
Certified Mergeable Replicated Data Types

(Extended Version)

Vimala Soundarapandian
IIT Madras

Chennai, India
cs19d013@cse.iitm.ac.in

Adharsh Kamath
NITK Surathkal
Surathkal, India

adharshkamathr@gmail.com

Kartik Nagar
IIT Madras

Chennai, India
nagark@cse.iitm.ac.in

KC Sivaramakrishnan
IIT Madras and Tarides

Chennai, India
kcsrk@cse.iitm.ac.in

Abstract

Replicated data types (RDTs) are data structures that per-
mit concurrent modification of multiple, potentially geo-
distributed, replicas without coordination between them.
RDTs are designed in such a way that conflicting operations
are eventually deterministically reconciled ensuring conver-
gence. Constructing correct RDTs remains a difficult endeav-
our due to the complexity of reasoning about independently
evolving states of the replicas. With the focus on the correct-
ness of RDTs (and rightly so), existing approaches to RDTs
are less efficient compared to their sequential counterparts
in terms of time- and space-complexity of local operations.
This is unfortunate since RDTs are often used in an local-
first setting where the local operations far outweigh remote
communication.
In this paper, we present Peepul, a pragmatic approach

to building and verifying efficient RDTs. To make reason-
ing about correctness easier, we cast RDTs in the mould
of distributed version control system, and equip it with a
three-way merge function for reconciling conflicting ver-
sions. Further, we go beyond just verifying convergence, and
provide a methodology to verify arbitrarily complex specifi-
cations. We develop a replication-aware simulation relation
to relate RDT specifications to their efficient purely func-
tional implementations. We have developed Peepul as an F*
library that discharges proof obligations to an SMT solver.
The verified efficient RDTs are extracted as OCaml code and
used in Irmin, a Git-like distributed database.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523735

CCSConcepts: •Computingmethodologies→Distributed

programming languages; • Software and its engineer-

ing → Formal software verification; • Computer sys-

tems organization → Availability.

Keywords: MRDTs, Eventual consistency, Automated verifi-
cation, Replication-aware simulation

ACM Reference Format:

Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC
Sivaramakrishnan. 2022. CertifiedMergeable Replicated Data Types
(Extended Version). In Proceedings of the 43rd ACMSIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3519939.3523735

1 Introduction

Modern cloud-based software services often replicate data
across multiple geographically distributed locations in order
to tolerate against partial failures of servers and to minimise
latency by bringing data closer to the user. While services
like Google Docs allow several users to concurrently edit
the document, the conflicts are resolved with the help of a
centralised server. On the other hand, services like Github
and Gitlab, built on the decentralised version control system
Git, avoid the need for a centralised server, and permit the
different replicas (forks) to synchronize with each other in a
peer-to-peer fashion. By avoiding centralised server, local-
first software [20] such as Git bring in additional benefits of
security, privacy and user ownership of data.
While Git is designed for line-based editing of text files

and requires manual intervention in the presence of merge
conflicts, RDTs generalise this concept to arbitrary general
purpose data structures such as lists and hash maps, and en-
sure convergence without manual intervention. Convergent
Replicated Data Types (CRDTs) [32], which arose from dis-
tributed systems research, are complete reimplementations
of sequential counterparts aimed at providing convergence
without user intervention, and have been deployed in dis-
tributed data bases such as AntidoteDB [31] and Riak [29].

ar
X

iv
:2

20
3.

14
51

8v
1

 [
cs

.P
L

]
 2

8
M

ar
 2

02
2

https://doi.org/10.1145/3519939.3523735
https://doi.org/10.1145/3519939.3523735

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

In order to resolve conflicting updates, CRDTs generally
need to carry their causal contexts as metadata [34]. Manag-
ing this causal context is often expensive and complicated.
For example, consider the observed-removed set CRDT (OR-
set) [32], where, in the case of concurrent addition and re-
moval, the addition wins. A typical OR-set implementation
uses two grow-only sets, one for elements added to the set
A and another for elements that are removed R. An ele-
ment 𝑒 is removed from the OR-set by adding it to the set
R, and thus creating a tombstone for 𝑒 . The set membership
is given by the difference between the two: A − R, and
two concurrent versions can be merged by unioning the
individual A and R sets. Observe that the tombstones for
removed elements cannot be garbage collected as that would
require all the replicas to remove the element at the same
time, which requires global coordination. This leads to an
inefficient implementation. Several techniques have been
proposed to minimise this metadata overhead [1, 34], but the
fundamental problem still remains.

1.1 Mergeable Replicated Data Types

As an alternative to CRDTs, mergeable replicated data types
(MRDTs) [18] have been proposed, which extend the idea
of distributed version control for arbitrary data types. The
causal context necessary for resolving the conflicts is main-
tained by the MRDT middleware. MRDTs allow ordinary
purely functional data structures [27] to be promoted to
RDTs by equipping them with a three-way merge function
that describes the conflict resolution policy. When conflict-
ing updates need to be reconciled, the causal history is used
to determine the lowest common ancestor (lca) for use in the
three-way merge function along with the conflicting states.
The MRDT middleware garbage collects the causal histories
when appropriate [8], and is no longer a concern for the RDT
library developer. This branch-consistent view of replication
not only makes it easier to develop individual data types, but
also leads to a natural transactional semantics [6, 9].

An efficient OR-set MRDT that avoids tombstones can be
implemented as follows. We represent the OR-set as a list
of pairs of the element and a unique id, which is generated
per operation. The list may have duplicate elements with
different ids. Adding an element appends the element and
the id pair to the head of the list (𝑂 (1) operation). Removing
an element removes all the occurrences of the element from
the list (𝑂 (𝑛) operation). Given two concurrent versions of
the OR-set 𝑎 and 𝑏, and their lowest common ancestor 𝑙 , the
merge is implemented as (𝑎 − 𝑙) @ (𝑏 − 𝑙) @ (𝑙 ∩ 𝑎 ∩ 𝑏),
where@ stands for list append. Intuitively, we append the
lists formed by newly added elements in 𝑎 and 𝑏 with the list
of elements that are present on all the three versions. The
unique id associated with the element ensures that in the
presence of concurrent addition and removal of the same
element, the newly added element with the fresh id, which
has not been seen by the concurrent remove, will remain in

the merged result. The merge operation can be implemented
in𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time by sorting the individual lists. In §2.1.2, we
show how to make this implementation even more efficient
by removing the duplicate elements with different ids from
the OR-set.

1.2 Efficiency and correctness

The key question is how do we guarantee that such efficient
implementations still preserve the intent of the OR-Set in
a sound manner? Optimisations such as removing dupli-
cate elements are notoriously difficult to get right since the
replica states evolve independently. Moreover, individually
correct RDTs may fail to preserve convergence when put
together [19]. Kaki et al. [18] opine that merge functions
should not be written by hand, but automatically derived
from a relational representation of the sequential data type.
Their idea is to capture the key properties of the algebraic
data type as relations over its constituent elements. Then,
the merge function devolves to a merge of these relations
(sets) expressed as MRDTs. During merge, the concrete im-
plementations are reified to their relational representations
expressed in terms of sets, merged using set semantics, and
the final concrete state is reconstructed from the relational
set representation.
Unfortunately, mapping complex data types to sets does

not lead to efficient implementations. For example, a queue
in Kaki et al. is represented by two characteristic relations –
a unary relation for membership and a binary relation for
ordering. For a queue with 𝑛 elements, the ordering relation
contains 𝑛2 elements. Reifying the queue to its characteristic
relations and back to its concrete representation for every
merge is inefficient and impractical. This technique does not
scale as the structure of the data type gets richer (Red-Black
tree, JSON, file systems, etc.). The more complex the data
type, more complex the characteristic relations become, hav-
ing an impact on the cost of merge. Further Kaki et al. do not
consider functional correctness of MRDT implementations,
but instead only focuses on the correctness of convergence.

1.3 Certified MRDTs

Precisely specifying and verifying the functional correctness
of efficient RDT implementations is not straightforward due
to the complexity of handling conflicts between divergent
versions. This results in a huge gap between the high-level
specifications and efficient implementations. In this work,
we propose to bridge this gap by using Burckhardt et al.’s
replication-aware simulation relation [5]. However, Burck-
hardt et al.’s simulation is only applicable to CRDTs and
cannot be directly extended to MRDTs which assume a dif-
ferent system model.
We first propose a system model and an operational se-

mantics for MRDTs, and precisely define the problem of
convergence and functional correctness for MRDTs. We also

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

introduce a new notion of convergence modulo observable be-
haviour, which allows replicas to converge to different states,
as long as their observable behaviour to clients remains the
same. This notion allows us to build and verify even more
efficient MRDTs.

Further, we go beyond Burckhardt et al.’s work [5] in the
use of simulation relations by mechanizing and automat-
ing (to an extent) the complete verification process. We in-
stantiate our technique as an F* library named Peepul and
mechanically verify the implementation of a number effi-
cient purely functional MRDT implementations including
an efficient replicated two-list queue. Our replicated queue
supports constant time push and pop operations, a linear
time merge operation, and does not have any tombstones. To
the best of our knowledge, ours is the first formal declarative
specification of a distributed queue (§6), and its mechanised
proof of correctness.
Being a SMT-solver-aided programming language, F* al-

lows us to discharge many of the proof obligations automat-
ically through the SMT solver. Even though our approach
requires the simulation relation as input, we also observe
that in most cases, the simulation relation directly follows
from the declarative specification.

Our technique also supports composition, and we demon-
strate how parametric polymorphism allows composition
of not just the MRDT implementations but also their proofs
of correctness. From our MRDT implementations in F*, we
extract verified OCaml implementations and execute them
on top of Irmin, a Git-like distributed database. Our experi-
mental evaluation shows that our efficient MRDT implemen-
tations scale significantly better than other RDT implemen-
tations.

To summarize, we make the following contributions:

• We propose a store semantics for MRDT implementa-
tions and formally define the convergence and func-
tional correctness problem forMRDTs, including a new
notion of convergence modulo observable behaviour.

• We propose a technique to verify both convergence
and functional correctness of MRDTs by adapting the
notion of replication-aware simulation relation [5] to
the MRDT setting.

• We mechanize and automate the complete verification
process using F*, and apply our technique on a number
of complex MRDT implementations, including a new
time and space-efficient ORSet and a queue MRDT.

• We provide experimental results which demonstrate
that our efficientMRDT implementations performmuch
better as compared with previous implementations,
and also show the tradeoff between proof automation
and verification time in F*.

The rest of the paper is organized as follows. §2 presents
the implementation model and the declarative specification
framework for MRDTs. §3 presents the formal semantics

of the git-like replicated store on which MRDT implemen-
tations run. In §4, we present a new verification strategy
for MRDTs based on the notion of replication-aware simu-
lation. §5 highlights the compositionality of our technique
in verifying complex verified MRDTs reusing the proofs of
simpler ones. §6 presents the formally verified efficient repli-
cated queue. §7 presents the experimental evaluation and §8
presents the related work.

2 Implementing and Specifying MRDTs

In this section, we present the formal model for describing
MRDT implementations and their specifications.

2.1 Implementation

Our model of replicated datastore is similar to a distributed
version control system like Git [11], with replication centred
around versioned states in branches and explicit merges. A
typical replicated datastore will have a key-value interface
with the capability to store arbitrary objects as values [16,
29]. Since our goal is to verify correct implementations of
individual replicated objects, our formalism models a store
with a single object.

A replicated datastore consists of an object which is repli-
cated acrossmultiple branches𝑏1, 𝑏2, . . . ∈ 𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷 . Clients
interact with the store by performing operations on the
object at a specified branch, modifying its local state. The
different branches may concurrently update their local states
and progress independently. We also allow dynamic creation
of a new branch by copying the state of an existing branch.
A branch at any time can get updates from any other branch
by performing amerge with that branch, updating its local
copy to reflect the merge. Conflicts might arise when the
same object is modified in two or more branches, and these
are resolved in an data type specific way.
An object has a type 𝜏 ∈ 𝑇𝑦𝑝𝑒 , whose type signature

(𝑂𝑝𝜏 ,𝑉𝑎𝑙𝜏) determines the set of supported operations 𝑂𝑝𝜏
and the set of their return values 𝑉𝑎𝑙𝜏 . A special value ⊥ ∈
𝑉𝑎𝑙𝜏 is used for operations that return no value.

Definition 2.1. Amergeable replicated data type (MRDT)
implementation for a data type 𝜏 is a tuple 𝐷𝜏 = (Σ, 𝜎0, 𝑑𝑜,
𝑚𝑒𝑟𝑔𝑒) where:

• Σ is the set of all possible states at a branch,
• 𝜎0 ∈ Σ is the initial state,
• 𝑑𝑜 : 𝑂𝑝𝜏 × Σ × 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 → Σ × 𝑉𝑎𝑙𝜏 implements
every data type operation,

• 𝑚𝑒𝑟𝑔𝑒 : Σ × Σ × Σ → Σ implements the three-way
merge strategy.

An MRDT implementation D𝜏 provides two methods: do
and merge that the datastore will invoke appropriately. We
assume that these methods execute atomically. A client re-
quest to perform an operation 𝑜 ∈ 𝑂𝑝𝜏 at a branch triggers
the call 𝑑𝑜 (𝑜, 𝜎, 𝑡). This takes the current state 𝜎 ∈ Σ of

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

the object at the branch where the request is issued and a
timestamp 𝑡 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 provided by the datastore, and
produces the updated object state and the return value of
the operation.

