and defenses, in Section 4, we extend the work of (Gowal
et al., 2018) and (Mirman et al., 2018) to train a network that produces a lower bound on adversarial
accuracy. We will refer to approximations of the upper bound as empirical adversarial accuracy and
the lower bound as certified accuracy.

3 VULNERABILITY OF EXISTING DEFENSES

We start by examining existing defense strategies that claim to be effective against patch attacks.
Similar to what has been observed for whole-image attacks by Athalye et al. (2018), we show that
these patch defenses can easily be broken by white-box attacks, where the adversary optimizes against
a given model including any pre-processing steps.

3.1 EXISTING DEFENSES

Under our threat model, two defenses have been proposed that each use input transformations to
detect and remove adversarial patches.

The first defense is based on the observation that the gradient of the loss with respect to the input
image often exhibits large values near the perturbed pixels. In (Hayes, 2018), the proposed digital
watermarking (DW) approach exploits this behavior to detect unusually dense regions of large
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Table 1: Empirical adversarial accuracy of ImageNet classifiers defended with Local Gradient
Smoothing and Digital Watermarking. We consider two types of adversaries, one that takes the
defense into account during backpropagation and one that does not

Patch Size

Attack Defense 42× 42 52× 52 60× 60
IFGSM LGS 78% 75% 71%

IFGSM + LGS LGS 14% 5% 3%
IFGSM DW 56% 49% 45%

IFGSM + DW DW 13% 8% 5%

gradient entries using saliency maps, before masking them out in the image. Despite a 12% drop in
accuracy on clean (non-adversarial) images, this defense method supposedly achieves an empirical
adversarial accuracy of 63% for non-targeted patch attacks of size 42× 42 (2% of the image pixels),
using 400 randomly picked images from ImageNet (Deng et al., 2009) on VGG19 (Simonyan &
Zisserman, 2014).

The second defense, Local Gradient Smoothing (LGS) by Naseer et al. (2019) is based on the
empirical observation that pixel values tend to change sharply within these adversarial patches.
In other words, the image gradients tend to be large within these adversarial patches. Note that
the image gradient here differs from the gradient in Hayes (2018), the former is with respect the
changes of adjacent pixel values and the later is with respect to the classification loss. Naseer et al.
(2019) propose suppressing this adversarial noise by multiplying each pixel with one minus its image
gradient as in (2). To make their methods more effective, Naseer et al. (2019) also pre-process the
image gradient with a normalization and a thresholding step.

x̂ = x⊙ (1− λg(x)). (2)

The λ here is a smoothing hyper-parameter. Naseer et al. (2019) claim the best adversarial accuracy
on ImageNet with respect to patch attacks among all of the defenses we studied. They also claim that
their defense is resilient to Backward Pass Differential Approximation (BPDA) from Athalye et al.
(2018), one of the most effective methods to attack models that include a non-differentiable operator
as a pre-processing step.

3.2 BREAKING EXISTING DEFENSES

Using a similar setup as in (Hayes, 2018; Naseer et al., 2019), we are able to mostly replicate the
reported empirical adversarial accuracy for Iterative Fast Gradient Sign Method (IFGSM), a common
gradient based attack, but we show that when the pre-processing step is taken into account, the
empirical adversarial accuracy on ImageNet quickly drops from ∼ 70%(∼ 50%) for LGS(DW) to
levels around ∼ 10% as shown in Table 1.

Specifically, we break DW (Hayes, 2018) by applying BPDA, in which the non-differentiable
operator is approximated with an identity mapping during the backward pass. We break LGS (Naseer
et al., 2019) by directly incorporating the smoothing step during backpropagation. Even though the
windowing and thresholding steps are non-differentiable, the smoothing operator provides enough
gradient information for the attack to be effective.

To make sure that our evaluation is fair, we used the exact same models as Hayes (2018) (VGG19)
and Szegedy et al. (2016) (Inception V3). We also consider a weaker set of attackers that can only
attack the corners, the same as their setting. Further, we ensure that we were able to replicate their
reported result under similar setting.

4 CERTIFIED DEFENSES

Given the ease with which these supposedly strong defenses are broken, it is natural to seek methods
that can rigorously guarantee robustness of a given model to patch attacks. With such certifiable
guarantees in hand, we need not worry about an adversary with a stronger optimizer, or a more clever
algorithm for choosing patch locations.
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4.1 BACKGROUND ON CERTIFIED DEFENSES

