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Abstract Reduction strategies, such as model order reduction (MOR) or reduced
basis (RB) methods, in scientific computing may become crucial in applications of
increasing complexity. In this paper we review the reduced basis methods (built upon
a high-fidelity ‘truth’ finite element approximation) for a rapid and reliable approxi-
mation of parametrized partial differential equations, and comment on their potential
impact on applications of industrial interest. The essential ingredients of RB method-
ology are: a Galerkin projection onto a low-dimensional space of basis functions
properly selected, an affine parametric dependence enabling to perform a competitive
Offline-Online splitting in the computational procedure, and a rigorous a posteriori

error estimation used for both the basis selection and the certification of the solu-
tion. The combination of these three factors yields substantial computational savings
which are at the basis of an efficient model order reduction, ideally suited for real-
time simulation and many-query contexts (for example, optimization, control or pa-
rameter identification). After a brief excursus on the methodology, we focus on linear
elliptic and parabolic problems, discussing some extensions to more general classes
of problems and several perspectives of the ongoing research. We present some re-
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sults from applications dealing with heat and mass transfer, conduction-convection
phenomena, and thermal treatments.

1 Introduction and motivation

Although the increasing computer power makes the numerical solution problems of
very large dimensions that model complex phenomena essential, a computational re-
duction is still determinant whenever interested in real-time simulations and/or re-
peated output evaluations for different values of some inputs of interest. For a general
introduction on the development of the reduced basis methods we refer to [1–3].

In this work we review the reduced basis (RB) approximation and a posteriori

error estimation methods for the rapid and reliable evaluation of engineering out-
puts associated with elliptic and parabolic parametrized partial differential equations
(PDEs). In particular, we consider a (say, single) output of interest s(µ) ∈ R ex-
pressed as a functional of a field variable u(µ) that is the solution of a partial differen-
tial equation, parametrized with respect to the input parameter p-vector µ; the input

parameter domain - that is, the set of all possible inputs - is a subset D of R
p . The

input-parameter vector typically characterizes physical properties and material, geo-
metrical configuration, or even boundary conditions and force fields or sources. The
outputs of interest are physical quantities or indexes used to measure and assess the
behavior of a system, that is, related to fields variables or fluxes, as for example, do-
main or boundary averages of the field variables, or other quantities such as energies,
drag forces, flow rates, and so on. For the sake of simplicity, we consider through-
out the paper the case of a linear output of a field variable, that is, s(µ) = l(u(µ))

for a suitable linear operator l(·). Finally, the field variables u(µ) that link the input
parameters to the output depend on the selected PDE models and may represent tem-
perature or concentration, displacements, potential functions, distribution functions,
velocity or pressure. We thus arrive at an input-output relationship µ → s(µ), whose
evaluation requires the solution of a parametrized PDE.

The reduced basis methodology we recall in this paper is motivated by, and applied
within two particular contexts: the real-time context (for example, in-the-field robust
parameter-estimation, or nondestructive evaluation); and the many-query context (for
example, design or shape optimization, optimal control or multi-model/scale simu-
lation). Both are crucial in view of more widespread application of numerical meth-
ods for PDEs in engineering practice and more specific industrial processes. They
also feature a remarkable challenge to classical numerical techniques, such as - but
not limited to - the finite element (FE) method; in fact, classical FE approximations
may require big computational efforts (and also data/memory management) when
the dimension N of the discretisation space becomes large. This makes unaffordable
both real-time and many-query simulations: hence, looking also for computational
efficiency in numerical methods becomes mandatory. The real-time and many-query

contexts are often much better served by a model reduction technique such as the
reduced basis approximations and associated a posteriori error bound estimation re-
vised in this work. We note, however, that the RB methods do not replace, but rather
build upon and are measured - as regards accuracy - relative to, a finite element model:
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the reduced basis approximates not the exact solution but rather a ‘given’ finite ele-
ment discretization of (typically) very large dimension N , indicated as a high-fidelity
truth approximation. In short, we promote an algorithmic collaboration rather than a
computational competition between RB and FE methods.

In this paper we shall focus on the case of linear functional outputs of affinely
parametrized linear elliptic and parabolic coercive partial differential equations. This
kind of problems - relatively simple, yet relevant to many important applications
in transport (for example, steady/unsteady conduction, convection-diffusion), mass
transfer, and more generally in continuum mechanics - proves a convenient exposi-
tory vehicle for the methodology, with the aim of stressing on the potential impact
on possible industrial applications, dealing with optimization for devices and/or pro-
cesses, diagnosis, control.

We provide here a short table of contents for the remainder of this review paper.
For a wider framework on the position occupied by reduced basis method compared
with other reduced order modelling (ROM) techniques and their current develop-
ments and trends, see [1]. After a brief historical excursus, we present in Section 2
the state of the art of the reduced basis method, presenting the essential components
of this approach. We describe the affine linear elliptic and parabolic coercive settings
in Section 3, discussing briefly admissible classes of piecewise-affine geometry and
coefficients. In Sections 4 and 5 we present the essential components of the reduced
basis method: RB Galerkin projection and optimality; greedy sampling procedures;
an Offline-Online computational stratagem. In Section 6 we recall rigorous and rel-
atively sharp a posteriori error bounds for RB approximations of field variables and
outputs of interest. In Section 7 we briefly discuss several extensions of the method-
ology to more general and difficult classes of problems and applications, while in
Section 8 we introduce three ‘working examples’ which shall serve to illustrate the
RB formulation and its potential. In the last Section 9 we provide some future per-
spectives.

Although this paper focuses only on the affine linear elliptic and parabolic coer-
cive cases - in order to allow to catch all the main ingredients - the reduced basis ap-
proximation and associated a posteriori error estimation methodology is much more
general; nevertheless, many problems can successfully be faced in the even simplest
affine case.

2 State of the art of the methodology

In this section we briefly review the current landscape starting from a brief historical
excursus, introduce the essential RB ingredients and provide several references for
further inquiry.

2.1 Computational opportunities and collaborations

The development of the reduced basis methodology can be viewed as a response to
the issues described before, to address a significative computational reduction and
improvement in computational performances. However, the parametric real-time and
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Fig. 1 In the case of a single
parameter, the parametrically
induced manifold M N ⊂ XN

is a one-dimensional filament;
the bullets represent the FE
solutions used as basis
functions. Indeed, the red dotted
line denotes all the possible RB
solutions, obtained as
combinations of the basis
functions.

many-query contexts represent also computational opportunities, since an important
role in the RB paradigm and computational stratagem is played by the parametric
setting. In particular:

(i) Our attention is restricted to a typically smooth and rather low-dimensional

parametrically induced manifold M, spanned by the set of fields engendered as the
input varies over the parameter domain: for example, in the elliptic case

M =
{
u(µ) ∈ X : µ ∈ D

}
,

where X is a suitable functional space. Clearly, generic approximation spaces are un-
necessarily rich and hence unnecessarily expensive within the parametric framework.
Our approach is premised upon a classical finite element method ‘truth approxima-
tion’ space XN ⊂ X of (typically very large) dimension N ; the RB method consists
in a low-order approximation of the ‘truth’ manifold M N (see Figure 1) given by

M N =
{
uN (µ) ∈ XN : µ ∈ D

}
. (1)

Several classical RB proposals focus on the truth manifold M N ; much of what we
present shall be relevant to any of these reduced basis spaces/approximations.

(ii) Under suitable assumptions, the parametric setting enables to decouple the
computational effort in two stages: a very extensive (parameter independent) pre-
processing performed Offline once that prepares the way for subsequent very inex-
pensive calculations performed Online for each new input-output evaluation required.
In the real-time or many-query contexts, where the goal is to achieve a very low
marginal cost per input-output evaluation, we can accept an increased ‘Offline’ cost
- not tolerable for a single or few evaluations - in exchange for greatly decreased
‘Online’ cost for each new/additional input-output evaluation.
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2.2 A brief historical path

Reduced Basis discretization is, in brief, a Galerkin projection on an N -dimensional
approximation space that focuses on the parametrically induced manifold M N . We
restrict the attention to the Lagrange reduced basis spaces, which are based on the use
of ‘snapshot’ FE solutions of the PDEs, corresponding to certain (properly selected)
parameter values, as global approximation basis functions previously computed and
stored; other possible approaches, such as Taylor [4] or Hermite spaces [5], take into
account also partial derivatives of these basis solutions.

Initial ideas grew out of two related research topics dealing with linear/nonlinear
structural analysis in the late 70’s: the need for more effective many-query design
evaluation and more efficient parameter continuation methods [6–8]. The first work
presented in these early somewhat domain-specific contexts were soon extended to
(i) general finite-dimensional systems as well as certain classes of ODEs/PDEs [9–
12], and (ii) a variety of different reduced basis approximation spaces - in particular
Taylor and Lagrange and more recently Hermite expansions. The next decade saw
further expansion into different applications and classes of equations, such as fluid
dynamics and, more specifically, the incompressible Navier-Stokes equations [13–
16].

However, in these early methods, the approximation spaces tended to be rather
local and typically low-dimensional in parameter (often a single physical parameter),
due also to the absence of a posteriori error estimators and effective sampling pro-
cedures. It is clear that in higher-dimensional parameter domains the ad hoc reduced
basis predictions ‘far’ from any sample points can not necessarily be trusted, and
hence a posteriori error estimators combined with efficient parametric space explo-
ration techniques are crucial to guarantee reliability, accuracy and efficiency.

Much current effort in the last ten years in the RB framework has thus been de-
voted to the development of (i) a posteriori error estimation procedures - and in par-
ticular rigorous error bounds for outputs of interest - and (ii) effective sampling strate-
gies, in particular for higher dimensional parameter domains [17, 18]. The a posteri-

ori error bounds are of course mandatory for rigorous certification of any particular
RB Online output prediction. Not only, an a priori theory for RB approximations is
also available, dealing with a class of single parameter coercive problems [19] and
more recently extended also to the multi-parameter case [20].