The datastore guarantees that the timestamps are unique
across all of the branches, and for any two operations 𝑎
and 𝑏, with timestamps 𝑡𝑎 and 𝑡𝑏 , if 𝑎 happens-before 𝑏,
then 𝑡𝑎 < 𝑡𝑏 . The data type implementation can use the
timestamp provided to implement the conflict-resolution
strategy, but is also free to ignore it. For simplicity of presen-
tation, we assume that the timestamps are positive integers,
𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = N. The datastore may choose to implement
the timestamp using Lamport clocks [21], along with the
unique branch id to provide uniqueness of timestamps.
A branch 𝑎 may get updates from another branch 𝑏 by

performing a merge, which modifies the state of the object in
branch 𝑎. In this case, the datastore will invoke𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎,
𝜎𝑎, 𝜎𝑏) where 𝜎𝑎 and 𝜎𝑏 are the current states of branch 𝑎

and 𝑏 respectively, and 𝜎𝑙𝑐𝑎 is the lowest common ancestor
(LCA) of the two branches. The LCA of two branches is the
most recent state from which the two branches diverged.
We assume that execution of the store will begin with a
single branch, fromwhich new branches may be dynamically
created. Hence, for any two branches, the LCA will always
exist.

2.1.1 OR-set. We illustrate MRDT implementations using
the example of an OR-set. Recall from §1 that the OR-set
favours the addition in the case where there is a concur-
rent addition and removal of the same element on different
branches.

1: Σ = P(N × N)
2: 𝜎0 = {}
3: 𝑑𝑜 (𝑟𝑑, 𝜎, 𝑡) = (𝜎, {𝑎 | (𝑎, 𝑡) ∈ 𝜎})
4: 𝑑𝑜 (𝑎𝑑𝑑 (𝑎), 𝜎, 𝑡) = (𝜎 ∪ {(𝑎, 𝑡)},⊥)
5: 𝑑𝑜 (𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎), 𝜎, 𝑡) = ({𝑒 ∈ 𝜎 | 𝑓 𝑠𝑡 (𝑒) ≠ 𝑎},⊥)
6: 𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏) =

(𝜎𝑙𝑐𝑎 ∩ 𝜎𝑎 ∩ 𝜎𝑏) ∪ (𝜎𝑎 − 𝜎𝑙𝑐𝑎) ∪ (𝜎𝑏 − 𝜎𝑙𝑐𝑎)

Figure 1. OR-set data type implementation

Let us assume that the elements in the OR-set are natural
numbers. Its type signature would be (𝑂𝑝𝑜𝑟𝑠𝑒𝑡 ,𝑉𝑎𝑙𝑜𝑟𝑠𝑒𝑡) =
({add(𝑎), remove(𝑎) | 𝑎 ∈ N} ∪ {rd}, {P(N),⊥}). Figure 1
shows an MRDT implementation of the OR-set data type.
The state of the object is a set of pairs of the element and the
timestamp. The operations and the merge remain the same
as described in §1.1. Note that we use 𝑓 𝑠𝑡 and 𝑠𝑛𝑑 functions
to obtain the first and second elements respectively from a
tuple. This implementation may have duplicate entries of
the same element with different timestamps.

2.1.2 Space-efficient OR-set (OR-set-space). One pos-
sibility to make this OR-set implementation more space-
efficient is by removing the duplicate entries from the set.
A duplicate element will appear in the set if the client calls
add(𝑒) for an element 𝑒 which is already in the set. Can we
reimplement add such that we leave the set as is if the set
already has 𝑒? Unfortunately, this breaks the intent of the
OR-set. In particular, if there were a concurrent remove of
𝑒 on a different branch, then 𝑒 will be removed when the
branches are merged. The key insight is that the effect of the
duplicate add has to be recorded so as to not lose additions.

1: Σ = P(N × N)
2: 𝜎0 = {}
3: 𝑑𝑜 (𝑟𝑑, 𝜎, 𝑡) = (𝜎, {𝑎 | (𝑎, 𝑡) ∈ 𝜎})
4: 𝑑𝑜 (𝑎𝑑𝑑 (𝑎), 𝜎, 𝑡) = if (𝑎, _) ∈ 𝜎 then (𝜎 [𝑎 ↦→ 𝑡],⊥)
5: else (𝜎 ∪ {(𝑎, 𝑡)},⊥)
6: 𝑑𝑜 (𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎), 𝜎, 𝑡) = ({𝑒 ∈ 𝜎 | 𝑓 𝑠𝑡 (𝑒) ≠ 𝑎},⊥)
7: 𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏) =
8: {𝑒 | 𝑒 ∈ (𝜎𝑙𝑐𝑎 ∩ 𝜎𝑎 ∩ 𝜎𝑏)} ∪
9: {𝑒 | 𝑒 ∈ (𝜎𝑎 − 𝜎𝑙𝑐𝑎) ∧ (𝑓 𝑠𝑡 (𝑒), _) ∉ (𝜎𝑏 − 𝜎𝑙𝑐𝑎)} ∪
10: {𝑒 | 𝑒 ∈ (𝜎𝑏 − 𝜎𝑙𝑐𝑎) ∧ (𝑓 𝑠𝑡 (𝑒), _) ∉ (𝜎𝑎 − 𝜎𝑙𝑐𝑎)} ∪
11: {𝑒 | 𝑒 ∈ (𝜎𝑎 − 𝜎𝑙𝑐𝑎) ∧
12: (∀𝑡 . (𝑓 𝑠𝑡 (𝑒), 𝑡) ∈ (𝜎𝑏 − 𝜎𝑙𝑐𝑎) ⇒ 𝑠𝑛𝑑 (𝑒) > 𝑡)} ∪
13: {𝑒 | 𝑒 ∈ (𝜎𝑏 − 𝜎𝑙𝑐𝑎) ∧
14: (∀𝑡 . (𝑓 𝑠𝑡 (𝑒), 𝑡) ∈ (𝜎𝑎 − 𝜎𝑙𝑐𝑎) ⇒ 𝑠𝑛𝑑 (𝑒) > 𝑡)}

Figure 2. Space-efficient OR-set (OR-set-space) implemen-
tation

Figure 2 provides the implementation of the space-efficient
OR-set. The read and the remove operations remain the same
as the earlier implementation. If the element being added is
not already present in the set, then the element is added to
the set along with the timestamp. Otherwise, the timestamp
of the existing entry is updated to the new timestamp. Given
that our timestamps are unique, the new operation’s times-
tamp will be distinct from the old timestamp. This prevents
a concurrent remove from deleting this new addition.

Another possibility of duplicates is that the same element
may concurrently be added on two different branches. The
implementation of the merge function now has to take care
of this possibility and not include duplicates. An element in
the merged set was either in the lca and the two concurrent
states (line 8), or was only added in one of the branches (lines
9 and 10), or was added in both the branches in which case
we pick the entry with the larger timestamp (lines 11–14).

2.2 Specification

Given that there are several candidates for implementing
an MRDT, we need a way to specify the behaviour of an
MRDT so that we may ask the question of whether the given
implementation satisfies the specification. We now present a
declarative framework for specifying MRDTs which closely

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

follows the framework presented by Burckhardt et al. [5]. We
define our specifications on an abstract state, which capture
the state of the distributed store. It consists of events in a
execution of the distributed store, along with a visibility
relation among them.

Definition 2.2. An abstract state for a data type 𝜏 = (𝑂𝑝𝜏 ,
𝑉𝑎𝑙𝜏) is a tuple 𝐼 = ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩, where

• 𝐸 ⊆ 𝐸𝑣𝑒𝑛𝑡 is a set of events,
• 𝑜𝑝𝑒𝑟 : 𝐸 → 𝑂𝑝𝜏 associates the data type operation
with each event,

• 𝑟𝑣𝑎𝑙 : 𝐸 → 𝑉𝑎𝑙𝜏 associates the return value with each
event,

• 𝑡𝑖𝑚𝑒 : 𝐸 → 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 associates the timestamp at
which an event was performed,

• 𝑣𝑖𝑠 ⊆ 𝐸 ×𝐸 is an irreflexive, asymmetric and transitive
visibility relation.

Given 𝑒
𝑣𝑖𝑠−−→ 𝑓 , 𝑒 is said to causally precede 𝑓 . In our

setting, it may be the case that the operation of 𝑓 follows
the operation of 𝑒 on the same branch, or the operations
of 𝑓 and 𝑒 were performed on different branches 𝑏 𝑓 and 𝑏𝑒 ,
but before the operation of 𝑓 , the branch 𝑏𝑒 on which the
operation of 𝑒 was performed was merged info 𝑏 𝑓 .
We specify a data type 𝜏 by a function F𝜏 which deter-

mines the return value of an operation 𝑜 based on prior
operations applied on that object. F𝜏 also takes as a param-
eter the abstract state that is visible to the operation. Note
that the abstract state contains all the information that is
necessary to specify the return-value of 𝑜 .

Definition 2.3. A replicated data type specification for a
type 𝜏 is a functionF𝜏 that given an operation𝑜 ∈ 𝑂𝑝𝜏 and an
abstract state 𝐼 for 𝜏 , specifies a return value F𝜏 (𝑜, 𝐼) ∈ 𝑉𝑎𝑙𝜏 .

2.2.1 OR-set specification. As an illustration of the spec-
ification language, let us consider the OR-set. For the OR-set,
both add and remove operations always return ⊥. We can
formally specify the ‘add-wins’ conflict resolution strategy
as follows:

F𝑜𝑟𝑠𝑒𝑡 (rd, ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩) = {𝑎 | ∃𝑒 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒)

= add(𝑎) ∧ ¬(∃𝑓 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑓) = remove(𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑓)}

In words, the read operation returns all those elements for
which there exists an add operation of the element which is
not visible to a remove operation of the same element. Hence,
if an add and remove operation are concurrent, then the add
would win. Notice that the specification, while precisely
encoding the required semantics, is far removed from the
MRDT implementations of the OR-set that we saw earlier.
Providing a framework for bridging this gap in an automated
and mechanized manner is one of the principal contributions
of this work.

3 Store Semantics and MRDT Correctness

In this section, we formally define the semantics of a repli-
cated datastore S consisting of a single object with data type
implementation D𝜏 . Note that the store semantics can be
easily generalized to multiple objects (with possibly different
data types), since the store treats each object independently.
We then define formally what it means for data type imple-
mentations to satisfy their specifications. We also introduce
a novel notion of convergence across all the branches called
convergence modulo observable behaviour that differs from
the standard notions of eventual consistency. This property
allows us to have more efficient but verified merges.

The semantics of the store is a set of all its executions. In
order to easily relate the specifications which are in terms of
abstract states to the implementation, we maintain both the
concrete state (as given by the data type implementation)
and the abstract state at every branch in our store semantics.
Formally, the semantics of the store are parametrised by a
data type 𝜏 and its implementation 𝐷𝜏 = (Σ, 𝜎0, 𝑑𝑜,𝑚𝑒𝑟𝑔𝑒).
They are represented by a labelled transition systemM𝐷𝜏

=

(Φ,→). Assume that B is the set of all possible branches.
Each state in Φ is a tuple (𝜙, 𝛿, 𝑡) where,

• 𝜙 : B ⇀ Σ is a partial function that maps branches to
their concrete states,

• 𝛿 : B ⇀ 𝐼 is a partial function that maps branches to
their abstract states,

• 𝑡 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 maintains the current timestamp to be
supplied to operations.

The initial state of the labelled transition system consists
of only one branch𝑏⊥, and is represented by𝐶⊥ = (𝜙⊥, 𝛿⊥, 0)
where 𝜙⊥ = [𝑏⊥ ↦→ 𝜎0] and 𝛿⊥ = [𝑏⊥ ↦→ 𝐼0].

Here, 𝜎0 is the initial state as given by the implementation
𝐷𝜏 , while 𝐼0 is the empty abstract state, whose event set
is empty. In order to describe the transition rules, we first
introduce abstract operations 𝑑𝑜#, 𝑚𝑒𝑟𝑔𝑒# and 𝑙𝑐𝑎# which
perform a data type operation, merge operation and find the
lowest common ancestor respectively on abstract states:

𝑑𝑜#⟨𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡⟩
= ⟨𝐼 .𝐸 ∪ {𝑒}, 𝐼 .𝑜𝑝𝑒𝑟 [𝑒 ↦→ 𝑜𝑝], 𝐼 .𝑟𝑣𝑎𝑙 [𝑒 ↦→ 𝑎],

𝐼 .𝑡𝑖𝑚𝑒 [𝑒 ↦→ 𝑡], 𝐼 .𝑣𝑖𝑠 ∪ {(𝑓 , 𝑒) | 𝑓 ∈ 𝐼 .𝐸)}⟩

𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏) = 𝐼𝑚 where
𝐼𝑚 .𝐸 = 𝐼𝑎 .𝐸 ∪ 𝐼𝑏 .𝐸

prop ∈ {𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒}

𝐼𝑚 .prop(𝑒) =
{
𝐼𝑎 (𝑒) if 𝑒 ∈ 𝐼𝑎 .𝐸

𝐼𝑏 (𝑒) if 𝑒 ∈ 𝐼𝑏 .𝐸

𝐼𝑚 .𝑣𝑖𝑠 = 𝐼𝑎 .𝑣𝑖𝑠 ∪ 𝐼𝑏 .𝑣𝑖𝑠

𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏) = ⟨𝐼𝑎 .𝐸 ∩ 𝐼𝑏 .𝐸, 𝐼𝑎 .𝑜𝑝𝑒𝑟 |𝐸𝑙 ,
𝐼𝑎 .𝑟𝑣𝑎𝑙 |𝐸𝑙 , 𝐼𝑎 .𝑡𝑖𝑚𝑒 |𝐸𝑙 , 𝐼𝑎 .𝑣𝑖𝑠 |𝐸𝑙 ⟩

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

In terms of abstract states, 𝑑𝑜# simply adds the new event
𝑒 to the set of events, appropriately setting the various event
properties and visibility relation. 𝑚𝑒𝑟𝑔𝑒# of two abstract
states simply takes a union of the events in the two states.
Similarly, the 𝑙𝑐𝑎# of two abstract states would be the inter-
section of events in the two states.