Certified defenses have been intensely studied with respect to norm-bounded attacks (Cohen et al.,
2019; Wong & Kolter, 2017; Gowal et al., 2018; Mirman et al., 2018; Zhang et al., 2019b). In all
of these methods, in addition to the prediction model, there is also a verifier. Given a model and
an input, the verifier outputs a certificate if it is guaranteed that the image can not be adversarially
perturbed. This is done by checking whether there exists any nearby image (within a prescribed ℓp
distance) with a different label than the image being classified. While theoretical bounds exist on the
size of this distance that hold for any classifier (Shafahi et al., 2018), exactly computing bounds for a
specific classifier and test image is hard. Alternatively, the verifier may output a lower bound on the
distance to the nearest image of a different label. This latter distance is referred to as the certifiable
radius. Most of these verifiers provide a rather loose bound on the certifiable radius. However, if the
verifier is differentiable, then the network can be trained with a loss that promotes tightness of this
bound. We use the term certificate training to refer to the process of training with a loss that promotes
strong certificates. Interval bound propagation (IBP) (Mirman et al., 2018; Gowal et al., 2018) is a
very simple verifier that uses layer-wise interval arithmetic to produce a certificate. Even though the
IBP certificate is generally loose, after certificate training, it yields state-of-the-art certifiably-robust
models for l∞-norm bounded attacks (Gowal et al., 2018; Zhang et al., 2019b). In this paper, we
extend IBP to train certifiably-robust networks resilient to patch attacks. We first introduce some
notation and basic algorithms for IBP training.

Notation We represent a neural network with a series of transformations h(k) for each of its k layers.

We use z(k) ∈ R
nk to denote the output of layer k, where nk is the number of units in the kth layer

and z(0) stands for the input. Specifically, the network computes

z(k) = h(k−1)(z(k−1)) ∀k = 1, . . . ,K.

Certification Problem To produce a certificate for an input x0, we want to verify that the following
condition is true with respect to all possible labels y:

(eytrue
− ey)

T z(K) = my ≥ 0 ∀z(0) ∈ B(x0) ∀y. (3)

Here, ei is the ith basis vector, and my is called the margin following Wong & Kolter (2017). Note
that mytrue

is always equal to 0. The vector m contains all margins corresponding to all labels. B(x0)
is the constraint set over which the adversarial input image may range. In a conventional setting, this
is an ℓ∞ ball around x0. In the case of patch attack, the constraint set contains all images formed by
applying a patch to x0;

B(x0) = {A(x0, p, l)|p ∈ P and l ∈ L}. (4)

The Basics of Interval Bound Propagation (IBP) We now describe how to produce certificates
using interval bound propagation as in (Gowal et al., 2018). Suppose that for each component in

z(k−1) we have an interval containing all the values which this component reaches as z(0) ranges

over the ball B(x0). If z(k) = h(k)(z(k−1)) is a linear (or convolutional) layer of the form z(k) =
W (k)z(k−1) + b(k), then we can get an outer approximation of the reachable interval range of

activations by the next layer z(k) using the formulas below

z(k) = W (k) z
(k−1) + z(k−1)

2
+ |W (k)|

z(k−1) − z(k−1)

2
+ b(k), (5)

z(k) = W (k) z
(k−1) + z(k−1)

2
− |W (k)|

z(k−1) − z(k−1)

2
+ b(k). (6)

Here z(k−1) denotes the upper bound of each interval, z(k−1) the lower bound, and |W (k)| the

element-wise absolute value. Alternatively, if h(k)(z(k−1)) is an element-wise monotonic activation
(e.g., a ReLU), then we can calculate the outer approximation of the reachable interval range of the
next layer using the formulas below.

z(k) = h(k)(z(k−1)) (7)

z(k) = h(k)(z(k−1)). (8)
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When the feasible set B(x0) represents a simple ℓ∞ attack, the range of possible z(0) values is trivially

characterized by an interval bound z(0) and z(0). Then, by iteratively applying the above rules, we

can propagate intervals through the network and eventually get z(K) and z(K). A certificate can then

be given if we can show that (3) is always true for outputs in the range z(K) and z(K) with respect to
all possible labels. More specifically, we can check that the following holds for all y

my = eTytrue
z(K) − eTy z

(K) = z(K)
ytrue

− z(K)
y ≥ 0 ∀y. (9)

Training for Interval Bound Propagation To train a network to produce accurate interval bounds,
we simply replace standard logits with the −m vector in (3). Note that all elements of m need to be
larger than zero to satisfy the conditions in (3), and mytrue

is always equal to zero. Put simply, we
would like mytrue

= 0 to be the least of all margins. We can promote this condition by training with
the loss function

Certificate Loss = Cross Entropy Loss(−m, y). (10)

Unlike regular neural network training, stochastic gradient descent for minimizing equation 10 is
unstable, and a range of tricks are necessary to stabilize IBP training (Gowal et al., 2018). The first
trick is merging the last linear weight matrix with (ey − eytrue

) before calculating −my . This allows
a tighter characterization of the interval bound that noticeably improves results. The second trick uses
an “epsilon schedule” in which training begins with a perturbation radius of zero, and this radius is
slowly increased over time until a sentinel value is reached. Finally, a mixed loss function containing
both a standard natural loss and an IBP loss is used.