However, the error estimators also play an important role in effective (greedy)
sampling procedures [1, 18]: they allow us to explore efficiently the parameter do-
main in search of most representative ‘snapshots’, and to determine when we have
just enough basis functions. We note here that greedy sampling methods are similar
in objective to, but very different in approach from, more well-known Proper Or-
thogonal Decomposition (POD) methods [21]; the former are usually applied in the
(multi-dimensional) parameter domain, while the latter are most often applied in the
(one-dimensional) temporal domain. An efficient combination of the two techniques
greedy-POD in parameter-time has been proposed [22, 23] and is currently used for
the treatment of parabolic problems [24]; see Section 5.2.

Concerning instead computational reduction and decoupling stratagems, early
work on the RB method certainly exploited - but not fully - the Offline-Online pro-
cedure. In particular, early RB approaches did not fully decouple the underlying FE
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approximation - with space of very high dimension N - from the subsequent reduced
basis projection and evaluation - of very low dimension N . Consequently, the compu-
tational savings provided by RB treatment (relative to classical FE evaluation) were
typically rather modest [4, 7, 10] despite the very small size of the RB linear sys-
tems. Much work has thus been devoted to full decoupling of the FE and RB spaces
through Offline-Online procedures, above all concerning the efficient a posteriori er-
ror estimation: the complexity of the Offline stage depends on N ; the complexity of
the Online stage - solution and/or output evaluation for a new value of µ - depends
only on N and Q (used to measure the parametric complexity of the operator and
data, as defined below). In this way, in the Online stage we can reach the accuracy of
a high-fidelity FE model but at the very low cost of a reduced-order model.

In the context of affine parameter dependence, in which the operator is express-
ible as the sum of Q products of parameter-dependent functions and parameter-
independent operators (see Section 3), the Offline-Online idea is quite self-apparent
and has been naturally exploited [16, 25] and extended more recently in order to
obtain efficient a posteriori error estimation. In the case of nonaffine parameter de-
pendence the development of Offline-Online strategies is even more challenging and
only in the last few years effective procedures have been studied and applied [26]
to allow more complex parametrizations; clearly, Offline-Online procedures are an
important element both in the real-time and the many-query contexts. We recall that
also historically [9] RB methods have been built upon, and measured (as regards
accuracy) relative to, underlying finite element discretizations. However, spectral el-
ement approaches [27, 28], finite volume [22], and other traditional discretization
methods may be considered too.

2.3 Essential RB components

The essential components of the reduced basis method, which will be analyzed in
detail along the next sections, can be summarized as below.

(i) Rapidly convergent global reduced basis (RB) approximations - (Galerkin) pro-
jection onto a (Lagrange) space XN

N spanned by solution of the governing par-
tial differential equation at N (optimally) selected points SN in the parameter
set D. Typically, N will be small, as we focus attention on the (smooth) low-
dimensional parametrically-induced manifold of interest. The RB approxima-
tions to the field variable and output will be denoted uN (µ) and sN (µ), respec-
tively.

(ii) Rigorous a posteriori error estimation procedures that provide inexpensive yet
sharp bounds for the error in the RB field-variable approximation, uN (µ), and
output(s) approximation, sN (µ). Our error indicators are rigorous upper bounds
for the error (relative to the FE truth field uN (µ) and output sN (µ) = l(uN (µ))

approximation, respectively) for all µ ∈ D and for all N . Error estimators are
also employed during the greedy procedure [1] to construct optimal RB sam-
ples/spaces ensuring an efficient and well-conditioned RB approximation.

(iii) Offline/Online computational procedures - decomposition stratagems which de-
couple the generation and projection stages of the RB approximation: very ex-
tensive (µ-independent) pre-processing performed Offline once that prepares
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the way for subsequent inexpensive calculations performed Online for each new

input-output evaluation required.

3 Elliptic & parabolic parametric PDEs

We introduce the formulation of affinely parametrized linear elliptic/parabolic coer-
cive problems; the methodology addressed in this work is intended for heat and mass
convection/conduction problems. For the sake of simplicity, we consider only com-
pliant outputs, referring to Section 7 for the treatment of general (non-compliant)
outputs and the extensions to other classes of equations.

3.1 Elliptic coercive parametric PDEs

We consider the following problem: Given µ ∈ D ⊂ R
p , evaluate the output of inter-

est

s(µ) = ℓ
(
u(µ)

)
, (2)

where u(µ) ∈ X(�) satisfies

a
(
u(µ), v;µ

)
= f (v), ∀v ∈ X(�). (3)

� is a suitably regular bounded spatial domain in R
d (for d = 2 or 3), X = X(�)

is a suitable Hilbert space; a(·, ·;µ) and f (·;µ) are the bilinear and linear forms,
respectively, associated with the PDE. We shall exclusively consider second-order
PDEs, and hence (H 1

0 (�))ν ⊂ X(�) ⊂ (H 1(�))ν , where ν = 1 (respectively, ν = d)
for a scalar (respectively, vector) field; here L2(�) is the space of square inte-
grable functions over �, H 1(�) = {v|v ∈ L2(�),∇v ∈ (L2(�))d}, H 1

0 (�) = {v ∈
H 1(�) : v|∂� = 0}. We denote by (·, ·)X the inner product associated with the Hilbert
space X, whose induced norm ‖ · ‖X =

√
(·, ·)X is equivalent to the usual (H 1(�))ν

norm. Similarly, (·, ·) and ‖ · ‖ denote the L2(�) inner product and induced norm,
respectively.

We shall assume that the bilinear form a(·, ·;µ) : X × X → R is continuous and
coercive over X for all µ in D, that is,

γ (µ) := sup
w∈X

sup
v∈X

a(w,v;µ)

‖w‖X‖v‖X

< +∞, ∀µ ∈ D, (4)

∃α0 > 0 : α(µ) := inf
w∈X

a(w,w;µ)

‖w‖2
X

≥ α0, ∀µ ∈ D. (5)

Finally, f (·) and ℓ(·) are linear continuous functionals over X; we assume - solely
for simplicity of exposition - that f and ℓ are independent of µ. Under these standard
hypotheses on a and f , (3) admits a unique solution. For the sake of simplicity,1 we

1This assumption will greatly simplify the presentation while still exercising most of the important RB
concepts; furthermore, many important engineering problems are in fact ‘compliant’.
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shall further presume for most of this paper that we are in ‘compliance’ case [1]. In
particular, we assume that (i) a is symmetric - a(w,v;µ) = a(v,w;µ), ∀w,v ∈ X,
∀µ ∈ D - and furthermore (ii) ℓ = f . We shall make one last assumption, crucial to
Offline-Online procedures, by assuming that the parametric bilinear form a is ‘affine’
in the parameter µ: for some finite Qa , a(·, ·;µ) can be expressed as

a(w,v;µ) =
Q∑

q=1

�
q
a(µ)aq(w,v), (6)

for given smooth µ-dependent functions �
q
a , 1 ≤ q ≤ Qa , and continuous µ-

independent bilinear forms aq , 1 ≤ q ≤ Qa (in the compliant case the aq are ad-
ditionally symmetric). Under this assumption, M N defined by (1) lies on a smooth
p-dimensional manifold in XN . In actual practice, f may also depend affinely on
the parameter: in this case, f (v;µ) may be expressed as a sum of Qf products of
µ-dependent functions and µ-independent X-bounded linear forms. As we shall see
in the following, the assumption of affine parameter dependence is broadly relevant

to many instances of both property and geometry parametric variation. Nevertheless,
this assumption may be relaxed [26], as detailed in Section 7.

3.2 Parabolic coercive parametric PDEs

We also consider the following parabolic model problem: Given µ ∈ D ⊂ R
p , evalu-

ate the output of interest

s(t;µ) = ℓ
(
u(t;µ)

)
, ∀t ∈ I = [0, tf ], (7)

where u(µ) ∈ C0(I ;L2(�)) ∩ L2(I ;X) is such that

m

(
∂u

∂t
(t;µ), v;µ

)
+ a
(
u(t;µ), v;µ

)
= g(t)f (v), ∀v ∈ X,∀t ∈ I, (8)

subject to initial condition u(0;µ) = u0 ∈ L2(�); g(t) ∈ L2(I ) is called control func-

tion. In addition to the previous assumptions (4)-(6), we shall assume that a(·, ·;µ) -
which represents convection and diffusion - is time-invariant; moreover, m(·, ·;µ) -
which represents ‘mass’ or inertia - is assumed to be time-invariant, symmetric, and
continuous and coercive over L2(�), with coercivity constant

∃σ0 : σ(µ) := inf
w∈X

m(w,w;µ)

‖w‖2
X

≥ σ0, ∀µ ∈ D. (9)

Finally, we assume that also m(·, ·;µ) is ‘affine in parameter’, that is, it can be ex-
pressed as

m(w,v;µ) =
Qm∑

q ′=1

�
q ′
m(µ)mq ′

(w,v), (10)

for given smooth parameter-dependent functions �
q ′
m , 1 ≤ q ′ ≤ Qm, and continuous

parameter-independent bilinear forms mq ′
, 1 ≤ q ′ ≤ Qm, for suitable integer Qm.
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3.3 Parametrized formulation

We now describe a general class - through not the most general one - of elliptic and
parabolic problems which honors the hypotheses previously introduced; for simplic-
ity we consider a scalar field (ν = 1) in two space dimension (d = 2). We shall first
define an ‘original’ problem (subscript o), posed over the parameter-dependent do-
main �o = �o(µ); we denote Xo(µ) a suitable Hilbert space defined on �o(µ). In
the elliptic case, the original problem reads as follows: Given µ ∈ D, evaluate

so(µ) = lo
(
uo(µ)

)
,

where uo(µ) ∈ Xo(µ) satisfies

ao

(
uo(µ), v;µ

)
= fo(v), ∀v ∈ Xo(µ).