𝑏1 ∈ 𝑑𝑜𝑚(𝜙) 𝑏2 ∉ 𝑑𝑜𝑚(𝜙)
𝜙

′
= 𝜙 [𝑏2 ↦→ 𝜙 (𝑏1)] 𝛿

′
= 𝛿 [𝑏2 ↦→ 𝛿 (𝑏1)]

(𝜙, 𝛿, 𝑡)
𝐶𝑅𝐸𝐴𝑇𝐸𝐵𝑅𝐴𝑁𝐶𝐻 (𝑏1,𝑏2)−−−−−−−−−−−−−−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡)

𝑏 ∈ 𝑑𝑜𝑚(𝜙) D𝜏 .𝑑𝑜 (𝑜, 𝜙 (𝑏), 𝑡) = (𝜎 ′
, 𝑎)

𝑒 : {𝑜𝑝𝑒𝑟 = 𝑜, 𝑡𝑖𝑚𝑒 = 𝑡, 𝑟𝑣𝑎𝑙 = 𝑎}
𝑑𝑜# (𝛿 (𝑏), 𝑒, 𝑜, 𝑎, 𝑡) = 𝐼

′

𝜙
′
= 𝜙 [𝑏 ↦→ 𝜎

′] 𝛿
′
= 𝛿 [𝑏 ↦→ 𝐼

′]

(𝜙, 𝛿, 𝑡)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡 + 1)

𝑏1 ∈ 𝑑𝑜𝑚(𝜙) 𝑏2 ∈ 𝑑𝑜𝑚(𝜙)
𝑙𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜙) 𝛿 (𝑙𝑐𝑎) = 𝑙𝑐𝑎# (𝛿 (𝑏1), 𝛿 (𝑏2))
D𝜏 .𝑚𝑒𝑟𝑔𝑒 (𝜙 (𝑙𝑐𝑎), 𝜙 (𝑏1), 𝜙 (𝑏2)) = 𝜎𝑚𝑒𝑟𝑔𝑒

𝑚𝑒𝑟𝑔𝑒# (𝛿 (𝑏1), 𝛿 (𝑏2)) = 𝐼𝑚𝑒𝑟𝑔𝑒

𝜙
′
= 𝜙 [𝑏1 ↦→ 𝜎𝑚𝑒𝑟𝑔𝑒] 𝛿

′
= 𝛿 [𝑏1 ↦→ 𝐼𝑚𝑒𝑟𝑔𝑒]

(𝜙, 𝛿, 𝑡)
𝑀𝐸𝑅𝐺𝐸 (𝑏1,𝑏2)−−−−−−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡)

Figure 3. Semantics of the replicated datastore

Figure 3 describes the transition function→. The first rule
describes the creation of new branch 𝑏2 from the current
branch 𝑏1. Both the concrete and abstract states of the new
branch will be the same as that of 𝑏1. The second rule de-
scribes a branch 𝑏 performing an operation 𝑜 which triggers
a call to the 𝑑𝑜 method of the corresponding data type imple-
mentation. The return value is recorded using the function
𝑟𝑣𝑎𝑙 . A similar update is also performed on abstract state of
branch 𝑏 using 𝑑𝑜#. The third rule describes the merging of
branch 𝑏2 into branch 𝑏1 which triggers a call to the𝑚𝑒𝑟𝑔𝑒

method of the data type implementation. We assume that
the store provides another branch 𝑙𝑐𝑎 whose abstract and
concrete states correspond to the lowest common ancestor
of the two branches.
Definition 3.1. An execution 𝜒 ofM𝐷𝜏

is a finite but un-
bounded sequence of transitions starting from the initial
state 𝐶⊥.

𝜒 = (𝜙⊥, 𝛿⊥, 0)
𝑒1−→ (𝜙1, 𝛿1, 𝑡1)

𝑒2−→ . . .
𝑒𝑛−−→ (𝜙𝑛, 𝛿𝑛, 𝑡𝑛) (1)

Definition 3.2. An execution 𝜒 satisfies the specification
F𝜏 for the data type 𝜏 , written as 𝜒 |= F𝜏 , if for every 𝐷𝑂

transition (𝜙𝑖 , 𝛿𝑖 , 𝑡𝑖)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑖+1, 𝛿𝑖+1, 𝑡𝑖 +1) in 𝜒 , such that

D𝜏 .𝑑𝑜 (𝑜, 𝜙𝑖 (𝑏), 𝑡𝑖) = (𝜎, 𝑎), then 𝑎 = F𝜏 (𝑜, 𝛿𝑖 (𝑏)).

That is for every operation 𝑜 , the return value 𝑎 computed
by the implementation on the concrete state must be equal to
the return value of the specification function F𝜏 computed on
the abstract state. Next we define the notion of convergence
(i.e. strong eventual consistency) in our setting:

Definition 3.3. An execution 𝜒 (as in equation 1) is con-
vergent,
if for every state (𝜙𝑖 , 𝛿𝑖) and

∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).𝛿𝑖 (𝑏1) = 𝛿𝑖 (𝑏2) =⇒ 𝜙𝑖 (𝑏1) = 𝜙𝑖 (𝑏2)

That is, two branches with the same abstract states–which
corresponds to having seen the same set of events–must also
have the same concrete state. We note that even though
eventual consistency requires two branches to converge to
the same state, from the point of view of a client that uses
the data store, this state is never directly visible. That is, a
client only notices the operations and their return values.
Based on this insight, we define the notion of observational
equivalence between states, and a new notion of conver-
gence modulo observable behaviour that requires branches
to converge to states that are observationally equivalent.

Definition 3.4. Two states 𝜎1 and 𝜎2 are observationally
equivalent, written as 𝜎1 ∼ 𝜎2, if the return value of every
operation supported by the data type applied on the two
states is the same. Formally,

∀𝜎1, 𝜎2 ∈ Σ. ∀𝑜 ∈ 𝑂𝑝𝜏 . ∀𝑡1, 𝑡2 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝. ∃𝑎 ∈ 𝑉𝑎𝑙𝜏 .

D𝜏 .𝑑𝑜 (𝑜, 𝜎1, 𝑡1) = (_, 𝑎) ∧ D𝜏 .𝑑𝑜 (𝑜, 𝜎2, 𝑡2) = (_, 𝑎)
=⇒ 𝜎1 ∼ 𝜎2

Definition 3.5. An execution 𝜒 (as in equation 1) is conver-
gentmodulo observable behavior , if for every state (𝜙𝑖 , 𝛿𝑖)
and

∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).𝛿𝑖 (𝑏1) = 𝛿𝑖 (𝑏2) =⇒ 𝜙𝑖 (𝑏1) ∼ 𝜙𝑖 (𝑏2)
(2)

The idea behind convergence modulo observable behavi-
out is that the state of the object at different replicas may
not converge to the same (structurally equal) representation,
but the object has the same observable behaviour in terms of
its operations. For example, in the OR-set implementation,
if the set is implemented internally as a binary search tree
(BST), then branches can independently decide to perform
balancing operations on the BST to improve the complexity
of the subsequent read operations. This would mean that the
actual state of the BSTs at different branches may eventually
not be structurally equal, but they would still contain the
same set of elements, resulting in same observable behaviour.
Note that the standard notion of eventual consistency implies
convergence modulo observable behaviour.

Definition 3.6. A data type implementation D𝜏 is correct,
if every execution 𝜒 of M𝐷𝜏

satisfies the specification F𝜏
and is convergent modulo observable behavior.

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

4 Proving Data Type Implementations

Correct

In the previous section, we have defined what it means for
an MRDT implementation to be correct with respect to the
specification. In this section, we show how to prove the
correctness of an MRDT implementation with the help of
replication-aware simulation relations.

4.1 Replication-aware simulation

For proving the correctness of a data type implementation
D𝜏 , we use replication-aware simulation relations R𝑠𝑖𝑚 .
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple sufficient conditions which
can easily discharged by tools such as F*. Finally, we apply
our proof technique on a wide range of MRDTs, with substan-
tially complex specifications (e.g. queue MRDT described in
§6).

The R𝑠𝑖𝑚 relation essentially associates the concrete state
of the object at a branch 𝑏 with the abstract state at the
branch. This abstract state would consist of all events which
were applied on the branch. Verifying the correctness of a
MRDT through simulation relations involves two steps: (i)
first, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type specification and is sufficient for convergence. The
first step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in figures 4 and 5, respectively.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying operations

Figure 4 considers the application of a data type operation
(through the 𝑑𝑜 function) at a branch. Assuming that the
simulation relation R𝑠𝑖𝑚 holds between the abstract state
𝐼 and the concrete state 𝜎 at the branch, we would have
to show that R𝑠𝑖𝑚 continues to hold after the application
of the operation through the concrete 𝑑𝑜 function of the
implementation and the abstract 𝑑𝑜# function on the abstract
state.
Figure 5 considers the application of a merge operation

between branches 𝑎 and 𝑏. In this case, assuming R𝑠𝑖𝑚 be-
tween the abstract and concrete states at the two branches

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>D⌧ .merge(�lca,�a,�b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>Rsim

Figure 5. Verifying 3-way merge

and for the LCA, we would then show that R𝑠𝑖𝑚 continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state 𝜎𝑙𝑐𝑎 , we also assume that
R𝑠𝑖𝑚 holds between the concrete and abstract LCA states.
These conditions consider the effect of concrete and ab-

stract operations locally and thus enable automated verifica-
tion. In order to discharge these conditions, we also consider
two store properties, Ψ𝑡𝑠 and Ψ𝑙𝑐𝑎 that hold across all ex-
ecutions (shown in Table 1). Ψ𝑡𝑠 pertains to the nature of
the timestamps associated with each operation, while Ψ𝑙𝑐𝑎
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role
in discharging the conditions required for validity of the
simulation relation.
In particular, Ψ𝑡𝑠 (𝐼) asserts that in the abstract state 𝐼 ,

causally related events have increasing timestamps, and no
two events have the same timestamp. Ψ𝑙𝑐𝑎 (𝐼𝑙 , 𝐼𝑎, 𝐼𝑏) will be
instantiated with the LCA of two abstract states 𝐼𝑎 and 𝐼𝑏
(i.e. 𝐼𝑙 = 𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏)), and asserts that the visibility relation
between events which are present in both 𝐼𝑎 and 𝐼𝑏 (and
hence also in 𝐼𝑙) will be the same in all three abstract states.
Further, every event in the LCAwill be visible to newly added
events in either of the two branches. These properties follow
naturally from the definition of LCA and are also maintained
by the store semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationR𝑠𝑖𝑚 . In particular,Φ𝑑𝑜 and
Φ𝑚𝑒𝑟𝑔𝑒 exactly encode the scenarios depicted in the figures 4
and 5. Note that for Φ𝑑𝑜 , we assume Ψ𝑡𝑠 for the input abstract
state on which the operation will be performed. Similarly, for
Φ𝑚𝑒𝑟𝑔𝑒 , we assume Ψ𝑡𝑠 for all events in the merged abstract
state (thus ensuring Ψ𝑡𝑠 also holds for events in the original
branches) and Ψ𝑙𝑐𝑎 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
specification as well as guarantee convergence. For this, we
define two more conditions Φ𝑠𝑝𝑒𝑐 and Φ𝑐𝑜𝑛 (also in table 2).
Φ𝑠𝑝𝑒𝑐 says that if abstract state 𝐼 and concrete state 𝜎 are

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

Ψ𝑡𝑠 (𝐼) ∀𝑒, 𝑒 ′ ∈ 𝐼 .𝐸. 𝑒
𝐼 .𝑣𝑖𝑠−−−→ 𝑒 ′ ⇒ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) < 𝐼 .𝑡𝑖𝑚𝑒 (𝑒 ′)

∧∀𝑒, 𝑒 ′ ∈ 𝐼 .𝐸. 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) = 𝐼 .𝑡𝑖𝑚𝑒 (𝑒 ′) ⇒ 𝑒 = 𝑒 ′

Ψ𝑙𝑐𝑎 (𝐼𝑙 , 𝐼𝑎, 𝐼𝑏) 𝐼𝑙 .𝑣𝑖𝑠 = 𝐼𝑎 .𝑣𝑖𝑠 |𝐼𝑙 .𝐸 = 𝐼𝑏 .𝑣𝑖𝑠 |𝐼𝑙 .𝐸

∧∀𝑒 ∈ 𝐼𝑙 .𝐸. ∀𝑒 ′ ∈ (𝐼𝑎 .𝐸 ∪ 𝐼𝑏 .𝐸) \ 𝐼𝑙 .𝐸. 𝑒
𝐼𝑎 .𝑣𝑖𝑠∪𝐼𝑏 .𝑣𝑖𝑠−−−−−−−−−→ 𝑒 ′

Table 2. Sufficient conditions for showing validity of simulation relation

Φ𝑑𝑜 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎, 𝑒, 𝑜𝑝, 𝑎, 𝑡 . R𝑠𝑖𝑚 (𝐼 , 𝜎) ∧ 𝑑𝑜# (𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡) = 𝐼
′