In all of our experiments, we use the merging technique and the epsilon schedule, but we do not use a
mixed loss function containing a natural loss as it does not increase our certificate performance.

4.2 CERTIFYING AGAINST PATCH ATTACKS

We can now describe the extension of IBP to patches. If we specify the patch location, one can
represent the feasible set of images with a simple interval bound: for pixels within the patch, the
upper and lower bound is equal to 1 and 0. For pixels outside of the patch, the upper and lower
bounds are both equal to the original pixel value. By passing this bound through the network, we
would be able to get msingle location and verify that they satisfy the conditions in (3).

However, we have to consider not just a single location, but all possible locations L to give a certificate.
To adapt the bound to all possible location, we pass each of the possible patches through the network,
and take the worst case margin. More specifically,

m
es(L)y = min

l∈L

m
single patch(l)y ∀y. (11)

Similar to regular IBP training, we simply use m
es(L) to calculate the cross entropy loss for training

and backpropagation,

Certificate Loss = Cross Entropy Loss(−m
es(L), y). (12)

Unfortunately, the cost of producing this naı̈ve certificate increases quadratically with image size.
Consider that a CIFAR-10 image is of size 32×32, requiring over a thousand interval bounds, one for
each possible patch location. To alleviate this problem, we propose two certificate training methods:
Random Patch and Guided Patch, so that the number of forward passes does not scale with the
dimension of the inputs.

Random Patch Certificate Training In this method, we simply select a random set of patches out
of the possible patches and pass them forward. A level of robustness is achieved even though a very
small number of random patches are selected compared to the total number of possible patches

m
random patches(L)y = m

es(S)y (13)

where S is a random subset of L. Similarly, the random patch certificate loss is calculated as below.

Random Patch Certificate Loss = Cross Entropy Loss(−m
random patches(L), y) (14)
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Guided Patch Certificate Training In this method, we propose using a U-net (Ronneberger et al.,
2015) to predict msingle patch, and then randomly select a couple of locations based on the predicted
m

single patch so that fewer patches need to be passed forward.

Note that very few patches contribute to the worst case bound m
es in (11). In fact, the number of

patches that yield the worst case margins will be no more than the number of labels. If we know the
worst-case patches beforehand, then we can simply select the few worst-case patches during training.

We propose to use U-net as the number of locations and margins is very large. For a square patch of
size n× n and an image of size m×m, the total number of possible locations is (m− n+ 1)2, and
for each location the number of margins is equal to the number of possible labels.

m
pred = U-net(image) (15)

dim(mpred) = (m− n+ 1,m− n+ 1, # of labels). (16)

Given the U-net prediction of mpred, we then randomly select a single patch for each label based on
the softmax of the predicted m

pred . The number of selected patches is equal to the number of labels.
After these patches are passed forward, the U-net is then updated with a mean-squared-error loss
between the predicted margins mpred and the actual margins mactual. Note that only a few patches are
selected at a time, so that the mean-squared-error only passes through the selected patches.

U-net Loss = MSE(mpred,mactual). (17)

The network is trained with the following loss:

Guided Patch Certificate Loss = Cross Entropy Loss(−m
guided patches(L), y). (18)

Certification Process In all our experiments, we check that equation (3) is satisfied by iterating over
all possible patches and forward-passing the interval bounds generated for each patch; this overhead
is tolerable at evaluation time.

4.3 CERTIFYING AGAINST SPARSE ATTACKS

IBP can also be adapted to defend against sparse attack where the attacker is allowed to modify a
fixed number (k) of pixels that may not be adjacent to each other (Modas et al., 2019). The only
modification is that we have to change the bound calculated from the first layer to

z
(1)
i = W

(1)
i,: z

(0) + |W
(1)
i,: |topk

z
(1)
i = W

(1)
i,: z

(0) − |W
(1)
i,: |topk

∀i (19)

and apply equation (5) and (6) for the subsequent layers. Here, (.)topk
is the sum of the largest k

elements in the vector.

5 EXPERIMENTS

In this section, we compare our certified defenses with exiting algorithms on two datasets and three
model architectures of varying complexity. We consider a strong attack setting in which adversarial
patches can appear anywhere in the image. Different training strategies for the certified defense are
also compared, which shows a trade-off between performance and training efficiency. Furthermore,
we evaluate the transferability of a model trained using square patches to other adversarial shapes,
including shapes that do not fit in any certified square. The training and architectural details can
be found in Appendix A.1. We also present preliminary results on certified defense against sparse
attacks.

5.1 COMPARISON AGAINST EXISTING DEFENSES

In this section, we study the effectiveness of our proposed IBP certified models against an adversary
that is allowed to place patches anywhere in the image, even on top of the salient object. If the patch
is sufficiently small, and does not cover a large portion of the salient object, then the model should
still classify correctly, and defense against the perturbation should be possible.