In the same way, for the parabolic case we have: Given µ ∈ D, evaluate

so(t;µ) = lo
(
uo(t;µ)

)
,

being uo(µ) ∈ C0(I ;L2(�)) ∩ L2(I ;Xo(µ)) such that

mo

(
∂uo

∂t
(t;µ), v;µ

)
+ ao

(
uo(t;µ), v;µ

)
= g(t)fo(v), ∀v ∈ Xo(µ),∀t ∈ I.

The RB framework requires a reference (µ-independent) domain � in order to com-
pare, and combine, FE solutions that would be otherwise computed on different
domains and grids. For this reason, we need to map �o(µ) to a reference domain
� = �o(µref), µref ∈ D, in order to get the ‘transformed’ problem (2)-(3) or (7)-
(8) - which is the point of departure of RB approach - for elliptic and parabolic case,
respectively. The reference domain � is thus related to the original domain �o(µ)

through a parametric mapping T (·;µ), such that �o(µ) = T (�;µ). It remains to
place some restrictions on both the geometry (that is, on �o(µ)) and the operators
(that is, ao, mo, fo, lo) such that (upon mapping) the transformed problem satisfies
the hypotheses introduced above - in particular, the affinity assumption (6), (10). To
this aim, a domain decomposition is useful [1].

We first consider the class of admissible geometries. In order to build a paramet-
ric mapping related to geometrical properties, we introduce a conforming domain
decomposition of �o(µ),

�o(µ) =
Ldom⋃

l=1

�l
o(µ), (11)

consisting of mutually nonoverlapping open subdomains �l
o(µ), s.t. �l

o(µ) ∩
�l′

o (µ) = ∅, 1 ≤ l < l′ ≤ Ldom. If related to geometrical properties used as input
parameters (for example, lengths, thicknesses, diameters or angles) the definition
of parametric mappings can be done in a quite intuitive fashion.2 In the following

2These regions can represent different material properties, but they can also be used for algorithmic pur-
poses to ensure well-behaved mappings.
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we will identify �l = �l
o(µref), 1 ≤ l ≤ Ldom, and denote (11) the ‘RB triangula-

tion’; it will play an important role in the generation of the affine representation
(6), (10). Hence, original and reference subdomains must be linked via a mapping
T (·;µ) : �l → �l

o(µ), 1 ≤ l ≤ Ldom, such that

�l
o(µ) = T l

(
�l;µ

)
, 1 ≤ l ≤ Ldom; (12)

these maps must be individually bijective, collectively continuous, and such that
T l(x,µ) = T l′(x;µ), ∀x ∈ �l ∩ �l′ , for 1 ≤ l < l′ ≤ Ldom.

Here we consider the affine case, where the transformation is given, for any µ ∈ D

and x ∈ �l , by

T l
i (x,µ) = Cl

i (µ) +
d∑

j=1

Gl
ij (µ)xj , 1 ≤ i ≤ d, (13)

for given translation vectors Cl : D → R
d and linear transformation matrices

Gl : D → R
d×d . The linear transformation matrices can effect rotation, scaling

and/or shear and have to be invertible. The associated Jacobians can be defined as
J l(µ) = |det (Gl(µ))|, 1 ≤ l ≤ Ldom.

We next introduce the class of admissible operators. We may consider the associ-
ated bilinear forms

ao(w,v;µ) =
Ldom∑

l=1

∫

�l
o(µ)

[
∂w
∂xo1

∣∣ ∂w
∂xo2

∣∣w
]

Ko,l(µ)

⎡
⎢⎣

∂v
∂xo1
∂v

∂xo2

v

⎤
⎥⎦ , (14)

where Ko,l : D → R
3×3, 1 ≤ l ≤ Ldom, are prescribed coefficients.3 In the parabolic

case, we also may consider

mo(w,v;µ) =
Ldom∑

l=1

∫

�l
o(µ)

wMo,l(µ)v, (15)

where Mo,l : D → R represents the identity operator. Similarly, we require that fo(·)
and lo(·) are written as

fo(v) =
Ldom∑

l=1

∫

�l
o(µ)

Fo,l(µ)v, lo(v) =
Ldom∑

l=1

∫

�l
o(µ)

Lo,l(µ)v,

where Fo,l : D → R and Lo,l : D → R, for 1 ≤ l ≤ Ldom, are prescribed coefficients.
By identifying u(µ) = uo(µ) ◦ T (·;µ) in the elliptic case (resp. u(t;µ) = uo(t;µ) ◦

3Here, for 1 ≤ l ≤ Ldom, Ko,l : D → R3×3 is a given SPD matrix (which in turn ensures coercivity of the
bilinear form): the upper 2 × 2 principal submatrix of Ko,l is the usual tensor conductivity/diffusivity; the
(3,3) element of Ko,l represents the identity operator (‘mass matrix’) and is equal to Mo,l ; and the (3,1),
(3,2) (and (1,3), (2,3)) elements of Ko,l - which we can choose here as zero thanks to the current restric-
tion to symmetric operators - permit first derivative terms to take into consideration transport/convective
terms.
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T (·;µ) ∀t > 0 in the parabolic case), and tracing (14) back on the reference domain
� by the mapping T (·;µ), it follows that the transformed bilinear form a(·, ·;µ) can
be expressed as

a(w,v;µ) =
Ldom∑

l=1

∫

�l

[
∂w
∂x1

∣∣ ∂w
∂x2

∣∣w
]

Kl(µ)

⎡
⎢⎣

∂v
∂x1
∂v
∂x2

v

⎤
⎥⎦ , (16)

where Kl : D → R
3×3, 1 ≤ l ≤ Ldom, is a parametrized tensor given by

Kl(µ) = J l(µ)Gl(µ)Ko,l(µ)
(
Gl(µ)

)T

and Gl : D → R
3×3 is given by

Gl(µ) =
(

(Gl(µ))−1 0

0 1

)
, 1 ≤ l ≤ Ldom.

In the same way, the transformed bilinear form m(·, ·;µ) can be expressed as

m(w,v;µ) =
Ldom∑

l=1

∫

�l

wMl(µ)v, (17)

where Ml : D → R, 1 ≤ l ≤ Ldom, Ml(µ) = J l(µ)Mo,l(µ). The transformed linear
forms can be expressed similarly as

f (v) =
Ldom∑

l=1

∫

�

Fl(µ)v, l(v) =
Ldom∑

l=1

∫

�

Ll(µ)v,

where Fl : D → R and Ll : D → R are given by Fl(µ) = J l(µ)Mo,l(µ), Ll =
J l(µ)Lo,l(µ), for 1 ≤ l ≤ Ldom. Hence, the original problem has been reformulated
on a reference configuration, resulting in a parametrized problem where the effect of
geometry variations is traced back onto its parametrized transformation tensors. The
affine formulation (6) (resp. (6) and (10)) can then be derived by simply expanding
the expression (16) (and (17)) in terms of the subdomains �l and the different entries
of K l

ij . This results, for example, in

a(w,v;µ) = K11
1 (µ)

∫

�1

∂w

∂x1

∂v

∂x1
+ K12

1 (µ)

∫

�1

∂w

∂x1

∂v

∂x2
+ · · · .

The affine representation is now clear: for each term in (18) the (parameter-
independent) integral represents aq(w,v), while the (parameter-dependent) prefac-
tor represents �q(µ); the bilinear form m admits a similar treatment. The process
by which we map this original problem to the transformed problem can be largely
automated [1]. There are many ways in which we can relax the given assumptions
and thus treat an even broader class of problems; for example, we may consider ‘el-
liptical’ or ‘curvy’ triangular subdomains [1]; we may consider non-time-invariant
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bilinear forms a and m; we may consider coefficient functions K, M which are poly-
nomial in the spatial coordinate (or more generally approximated by the Empirical
Interpolation Method [26]). Some generalizations will be addressed in Section 7 and
can be pursued by modification of the method presented in Section 4: in general,
increased complexity in geometry and operator will result in more terms in affine
expansions - larger - with a corresponding increase in the reduced basis (Online)
computational costs.

4 The reduced basis method

We discuss in this section all the details related to the construction of the reduced
basis approximation in both the elliptic and the parabolic case, for rapid and reliable
prediction of engineering outputs associated with parametrized PDEs.

4.1 Elliptic case

We assume that we are given a FE approximation space XN of (typically very large)
dimension N . Hence, the FE discretization of problem (2)-(3) [29, 30] is as follows:
given µ ∈ D, evaluate

sN (µ) = ℓ
(
uN (µ)

)
, (18)

where uN (µ) ∈ XN satisfies

a
(
uN (µ), v;µ

)
= f (v), ∀v ∈ XN . (19)

We then introduce, given a positive integer Nmax, an associated sequence of (what
shall ultimately be reduced basis) approximation spaces: for N = 1, . . . ,Nmax, XN

N

is a N -dimensional subspace of XN ; we further suppose that they are nested (or hi-
erarchical), that is, XN

1 ⊂ XN
2 ⊂ · · · ⊂ XN

Nmax
⊂ XN ; this condition is fundamental

in ensuring (memory) efficiency of the resulting RB approximation. We recall from
Section 2 that there are several classical RB proposals - Taylor, Lagrange, and Her-
mite spaces - as well as many different approaches, such as POD spaces. Even if we
focus on Lagrange RB spaces, much of what is presented in this paper - in particular,
concerning the discrete formulation, Offline-Online procedures and a posteriori error
estimation - shall be relevant to any of these RB spaces/approximations, even if they
are not of immediate application in industrial problems (where we want to preserve
the Offline-Online procedure and hierarchical spaces).