∧ D𝜏 .𝑑𝑜 (𝑜𝑝, 𝜎, 𝑡) = (𝜎 ′
, 𝑎) ∧ Ψ𝑡𝑠 (𝐼) =⇒ R𝑠𝑖𝑚 (𝐼 ′, 𝜎 ′)

Φ𝑚𝑒𝑟𝑔𝑒 (R𝑠𝑖𝑚) ∀𝐼𝑎, 𝐼𝑏, 𝜎𝑎, 𝜎𝑏, 𝜎𝑙𝑐𝑎 . R𝑠𝑖𝑚 (𝐼𝑎, 𝜎𝑎) ∧ R𝑠𝑖𝑚 (𝐼𝑏, 𝜎𝑏)
∧ R𝑠𝑖𝑚 (𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏), 𝜎𝑙𝑐𝑎) ∧ Ψ𝑡𝑠 (𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏)) ∧ Ψ𝑙𝑐𝑎 (𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏), 𝐼𝑎, 𝐼𝑏)

=⇒ R𝑠𝑖𝑚 (𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏),D𝜏 .𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏))
Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎, 𝑒, 𝑜𝑝, 𝑎, 𝑡 . R𝑠𝑖𝑚 (𝐼 , 𝜎) ∧ 𝑑𝑜# (𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡) = 𝐼

′

∧ D𝜏 .𝑑𝑜 (𝑜𝑝, 𝜎, 𝑡) = (𝜎 ′
, 𝑎) ∧ Ψ𝑡𝑠 (𝐼) =⇒ 𝑎 = F𝜏 (𝑜, 𝐼)

Φ𝑐𝑜𝑛 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎𝑎, 𝜎𝑏 . R𝑠𝑖𝑚 (𝐼 , 𝜎𝑎) ∧ R𝑠𝑖𝑚 (𝐼 , 𝜎𝑏) =⇒ 𝜎𝑎 ∼ 𝜎𝑏

related by R𝑠𝑖𝑚 , then the return value of operation 𝑜 per-
formed on 𝜎 should match the value of the specification
function F𝜏 on the abstract state. Since the R𝑠𝑖𝑚 relation
is maintained at every transition, if Φ𝑠𝑝𝑒𝑐 is valid, then the
implementation will clearly satisfy the specification. Finally,
for convergence, we require that if two concrete states are
related to the same abstract state, then they should be ob-
servationally equivalent. This corresponds to our proposed
notion of convergence modulo observable behavior.

Definition 4.1. Given a MRDT implementation D𝜏 of data
type 𝜏 , a replication-aware simulation relation R𝑠𝑖𝑚 ⊆ I𝜏 ×Σ
is valid ifΦ𝑑𝑜 (R𝑠𝑖𝑚)∧Φ𝑚𝑒𝑟𝑔𝑒 (R𝑠𝑖𝑚)∧Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚)∧Φ𝑐𝑜𝑛 (R𝑠𝑖𝑚).

Theorem 4.2 (Soundness). Given a MRDT implementation
D𝜏 of data type 𝜏 , if there exists a valid replication-aware
simulation R𝑠𝑖𝑚 , then the data type implementation D𝜏 is
correct 1.

4.2 Verifying OR-sets using simulation relations

Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the specification F𝑜𝑟𝑠𝑒𝑡 in
§2.2.1.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

R𝑠𝑖𝑚 (𝐼 , 𝜎) ⇐⇒ (∀(𝑎, 𝑡) ∈ 𝜎 ⇐⇒
(∃𝑒 ∈ 𝐼 .𝐸 ∧ 𝐼 . 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑑𝑑 (𝑎) ∧ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) = 𝑡 ∧

¬(∃𝑓 ∈ 𝐼 .𝐸 ∧ 𝐼 . 𝑜𝑝𝑒𝑟 (𝑓) = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑓)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
1The proof of the soundness theorem can be found in Appendix A

event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set specification and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.

Space-efficient OR-set. Following is a candidate valid
simulation relation for the space-efficient OR-set (OR-set-
space) from §2.1.2:

R𝑠𝑖𝑚 ((𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠), 𝜎) ⇐⇒
(∀(𝑎, 𝑡) ∈ 𝜎 =⇒ (∃𝑒 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑑𝑑 (𝑎) ∧ 𝑡𝑖𝑚𝑒 (𝑒) = 𝑡

∧ ¬(∃𝑟 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑟) = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑟)) ∧

(∀𝑒 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑑𝑑 (𝑎) ∧ ¬(∃𝑟 ∈ 𝐸.𝑜𝑝𝑒𝑟 (𝑟) = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎)

∧ 𝑒
𝑣𝑖𝑠−−→ 𝑟) =⇒ 𝑡 ≥ 𝑡𝑖𝑚𝑒 (𝑒))) ∧

(∀𝑒 ∈ 𝐸.∀𝑎 ∈ N. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑑𝑑 (𝑎)

∧ ¬(∃𝑟 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑟) = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑟) =⇒ (𝑎, _) ∈ 𝜎)

(4)

The simulation relation in this case captures all the con-
straints of the one for OR-set with duplicates, but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

5 Composing MRDTs

A key benefit of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

5.1 IRC-style chat

To illustrate the benefits of compositionality, we consider a
decentralised IRC-like chat application with multiple chan-
nels. Each channel maintains the list of messages in reverse
chronological order so that the most recent message may be
displayed first. For simplicity, we assume that the channels
are append-only; while new messages can be posted to the
channels, old messages cannot be deleted. We also assume
that while new channels may be created, existing channels
may not be deleted.

F𝑐ℎ𝑎𝑡 (𝑟𝑑 (𝑐ℎ), ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩) = 𝑙𝑜𝑔 where
1: (∀𝑡,𝑚. (𝑡,𝑚) ∈ 𝑙𝑜𝑔 ⇐⇒ ∃𝑒 ∈ 𝐸.

𝑜𝑝𝑒𝑟 (𝑒) = 𝑠𝑒𝑛𝑑 (𝑐ℎ,𝑚) ∧ 𝑡𝑖𝑚𝑒 (𝑒) = 𝑡) ∧
2: (∀𝑡1,𝑚1, 𝑡2,𝑚2. 𝑜𝑟𝑑 (𝑡1,𝑚1) (𝑡2,𝑚2) 𝑙𝑜𝑔

⇐⇒ ∃𝑒1, 𝑒2 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒1) = 𝑠𝑒𝑛𝑑 (𝑐ℎ,𝑚1) ∧
𝑡𝑖𝑚𝑒 (𝑒1) = 𝑡1 ∧ 𝑜𝑝𝑒𝑟 (𝑒2) = 𝑠𝑒𝑛𝑑 (𝑐ℎ,𝑚2) ∧
𝑡𝑖𝑚𝑒 (𝑒2) = 𝑡2 ∧ 𝑡1 > 𝑡2)

Figure 6. The specification of IRC-style chat.

The chat application supports sending a message to a
channel and reading messages from a channel: 𝑂𝑝𝑐ℎ𝑎𝑡 =

{𝑠𝑒𝑛𝑑 (𝑐ℎ,𝑚) | 𝑐ℎ ∈ 𝑠𝑡𝑟𝑖𝑛𝑔 ∧ 𝑚 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔)} ∪ {𝑟𝑑 (𝑐ℎ)
| 𝑐ℎ ∈ 𝑠𝑡𝑟𝑖𝑛𝑔}. The specification of this chat application is
given in Figure 6. For this we define a predicate 𝑜𝑟𝑑 such
that 𝑜𝑟𝑑 (𝑡1,𝑚1) (𝑡2,𝑚2) 𝑙 holds iff 𝑡1 ≠ 𝑡2 and (𝑡1,𝑚1) occurs
before (𝑡2,𝑚2) in list 𝑙 . The specification essentially says the
log of messages contains all (and only those) messages that
were sent, and messages are ordered in reverse chronological
order.

Rather than implement this chat application from scratch,
we may quite reasonably build it using existing MRDTs. We
may use a MRDT map to store the association between the
channel names and the list of messages. Given that the con-
versations take place in a decentralized manner, the list of
messages in each channel should also be mergeable. For this
purpose, we use a mergeable log, an MRDT list that totally
orders the messages based on the message timestamp, to
store the messages in each of the channels. As mentioned
earlier, for simplicity we will assume that the map and the
log are grow-only.

5.2 Mergeable log

The mergeable log MRDT supports operations to append
messages to the log and to read the log: 𝑂𝑝𝑙𝑜𝑔 = {𝑟𝑑} ∪
{𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚) | 𝑚 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔}. The log maintains messages in

F𝑙𝑜𝑔 (𝑟𝑑, ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩) = 𝑙𝑠𝑡 where
1: (∀𝑡,𝑚. (𝑡,𝑚) ∈ 𝑙𝑠𝑡 ⇐⇒

∃𝑒 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚) ∧ 𝑡𝑖𝑚𝑒 (𝑒) = 𝑡) ∧
2: (∀𝑡1,𝑚1, 𝑡2,𝑚2. 𝑜𝑟𝑑 (𝑡1,𝑚1) (𝑡2,𝑚2) 𝑙𝑠𝑡 ⇐⇒

∃𝑒1, 𝑒2 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒1) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚1) ∧ 𝑡𝑖𝑚𝑒 (𝑒1) = 𝑡1
∧ 𝑜𝑝𝑒𝑟 (𝑒2) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚2) ∧ 𝑡𝑖𝑚𝑒 (𝑒2) = 𝑡2 ∧ 𝑡1 > 𝑡2)

D𝑙𝑜𝑔 = (Σ, 𝜎0, 𝑑𝑜,𝑚𝑒𝑟𝑔𝑒𝑙𝑜𝑔) where
1: Σ𝑙𝑜𝑔 = P(N × 𝑠𝑡𝑟𝑖𝑛𝑔)
2: 𝜎0 = {}
3: 𝑑𝑜 (𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚), 𝜎, 𝑡) = ((𝑡,𝑚) :: 𝜎,⊥)
4: 𝑑𝑜 (𝑟𝑑, 𝜎, 𝑡) = (𝜎, 𝜎)
5: 𝑚𝑒𝑟𝑔𝑒𝑙𝑜𝑔 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏) =

𝑠𝑜𝑟𝑡 ((𝜎𝑎 − 𝜎𝑙𝑐𝑎) @ (𝜎𝑏 − 𝜎𝑙𝑐𝑎)) @ 𝜎𝑙𝑐𝑎

R𝑠𝑖𝑚−𝑙𝑜𝑔 (𝐼 , 𝜎) ⇐⇒
1: (∀𝑡,𝑚. (𝑡,𝑚) ∈ 𝜎 ⇐⇒

∃𝑒 ∈ 𝐼 .𝐸. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚) ∧ 𝑡𝑖𝑚𝑒 (𝑒) = 𝑡) ∧
2: (∀𝑡1,𝑚1, 𝑡2,𝑚2. 𝑜𝑟𝑑 (𝑡1,𝑚1) (𝑡2,𝑚2) 𝜎 ⇐⇒

∃𝑒1, 𝑒2 ∈ 𝐼 .𝐸. 𝑜𝑝𝑒𝑟 (𝑒1) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚1) ∧ 𝑡𝑖𝑚𝑒 (𝑒1) = 𝑡1
∧ 𝑜𝑝𝑒𝑟 (𝑒2) = 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚2) ∧ 𝑡𝑖𝑚𝑒 (𝑒2) = 𝑡2 ∧ 𝑡1 > 𝑡2)

Figure 7. The specification, implementation and the simula-
tion relation of mergeable log.

reverse chronological order. Figure 7 presents the specifi-
cation, implementation and the simulation relation of the
mergeable log. The 𝑠𝑜𝑟𝑡 function sorts the list in reverse
chronological order based on the timestamps associated with
the messages.

5.3 Generic map

We introduce a generic map MRDT, 𝛼-map, which asso-
ciates string keys with a value, where the value stored in the
map is itself an MRDT. This 𝛼-map is parameterised on an
MRDT 𝛼 and its implementation D𝛼 , and supports 𝑔𝑒𝑡 and
𝑠𝑒𝑡 operations: 𝑂𝑝𝛼−𝑚𝑎𝑝 = {𝑔𝑒𝑡 (𝑘, 𝑜𝛼) | 𝑘 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔 ∧ 𝑜𝛼 ∈
𝑂𝑝𝛼 } ∪ {𝑠𝑒𝑡 (𝑘, 𝑜𝛼) | 𝑘 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔 ∧ 𝑜𝛼 ∈ 𝑂𝑝𝛼 }, where 𝑂𝑝𝛼
denotes the set of operations on the underlying value MRDT.