In the best case, our IBP certified model is able to achieve 91.6% certified (Table 2) with respect to a
2×2 patch (∼ .5% of image pixels) adversary on MNIST. For more challenging cases, such as a 5
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× 5 ( ∼ 2.5% of image pixels) patch adversary on CIFAR-10, the certified adversarial accuracy is
only 24.9% (Table 2). Even though these existing defenses appear to achieve better or comparable
adversarial accuracy as our IBP certified model when faced with a weak adversary, when faced with
a stronger adversary their adversarial accuracy dropped to levels below our certified accuracy for all
cases that we analyzed.

When evaluating existing defenses, we only report cases where non-trivial adversarial accuracy is
achieved against a weaker adversary. We do not explore cases where LGS and DW perform so poorly
that no meaningful comparison can be done. LGS and DW are highly dependent on hyperparameters
to work effectively against naive attacks, and yet neither Naseer et al. (2019) nor Hayes (2018)
proposed a way to learn these hyperparameters. By trial and error, we were able to increase the
adversarial accuracy against a weaker adversary for some settings, but not all. In addition, we also
notice a peculiar feature of DW: when we increase the adversarial accuracy, the clean accuracy
degrades, sometimes so much that it is even lower than the empirical adversarial accuracy. This
happens because DW always removes a patch from the prediction. When an adversarial patch is
detected, it is likely to be removed, enabling correct prediction. On the other hand, when there are no
adversarial patches, DW removes actual salient information, resulting in lower clean accuracy.

Here we did not compare our results with adversarial training, because even though it produces some
of the most adversarially robust models, it does not offer any guarantees on the empirical robust
accuracy, and could still be decreased further with stronger attacks. For example, Wang et al. (2019)
proposed a stronger attack that could find 47% more adversarial examples compared to gradient
based method. Further, adversarial training on all possible patches would be even more expensive
compared to certificate training, and is slightly beyond our computational budget.

Compared to state-of-the-art certified models for CIFAR with L∞-perturbation, where Zhang et al.
(2019a) proposed a deterministic algorithm that achieves clean accuracy of 34.0%, our clean accuracy
for our most robust CIFAR 5× 5 model is 47.8% when using a large model (Table 2).

Table 2: Comparison of our IBP certified patch defense against existing defenses. Empirical adversar-
ial accuracy is calculated for 400 random images in both datasets. All results are averaged over three
different models.

Dataset Patch
Size

Adversary Defense Clean
Accuracy

Empirical
Adversarial
Accuracy

Certified
Accuracy

MNIST 2× 2 IFGSM None 98.4% 80.1% -
2× 2 IFGSM LGS 97.4% 90.0% -
2× 2 IFGSM + LGS LGS 97.4% 60.7% -
2× 2 IFGSM IBP 98.5% 93.9% 91.6%
5× 5 IFGSM None 98.5% 3.3% -
5× 5 IFGSM IBP 92.9% 66.1% 62.0%

CIFAR 2× 2 IFGSM None 66.3% 25.4% -
2× 2 IFGSM LGS 64.9% 31.3% -
2× 2 IFGSM + LGS LGS 64.9% 24.2% -
2× 2 IFGSM DW 47.1% 43.3% -
2× 2 IFGSM + DW DW 47.1% 20.2% -
2× 2 IFGSM IBP 48.6% 45.2% 41.6%
5× 5 IFGSM None 66.5% 0.4% -
5× 5 IFGSM LGS 51.2% 22.11% -
5× 5 IFGSM + LGS LGS 51.2% 0.5% -
5× 5 IFGSM DW 45.3% 59.3% -
5× 5 IFGSM + DW DW 45.3% 15.6% -
5× 5 IFGSM IBP 33.9% 29.1% 24.9%

5.2 COMPARISON OF TRAINING STRATEGIES

We find that given a fixed architecture all-patch certificate training achieves the best certified accuracy.
However, given a fixed computational budget, random and guided training significantly outperform
all-patch training. Finally, guided-patch certificate training consistently outperforms random-patch
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certificate training by a slim margin, indicating that the U-net is learning how to predict the minimum
margin m.

In Table 3, we see that given a fixed architecture all-patch certificate training significantly outperforms
both random-patch certificate training and guided-patch certificate training in terms of certified
accuracy, outperforming the second best certified defenses in each task by 2.6% (MNIST, 2 × 2),
7.3% (MNIST, 5 × 5), 3.9% (CIFAR-10, 2 × 2), and 3.4% (CIFAR-10, 5 × 5). However, all-patch
certificate training is very expensive, taking on average 4 to 15 times longer than guided-patch
certificate training and over 30 to 70 times longer than random-patch certificate training.