In order to define a (hierarchical) sequence of Lagrange spaces XN
N , 1 ≤ N ≤

Nmax, we first introduce a ‘master set’ of properly selected parameter points µn ∈ D,
1 ≤ n ≤ Nmax. We then define, for given N ∈ {1, . . . ,Nmax}, the Lagrange parameter
samples

SN =
{
µ1, . . . ,µN

}
, (20)

and associated Lagrange RB spaces

XN
N = span

{
uN
(
µn
)
,1 ≤ n ≤ N

}
; (21)
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the uN (µn), 1 ≤ n ≤ Nmax, are often referred to as ‘(retained) snapshots’ of the
parametric manifold M N and are obtained by solving the FE problem (19) for µn,
1 ≤ n ≤ Nmax. It is clear that, if indeed the manifold is low-dimensional and smooth,
then we would expect to well approximate any member of the manifold - any solution
uN (µ) for some µ in D - in terms of relatively few retained snapshots. However,
we must ensure that we can choose a good combination of the available retained
snapshots; represent the retained snapshots in a stable RB basis, efficiently obtain the
associated RB basis coefficients; and finally choose the retained snapshots (that is,
the sample SNmax ) in an optimal way. The sampling strategy used to build the set SN

will be discussed in Section 5.

4.1.1 Galerkin projection

For our particular class of equations, Galerkin projection is arguably the best ap-
proach. Given µ ∈ D, evaluate (recalling the compliance assumption)

sN
N (µ) = f

(
uN

N (µ)
)
, (22)

where uN
N (µ) ∈ XN

N ⊂ XN (or more precisely, uN
XN

N

(µ) ∈ XN
N ) satisfies

a
(
uN

N (µ), v;µ
)
= f (v), ∀v ∈ XN

N . (23)

We immediately obtain the classical optimality result in the energy norm:4

∣∣∣∣∣∣uN (µ) − uN
N (µ)

∣∣∣∣∣∣
µ

≤ inf
w∈XN

N

∣∣∣∣∣∣uN (µ) − w
∣∣∣∣∣∣

µ
; (24)

in the energy norm, the Galerkin procedure automatically selects the best combina-
tion of snapshots; moreover, we have that

sN (µ) − sN
N (µ) =

∣∣∣∣∣∣uN (µ) − uN
N (µ)

∣∣∣∣∣∣2
µ
, (25)

that is, the output converges as the ‘square’ of the energy error. Although this latter
result depends critically on the compliance assumption, extension via adjoint approx-
imations to the non-compliant case is possible; we discuss this further in Section 7.

We now consider the discrete equations associated with the Galerkin approxi-
mation (23). First of all, we apply the Gram-Schmidt process with respect to the
(·, ·)X inner product to snapshots uN (µn), 1 ≤ n ≤ Nmax, to obtain mutually (·, ·)X-
orthonormal basis functions ζ N

n , 1 ≤ n ≤ Nmax. Then, the RB solution can be ex-
pressed as:

uN
N (µ) =

N∑

m=1

uN
Nm(µ)ζ N

m ; (26)

4Under the coercivity and the symmetry assumptions, the bilinear form a(·, ·;µ) defines a (energy) scalar
product given by ((w,v))µ := a(w,v;µ) ∀w,v ∈ X; the induced energy norm is given by |||w|||µ =
((w,w))

1/2
µ .
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by taking v = ζ N
n , 1 ≤ n ≤ N , into (23) and using (26), we obtain the RB ‘stiffness’

equations

N∑

m=1

a
(
ζ N
m , ζ N

n ;µ
)
uN

Nm(µ) = f
(
ζ N
n

)
, (27)

for the RB coefficients uN
Nm(µ), 1 ≤ m,n ≤ N ; we can subsequently evaluate the RB

output as

sN
N (µ) =

N∑

m=1

uN
Nm(µ)f

(
ζ N
m

)
. (28)

4.1.2 Offline-Online procedure

The system (27) is nominally of small size: a set of N linear algebraic equations in N

unknowns. However, the formation of the stiffness matrix, and indeed the load vector,
involves entities ζ N

n , 1 ≤ n ≤ N , associated with our N -dimensional FE approxima-
tion space. Fortunately, we can appeal to affine parameter dependence to construct
very efficient Offline-Online procedures. In particular, system (27) can be expressed,
thanks to (6), as

N∑

m=1

(
Q∑

q=1

�q(µ)aq
(
ζ N
m , ζ N

n

)
)

uN
Nm(µ) = f

(
ζ N
n

)
,

for 1 ≤ n ≤ N . The equivalent matrix form is

(
Qa∑

q=1

�
q
a(µ)A

q

N

)
uN (µ) = fN , (29)

where (uN (µ))m = uN
Nm(µ) and

(
A

q
N

)
mn

= aq
(
ζ N
m , ζ N

n

)
, (fN )n = f

(
ζ N
n

)
,

for 1 ≤ m,n ≤ Nmax. Since each basis function ζ N
n belongs to the FE space XN ,

they can be written as

ζ N
n =

N∑

i=1

ζ N
ni φi, 1 ≤ n ≤ Nmax,

that is, as a linear combination of the FE basis functions {φi}N
i=1; therefore, the RB

‘stiffness’ matrix can be assembled once the corresponding the RB ‘stiffness’ matrix
can be assembled. Then, by denoting

Z = [ζ 1| · · · |ζN ] ∈ R
N ×N , 1 ≤ N ≤ Nmax,
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we have that

A
q

N = Z T A
q

N
Z, fN = Z T F N ,

being
(

A
q

N

)
ij

= aq(φj , φi), (F N )i = f (φi)

the structures given by the FE discretization. In this way, computation entails an ex-
pensive µ-independent Offline stage performed only once and an Online stage for
any chosen parameter value µ ∈ D. During the former the FE structures {A

q

N }Qa

q=1

and F N , as well as the snapshots {uN (µn)}Nmax
n=1 and the corresponding orthonormal

basis {ζ N
n }Nmax

n=1 , are computed and stored. In the latter, for any given µ, all the �a
q(µ)

coefficients are evaluated, and the N ×N linear system (29) is assembled and solved,
in order to get the RB approximation uN

N (µ). Then, the RB output approximation is
obtained through the simple scalar product (37). Although being dense (rather than
sparse as in the FE case), the system matrix is very small, with a size independent of
the FE space dimension N .

The Online operation count is O(QN2) to get and O(N3) to invert the matrix in
(29), and finally O(N) to effect the inner product (37). The Online storage is - thanks
to the hierarchy assumption - only O(QN2

max) + O(Nmax): for any given N , we
may extract the necessary RB N × N matrices (respectively, N -vectors) as principal
submatrices (respectively, principal subvectors) of the corresponding Nmax × Nmax

(respectively, Nmax) quantities. The Online (marginal) cost (operation count and stor-
age) to evaluate µ → sN

N (µ) is thus independent of N (see Figure 2).

Fig. 2 Comparison between the finite element and the reduced basis approximation frameworks: δτ N

is the marginal computational time for a single FE field/output approximation, while δτN is the marginal
computational time for a single RB field/output (Online) evaluation, provided the data structures assembled
and stored during the Offline stage (courtesy A. Patera, http://augustine.mit.edu).

http://augustine.mit.edu
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4.2 Parabolic case

We next introduce the finite difference in time and finite element (FE) in space dis-
cretization [29, 30] of the parabolic problem (8). We first divide the time interval I

into K subintervals of equal length �t = tf /K and define tk = k�t , 0 ≤ k ≤ K ,
and define the FE approximation space XN . Hence, given µ ∈ D, we look for
uN k(µ) ∈ X, 0 ≤ k ≤ K , such that

1

�t
m
(
uN k(µ) − uN k−1(µ), v;µ

)
+ a
(
uN k(µ), v;µ

)

= g(tk)f (v), ∀v ∈ XN ,1 ≤ k ≤ K,

(30)

subject to initial condition (uN 0, v) = (u0, v), ∀v ∈ XN . We then evaluate the output
(recalling the compliance assumption): for 0 ≤ k ≤ K ,

sN k(µ) = f
(
uN k(µ)

)
. (31)

We shall sometimes denote uN k(µ) as uN (tk;µ) and sN k(µ) as sN (tk;µ) to more
clearly identify the discrete time levels. Under the coercivity assumption (9) of the
bilinear form a(·, ·;µ) and the smoothness assumption of �

q
a,m(µ) coefficients,

M N K =
{
uN k(µ) : 1 ≤ k ≤ K,µ ∈ D

}
, (32)

the analogous entity of (32) in the parabolic case, lies on a smooth (p + 1)-
dimensional manifold in XN .

Equation (30) - Backward Euler-Galerkin discretization of (8) - shall be our point
of departure: we shall presume that �t is sufficiently small and N is sufficiently large
such that uN (tk;µ) and sN (tk;µ) are effectively indistinguishable from u(tk;µ)

and s(tk;µ), respectively. The development readily extends to Crank-Nicholson or
higher order discretization; for purposes of exposition, we consider the simple Back-
ward Euler approach.