Figure 8 shows the specification, implementation and the
simulation relation of 𝛼-map. The implementations for get
and 𝑠𝑒𝑡 operations both fetch the current value associated
with the key 𝑘 (and the initial state of D𝛼 if the key is not
present in the map), and apply the given operation 𝑜𝛼 from
the implementation D𝛼 on this value. While 𝑠𝑒𝑡 updates the
binding in the map,𝑔𝑒𝑡 does not do so and simply returns the
value returned by 𝑜𝛼 . The merge operation merges the values
for each key using the merge function of 𝛼 . The specification
and simulation relation of 𝛼-map use the specification and
simulation relation of the underlying MRDT 𝛼 , by projecting
the events associated with each key to an abstract execution
of 𝛼 . We now provide the details of this projection function.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

F𝛼−𝑚𝑎𝑝 (𝑔𝑒𝑡 (𝑘, 𝑜𝛼), 𝐼) =
let 𝐼𝛼 = 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑘, 𝐼) in F𝛼 (𝑜𝛼 , 𝐼𝛼)

D𝛼−𝑚𝑎𝑝 = (Σ, 𝜎0, 𝑑𝑜,𝑚𝑒𝑟𝑔𝑒𝛼−𝑚𝑎𝑝) where
1: Σ𝛼−𝑚𝑎𝑝 = P(𝑠𝑡𝑟𝑖𝑛𝑔 × Σ𝛼)
2: 𝜎0 = {}

3: 𝛿 (𝜎, 𝑘) =
{
𝜎 (𝑘), if 𝑘 ∈ 𝑑𝑜𝑚(𝜎)
𝜎0𝛼 , otherwise

4: 𝑑𝑜 (𝑠𝑒𝑡 (𝑘, 𝑜𝛼), 𝜎, 𝑡) =
let (𝑣, 𝑟) = 𝑑𝑜𝛼 (𝑜𝛼 , 𝛿 (𝜎, 𝑘), 𝑡) in (𝜎 [𝑘 ↦→ 𝑣], 𝑟)

5: 𝑑𝑜 (𝑔𝑒𝑡 (𝑘, 𝑜𝛼), 𝜎, 𝑡) =
let (_, 𝑟) = 𝑑𝑜𝛼 (𝑜𝛼 , 𝛿 (𝜎, 𝑘), 𝑡) in (𝜎, 𝑟)

6: 𝑚𝑒𝑟𝑔𝑒𝛼−𝑚𝑎𝑝 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏) =
{(𝑘, 𝑣) | (𝑘 ∈ 𝑑𝑜𝑚(𝜎𝑙𝑐𝑎) ∪ 𝑑𝑜𝑚(𝜎𝑎) ∪ 𝑑𝑜𝑚(𝜎𝑏)) ∧

𝑣 =𝑚𝑒𝑟𝑔𝑒𝛼 (𝛿 (𝜎𝑙𝑐𝑎, 𝑘), 𝛿 (𝜎𝑎, 𝑘), 𝛿 (𝜎𝑏, 𝑘))

R𝑠𝑖𝑚−𝛼−𝑚𝑎𝑝 (𝐼 , 𝜎) ⇐⇒ ∀𝑘.
1: (𝑘 ∈ 𝑑𝑜𝑚(𝜎) ⇐⇒ ∃𝑒 ∈ 𝐼 .𝐸. 𝑜𝑝𝑒𝑟 (𝑒) = 𝑠𝑒𝑡 (𝑘, _)) ∧
2: R𝑠𝑖𝑚−𝛼 (𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑘, 𝐼), 𝛿 (𝜎, 𝑘))

Figure 8. The specification, implementation and simulation
relation of 𝛼-map.

5.4 Projection function

𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 𝑘 𝐼𝛼−𝑚𝑎𝑝 = 𝐼𝛼 where
1: 𝐼𝛼−𝑚𝑎𝑝 = (Σ𝑚, 𝑜𝑝𝑒𝑟𝑚, 𝑟𝑣𝑎𝑙𝑚, 𝑡𝑖𝑚𝑒𝑚, 𝑣𝑖𝑠𝑚) and
2: 𝐼𝛼 = (Σ𝛼 , 𝑜𝑝𝑒𝑟𝛼 , 𝑟𝑣𝑎𝑙𝛼 , 𝑡𝑖𝑚𝑒𝛼 , 𝑣𝑖𝑠𝛼) and
3: (∀𝑒, 𝑘, 𝑜 . 𝑒 ∈ Σ𝑚 ∧ 𝑜𝑝𝑒𝑟𝑚 (𝑒) = 𝑠𝑒𝑡 (𝑘, 𝑜) ⇐⇒

∃𝑒 ′ ∈ Σ𝛼 . 𝑜𝑝𝑒𝑟𝛼 (𝑒 ′) = 𝑜 ∧ 𝑟𝑣𝑎𝑙𝑚 (𝑒) = 𝑟𝑣𝑎𝑙𝛼 (𝑒 ′) ∧
𝑡𝑖𝑚𝑒𝑚 (𝑒) = 𝑡𝑖𝑚𝑒𝛼 (𝑒 ′)) ∧

4: (∀𝑒1, 𝑒2. 𝑒1 ∈ Σ𝑚 ∧𝑒2 ∈ Σ𝑚 ∧ 𝑜𝑝𝑒𝑟𝑚 (𝑒1) = 𝑠𝑒𝑡 (𝑘, _) ∧
𝑜𝑝𝑒𝑟𝑚 (𝑒2) = 𝑠𝑒𝑡 (𝑘, _) ∧ 𝑒1

𝑣𝑖𝑠𝑚−−−→ 𝑒2 ⇐⇒
∃𝑒 ′1, 𝑒

′
2 ∈ Σ𝛼 . 𝑡𝑖𝑚𝑒𝛼 (𝑒

′
1) = 𝑡𝑖𝑚𝑒𝑚 (𝑒1) ∧

𝑡𝑖𝑚𝑒𝛼 (𝑒
′
2) = 𝑡𝑖𝑚𝑒𝑚 (𝑒2) ∧ 𝑒

′
1

𝑣𝑖𝑠𝛼−−−→ 𝑒
′
2)

Figure 9. Projection function for mapping 𝛼-map execution
to 𝛼 execution.

Figure 9 gives the projection function which when given
an abstract execution 𝐼𝛼−𝑚𝑎𝑝 of 𝛼-map, projects all the 𝑠𝑒𝑡-
events associated with a particular key 𝑘 to define an abstract
execution 𝐼𝛼 . There is a one-to-one correspondence between
𝑠𝑒𝑡-events to 𝑘 in 𝐼𝛼−𝑚𝑎𝑝 and events in 𝐼𝛼 , with the corre-
sponding events in 𝐼𝛼 preserving the operation type, return
values, timestamps and the visibility relation. The project
function as used in the specification of F𝛼−𝑚𝑎𝑝 ensures that
the return value of 𝑔𝑒𝑡-events obey the specification F𝛼 as
applied to the projected 𝛼-execution.
Similarly, the simulation relation of 𝛼-map requires the

simulation relation of 𝛼 to hold for every key, between the

value associated with the key and the corresponding pro-
jected execution for the key. We can now verify the correct-
ness of the generic 𝛼-map MRDT by relying on the correct-
ness of 𝛼 . That is, if R𝑠𝑖𝑚−𝛼 is a valid simulation relation for
the implementation D𝛼 , then R𝑠𝑖𝑚−𝛼−𝑚𝑎𝑝 is a valid simula-
tion relation for D𝛼−𝑚𝑎𝑝 . This allows us to build the proof
of correctness of 𝛼-map using the proof of correctness of 𝛼 .

F𝑐ℎ𝑎𝑡 (𝑟𝑑 (𝑐ℎ), 𝐼) = F𝑙𝑜𝑔−𝑚𝑎𝑝 (𝑔𝑒𝑡 (𝑐ℎ, 𝑟𝑑), 𝐼)

D𝑐ℎ𝑎𝑡 = D𝑙𝑜𝑔−𝑚𝑎𝑝 where
1: 𝑑𝑜 (𝑠𝑒𝑛𝑑 (𝑐ℎ,𝑚), 𝜎, 𝑡) =

𝑑𝑜 (𝑠𝑒𝑡 (𝑐ℎ, 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚)), 𝜎, 𝑡)
2: 𝑑𝑜 (𝑟𝑑 (𝑚), 𝜎, 𝑡) = 𝑑𝑜 (𝑔𝑒𝑡 (𝑘, 𝑟𝑑), 𝜎, 𝑡)

Figure 10. Implementation of IRC-style chat.

For our chat application, we instantiate 𝛼-map with the
mergeable log D𝑙𝑜𝑔. The chat application itself is a wrapper
around the log-map MRDT as shown in Fig. 10. In order to
verify the correctness of D𝑐ℎ𝑎𝑡 , we only need to separetely
verifyD𝛼−𝑚𝑎𝑝 andD𝑙𝑜𝑔 . Note that one can instantiate 𝛼 with
any verified MRDT implementation to obtained a verified
𝛼-map MRDT.

6 Case study: A Verified Queue MRDT

Okasaki [27] describes a purely functional queue with amor-
tized time complexity of 𝑂 (1) for enqueue and dequeue op-
erations. This queue is made up of two lists that hold the
front and rear parts of the queue. Elements are enqueued
to the rear queue and dequeued from the front queue (both
are𝑂 (1) operations). If the front queue is found to be empty
at dequeue, then the rear queue is reversed and made to
be the front queue (𝑂 (𝑛) operation). Since each element is
part of exactly one reverse operation, the enqueue and the
dequeue have an amortized time complexity of 𝑂 (1). In this
section, we show how to convert this efficient sequential
queue into an MRDT by providing additional semantics to
handle concurrent operations.
For simplicity of specification, we tag each enqueued

element with the unique timestamp of the enqueue oper-
ation, which ensures that all the elements in the queue
are unique. The queue supports two operations: 𝑂𝑝𝑞𝑢𝑒𝑢𝑒 =
{𝑑𝑒𝑞𝑢𝑒𝑢𝑒} ∪ {𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎) | 𝑎 ∈ V}, where V is some value
domain. Unlike a sequential queue, we follow an at-least-once
dequeue semantics – an element inserted into the queue may
be consumed by concurrent dequeues on different branches.
At-least-once semantics is common for distributed queueing
services such as Amazon Simple Queue Service(SQS) [2] and
RabbitMQ [28]. At a merge, concurrent enqueues are ordered
according to their timestamps.

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

[1,2,3,4,5]

LCA

[2,3,4,5,8,9] [3,4,5,6,7]

[3,4,5,6,7,8,9]

A B

dequeue
enqueue(8)
enqueue(9)

dequeue
dequeue
enqueue(6)
enqueue(7)

Figure 11. Three-way merge for queues

6.1 Merge function of the replicated queue

To illustrate the three-way merge function, consider the
execution presented in figure 11. For simplicity, we assume
that the timestamps are the same as the values enqueued.
Starting from the LCA, each branch performs a sequence
of dequeue and enqueue operations. The resulting versions
are then merged. Observe that in the merged result, the
elements 1 and 2 which were dequeued (with 1 dequeued
on both the branches!) are not present. Elements 3, 4 and
5 which are present in all three versions are present in the
merged result. Newly inserted elements appear at the suffix,
sorted according to their timestamps.

The merge function first converts each of the queues to a
list, and finds the longest common contiguous subsequence
between the three versions ([3,4,5]). The newly enqueued
elements are suffixes of this common subsequence – [8,9] and
[6,7] in the queues A and B, respectively. The final merged
result is obtained by appending the common subsequence
to the suffixes merged according to their timestamps. Each
of these operations has a time complexity of 𝑂 (𝑛) where 𝑛
is the length of the longest list. Hence, the merge function is
also an 𝑂 (𝑛) operation 2.

6.2 Specification of the replicated queue

Wenow provide the specification for the queueMRDT, which
is based on the declarative queue specification in Kartik et
al. [24]. In particular, compared to the sequential queue, the
only constraint that we relax is allowing multiple dequeues
of the same element.
In order to describe the specification, we first introduce

a number of axioms which declaratively specify different
aspects of queue behaviour. Consider the match𝐼 predicate
defined for a pair of events 𝑒1, 𝑒2 in an abstract execution 𝐼 :

2The implementation of the queue operations and the merge function is
available in Appendix B

match𝐼 (𝑒1, 𝑒2) ⇔ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒1) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎)
∧ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒2) = 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ∧ 𝑎 = 𝐼 .𝑟𝑣𝑎𝑙 (𝑒2)

Let EMPTY be the value returned by a dequeue when the
queue is empty. We define the following axioms:

• 𝐴𝑑𝑑𝑅𝑒𝑚(𝐼) : ∀𝑒 ∈ 𝐼 .𝐸. 𝐼 .𝑜𝑝𝑒𝑟 (𝑒) = 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ∧
𝐼 .𝑟𝑣𝑎𝑙 (𝑒) ≠ EMPTY =⇒ ∃𝑒 ′ ∈ 𝐼 .𝐸. match𝐼 (𝑒 ′, 𝑒)

• 𝐸𝑚𝑝𝑡𝑦 (𝐼) : ∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐼 .𝐸. 𝐼 .𝑜𝑝𝑒𝑟 (𝑒1) = 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ∧
𝐼 .𝑟𝑣𝑎𝑙 (𝑒1) = EMPTY ∧ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒2) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎) ∧
𝑒2

𝐼 .𝑣𝑖𝑠−−−→ 𝑒1 =⇒ ∃𝑒3 ∈ 𝐼 .𝐸.match𝐼 (𝑒2, 𝑒3) ∧𝑒3
𝐼 .𝑣𝑖𝑠−−−→ 𝑒1

• 𝐹𝐼𝐹𝑂1 (𝐼) : ∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐼 .𝐸. 𝐼 .𝑜𝑝𝑒𝑟 (𝑒1) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎) ∧
match𝐼 (𝑒2, 𝑒3) ∧ 𝑒1

𝐼 .𝑣𝑖𝑠−−−→ 𝑒2 =⇒ ∃𝑒4 ∈ 𝐼 .𝐸.match𝐼 (𝑒1, 𝑒4)
• 𝐹𝐼𝐹𝑂2 (𝐼): ∀𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ 𝐼 .𝐸. ¬(match𝐼 (𝑒1, 𝑒4) ∧
match𝐼 (𝑒2, 𝑒3) ∧ 𝑒1

𝐼 .𝑣𝑖𝑠−−−→ 𝑒2 ∧ 𝑒3
𝐼 .𝑣𝑖𝑠−−−→ 𝑒4)

These axioms essentially encode queue semantics.𝐴𝑑𝑑𝑅𝑒𝑚
says that for every dequeue event which does not return
EMPTY, there must exist a matching enqueue event. 𝐸𝑚𝑝𝑡𝑦

says that if a dequeue event returns EMPTY, there should
not be an unmatched enqueue visible to it. Finally, 𝐹𝐼𝐹𝑂1
and 𝐹𝐼𝐹𝑂2 encode the first-in-first-out nature of the queue.
These axioms ensure that if an enqueue event 𝑒1 was visible
to another enqueue event 𝑒2, then the element inserted by 𝑒1
will be dequeued first. Notice that sequential queue would
also have an injectivity axiom, which disallows multiple de-
queues to be matched to an enqueue, but we do not enforce
this requirement for the replicated queue.
To define F𝑄𝑢𝑒𝑢𝑒 , we first note that enqueue operation

always returns ⊥. For an abstract state 𝐼 , F𝑄𝑢𝑒𝑢𝑒 (𝑑𝑒𝑞𝑢𝑒𝑢𝑒, 𝐼)
returns 𝑎 such that if we add the new event 𝑒 for the de-
queue to the abstract state 𝐼 , then the resulting abstract state
𝑑𝑜# (𝐼 , 𝑒, 𝑑𝑒𝑞𝑢𝑒𝑢𝑒, 𝑎, 𝑡) must satisfy all the queue axioms.