On the other hand, given a limited computational budget, random-patch and guided-patch training
significantly outperforms all-patch training. Due to the efficiency of random-patch and guided-patch
training, they scale much better to large architectures. By switching to a large architecture (5 layer
wide convolutional network), we are able to boost the certified accuracy by over 10% compared to
the best performing all-patch small model (Table 2). Note that we are unable to all-patch train the
same architecture as it will take almost 15 days to complete, and is out of our computational budget.

Guided-patch certificate training is slightly more expensive compared to random patch, due to
overhead from the U-net architecture. However, given the 10 patches picked, guided-patch certificate
training consistently outperforms random-patch certificate training, indicating that the U-net is
learning how to predict the minimum margin m.

Table 3: Trade-off between certified accuracy and training time for different strategies. The numbers
next to training strategies indicate the number of patches used for estimating the lower bound during
training. Most training times are measured on a single 2080Ti GPU, with the exception of all-patch
training which is run on four 2080Ti GPUs. For that specific case, the training time is multiplied by 4
for fair comparison. See Appendix A.6 for more detailed statistics. *indicates the performance of the
best performing large model trained with either random or guided patch. Detailed performance of the
large models can be found in Appendix A.5

2× 2 5× 5
Dataset Training

Strategy
Clean

Accuracy
Certified
Accuracy

Training
Time(h)

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

MNIST All Patch 98.5% 91.5% 9.3 92.0% 60.4% 8.4
Random(1) 98.5% 82.9% 0.2 96.9% 24.1% 0.4
Random(5) 98.6% 86.6% 0.3 95.8% 42.1% 0.3
Random(10) 98.6% 87.7% 0.3 95.6% 49.6% 0.3
Guided(10) 98.6% 88.9% 2.2 95.0% 53.1% 2.6

CIFAR All Patch 50.9% 39.9% 56.4 33.5% 22.0% 45.8
Random(1) 53.6% 21.6% 0.6 43.6% 6.1% 0.6
Random(5) 52.9% 32.3% 0.7 39.0% 14.6% 0.7
Random(10) 51.9% 35.6% 0.8 38.8% 18.6% 0.8
Guided(10) 52.4% 36.0% 3.7 37.9% 18.8% 3.7

Large Model* 65.8% 51.9% 22.4 47.8% 30.3% 15.4

5.3 EFFECTIVENESS AGAINST SPARSE ATTACK

The IBP based method can also be used to defend against sparse attack, see Section 4.3. Its
performance is reasonable compared to patch defense (e.g. 91.5% certified accuracy for 2×2 patch vs
90.8% for k=4), even though the sparse attack model is much stronger. For convolutional networks,
we increase the size of the first convolutional layer (i.e. from 3 × 3 to 11 × 11) so the interval
bounds calculated are tighter. However, despite the change, fully-connected network still performs
much better. For example, the certified accuracy drops from 25.6% to 13.8% when we switch from
fully-connected to convolutional network for CIFAR10 and drops from 90.8% to 75.9% for MNIST
respectively. Detailed results are shown in the Appendix A.4 Table 7.

Table 4 compares our approach with the state-of-the-art certified sparse defense (Random Abla-
tion) Levine & Feizi (2019). We use their best model with the largest medium radii to certify against
various levels of sparsity. As shown in the table, our method achieves higher certified accuracy on
the MNIST dataset over all the sparse radii, but lower on CIFAR-10. It is worth noting that we are
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using a much smaller and simpler model (a fully-connected network) compared to Random Ablation,
which uses ResNet-50.

Table 4: Certified accuracy for sparse defenses with IBP and Random Ablation.

Dataset Sparsity (k) Model Clean Accuracy Certified Accuracy

MNIST 1 IBP-sparse 98.4% 96.0%
4 IBP-sparse 97.8% 90.8%

10 IBP-sparse 95.2% 86.8%
1 Random Ablation 96.7% 90.3%
4 Random Ablation 96.7% 79.1%

10 Random Ablation 96.7% 29.2%
CIFAR 1 IBP-sparse 48.4% 40.0%

4 IBP-sparse 42.2% 31.2%
10 IBP-sparse 37.0% 25.6%
1 Random Ablation 78.3% 68.6%
4 Random Ablation 78.3% 61.3%

10 Random Ablation 78.3% 45.0%

5.4 TRANSFERABILITY TO PATCHES OF DIFFERENT SHAPES

Since real-world adversarial patches may not always be square, the robust transferability of the model
to shapes other than the square is important.

Therefore, we evaluate the robustness of the square-patch-trained model to adversarial patches of
different shapes while fixing the number of pixels. In all these experiments, we evaluate the certified
accuracy for our largest model, on both MNIST and CIFAR datasets. We evaluate the transferability
to various shapes including rectangle, line, parallelogram, and diamond. With the exception of
rectangles, all the shapes have the exact same pixel count as the patches used for training. For
rectangles, we use multiple choices of width and length, obtaining some combinations with slightly
more pixels, and the worst accuracy is reported in Table 5. The exact shapes used can be found in
Appendix A.2.