The RB approximation in this case [24, 31] is based on RB spaces XN
N , 1 ≤ N ≤

Nmax, generated by a sampling procedure which combines spatial snapshots in time
and parameter - uN k(µ) - in an optimal fashion (see Section 5). Given µ ∈ D, we
now look for uk

N (µ) ∈ XN
N , 0 ≤ k ≤ K , such that

1

�t
m
(
uk

N (µ) − uk−1
N (µ), v;µ

)
+ a
(
uk

N (µ), v;µ
)

= g
(
tk
)
f (v), ∀v ∈ XN

N ,1 ≤ k ≤ K,

(33)

subject to (u0
N (µ), v) = (uN 0, v), ∀v ∈ XN

N . We then evaluate the associated output:
for 0 ≤ k ≤ K ,

sk
N (µ) = f

(
uk

N (µ)
)
. (34)

We shall sometimes denote uk
N (µ) as uN (tk;µ) and sk

N (µ) as sN (tk;µ) to more
clearly identify the discrete time levels. (Note that all the RB quantities should bear
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a N - XN
N , uN k

N (µ), sN k
N (µ) - since the RB approximation is defined in terms of

the truth discretization; however, for clarity of exposition, we shall typically suppress
this superscript.)

We now develop the algebraic equations associated with (33)-(34). First of all, the
RB approximation uk

N (µ) ∈ XN
N shall be expressed as

uk
N (µ) =

N∑

m=1

uk
Nm(µ)ζ N

m , (35)

given a set of mutually (·, ·)X orthogonal basis functions ζ N
n ∈ XN , 1 ≤ n ≤ Nmax,

and corresponding (hierarchical) RB spaces

XN = span{ξn,1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

By taking v = ζ N
n , 1 ≤ n ≤ N , into (33) and using (35), we obtain:

1

�t

N∑

m=1

m
(
ζ N
m , ζ N

n ;µ
)
uk

Nm(µ) +
N∑

m=1

a
(
ζ N
m , ζ N

n ;µ
)
uk

Nm(µ)

= f
(
ζ N
n

)
+ 1

�t

N∑

m=1

m
(
ζ N
m , ζ N

n ;µ
)
uk−1

Nm (µ),

(36)

for the RB coefficients uN
Nm(µ), 1 ≤ m,n ≤ N ; we can subsequently evaluate the RB

output as

sk
N (µ) =

N∑

m=1

uk
Nm(µ)f

(
ζ N
m

)
. (37)

The equivalent matrix form is

(
Qa∑

q=1

�
q
a(µ)A

q
N + 1

�t

Qm∑

q=1

�
q
m(µ)M

q
N

)
uN (µ) = fN + 1

�t

Qm∑

q=1

�
q
m(µ)M

q
N , (38)

where (uk
N (µ))m = uk

Nm(µ) and

(
M

q

N

)
mn

= mq
(
ζ N
m , ζ N

n

)
, 1 ≤ m,n ≤ Nmax;

other terms are the same as in the elliptic case (see Sections 4.1.1-4.1.2). Moreover,
also the RB mass terms can be computed from the FE mass terms as

M
q

N = Z T M
q

N
Z, where

(
M

q

N

)
ij

= mq(φj , φi),

being {φi}N
i=1 the basis of the FE space XN .

The Offline-Online procedure is now straightforward; in particular, the unsteady
case is very similar to the steady case discussed before. There are a few new twists:
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as regards storage, we must now append to the elliptic Offline dataset an affine de-
velopment for the mass matrix M

q
N , 1 ≤ q ≤ Qm, associated with the unsteady term;

as regards computational complexity, we must multiply the elliptic operation counts
by K to arrive at O(KN3) (in fact, O(KN2) for a linear time-invariant system) for
the Online operation count, where K is the number of time steps (recall that in actual
practice the ‘truth’ is discrete in time). Thus, the Online evaluation of sN (µ) remains
independent of N even in the unsteady case.

5 Sampling strategies

We now review two sampling strategies used for the construction of RB spaces: a
greedy procedure for the elliptic case and a combined POD-greedy procedure for the
parabolic case. Let us denote by � a finite sample of points in D, which shall serve
as surrogates for D in the calculation of errors (and error bounds) over the parameter
domain.

5.1 Elliptic case

We denote the particular samples which shall serve to select the RB space - or
‘train’ the RB approximation - by �train. The cardinality of �train will be denoted
|�train| = ntrain. We note that although the ‘test’ samples � serve primarily to under-
stand and assess the quality of the RB approximation and a posteriori error estima-
tors, the ‘train’ samples �train serve to generate the RB approximation. The choice
of ntrain and �train thus have important Offline and Online computational implica-
tions. Moreover, let us denote ε∗

tol a chosen tolerance for the stopping criterium of the
greedy algorithm.

The greedy sampling strategy can be implemented as follows:

S1 = {µ1}; compute uN (µ1);
X1 = span{uN (µ1)};
for N = 2 : Nmax

µN = arg maxµ∈�train �N−1(µ);
εN−1 = �N−1(µ

N );
if εN−1 ≤ ε∗

tol

Nmax = N − 1;
end;
compute uN (µN );
SN = SN−1 ∪ {µN };
XN = XN

N−1 ∪ span{uN (µN )};
end.

As we shall describe in detail in Section 6, �N (µ) is a sharp, (asymptotically) inex-

pensive a posteriori error bound for ‖uN (µ) − uN
XN

N

(µ)‖X .
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Roughly, at iteration N the greedy algorithm appends to the retained snapshots
that particular candidate snapshot - over all candidate snapshots uN (µ), µ ∈ �train -
which is (predicted5 by the a posteriori error bound to be the) least well approximated
by (the RB prediction associated to) XN

N−1. We refer to [32] for a general analysis of
the greedy algorithm and related convergence rates.

5.2 Parabolic case

The temporal evolution case is quite different: the greedy approach [31] can en-
counter difficulties best treated by incorporating elements of the POD selection pro-
cess [22]. Our sampling method thus combine the POD in tk - to capture the causality
associated with the evolution equation - with the greedy procedure in µ [1, 18, 31]
- to treat efficiently the higher dimensions and more extensive ranges of parameter
variation.

To begin, we summarize the basic POD optimality property: given J elements
wj ∈ XN , 1 ≤ j ≤ J , POD({w1, . . . ,wJ },M) returns M < J (·, ·)X-orthonormal
functions {χm,1 ≤ m ≤ M} such that the space PM = span{χm,1 ≤ m ≤ M} is opti-
mal, that is,

PM = arg inf
YM⊂span{wj ,1≤j≤J }

(
1

J

J∑

j=1

inf
v∈YM

‖wj − v‖2
X

)1/2

,

where YM denotes an M-dimensional linear space.
To initiate the POD-greedy sampling procedure we must specify �train, an initial

sample S∗ = {µ∗
0} and a tolerance ε∗

tol. The algorithm depends on two suitable inte-
gers M1 and M2 (the criterium behind their setting is addressed later) and reads as
follows:

Set Z = ∅, S∗ = {µ∗
0},µ∗ = µ∗

0;
While N ≤ Nmax,0

{χm,1 ≤ m ≤ M1} = POD({uN (tk,µ∗),1 ≤ k ≤ K},M1);
Z ← {Z, {χm,1 ≤ m ≤ M1}};
N ← N + M2;
{ξn,1 ≤ n ≤ N} = POD(Z,N);
XN = span{ξn,1 ≤ n ≤ N};
µ∗ = arg maxµ∈�train �N (tK = tf ;µ)

S∗ ← {S∗,μ∗};
end.

Set XN = span{ξn,1 ≤ n ≤ N},1 ≤ N ≤ Nmax.

As we shall describe in detail in Section 6, �N (tk;µ) provides a sharp inexpen-

sive a posteriori error bound for ‖uN (tk;µ) − uN
N (tk;µ)‖X . In practice, we exit the

5Clearly the accuracy and cost of the a posteriori error estimator �N (µ) are crucial to the success of the
greedy algorithm.
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POD-greedy sampling procedure at N = Nmax ≤ Nmax,0 for which a prescribed error
tolerance is satisfied: to wit, we define

ε∗
N,max = max

µ∈�train
�N (tK ;µ),

and terminate when ε∗
N,max ≤ ε∗

tol. Note, by virtue of the final re–definition, the POD-
greedy generates hierarchical spaces XN , 1 ≤ N ≤ Nmax, which is computationally
very advantageous.

We choose M1 to satisfy an internal POD error criterion based on the usual sum of
eigenvalues and ε∗

tol; we choose M2 ≤ M1 to minimize duplication in the RB space.
It is important to note that the POD-greedy method readily accommodates a repeat
µ∗ in successive greedy cycles - new information will always be available and old in-
formation rejected; in contrast, a pure greedy approach in both t and µ [31], though
often generating good spaces, can ‘stall’. Furthermore, since the POD is conducted
in only one (time) dimension - with the greedy addressing the remaining (parameter)
dimensions - the procedure remains computationally feasible even for large parame-
ter domains and very extensive parameter train samples (and in particular in higher
parameter dimensions).

Concerning the computational aspects, the crucial point is that the operation count
for the POD-greedy algorithm is additive and not multiplicative in ntrain and N ; in
contrast, in a pure POD approach, we would need to evaluate the FE ‘truth’ solution
at the ntrain candidate parameter values. As a result, in the POD-greedy approach we
can take ntrain relatively large: we can thus anticipate RB spaces and approximations
that provide rapid convergence uniformly over the parameter domain.

6 A posteriori error estimation

Effective a posteriori error bounds for field variables and outputs of interest are cru-
cial for both the efficiency and the reliability of RB approximations. As regards effi-

ciency, a posteriori error estimation permits us to (inexpensively) control the error,
as well as to minimize the computational effort by controlling the dimension of the
RB space. Not only, in the greedy algorithm the application of error bounds (as sur-
rogates for the actual error) allows significantly larger training samples �train ⊂ D

and a better parameter space exploration at greatly reduced Offline computational
cost. Concerning reliability, a posteriori error bounds allows a confident exploita-
tion of the rapid predictive power of the RB approximation. By means of an efficient
a posteriori error bound, we can make up for an error quantification for each new
parameter value µ in the online stage and thus can make sure that feasibility (and
safety/failure) conditions are verified.