Notice how the queue axioms are substantially different
from the way the MRDT queue is actually implemented. The
simulation relation that we use to bridge this gap and re-
late the implementation with the abstract state is actually
very straightforward: we simply say that for every element
present in the concrete state of the queue, there must be
an enqueue event without a matching dequeue. We also as-
sert the other direction, and enforce the queue axioms on
the abstract state. The complete simulation relation can be
found in the supplemental material. We were able to success-
fully discharge the conditions for validity of the simulation
relation using F*.

7 Evaluation

In this section, we evaluate the instantiation of the formalism
developed thus far in Peepul, an F* library of certified effi-
cient MRDTs. We first discuss the verification effort followed
by the performance evaluation of efficient MRDTs compared
to existing work. These results were obtained on a 2-socket

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Intel®Xeon®Gold 5120 x86-64 [15] server running Ubuntu
18.04 with 64GB of main memory.

7.1 Verification in F*

F*’s core is a functional programming language inspired by
ML, with support for program verification using refinement
types and monadic effects. Though F* has support for built-
in effects, Peepul library only uses the pure fragment of the
language. Given that we can extract OCaml code from our
verified implementations in F*, we are able to directly utilise
our MRDTs on top of Irmin [16], a Git-like distributed data-
base, whose execution model fits the MRDT system model.
As part of the Peepul library, we have implemented and

verified 9 MRDTs – increment-only counter, PN counter,
enable-wins flag, last-writer-wins register, grows-only set,
grows-only map, mergeable log, observed-remove set and
functional queue. Our specifications capture both the func-
tional correctness of local operations as well as the semantics
of the concurrent conflicting operations.
F*’s support for type classes provides a modular way to

implement and verify MRDTs. The Peepul library defines a
MRDT type class that captures the sufficient conditions to be
proved for each MRDT as given in Table 2. This library con-
tains 124 lines of F* code. Each MRDT is a specific instance
of the type class which satisfy the conditions. It is useful to
note that our MRDTs sets, maps and queues are polymorphic
in their contents and may be plugged with other MRDTs to
construct more complex MRDTs as seen in §5.

Table 3 tabulates the verification effort for each MRDT in
the Peepul library. We include three versions of OR-sets:

• OR-set: the unoptimized one from §2.1.1 which uses
a list for storing the elements and contains duplicates.

• OR-set-space: the space-optimized one from §2.1.2
which also uses a list but does not have duplicates.

• OR-set-spacetime: a space- and time-optimized one
which uses a binary search tree for storing the ele-
ments and has no duplicates. The merge function pro-
duces a height balanced binary tree.

The lines of code represents the number of lines for im-
plementing the data structure without counting the lines for
refinements, lemmas, theorems and proofs. This is approxi-
mately the number of lines of code there will be if the data
structures were implemented in OCaml. Everything else that
has to do with verification is included in the lines of proofs.
It is useful to note that the lines of proof for simple MRDTs
such as counter and last-writer-wins (LWW) register is high
compared to the lines of code since we also specify and prove
their full functional correctness.
For many of the proofs, F* is able to automatically ver-

ify the properties either without any lemmas or just a few,
thanks to F* discharging the proof obligations to the SMT
solver. Most of the proofs are a few tens of lines of code with
the exception of queues. In queues, the implementation is

far removed from the specification, and hence, additional
lemmas were necessary to bridge this gap.

F* allows the user to provide additional lemmas that help
the solver arrive to the proof faster. We illustrate this for
enable-wins flag, G-set and OR-set by adding additional lem-
mas. Correspondingly, we observe that the verification time
reduces significantly. Thanks to F*, the developers of new
MRDTs in Peepul can strike a balance between verification
times and manual verification effort.

In this work, we have not used F* support for tactics and
interactive proofs. We believe that some of the time consum-
ing calls to the SMT solver may be profitably replaced by
a few interactive proofs. On the whole, the choice of F* for
Peepul reduces manual effort and most of the proofs are
checked within few seconds.

7.2 Performance evaluation

In this section, we evaluate the runtime performance of effi-
cient MRDTs in Peepul.

7.2.1 Peepul vsQuark. Wefirst compare the performance
of PeepulMRDTs against the MRDTs presented in Kaki et
al. [18] (Quark). Recall that Quark lifts sequential data types
to MRDTs by equipping them with a merge function, which
converts the concrete state of the MRDT to a relational (set-
based) representation that captures the characteristic rela-
tions of the data type. The actual merge is implemented as a
merge of these sets for each of the characteristic relations.
After merge of the relational representations, the final result
is obtained by a concretization function. Compared to this,
Peepul merges are implemented directly on the concrete
representations.

To highlight the impact of the efficient merge function in
Peepul, we evaluate the performance of merge in queues.
Both Peepul and Quark uses the same sequential queue rep-
resentation, and the only difference is the merge function
between the two. For this experiment, we start with an empty
queue, and perform a series of randomly generated opera-
tions with 75:25 split between enqueues and dequeues. We
use this version as the LCA and subsequently perform two
different sets of operations to get the two divergent versions.
We then merge these versions to measure the time taken for
the merge.
The results are reported in figure 12. For a queue, Quark

needs to reify the ordering relation as a set which will con-
tain 𝑛2 elements for a queue of size 𝑛. In addition, there is
also the cost of abstracting and concretising the queue to
and from relational representation. As a result, the merge
function takes 10 seconds for 1000 operations, increasing to
178 seconds for 5000 operations. On the other hand, Peepul’s
linear-time merge took less than a millisecond in all of the
cases. This shows the that Quark merge is unacceptably slow
even reasonably sized queues, while Peepul remains fast
and practical.

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 3. Peepul verification effort.

MRDTs verified #Lines code #Lines proof #Lemmas Verif. time (s)

Increment-only counter 6 43 2 3.494

PN counter 8 43 2 23.211

Enable-wins flag 20 58 3 1074
81 6 171
89 7 104

LWW register 5 44 1 4.21

G-set 10 23 0 4.71
28 1 2.462
33 2 1.993

G-map 48 26 0 26.089

Mergeable log 39 95 2 36.562

OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829

OR-set-space (§2.1.2) 59 108 7 1716

OR-set-spacetime 97 266 7 1854

Queue 32 1123 75 4753

 # Operations

M
er

ge
 ti

m
e

(s
ec

on
ds

)

0.0001

0.01

1

100

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Figure 12.Merge performance of Peepul and Quark queues.

Operations

S
et

 s
iz

e

0

2500

5000

7500

10000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

Figure 13. Performance of Peepul and Quark OR-sets.

We also compare the performance of OR-set in Peepul
and Quark. Since the merge function in Quark is based on

automatic relational reification, Quark does not allow dupli-
cate elements to be removed from the OR-set. To highlight
the impact of duplicate elements, we perform an experiment
similar to the queue one except that we pick a 50:50 split
between add and remove operations. The values added are
randomly picked in the range (0:1000). For Peepul, we pick
the space-optimized OR-set (OR-set-space). We report the
number of elements in the final set including duplicates.
The results are presented in figure 13. Due to the dupli-

cates, the size of the Quark set increases with increasing
number of operations; the growth is not linear due to the
stochastic interplay between add and remove. For Peepul,
the set size always remains below 1000 which is the range of
the values picked. The results show that MRDTs in Peepul
are much more efficient than in Quark.

7.2.2 Peepul OR-set performance. We also compare
the overall performance of the three OR-set implementations
in Peepul. Our workload consists of 70% lookups, 20% adds
and 10% remove operations starting from an initial empty
set on two different branches. We trigger a merge every 500
operations. We measure the overall execution time for the
entire workload and the maximum size of the set during the
execution.
The results are reported in figures 14 and 15. The results

show that OR-set-spacetime is the fastest, and is around 5×
faster than OR-set-space due to the fast reads and writes
thanks to the binary search tree in OR-set-spacetime. Both

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Operations

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

0

10

20

30

5000 10000 15000 20000 25000 30000

OR-set OR-set-space OR-set-spacetime

Figure 14. Running time of OR-sets.

Operations

S
iz

e
(K

B
)

0

5

10

15

20

25

5000 10000 15000 20000 25000 30000

OR-set OR-set-space OR-set-spacetime

Figure 15. Space consumption of OR-sets. The OR-set-space
line is hidden by the OR-set-spacetime line.

OR-set-space and OR-set-spacetime consume similar amount
of memory. The unoptimized OR-set is both slower and con-
sumes more memory than the other variants due to the dupli-
cates. The results show that Peepul enables construction of
efficient certified MRDTs that have significant performance
benefits compared to unoptimised ones.

8 Related Work

Reconciling concurrent updates is an important problem
in distributed systems. Some of the works proposing new
designs and implementations of RDTs [4, 30, 32] neither pro-
vide their formal specification nor verify them. Due to the
concurrently evolving state of the replicas, informally rea-
soning about the correctness of even simple RDTs is tedious
and error prone. In this work, our focus is on mechanically
verifying efficient implementations of MRDTs.

There are several works that focus on specification and
verification of CRDTs [3, 5, 12, 22, 23, 25, 35]. CRDTs typi-
cally assume a system model which involves several replicas
communicating over network with asynchronous message
passing. Correspondingly, the specification and verification
techniques for CRDTs will have to take into account of the
properties of message passing such as message ordering

and delivery guarantees. On the other hand, MRDTs are de-
scribed over a Git-like distributed store with branching and
merging, which in turn may be implemented over asynchro-
nous message passing. We believe that, by lifting the level
of abstraction, MRDTs are easy to specify, implement and
verify compared to CRDTs.

In terms of mechanised verification of RDTs, prior work
has used both automated and interactive verification. Zeller
et al. [35] verify state-based CRDTs with the help of inter-
active theorem prover Isabelle/HOL. Gomes et al. [12] de-
velop a foundational framework for proving the correctness
of operation-based CRDTs. In particular, they construct a
formal network model that may delay, drop or reorder mes-
sages sent between replicas. Under these assumptions, they
verify several op-based CRDTs using Isabelle/HOL. Nair et
al. [25] presents an SMT-based verification tool to specify
state-based CRDTs and verify invariants over its state. Kar-
tik et al. [23] also utilise SMT-solver to automatically verify
the convergence of CRDTs under different weak consistency
policies. Liu et al. [22] present an extension of the SMT-
solver-aided Liquid Haskell to allow refinement types on
type classes and use to implement a framework to verify
operation-based CRDTs. Similar to Liu et al., Peepul also
uses an SMT-solver-aided programming language F*. We find
that SMT-solver-aided programming language offers a useful
trade off between manual verification effort and verification
time.

Our verification framework for MRDTs builds on the con-
cept of replication-aware simulation introduced by Burck-
hardt et al. [5]. Burckhardt et al. present precise specifica-
tions for RDTs and (non-mechanized) proof of correctness
for a few CRDT implementations. Burckhardt et al.’s speci-
fications are presented over the CRDT system model with
explicit message passing between replicas. In this work, we
lift these specifications to a higher level by abstracting out
the guarantees provided by the low-level store (Ψ𝑡𝑠 and Ψ𝑙𝑐𝑎).
Further, we also observe that the simulation relation R𝑠𝑖𝑚

cannot be used as an inductive invariant on its own, and
instead, a conjunction of R𝑠𝑖𝑚 with Ψ𝑡𝑠 and Ψ𝑙𝑐𝑎 is required
(see conditions Φ𝑑𝑜 and Φ𝑚𝑒𝑟𝑔𝑒 in Table 2). In order to en-
able mechanised verification, we identify the relationship be-
tween R𝑠𝑖𝑚 and the functional correctness and convergence
of MRDTs. This leads to a formal specification framework
that is suitable for mechanized and automated verification.
We demonstrate this by successfully verifying a number of
complex MRDT implementations in F* including the first,
formally verified replicated queue.
MRDTs were first introduced by Farnier et al. [10] for

Irmin [16], a distributed database built on the principles of
Git. Quark [18] automatically derives merge functions for
MRDTs using invertible relational specification. However,
their merge semantics focused only on convergence, and not
the functional correctness of the data type. Our evaluation
(§7.2.1) shows that merges through automatically derived

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

invertible relational specification is prohibitively expensive
for data types with rich structure such as queues. Tardis [6]
also uses branch-and-merge approach to weak consistency,
but does not focus on verifying the correctness of the RDTs.