The certified accuracy of our models generalize surprisingly well to other shapes, losing no more
than than 5% in most cases for MNIST and no more than 6% for CIFAR-10 (Table 5). The largest
degradation of accuracy happens for rectangles and lines, and it is mostly because the rectangle
considered has more pixels compared to the square, and the line has less overlaps. However, it is still
interesting that the certificate even generalizes to a straight line, even though the model was never
trained to be robust to lines. In the case of MNIST with small patch size, the certified accuracy even
improves when transferred to lines.

Table 5: Certified accuracy for square-patch trained model for different shapes

Dataset Pixel Count Square Rectangle Line Diamond Parallelogram

MNIST 4 91.6% - 92.5% 91.6% 92.3%
16 69.4% 55.4% 46.7% 68.13% 70.2%
25 59.7% 50.9% 32.4% 53.6% 55.2%

CIFAR 4 50.8% - 46.1% 48.6% 49.8%
16 36.9% 29.0% 32.1% 35.7% 36.3%
25 30.3% 25.1% 29.0% 30.1% 30.7%

6 CONCLUSION AND FUTURE WORK

After establishing the weakness of known defenses to patch attacks, we proposed the first certified
defense against this model. We demonstrated the effectiveness of our defense on two datasets, and
proposed strategies to speed up robust training. Finally, we established the robust transferability of
trained certified models to different shapes. In its current form, the proposed certified defense is
unlikely to scale to ImageNet, and we hope the presented experiments will encourage further work
along this direction.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS AND NETWORK STRUCTURE

We evaluate the proposed certified patch defense on three neural networks: a multilayer perceptron
(MLP) with one 255-neuron hidden layer, and two convolutional neural networks (CNN) with
different depths. The small CNN has two convolutional layers (kernel size 4, stride 2) of 4 and
8 output channels each, and a fully connected layer with 256 neurons. The large CNN has four
convolutional layers with kernel size (3, 4, 3, 4), stride (1, 2, 1, 2), output channels (4, 4, 8 ,8), and two
fully connected layer with 256 neurons. We run experiments on two datasets, MNIST and CIFAR10,
with two different patch sizes 2 × 2 and 5 × 5. For all experiments, we are using Adam (Kingma &
Ba, 2014) with a learning rate of 5e− 4 for MNIST and 1e− 3 for CIFAR10, and with no weight
decay. We also adopt a warm-up schedule in all experiments like (Zhang et al., 2019b), where the
input interval bounds start at zero and grow to [-1,1] after 61/121 epochs for MNIST/CIFAR10
respectively. We train the models for a total of 100/200 epochs for MNIST/CIFAR10, where in the
first 61/121 epochs the learning rate is fixed and in the following epochs, we reduce the learning rate
by one half every 10 epochs.

In addition, following (Gowal et al., 2018), we further evaluate the CIFAR10 on a larger model which
has 5 convolutional layers with kernel size 3 and a fully connected layer with 512 neurons. This
deeper and wider model achieves the clean accuracy around 89%, and has 17M parameters in total.
Table 8 in Appendix A.5 describes the full certified patch results for this large model.

A.2 SAMPLE SHAPES FOR GENERALIZATION EXPERIMENTS

We demonstrate generalization to other patch shapes that were not considered in training, obtaining
surprisingly good transfer in robust accuracy; see the figure below and the results in Table 5.

Figure 1: Examples of shapes with pixels number 4 and 25. From left to right are square, parallelo-
gram, diamond and rectangle (line) respectively.
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A.3 BOUND POOLING

Besides random-patch certificate training and guided-patch certificate training, we also experimented
with the idea of bound pooling. All-patch training is very expensive as bounds generated by each
potential patch has to be forward passed through the complete network. Bound pooling partially
relieves the problem be pooling the interval bounds in intermediate layers thus reducing the forward
pass in subsequent layers.

Specifically, given a set of patches P, the interval bounds in the ith layer are Z̄(i)(P) = {z̄(i)(p) : p ∈

P} and Z(i)
P = {z(i)(p) : p ∈ P}. We can reduce the number of interval bounds by partitioning P

into n subsets {S1, ..., Sn} and calculate a new set of bounds Z̄
(i)
pool(P) = {maxp∈Si z̄

(i)(p) : i ∈ [n]}

and Z
(i)
pool(P) = {minp∈Si z

(i)(p) : i ∈ [n]}. Depending on how P is partitioned, the bound pooling

would work differently. In our experiments, we always select adjacent patches for each Si with the
assumption that adjacent patches tend to generate similar bounds thus resulting in tighter certificate.