The motivations for error estimation in turn place requirements on the error
bounds. First, the error bounds must be rigorous - valid for all N and for all parame-
ter values in the parameter domain D: non-rigorous error ‘indicators’ may suffice for
adaptivity during basis assembling, but not for reliability. Second, the bounds must be
reasonably sharp: an overly conservative error bound can yield inefficient approxi-
mations (N too large) or even dangerous suboptimal engineering results (unnecessary
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safety margins). And third, the bounds must be very efficient: the Online operation
count and storage to compute the RB error bounds - the marginal average cost - must
be independent of N (and commensurate with the cost associated with the RB output
prediction).

6.1 Elliptic case

Let us now consider a posteriori error bounds for the field variable uN
N (µ) and the

output sN
N (µ) in the elliptic case (22)-(23). We introduce two basic ingredients of our

error bounds: the error residual relationship and coercivity lower bounds.

6.1.1 Basic ingredients

The central equation in a posteriori theory is the error residual relationship. In partic-
ular, it follows from the problem statements for uN (µ), (19), and uN

N (µ), (23), that
the error e(µ) := uN (µ) − uN

N (µ) ∈ XN satisfies

a
(
e(µ), v;µ

)
= r(v;µ), ∀v ∈ XN . (39)

Here r(v;µ) ∈ (XN )′ (the dual space to XN ) is the residual,

r(v;µ) := f (v;µ) − a
(
uN

N (µ), v;µ
)
, ∀v ∈ XN . (40)

Indeed, (39) directly follows from the definition (40), f (v;µ) = a(uN (µ), v;µ),
∀v ∈ XN , bilinearity of a, and the definition of e(µ). It shall prove convenient to
introduce the Riesz representation of r(v;µ): ê(µ) ∈ XN satisfies

(
ê(µ), v

)
X

= r(v;µ), ∀v ∈ XN . (41)

This allows us to write the error residual equation (39) as

a
(
e(µ), v;µ

)
=
(
ê(µ), v

)
X
, ∀v ∈ XN , (42)

and it follows that the dual norm of the residual can be evaluated through the Riesz
representation:

∥∥r(·;µ)
∥∥

(XN )′ := sup
v∈XN

r(v;µ)

‖v‖X

=
∥∥ê(µ)

∥∥
X
; (43)

this shall prove to be important for the Offline-Online stratagem developed in Sec-
tion 6.1.3 below.

As a second ingredient, we need a positive, parametric lower bound function
αN

LB(µ) for αN (µ), the FE coercivity constant6 defined as

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

; (44)

6As we assumed that the bilinear form is coercive and the FE approximation spaces are conforming, it

follows that αN (µ) ≥ α(µ) ≥ α0 > 0, ∀µ ∈ D.
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hence, we introduce

0 < αN
LB(µ) ≤ αN (µ) ∀µ ∈ D, (45)

where the online computational time to evaluate µ → αN
LB(µ) has to be independent

of N in order to fulfill the efficiency requirements on the error bounds articulated be-
fore. An efficient algorithm for the computation of αN

LB(µ) is given by the so-called
Successive Constraint Method (SCM), widely analyzed in [1, 33, 34]. Moreover, the
SCM algorithm - which is based on the successive solution of suitable linear op-
timization problems - has been developed for the special requirements of the RB
method; it thus features an efficient Offline-Online strategy, making the Online cal-
culation complexity independent of N - a fundamental requisite.

6.1.2 Error bounds

We define error estimators for the solution in the energy norm and for the output as

�N (µ) :=
∥∥ê(µ)

∥∥
X
/
(
αN

LB(µ)
)1/2

, (46)

and

�s
N (µ) :=

∥∥ê(µ)
∥∥2

X
≡ �2

N (µ)/αN
LB(µ), (47)

respectively. We next introduce the effectivities associated with these error estimators
as

ηN (µ) := �N (µ)/
∣∣∣∣∣∣uN (µ) − uN

N (µ)
∣∣∣∣∣∣

µ
,

and

ηs
N (µ) := �s

N (µ)/
(
sN (µ) − sN

N (µ)
)
,

respectively. Clearly, the effectivities are a measure of the quality of the proposed es-
timator: for rigor, we shall insist upon effectivities ≥ 1; for sharpness, we desire effec-
tivities as close to unity as possible. We can prove7 [1] that for any N = 1, . . . ,Nmax,
the effectivities satisfy

1 ≤ ηN (µ) ≤
√

γ (µ)

αN
LB(µ)

, ∀µ ∈ D, (48)

1 ≤ ηs
N (µ) ≤ γ (µ)

αN
LB(µ)

, ∀µ ∈ D, (49)

γ (µ) being defined in (4). It is important to observe that the effectivity upper bounds,
(48) and (49), are independent of N , and hence stable with respect to RB refinement.

7Similar results can be obtained for the a posteriori error bounds in the X norm.
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6.1.3 Offline-Online for ‖ê(µ)‖X computation

The error bounds of the previous section are of no utility without an accompanying
Offline-Online computational approach.

The computationally crucial component of all the error bounds of the previous
section is ‖ê(µ)‖X , the dual norm of the residual. To develop an Offline-Online pro-
cedure we first expand the residual (40) according to (26) and (6):

r(v;µ) = f (v) − a

(
N∑

n=1

uN
Nn(µ)ζ N

n , v;µ
)

= f (v) −
N∑

n=1

uN
Nn(µ)a

(
ζ N
n , v;µ

)

= f (v) −
N∑

n=1

uN
Nn(µ)

Q∑

q=1

�q(µ)aq
(
ζ N
n , v

)
.

(50)

If we insert (50) in (41) and apply linear superposition, we obtain

(
ê(µ), v

)
X

= f (v) −
Q∑

q=1

N∑

n=1

�q(µ)uN
Nn(µ)aq

(
ζ N
n , v

)
,

or

ê(µ) = C +
Q∑

q=1

N∑

n=1

�q(µ)uN
Nn(µ)L

q
n,

where (C, v)X = f (v), ∀v ∈ XN , that is, C is the Riesz representation of f , and
(L

q
n, v)X = −aq(ζ N

n , v), ∀v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ≤ Q, that is, L
q
n is the Riesz

representation of A
q
n ∈ (XN )′ defined as A

q
n(v) = aq(ζ N

n , v), ∀v ∈ XN . We denote
the C , L

q
n , 1 ≤ n ≤ N , 1 ≤ q ≤ Q, as FE ‘pseudo’-solutions, that is, solutions of

‘associated’ FE Poisson problems. We thus obtain

∥∥ê(µ)
∥∥2

X
=(C, C)X +

Q∑

q=1

N∑

n=1

�q(µ)uN
Nn(µ)

×
{

2
(

C, L
q
n

)
X

+
Q∑

q ′=1

N∑

n′=1

�q ′
(µ)uN

Nn′(µ)
(

L
q
n, L

q ′

n′
)
X

}
,

(51)

from which we can directly calculate the requisite dual norm of the residual through
(43).

The Offline-Online decomposition is now clear. In the Offline stage we form the
µ-independent quantities. In particular, we compute the FE ‘pseudo’-solutions C ,

L
q
n , 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q, and store (C, C)X , (C, L

q
n)X , (L

q
n, L

q ′

n′ )X , 1 ≤ n,n′ ≤
Nmax, 1 ≤ q, q ′ ≤ Q. The Offline operation count depends on Nmax, Q, and N .

In the Online stage, given any ‘new’ value of µ - and �q(µ), 1 ≤ q ≤ Q, uN
Nn(µ),

1 ≤ n ≤ N - we simply retrieve the stored quantities (C, C)X , (C, L
q
n)X , (L

q
n, L

q ′

n′ )X ,
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1 ≤ n,n′ ≤ N , 1 ≤ q, q ′ ≤ Q, and then evaluate the sum (51). The Online operation
count, and hence also the marginal cost, is O(Q2N2) - and independent of N .8

6.2 Parabolic case

In this section we deal with a posteriori error estimation in the reduced basis context
for affinely parametrized parabolic coercive PDEs. As for the elliptic case, to con-
struct the a posteriori error bounds we need two ingredients. The first ingredient is
the dual norm of the residual

εN (tk;µ) = sup
v∈XN

rN (v; tk;µ)

‖v‖X

, 1 ≤ k ≤ K, (52)

where rN (v; tk;µ) is the residual associated with the RB approximation (33)

rN
(
v; tk;µ

)
=g
(
tk
)
f (v) − 1

�t
m
(
uk

N (µ) − uk−1
N (µ), v;µ

)

− a
(
uk

N (µ), v;µ
)
, ∀v ∈ XN ,1 ≤ k ≤ K.

(53)

The second ingredient is a lower bound for the coercivity constant αN (µ), 0 <

αN
LB(µ) ≤ αN (µ), ∀µ ∈ D.