Not all application logic can be expressed only using even-
tually consistent and convergent RDTs. For example, a repli-
cated bank account which guarantees non-negative balance
requires coordination between concurrent withdraw opera-
tions. Several previous works have explored RDTs that uti-
lize on-demand coordination based on application invari-
ants [7, 13, 14, 17, 26, 33]. We leave the challenge of extend-
ing Peepul to support on-demand coordination to future
work.

Acknowledgments

We thank our shepherd, Constantin Enea, and the anony-
mous reviewers for their reviewing effort and high-quality
reviews. We also thank Aseem Rastogi and the F* Zulip com-
munity for helping us with F* related queries.

References

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta
state replicated data types. J. Parallel and Distrib. Comput. 111 (Jan
2018), 162–173. https://doi.org/10.1016/j.jpdc.2017.08.003

[2] Amazon. 2006. Simple Queue Service by Amazon. https://aws.amazon.
com/sqs/

[3] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison,
Hongseok Yang, and Marek Zawirski. 2016. Specification and Com-
plexity of Collaborative Text Editing. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing (Chicago, Illinois,
USA) (PODC ’16). Association for Computing Machinery, New York,
NY, USA, 259–268. https://doi.org/10.1145/2933057.2933090

[4] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Car-
los Baquero, Valter Balegas, and Sérgio Duarte. 2012. An optimized
conflict-free replicated set. arXiv:1210.3368 [cs.DC]

[5] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek
Zawirski. 2014. Replicated Data Types: Specification, Verification, Op-
timality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Diego, California, USA)
(POPL ’14). Association for Computing Machinery, New York, NY, USA,
271–284. https://doi.org/10.1145/2535838.2535848

[6] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo
Alvisi, and Allen Clement. 2016. TARDiS: A Branch-and-Merge Ap-
proach To Weak Consistency. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA)
(SIGMOD ’16). Association for Computing Machinery, New York, NY,
USA, 1615–1628. https://doi.org/10.1145/2882903.2882951

[7] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix.
2021. ECROs: Building Global Scale Systems from Sequential Code.
Proc. ACM Program. Lang. 5, OOPSLA, Article 107 (oct 2021), 30 pages.
https://doi.org/10.1145/3485484

[8] Shashank Shekhar Dubey. 2021. Banyan: Coordination-free Distributed
Transactions over Mergeable Types. Ph. D. Dissertation. Indian Institute
of Technology, Madras, India. https://thesis.iitm.ac.in/thesis?type=
FinalThesis&rollno=CS17S025

[9] Shashank Shekhar Dubey, K. C. Sivaramakrishnan, Thomas Gazag-
naire, and Anil Madhavapeddy. 2020. Banyan: Coordination-Free
Distributed Transactions over Mergeable Types. In Programming Lan-
guages and Systems, Bruno C. d. S. Oliveira (Ed.). Springer International
Publishing, Cham, 231–250.

[10] Benjamin Farinier, Thomas Gazagnaire, and Anil Madhavapeddy. 2015.
Mergeable persistent data structures. In Vingt-sixièmes Journées Fran-
cophones des Langages Applicatifs (JFLA 2015), David Baelde and Jade
Alglave (Eds.). JFLA, Le Val d’Ajol, France, 1–13. https://hal.inria.fr/hal-
01099136

[11] Git. 2021. Git: A distributed version control system. https://git-
scm.com/

[12] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. 2017. Verifying Strong Eventual Consistency in
Distributed Systems. Proc. ACM Program. Lang. 1, OOPSLA, Article
109 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133933

[13] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning
about Consistency Choices in Distributed Systems. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). As-
sociation for Computing Machinery, New York, NY, USA, 371–384.
https://doi.org/10.1145/2837614.2837625

[14] Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: Replication
Coordination Analysis and Synthesis. Proc. ACM Program. Lang. 3,
POPL, Article 74 (jan 2019), 32 pages. https://doi.org/10.1145/3290387

[15] Intel 2020. Intel® Xeon® Gold 5120 Processor Specification. In-
tel. https://ark.intel.com/content/www/us/en/ark/products/120474/
intel-xeon-gold-5120-processor-19-25m-cache-2-20-ghz.html

[16] Irmin. 2021. Irmin: A distributed database built on the principles of
Git. https://irmin.org/

[17] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh
Jagannathan. 2018. Safe Replication through Bounded Concurrency
Verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (Oct.
2018), 27 pages. https://doi.org/10.1145/3276534

[18] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable Replicated Data Types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360580

[19] Martin Kleppmann. 2020. CRDT composition failure. University of
Cambridge. https://twitter.com/martinkl/status/1327020435419041792

[20] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154–178.
https://doi.org/10.1145/3359591.3359737

[21] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (jul 1978), 558–565. https:
//doi.org/10.1145/359545.359563

[22] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael
Hicks, and Niki Vazou. 2020. Verifying Replicated Data Types with
Typeclass Refinements in Liquid Haskell. Proc. ACM Program. Lang. 4,
OOPSLA, Article 216 (Nov. 2020), 30 pages. https://doi.org/10.1145/
3428284

[23] Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized
Verification of CRDTs. In Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil
Dillig and Serdar Tasiran (Eds.). Springer, New York City, NY, USA,
459–477. https://doi.org/10.1007/978-3-030-25543-5_26

[24] Kartik Nagar, Prasita Mukherjee, and Suresh Jagannathan. 2020. Se-
mantics, Specification, and Bounded Verification of Concurrent Li-
braries in Replicated Systems. In Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12224),
Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, Los Angeles, CA,
USA, 251–274. https://doi.org/10.1007/978-3-030-53288-8_13

https://doi.org/10.1016/j.jpdc.2017.08.003
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://doi.org/10.1145/2933057.2933090
https://arxiv.org/abs/1210.3368
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2882903.2882951
https://doi.org/10.1145/3485484
https://thesis.iitm.ac.in/thesis?type=FinalThesis&rollno=CS17S025
https://thesis.iitm.ac.in/thesis?type=FinalThesis&rollno=CS17S025
https://hal.inria.fr/hal-01099136
https://hal.inria.fr/hal-01099136
https://git-scm.com/
https://git-scm.com/
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/3290387
https://ark.intel.com/content/www/us/en/ark/products/120474/intel-xeon-gold-5120-processor-19-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120474/intel-xeon-gold-5120-processor-19-25m-cache-2-20-ghz.html
https://irmin.org/
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://twitter.com/martinkl/status/1327020435419041792
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3428284
https://doi.org/10.1145/3428284
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-53288-8_13

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

[25] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the
Safety of Highly-Available Distributed Objects. In Programming Lan-
guages and Systems, Peter Müller (Ed.). Springer International Publish-
ing, Cham, 544–571.

[26] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira,
and Marc Shapiro. 2016. The CISE Tool: Proving Weakly-Consistent
Applications Correct. In Proceedings of the 2nd Workshop on the Princi-
ples and Practice of Consistency for Distributed Data (London, United
Kingdom) (PaPoC ’16). Association for Computing Machinery, New
York, NY, USA, Article 2, 3 pages. https://doi.org/10.1145/2911151.
2911160

[27] Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge
University Press, USA.

[28] RabbitMQ. 2007. Message Brokering Service by RabbitMQ. https:
//www.rabbitmq.com/queues.html

[29] Riak. 2021. Resilient NoSQL Databases. https://riak.com/
[30] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated Abstract Data Types: Building Blocks for Collaborative
Applications. J. Parallel Distrib. Comput. 71, 3 (March 2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[31] Marc Shapiro, Annette Bieniusa, Nuno Preguiça, Valter Balegas, and
Christopher Meiklejohn. 2018. Just-Right Consistency: reconciling
availability and safety. arXiv:1801.06340 [cs.DC]

[32] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
386–400.

[33] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015.
Declarative Programming over Eventually Consistent Data Stores. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15).
Association for Computing Machinery, New York, NY, USA, 413–424.
https://doi.org/10.1145/2737924.2737981

[34] Weihai Yu and Sigbjørn Rostad. 2020. A Low-Cost Set CRDT Based
on Causal Lengths. In Proceedings of the 7th Workshop on Principles
and Practice of Consistency for Distributed Data (Heraklion, Greece)
(PaPoC ’20). Association for Computing Machinery, New York, NY,
USA, Article 5, 6 pages. https://doi.org/10.1145/3380787.3393678

[35] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. For-
mal Specification and Verification of CRDTs. In 34th Formal Techniques
for Networked and Distributed Systems (FORTE) (Formal Techniques for
Distributed Objects, Components, and Systems, Vol. LNCS-8461), Erika
Ábrahám and Catuscia Palamidessi (Eds.). Springer, Berlin, Germany,
33–48. https://doi.org/10.1007/978-3-662-43613-4_3 Part 1: Specifica-
tion Languages and Type Systems.

https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://www.rabbitmq.com/queues.html
https://www.rabbitmq.com/queues.html
https://riak.com/
https://doi.org/10.1016/j.jpdc.2010.12.006
https://arxiv.org/abs/1801.06340
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/3380787.3393678
https://doi.org/10.1007/978-3-662-43613-4_3

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Appendix

A Proof of Theorem 4.2

Theorem 4.2. Given a MRDT implementation D𝜏 of data
type 𝜏 , if there exists a valid replication-aware simulation
R𝑠𝑖𝑚 , then the data type implementation D𝜏 is correct.

Proof. We first show that for all executions 𝜒 of the store LTS
M𝐷𝜏

, R𝑠𝑖𝑚 holds at every transition. At every step, we will
also show that the return value of every operation obeys the
data-type specification and convergence modulo observable
behavior is satisfied. The proof is by induction on the length
of the execution.

BASE CASE:

Consider that the labelled transition system is in the initial
state 𝐶⊥ = (𝜙⊥, 𝛿⊥, 0) with only one branch 𝑏⊥.
𝜒 = (𝜙⊥, 𝛿⊥, 0)
To prove:

R𝑠𝑖𝑚 (𝛿 (𝑏𝜏), 𝜙 (𝑏𝜏)) =⇒ (𝜒 |= F𝜏 and 𝜒 is convergent mod-
ulo observable behavior).

Proof:

For every operation o of 𝜏 , let

(𝜙⊥, 𝛿⊥, 0)
𝐷𝑂 (𝑜,𝑏⊥)−−−−−−−→ (𝜙 ′

, 𝛿
′
, 1)

Then according to Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) in Table 2,

R𝑠𝑖𝑚 (𝛿⊥ (𝑏⊥), 𝜙⊥ (𝑏⊥)) ∧ 𝑑𝑜# (𝛿⊥ (𝑏⊥), 𝑒, 𝑜, 𝑎, 0) = 𝐼
′∧

D𝜏 .𝑑𝑜 (𝑜, 𝜙⊥ (𝑏⊥), 0) = (𝜙 ′ (𝑏⊥), 𝑎) ∧ Ψ𝑡𝑠 (𝛿⊥ (𝑏⊥)) =⇒
𝑎 = F𝜏 (𝑜, 𝛿⊥ (𝑏⊥))

(5)

which is the necessary condition for 𝜒 |= F𝜏 .

The condition for eq (2) in Section. 3 is also satisfied, since
there is only one branch 𝑏⊥ in the execution. Hence 𝜒 is
convergent modulo observable behavior. Thus the base case
is proved.

INDUCTIVE CASE:

Consider an execution
𝜒 = (𝜙⊥, 𝛿⊥, 0)

𝑒1−→ (𝜙1, 𝛿1, 𝑡1)
𝑒2−→ . . .

𝑒𝑛−−→ (𝜙𝑛, 𝛿𝑛, 𝑡𝑛).
To prove:

For an execution 𝜒 , if 𝜒 |= F𝜏 and 𝜒 is convergent modulo
observable behavior, then on applying a single step of the
store execution, the new execution obtained 𝜒

′ , satisfies the
specification and is convergent modulo observable behavior.

Proof (𝜒
′ |= F𝜏):

We prove it by case-analysis on labels in the labelled transi-
tion system.
Case 1:

The first case is the label being CREATEBRANCH.