Bound pooling, similar to random- and guided- patch training, trades performance for efficiency
compared to all-patch certificate training. However, the trade off is not as favorable compared to
random-patch and guided-patch training. For example, in Table 6, Pooling 16 (4 × 4) patches in the
first layer reduces training time by 35% while loosing 0.7% in performance (on MNIST 2 × 2), but a
similar level of performance can be achieved with guided-patch training with almost 90% reduction
in training time. The trade off becomes greater when the model becomes larger. Overall, bound
pooling is still quite expensive, and cannot scale to larger models like random-patch or guided-patch
training.

Table 6: Comparing bound pooling with the guided-patch and random-patch training. Pool 4 means
that the adjacent 4 × 4 patches (16 patches) are pooled together in the first layer. Pool 2-2 means that
the adjacent 2 × 2 bounds are pooled together in the first layer and then another 2 × 2 bound pooling
happens at the second layer. This is similar to 4 × 4 pooling except the pooling operation is distributed
between the first and second layer. All experiments are performed on a 4-layer convolutional network.

2× 2 5× 5
Dataset Training

Strategy
Clean

Accuracy
Certified
Accuracy

Training
Time(h)

Clean
Accuracy

Certified
Accuracy

Training
Time(h)

MNIST All Patch 98.5% 91.6% 20.1 90.0% 59.7% 16.3
Pool 2 98.0% 91.1% 15.8 85.2% 54.2% 11.6
Pool 4 97.2% 89.9% 13.2 70.4% 38.3% 10.2

Random(1) 98.5% 81.9% 0.3 96.8% 24.8% 0.4
Random(5) 98.6% 86.5% 0.3 94.9% 42.0% 0.5

Random(10) 98.6% 87.5% 0.5 94.7% 50.4% 0.6
Guided(10) 98.7% 88.9% 2.2 94.0% 53.2% 3.4

CIFAR All Patch 49.6% 41.6% 22.5 34.0% 25.0% 18.6
Pool 2 48.1% 39.4% 17.3 32.4% 24.2% 14.5
Pool 4 44.9% 37.1% 16.3 28.3% 20.6% 13.6

Pool 2-2 45.0% 37.4% 16.5 25.3% 19.1% 13.8
Random(1) 53.2% 32.4% 0.6 42.7% 11.0% 0.6
Random(5) 52.2% 39.5% 0.9 37.8% 19.6% 0.9

Random(10) 50.8% 38.6% 1.0 38.4% 21.9% 1.0
Guided(10) 53.0% 39.8% 4.0 36.1% 23.0% 3.9
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A.4 MULTI-PATCH SPARSE TRAINING

Here we list the detailed certified accuracy for various sparsity levels and model architectures.

Table 7: Certified accuracy for sparse defenses with varying sparsity k and models on both MNIST
and CIFAR10, where “Conv c× c” represents for the convolutional network with first layer kernel
size c.

Dataset Sparsity (k) Model Clean Accuracy Certified Accuracy

MNIST 1 mlp 98.4% 96.0%
4 mlp 97.8% 90.8%

10 mlp 95.2% 86.8%
1 Conv3x3 97.0% 88.3%
4 Conv3x3 92.7% 75.9%

CIFAR 1 mlp 48.4% 40.0%
4 mlp 42.2% 31.2%

10 mlp 37.0% 25.6%
1 Conv11x11 34.8% 27.4%
4 Conv11x11 25.1% 18.3%

10 Conv11x11 17.2% 13.8%
1 Conv13x13 38.6% 29.7%
4 Conv13x13 28.1% 19.6%

10 Conv13x13 22.4% 15.3%

A.5 TRAINING WITH LARGER MODELS

Recall that all-patch training considers all possible patches during training, which can be too expensive
for larger models and/or images. The proposed random- and guided-patch training methods aim to
reduce the training cost by considering only a subset of patches; please see Section 4.2 for more
details.

Table 8: The random and guided training strategy could yield significantly stronger model compared
to all-patch training given a fixed computational budget. The random and guided training strategy
allows us to train a larger model that would be infeasible to train otherwise. The guided-patch large
model is able to boost the certified accuracy by over 10% compared to the best performing all-patch
small model.