We can now define our error bounds in terms of these two ingredients; in fact, it
can readily be proven [22, 31] that for all µ ∈ D and all N ,

∣∣∣∣∣∣uN k(µ) − uk
N (µ)

∣∣∣∣∣∣
µ

≤ �k
N (µ), (54)

∣∣sN k(µ) − sk
N (µ)

∣∣ ≤ �sk
N (µ), 1 ≤ k ≤ K, (55)

where �k
N (µ) ≡ �N (tk;µ) and �sk

N (µ) ≡ �s
N (tk;µ) are given by

�k
N (µ) =

(
�t

αN
LB(µ)

k∑

k′=1

ε2
N (tk

′;µ)

)1/2

, (56)

�sk
N (µ) =

(
�k

N (µ)
)2

. (57)

(We assume for simplicity that uN 0 ∈ XN ; otherwise there will be an additional con-
tribution to �k

N (µ).)
Even if based on the same components as in the elliptic case, now the Construction-

Evaluation procedure for the error bound is a bit more involved. The necessary com-
putations for the Offline and Online stages - by construction rather similar to the
elliptic case - are discussed in details, for example, in [24]. We consider here only the
decomposition for the dual norm of the residual [31]. We first invoke duality, our RB

8It thus follows that the a posteriori error estimation contribution to the cost of the greedy algorithm of

Section 5 is O(QNmax N ·) + O(Q2N2
max N ) + O(ntrainQ2N3

max): we may thus choose N and ntrain
independently (and large).
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expansion, the affine parametric dependence of a and m, and linear superposition to
express

ε2
N

(
tk;µ

)
=Q

ff

N +
N∑

n=1

(
Qa∑

q=1

�
q
a(µ)uk

Nn(µ)Q
f a

Nnq + 1

�t

Qm∑

q ′=1

�
q ′
m(µ)φk

Nn(µ)Q
f m

Nnq ′

)

+
N,N∑

n,n′=1

(
Qa ,Qa∑

q,q ′=1

�
q
a(µ)�

q ′
a (µ)uk

Nn(µ)uk
Nn′(µ)Qaa

Nnn′qq ′

+ 1

(�t)2

Qm,Qm∑

q,q ′=1

�
q
m(µ)�

q ′
m(µ)φk

Nn(µ)φk
Nn′(µ)Qmm

Nnn′qq ′

+ 1

�t

Qa ,Qm∑

q,q ′=1

�
q
a(µ)�

q ′
m(µ)uk

Nn(µ)φk
Nn′(µ)Qam

Nnn′qq ′

)
,

(58)

for 1 ≤ k ≤ K , where φk
Nn(µ) := uk

Nn(µ) − uk−1
Nn (µ) and Q

ff
N = (zf , zf )X , Q

f a
Nnq =

2(za
nq , zf )X , 1 ≤ q ≤ Qa , 1 ≤ n ≤ N , Q

f m
Nnq = 2(zm

nq , zf )X , 1 ≤ q ≤ Qm, 1 ≤ n ≤ N ,
Qaa

Nnn′qq ′ = (za
nq , za

n′q ′)X , 1 ≤ q, q ′ ≤ Qa , 1 ≤ n,n′ ≤ N , Qam
Nnn′qq ′ = 2(za

nq , zm
n′q ′)X ,

1 ≤ q ≤ Qa , 1 ≤ q ′ ≤ Qm, 1 ≤ n,n′ ≤ N , and Qmm
Nnn′qq ′ = (zm

nq , zm
n′q ′)X , 1 ≤

q, q ′ ≤ Qm, 1 ≤ n,n′ ≤ N . Here the zf , za
nq , zm

nq ′ are solutions to time-independent

and µ-independent ‘Poisson’ problems: (zf , v)X = f (v), ∀v ∈ XN , (za
nq , v)X =

−aq(ξn, v), ∀v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ≤ Qa , and (zm
nq ′ , v)X = −mq ′

(ξn, v),

∀v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ′ ≤ Qm.
The Construction-Evaluation decomposition is now clear. In the µ-independent

construction stage we find zf , za , zm, and the inner products Q
ff
Nmax

, Q
f a
Nmax

, Q
f m
Nmax

,
Qaa

Nmax
, Qmm

Nmax
, and Qam

Nmax
at (considerable) computational cost O(Q·

aQ
·
mN ·

max N ·).
In the µ-dependent Evaluation stage - performed many times - we simply perform
the sum (58) from the stored inner products in O((1 + QmN + QaN)2) operations
per time step and hence O((1 + QmN + QaN)2K) operations in total. The crucial
point, again, is that the cost and storage in the Evaluation phase - the marginal cost for
each new value of µ - is independent of N : thus we can not only evaluate our output
prediction but also our rigorous output error bound very rapidly in the parametrically
interesting contexts of real-time or many-query investigation.

7 Extensions to more general problems

We now briefly discuss some extensions of the reduced basis methodology presented
in Section 4 to address more general classes of problems, also to face industrial prob-
lems of a certain degree of complexity.
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7.1 Non-compliant problems

For the sake of simplicity, we addressed in Section 4 the RB approximation of affinely
parametrized coercive problems in the compliant case. We now consider the elliptic
case and the more general non-compliant problem: given µ ∈ D, find

s(µ) = ℓ
(
u(µ)

)
, (59)

where u(µ) ∈ X satisfies

a
(
u(µ), v;µ

)
= f (v), ∀v ∈ X. (60)

We assume that a is coercive and continuous (and affine, (6)) but not necessarily
symmetric. We further assume that both ℓ and f are bounded functionals but we no
longer require ℓ = f .9 Following the methodology (and the notation) addressed in
Section 4, we can readily develop an a posteriori error bound for sN (µ): by standard
arguments [1, 2]

∣∣sN (µ) − sN
N (µ)

∣∣≤ ‖ℓ‖(XN )′�N (µ),

where |||uN (µ) − uN
N (µ)|||µ ≤ �N (µ) and �N (µ) is given by (46). We denote the

method already illustrated as ‘primal-only’. Although for many outputs primal-only
is perhaps the best approach (each additional output, and associated error bound, is a
simple ‘add-on’), this approach has two deficiencies:

(i) we loose the ‘quadratic convergence’ effect (25) for outputs (unless ℓ = f and a

is symmetric);
(ii) the effectivities �s

N (µ)/|s(µ) − sN (µ)| may be unbounded: if ℓ = f then we
know, from (25), that |s(µ) − sN (µ)| ∼ ‖ê(µ)‖2

X and hence �s(µ)/|s(µ) −
sN (µ)| ∼ 1/‖ê(µ)‖X → ∞ as N → ∞, that is, the effectivity of the output error
bound (47) tends to infinity as (N → ∞ and) uN

Npr (µ) → uN (µ). We may expect
similar behavior for any ℓ ‘close’ to f : the failing is that (47) does not reflect the
contribution of the test space to the convergence of the output.

The introduction of RB primal-dual approximation will take care of the previ-
ous issue - and ensure a stable limit N → ∞. We thus introduce the dual problem
associated to ℓ, that reads as follows: find ψ(µ) ∈ X such that

a(v,ψ(µ);µ) = −ℓ(v), ∀v ∈ X;

ψ is denoted the ‘adjoint’ or ‘dual’ field. Let us define the RB spaces for the primal
and the dual problem, respectively:

X
N ,pr

Npr
= span

{
uN
(
µk,pr

)
≡ ζ N

k ,1 ≤ k ≤ Npr

}
,

9Typical output fuctionals correspond to the ‘integral’ of the field u(µ) over an area or line (in particular,
boundary segment) in �. However, by appropriate lifting techniques, ‘integrals’ of the flux over boundary
segments can also be considered.
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X
N ,du
Ndu

= span
{
�N

(
µk,du

)
,1 ≤ k ≤ Ndu

}
;

for 1 ≤ Npr ≤ Npr,max, 1 ≤ Ndu ≤ Ndu,max. For our purposes a single FE space suf-
fices for both the primal and dual, even if in actual practice the FE primal and dual

spaces may be different. The resulting RB approximation uN
Npr

∈ X
N ,pr
Npr

, �Ndu
∈ Xdu

Ndu

solve

a
(
uN

Npr
(µ), v;µ

)
= f (v), ∀v ∈ X

N ,pr

Npr
,

a
(
v,�N

Ndu
(µ);µ

)
= −ℓ(v), ∀v ∈ X

N ,du
Ndu

;

then, the RB output can be evaluated as [35]

sN
Npr,Ndu

(µ) = ℓ
(
uN

Npr

)
− rpr

(
�N

Ndu
;µ
)
,

where

rpr(v;µ) = f (v) − a
(
uN

Npr
, v;µ

)
, rdu(v;µ) = −ℓ(v) − a

(
v,�N

Ndu
;µ
)

are the primal and the dual residual. In particular, in the non-compliant case, the
output error bound takes the form

�s
N (µ) ≡

‖rpr(·;µ)‖(XN )′

(αN
LB(µ))1/2

‖rdu(·;µ)‖(XN )′

(αN
LB(µ))1/2

. (61)

We thus recover the ‘quadratic’ output effect; note that the Offline-Online procedure
is very similar to the ‘primal-only’ case, but now we need to do everything both for
primal and dual; moreover, we need to evaluate both a primal and a dual residual for
the a posteriori error bounds, but at a reasonable computational cost and by reusing
the same computational framework built and set for the ‘primal-only’ approach. Error
bounds related to the gradient of computed quantities, such as velocity and pressure
in potential flows problems, have been addressed in [36]. For parabolic problems, the
treatment of non-compliant outputs follows the same strategy; we only remark that
the dual problem in this case shall evolve backward in time [31].

7.2 Nonaffine and noncoercive problems

In this section we introduce wider classes of problems to be treated with the reduced
basis method: nonaffine problems and noncoercive problems in order to provide a
general framework for the methodology. The reader interested in numerical applica-
tions may go directly to Section 8 without affecting the understanding of the subse-
quent sections.

7.2.1 Nonaffine problems

The assumption of affine parametric dependence - expressed by conditions (6) and
(10) - is of fundamental importance in order to exploit the Offline-Online stratagem
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and then minimize the marginal cost associated with each input-output evaluation.
However, also nonaffine problems, that is, problems in which conditions (6) and (10)
are not still valid, can be efficiently treated in the reduced basis framework. In this
case, we rely on the Empirical Interpolation Method (EIM) [26, 37, 38], which is an
interpolation method for parametric functions based on adaptively chosen interpola-
tion points and global shape functions.