(𝜙𝑛, 𝛿𝑛, 𝑡)
𝐶𝑅𝐸𝐴𝑇𝐸𝐵𝑅𝐴𝑁𝐶𝐻 (𝑏1,𝑏2)−−−−−−−−−−−−−−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡)

𝜙𝑛+1 = 𝜙𝑛 [𝑏2 ↦→ 𝜙𝑛 (𝑏1)] 𝛿𝑛+1 = 𝛿𝑛 [𝑏2 ↦→ 𝛿𝑛 (𝑏1)]
𝜒
′
= 𝜒

𝐶𝑅𝐸𝐴𝑇𝐸𝐵𝑅𝐴𝑁𝐶𝐻 (𝑏1,𝑏2)−−−−−−−−−−−−−−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡)
We need to prove that 𝜒 ′ |= F𝜏 .
For every operation o, of the data type, let

(𝜙𝑛+1, 𝛿𝑛+1, 𝑡)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑛+2, 𝛿𝑛+2, 𝑡 + 1)

Then according to Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) in Table 2,

R𝑠𝑖𝑚 (𝛿𝑛+1 (𝑏), 𝜙𝑛+1 (𝑏)) ∧ 𝑑𝑜# (𝛿𝑛+1 (𝑏), 𝑒, 𝑜, 𝑎, 𝑡) = 𝐼
′∧

D𝜏 .𝑑𝑜 (𝑜, 𝜙𝑛+1 (𝑏), 𝑡) = (𝜙𝑛+2 (𝑏), 𝑎) ∧ Ψ𝑡𝑠 (𝛿𝑛+1 (𝑏)) =⇒
𝑎 = F𝜏 (𝑜, 𝜙𝑛+1 (𝑏))

(6)
which is the necessary condition for 𝜒 ′ |= F𝜏 .

Case 2:

The second case is the label being DO.

(𝜙𝑛, 𝛿𝑛, 𝑡)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡 + 1)

𝜒
′
= 𝜒

𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡 + 1)

We need to prove that 𝜒 ′ |= F𝜏 .
For every operation o, of the data type, let

(𝜙𝑛+1, 𝛿𝑛+1, 𝑡 + 1)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑛+2, 𝛿𝑛+2, 𝑡 + 2)

Then according to Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) in Table 2,

R𝑠𝑖𝑚 (𝛿𝑛+1 (𝑏), 𝜙𝑛+1 (𝑏)) ∧ 𝑑𝑜# (𝛿𝑛+1 (𝑏), 𝑒, 𝑜, 𝑎, 𝑡 + 1) = 𝐼
′∧

D𝜏 .𝑑𝑜 (𝑜, 𝜙𝑛+1 (𝑏), 𝑡 + 1) = (𝜙𝑛+2 (𝑏), 𝑎) ∧ Ψ𝑡𝑠 (𝛿𝑛+1 (𝑏)) =⇒
𝑎 = F𝜏 (𝑜, 𝜙𝑛+1 (𝑏))

(7)
which is the necessary condition for 𝜒 ′ |= F𝜏 .

Case 3:

The second case is the label being MERGE.

(𝜙𝑛, 𝛿𝑛, 𝑡)
𝑀𝐸𝑅𝐺𝐸 (𝑏1,𝑏2)−−−−−−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡)

𝜒
′
= 𝜒

𝑀𝐸𝑅𝐺𝐸 (𝑏1,𝑏2)−−−−−−−−−−−→ (𝜙𝑛+1, 𝛿𝑛+1, 𝑡)
We need to prove that 𝜒 ′ |= F𝜏 .
For every operation o, of the data type, let

(𝜙𝑛+1, 𝛿𝑛+1, 𝑡)
𝑀𝐸𝑅𝐺𝐸 (𝑏1,𝑏2)−−−−−−−−−−−→ (𝜙𝑛+2, 𝛿𝑛+2, 𝑡 + 1)

Then according to Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) in Table 2,

R𝑠𝑖𝑚 (𝛿𝑛+1 (𝑏), 𝜙𝑛+1 (𝑏)) ∧ 𝑑𝑜# (𝛿𝑛+1 (𝑏), 𝑒, 𝑜, 𝑎, 𝑡) = 𝐼
′∧

D𝜏 .𝑑𝑜 (𝑜, 𝜙𝑛+1 (𝑏), 𝑡) = (𝜙𝑛+2 (𝑏), 𝑎) ∧ Ψ𝑡𝑠 (𝛿𝑛+1 (𝑏)) =⇒
𝑎 = F𝜏 (𝑜, 𝜙𝑛+1 (𝑏))

(8)
which is the necessary condition for 𝜒 ′ |= F𝜏 .

Proof (𝜒
′
is convergent modulo observable behavior):

Let 𝜒 ′ be the execution obtained after applying any of the
transitions (CREATEBRANCH, DO, MERGE) to 𝜒 . For prov-
ing 𝜒

′ is convergent modulo observable behavior, we need
to show,
∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).𝛿𝑖 (𝑏1) = 𝛿𝑖 (𝑏2) =⇒ 𝜙𝑖 (𝑏1) ∼ 𝜙𝑖 (𝑏2)

(9)

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

We know that there is a valid simulation relation between
D𝜏 and F𝜏 .

∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏1))∧
R𝑠𝑖𝑚 (𝛿𝑖 (𝑏2), 𝜙𝑖 (𝑏2))

(10)

On substituting 𝛿𝑖 (𝑏1) for 𝛿𝑖 (𝑏2) according to (9) in (10)
we get,
∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏1)) ∧
R𝑠𝑖𝑚 (𝛿𝑖 (𝑏2), 𝜙𝑖 (𝑏2))
=⇒ R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏1)) ∧ R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏2))

According to Φ𝑐𝑜𝑛 (R𝑠𝑖𝑚) in Table 2,
R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏1)) ∧ R𝑠𝑖𝑚 (𝛿𝑖 (𝑏1), 𝜙𝑖 (𝑏2))
=⇒ 𝜙𝑖 (𝑏1) ∼ 𝜙𝑖 (𝑏2)
Hence 𝜒

′ is convergent modulo observable behavior.
□

B Functional queue simulation relation

and implementation

B.1 Simulation relation

Consider the𝑚𝑎𝑡𝑐ℎ predicate as defined in Section 5.1:

𝑚𝑎𝑡𝑐ℎ𝐼 (𝑒1, 𝑒2) ⇔ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒1) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎)
∧ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒2) = 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ∧ 𝑎 = 𝐼 .𝑟𝑣𝑎𝑙 (𝑒2)

(11)
We define the simulation relation, R𝑠𝑖𝑚 for an abstract

state 𝐼 and a concrete state 𝜎 as follows:
R𝑠𝑖𝑚 (𝐼 , 𝜎) ⇐⇒ ((∀(𝑎, 𝑡) ∈ 𝜎 ⇐⇒

(∃𝑒 ∈ 𝐼 .𝐸 ∧ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎) ∧ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) = 𝑡∧

¬(∃𝑑 ∈ 𝐼 .𝐸 ∧𝑚𝑎𝑡𝑐ℎ𝐼 (𝑒, 𝑑) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑑)))∧

(∀(𝑎1, 𝑡1) (𝑎2, 𝑡2) ∈ 𝜎 ∧ 𝑜𝑟𝑑𝑒𝑟𝜎 (𝑎1, 𝑡1) (𝑎2, 𝑡2) ⇐⇒
((∃𝑒1𝑒2 ∈ 𝐼 .𝐸 ∧ 𝐼 .𝑜𝑝𝑒𝑟 (𝑒1) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎1)∧

𝐼 .𝑜𝑝𝑒𝑟 (𝑒2) = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎2) ∧ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒1) = 𝑡1 ∧ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒2) = 𝑡2

¬(∃𝑑 ∈ 𝐼 .𝐸 ∧ ((𝑚𝑎𝑡𝑐ℎ𝐼 (𝑒1, 𝑑) ∧ 𝑒1
𝑣𝑖𝑠−−→ 𝑑)∨

(𝑚𝑎𝑡𝑐ℎ𝐼 (𝑒2, 𝑑) ∧ 𝑒2
𝑣𝑖𝑠−−→ 𝑑)))∧

(𝑒1
𝑣𝑖𝑠−−→ 𝑒2 ∨ (¬(𝑒1

𝑣𝑖𝑠−−→𝑒2 ∨ 𝑒2
𝑣𝑖𝑠−−→𝑒1) ∧ 𝑡1 < 𝑡2))))))

(12)

where 𝑜𝑟𝑑𝑒𝑟𝜎 𝑥1 𝑥2 is the predicate that states 𝑥1 occurs
before 𝑥2 in the concrete state 𝜎 .
The simulation relation R𝑠𝑖𝑚 consists of two parts. The

first part states that for any element 𝑎 in the concrete state of
the queue, there exists an enqueue operation, 𝑒 in the abstract
state, that is not matched with any dequeue operation, and
the converse of this. The second part of the relation states
that for any two elements 𝑎1 and 𝑎2 in the concrete state
of the queue, such that 𝑎1 occurs before 𝑎2, there exist two
enqueue operations, 𝑒1 and 𝑒2 in the abstract state, that are
not matched with any dequeue operation, such that 𝑒1

𝑣𝑖𝑠−−→ 𝑒2

(𝑒2 was performed after 𝑒1) or (¬(𝑒1
𝑣𝑖𝑠−−→𝑒2 ∨ 𝑒2

𝑣𝑖𝑠−−→𝑒1) ∧ 𝑡1 <

𝑡2) (𝑒1 and 𝑒2 are concurrent operations), and the converse
of this. The first part takes care of the membership of the
elements in the queue, while the second part takes care of
the ordering of the elements in the queue.

B.2 Functional queue implementation

The definition of the state of the functional queue is as fol-
lows:

type s =

| S of (int * int) list *

(int * int) list

The enqueue and dequeue functions for the functional
queue are defined as follows:

let enqueue x q =

(S q.front (x::q.back))

let norm q =

match q with

|(S [] back) -> (S (rev back) [])

|_ -> q

let dequeue q =

match q with

|(S [] []) -> (None , q)

|(S (x::xs) _) -> (Some x, (S xs q.back))

|(S [] (x::xs)) ->

let (S (y::ys) []) = norm q in

(Some y, (S ys []))

Following are the definitions of some functions used as
helper functions for the three-way merge. In all of these
definitions, the first element of the pair is taken to be the
timestamp, and the second element to be the actual enqueued
element. union1 is used to merge two lists of pairs (with
unique first elements) that are sorted according to the first
element of the pair:

let rec union l1 l2 =

match l1, l2 with

| [], [] -> []

| [], l2 -> l2

| l1, [] -> l1

| h1::t1, h2::t2 -> if (fst h1 < fst h2)

then h1::(union t1 l2)

else h2::(union l1 t2)

diff_s is used to find the difference between two lists of
pairs with unique first elements, that are sorted according
to the first element of the pair. Additionally, in the context
where diff_s is used, a is a child of l. This function is used
to find the newly enqueued elements in a. This simplifies
the function to finding the longest contiguous subsequence
that is present in a but not l. This also can be interpreted as
finding the longest suffix of a that is not present in l, since
all the newly enqueued elements occur after the existing

Certified Mergeable Replicated Data Types
(Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

elements. This task can be completed in 𝑂 (𝑛) time where 𝑛
is the length of the longest of the two lists.

let rec diff_s a l =

match a, l with

| x::xs, y::ys -> if (fst y) < (fst x)

then diff_s (x::xs) ys else (diff_s xs ys)

| [], y::ys -> []

| _, [] -> a

intersection is used to find the longest common contiguous
subsequence between l, a and b. Again, in the context where
intersection is used, a and b are children of l. This finds the
list of elements that have not been dequeued in either a or
b. Hence, the problem is simplified to finding the longest
contiguous subsequence of l that is a prefix of a and b. Since
all the three lists are sorted according to the first element of
the pair, this task can be completed in 𝑂 (𝑛) time where 𝑛 is
the length of the longest of the three lists.

let rec intersection l a b =

match l, a, b with

| x::xs, y::ys, z::zs ->

if ((fst x) < (fst y)

|| (fst x) < (fst z)) then

(intersection xs (y::ys) (z::zs))

else (x::(intersection xs ys zs))

| x::xs, [], z::zs -> []

| x::xs, y::ys, [] -> []

| x::xs, [], [] -> []

| [], _, _ -> []

tolist is used to convert a functional queue to a single list.
This function takes 𝑂 (𝑛) time where 𝑛 is the length of the
functional queue.

let tolist (S f b) = append f (rev b)

For the three-way merge between l, a and b, we first find
the elements that are not dequeued in a or b. Then we find
the list of newly enqueued elements in a and b, and append it
to the list of undequeued elements. The core of the three-way
merge is defined as follows:

let merge_s l a b =

let ixn = intersection l a b in

let diff_a = diff_s a l in

let diff_b = diff_s b l in

let union_ab = union diff_a diff_b in

append ixn union_ab

The three-way merge for l, a and b is defined as follows:
let merge l a b =

(S

(merge_s (tolist l) (tolist a) (tolist b))

[])

Since all the tasks involved inmerge take linear time in terms
of the length of the longest list, which is equal to that of the
longest queue, merge takes 𝑂 (𝑛) time where 𝑛 is the length
of the longest queue.

	Abstract
	1 Introduction
	1.1 Mergeable Replicated Data Types
	1.2 Efficiency and correctness
	1.3 Certified MRDTs

	2 Implementing and Specifying MRDTs
	2.1 Implementation
	2.2 Specification

	3 Store Semantics and MRDT Correctness
	4 Proving Data Type Implementations Correct
	4.1 Replication-aware simulation
	4.2 Verifying OR-sets using simulation relations

	5 Composing MRDTs
	5.1 IRC-style chat
	5.2 Mergeable log
	5.3 Generic map
	5.4 Projection function

	6 Case study: A Verified Queue MRDT
	6.1 Merge function of the replicated queue
	6.2 Specification of the replicated queue

	7 Evaluation
	7.1 Verification in F*
	7.2 Performance evaluation

	8 Related Work
	Acknowledgments
	References
	A Proof of Theorem 4.2
	B Functional queue simulation relation and implementation
	B.1 Simulation relation
	B.2 Functional queue implementation