Dataset Patch
Size

Training
Strategy

Model Clean
Accuracy

Certified
Accuracy

Training
Time(h)

CIFAR 2× 2 All Patch mlp 50.8% 35.5% 9.1
2 layer conv 52.4% 42.6% 10.7
4 layer conv 49.6% 41.6% 22.5

5 layer conv (wide) - - ∼360.0
Random(10) 5 layer conv (wide) 64.7% 49.0% 9.5
Random(20) 5 layer conv (wide) 64.4% 50.8% 15.8
Guided(10) 5 layer conv (wide) 66.5% 49.2% 12.2
Guided(20) 5 layer conv (wide) 65.8% 51.9% 22.4

CIFAR 5× 5 All Patch mlp 31.1% 18.8% 7.1
2 layer conv 35.5% 22.3% 8.7
4 layer conv 34.0% 25.0% 18.6

5 layer conv (wide) - - ∼360.0
Random(10) 5 layer conv (wide) 48.6% 29.9% 9.4
Random(20) 5 layer conv (wide) 47.8% 30.3% 15.4
Guided(10) 5 layer conv (wide) 48.4% 29.0% 12.4
Guided(20) 5 layer conv (wide) 47.6% 29.6% 23.8
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A.6 DETAILED STATISTICS ON TRAINING STRATEGIES

Here we list the detailed statistics for each training strategies for Table 3

Dataset Training
Strategies

Model Architecture Clean Accuracy Certified
Accuracy

Training
Time

MNIST All Patch 2 layer convolution 98.63/% 91.38% 21.0
4 layer convolution 98.48% 91.63% 80.3

fully connected (255,10) 98.46% 91.47% 9.8
Random (1) 2 layer convolution 98.69% 82.57% 0.2

4 layer convolution 98.45% 81.87% 0.3
fully connected (255,10) 98.48% 84.32% 0.2

Random (5) 2 layer convolution 98.75% 85.87% 0.3
4 layer convolution 98.57% 86.50% 0.3

fully connected (255,10) 98.62% 87.32% 0.2
Random (10) 2 layer convolution 98.73% 87.31% 0.3

4 layer convolution 98.63% 87.54% 0.5
fully connected (255,10) 98.49% 88.13% 0.2

Guided (10) 2 layer convolution 98.60% 88.49% 2.3
4 layer convolution 98.70% 88.85% 2.2

fully connected (255,10) 98.63% 89.44% 2.2
CIFAR All Patch 2 layer convolution 52.42% 42.57% 42.6

4 layer convolution 49.58% 41.57% 89.8
fully connected (255,10) 50.83% 35.49% 36.6

Random (1) 2 layer convolution 54.93% 29.13% 0.6
4 layer convolution 53.22% 32.35% 0.6

fully connected (255,10) 52.76% 03.21% 0.5
Random (5) 2 layer convolution 54.15% 37.30% 0.6

4 layer convolution 52.19% 39.45% 0.9
fully connected (255,10) 52.38% 20.17% 0.6

Random (10) 2 layer convolution 53.08% 39.32% 0.7
4 layer convolution 50.80% 38.57% 1.0

fully connected (255,10) 51.90% 28.97% 0.6
Guided (10) 2 layer convolution 53.04% 38.81% 3.7

4 layer convolution 52.97% 39.84% 4.0
fully connected (255,10) 51.32% 29.44% 3.6

Table 9: Detailed statistics for the comparison of training strategies - 2×2
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Dataset Training
Strategies

Model Architecture Clean Accuracy Certified
Accuracy

Training
Time

MNIST All Patch 2 layer convolution 91.88% 59.59% 28.4
4 layer convolution 90.03% 59.72% 65.2

fully connected (255,10) 93.96% 61.97% 7.2
Random (1) 2 layer convolution 96.27% 18.57% 0.2

4 layer convolution 96.83% 24.79% 0.4
fully connected (255,10) 97.60% 29.04% 0.2

Random (5) 2 layer convolution 95.82% 38.47% 0.2
4 layer convolution 94.85% 42.02% 0.5

fully connected (255,10) 96.73% 45.89% 0.2
Random (10) 2 layer convolution 95.55% 46.13% 0.3

4 layer convolution 94.76% 50.43% 0.6
fully connected (255,10) 96.40% 52.30% 0.2

Guided (10) 2 layer convolution 95.28% 50.28% 2.3
4 layer convolution 93.98% 53.17% 3.4

fully connected (255,10) 95.82% 55.89% 2.2
CIFAR All Patch 2 layer convolution 35.48% 22.31% 34.8

4 layer convolution 33.95% 24.96% 74.4
fully connected (255,10) 31.05% 18.78% 28.4

Random (1) 2 layer convolution 45.71% 07.14% 0.6
4 layer convolution 42.65% 10.99% 0.6

fully connected (255,10) 42.34% 00.10% 0.5
Random (5) 2 layer convolution 42.85% 17.29% 0.6

4 layer convolution 37.80% 19.63% 0.9
fully connected (255,10) 36.23% 06.99% 0.6

Random (10) 2 layer convolution 41.90% 21.40% 0.7
4 layer convolution 38.41% 21.90% 1.0

fully connected (255,10) 36.04% 12.46% 0.6
Guided (10) 2 layer convolution 42.08% 20.77% 3.6

4 layer convolution 36.08% 23.01% 3.9
fully connected (255,10) 35.51% 12.56% 3.5

Table 10: Detailed statistics for the comparison of training strategies - 5×5
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