In practice, if the problem is not affinely parametrized (for example, when the
geometric transformation (12) has a more general expression than in (13), or the
physical coefficients appearing in the tensor Ko,l are nonaffine functions of x and µ),
the parametrized tensors in (16) and (17) depend both on the parameter µ and the
spatial coordinate x. In this case, the operators can not be expressed as in (18) - and
ultimately as (6) and (10). Hence, we need an additional pre-processing, before the
FE assembling stage, in order to recover the affinity assumption. According to EIM,
each component K l

ij (x,µ) is approximated by an affine expression given by

K̃ l
ij (x,µ) =

Ka
ij l∑

k=1

β
ij l

k (µ)η
ij l

k (x) + ε
ij l
a (x,µ); (62)

the same approximation is set up for the components of the M l
ij (x,µ) tensor in the

parabolic case:

M̃ l
ij (x,µ) =

Km
ijl∑

k=1

γ
ij l

k (µ)φ
ij l

k (x) + ε
ij l
m (x,µ). (63)

All the coefficients β
ij l
k ’s, γ

ij l
k ’s, η

ij l
k ’s and φ

ij l
k ’s are efficiently computable scalar

functions and the error terms are guaranteed to be under some tolerance,

∥∥εij l
a (·;µ)

∥∥
∞ ≤ εEIM

tol , ‖εij l
m ‖∞ ≤ εEIM

tol , ∀µ ∈ D.

In this way, we can identify the µ-dependent coefficients in the developments (62),
(63) as the coefficients �

q
a(µ) (resp. �

q
m(µ)) in (6) and (10), that is, �

q
a(µ) =

β
ij l
k (µ), �

q
m(µ) = γ

ij l
k (µ), being q a condensed index for (i, j, k, l), while the µ-

independent functions will be treated as pre-factors in the integrals which give the
µ-independent bilinear forms aq(w,v) (resp. mq(w,v)).

We refer the reader to [26] and [39] for details on EIM procedures for nonaffine
problems. The nonaffine treatment is really important since many problems involv-
ing more complex geometrical parametrizations and/or more complex physical in-
stances (that is, non-homogeneous or non-isotropic properties in materials) are hold
by nonaffine parametric dependence.

7.2.2 Noncoercive problems

The reduced basis framework can be effectively applied also to problems involving
operators which do not satisfy the (quite strict) coercivity assumption [18]; this is the
case, for example, of the (Navier)-Stokes problem, where stability is in fact fulfilled
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in the more general sense of the inf-sup condition [29]. For the sake of simplicity,
we restrict our considerations to the elliptic (scalar) case (2)-(3). We assume that the
(parametrized) bilinear form a(·, ·;µ) : X1 × X2 → R is continue and satisfies the
more general inf-sup condition:

∃β0 > 0 : β(µ) := inf
w∈X1

sup
v∈X2

a(w,v;µ)

‖w‖X1‖v‖X2
≥ β0, ∀µ ∈ D. (64)

In this case the finite element (and thus the subsequent reduced basis) approximation
is based on a more general Petrov-Galerkin approach. Given two FE spaces X1,N ⊂
X1, X2,N ⊂ X2, the FE approximation uN (µ) ∈ X1,N satisfies

a
(
uN (µ), v,µ

)
= f (v), ∀v ∈ X2,N ,

and the output can be evaluated as10

sN (µ) = l
(
uN (µ)

)
.

In order to have a stable FE approximation, we require that exists β0 ≥ 0 such that

βN (µ) = inf
w∈X1,N

sup
v∈X2,N

a(w,v;µ)

‖w‖X1‖v‖X2
≥ β0 ∀µ ∈ D. (65)

This condition can be reformulated in terms of the so-called inner supremizer opera-
tor T µ : X1,N → X2,N ,

(
T µw,v

)
X2 = a(w,v;µ), ∀w ∈ X1,N ,∀v ∈ X2,N ;

by Cauchy-Schwarz inequality and taking v = T µw, we have that for any w ∈ X1,

a
(
w,T µw;µ

)
≥ β(µ)‖w‖X1

∥∥T µw
∥∥

X2 .

The reduced basis approximation inherits the same Petrov-Galerkin structure; in or-
der to guarantee its stability, we need to introduce two different spaces (note that the
second is µ-dependent):

X1
N = span

{
u
(
µn
)
,1 ≤ n ≤ N

}
, X

2,µ
N = span

{
T µu

(
µn
)
,1 ≤ n ≤ N

}
,

for 1 ≤ N ≤ Nmax; then uN
N (µ) ∈ X1

N satisfies

a
(
uN

N (µ), v;µ
)
= f (v), ∀v ∈ X

2,µ
N ,

and

sN (µ) = l
(
uN (µ)

)
.

10We pursue here just a primal approximation, however we can readily extend the approach to a primal-
dual formulation as described for coercive problems in Section 7.1.
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If we define

βN (µ) ≡ inf
w∈X1

N

sup
v∈X

2,µ
N

a(w,v;µ)

‖w‖X1‖v‖X2
, (66)

we obtain

∥∥uN (µ) − uN
N (µ)

∥∥
X

≤
(

1 + γ

βN (µ)

)
inf

wN∈X1
N

∥∥uN (µ) − wN

∥∥
X1

,

which is the analogue of (24) for noncoercive problems. In this case we can show that
βN (µ) ≥ βN (µ), ∀µ ∈ D; this property, which yields the stability of the RB approx-
imation, is not automatically satisfied by a (simple) Galerkin formulation; hence, we
need to enforce this property through the introduction of a Petrov-Galerkin frame-
work. Observe that approximation is provided by X1

N and stability (through βN ) by

X
2,µ
N .
The Offline-Online computational strategem, as well as the a posteriori error esti-

mation, are based on the same arguments described in Section 6 for the coercive case;
we remark that also the inner supremizer operator can be written in the affine form
under the affinity assumption (6) on a(·, ·;µ). In particular, from (66), we can easily
prove that

�N (µ) ≡ ‖ê(µ)‖X

βLB
N

(µ)
,

where βLB
N

(µ) is a lower bound of inf-sup constant (65) and can be computed by
means of the same SCM procedure used for the lower bound of coercivity constants
[34, 40].

An interesting case of noncoercive problems is given by Stokes problems where
approximation stability is guaranteed by the fullfillment of an equivalent inf-sup sta-
bility condition on the pressure term with RB approximation spaces properly enriched
[41, 42]. Error bounds can be developed in the general noncoercive framework [40]
or with a penalty setting [43].

8 Working examples

Reduced basis methods have already been and may be applied in many problems
of industrial interest: material sciences and linear elasticity [17, 44–46], heat and
mass transfer [47–50], acoustics [51], potential flows [36], micro-fluid dynamics [40],
electro-magnetism [52]; for examples of implementation of some worked problems
in the mentioned fields, see [53, 54] for a versatile setting.

In many of these problems there are physical or engineering parameters which
characterize the problem but also geometrical parameters holding a Cartesian geo-
metrical setting; this configuration is quite typical for industrial devices, and plants
and related constructions and products. More complex geometrical parametrizations
will be briefly considered in Section 9, involving, for example, biomedical devices
and/or aerodynamic shapes.
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Table 1 Numerical details for the test cases presented.

Approximation data Problem 1 Problem 2 Problem 3

Number of parameters P 2 2 1

Afine op. components Qa 4 9 2

Afine rhs components Qf 1 3 1

FE space dim. N 5,433 16,737 13,976

RB primal space dim. N
pr
max 21 22 17

RB dual space dim. Ndu
max 30 6 17

RB construction t
offline
RB (s) 362.8 s 6,733.2 s 2,794.2 s

RB evaluation tonline
RB (s) 0.107 s 0.198 s 0.158 s

FE evaluation tFE (s) 14.3 41.6 30.2

Computational speedup S 133 210 191

Break-even point QBE 26 161 93

RB spaces have been built by means of the greedy procedure, using a tolerance εRB
tol = 10−2 and a uniform

RB greedy train sample of size ntrain = 1,000.
A comparison of the computational times between the Online RB evaluations and the corresponding

FE simulations is reported. Here t
offline
RB is the time of the Offline RB construction and storage, tonline

RB is
the time of an Online RB computation, while tFE is the time for a FE computation, once FE matrices are
built. A single timestep is considered in the parabolic cases.

We discuss in this section11 three working examples of industrial interest, dealing
with different heat or mass transfer problems. The first example deals with forced
steady heat conduction/convection; the second application deals with a transient heat
treatment, while the third one is an example of a (simple) coupled problem, dealing
with the transient evolution of the concentration field near the surface of a body im-
mersed into a fluid flowing across a channel. All numerical details concerning the
construction of RB spaces and computational costs are reported in Table 1.

8.1 A ‘Couette-Graetz’ conduction-convection problem

This problem deals with forced steady heat convection combined with heat conduc-
tion in a straight duct, whose walls can be kept at fixed temperature or insulated or
characterized by heat exchange. The flow has an imposed temperature at the inlet and
a known convection field (a Couette flow, that is, a given linear velocity profile [55]).
From the engineering point of view, this example describes a class of heat transfer
problems in fluidic devices with a versatile configuration. In particular, Péclet number
as a measure of axial transport velocity field (modeling the physics of the problem)
and the length of the non-insulated portion of the duct are only two of the possible
parameters to be varied in order to extract average temperatures. Also discontinuities

11All over the section, �o(µ) denotes the original (physical) domain, whose generic point is indicated as
x = (x1, x2); for the sake of simplicity, we formulate all the problems in the original domain, but remove
all the subscripts o . Moreover, a tilde ˜ denotes dimensional quantities, while the absence of a tilde signals
a non-dimensional quantity.
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Fig. 3 ‘Couette-Graetz’ conduction-convection problem: parametrized geometry and domain boundaries.

in Neumann boundary conditions (different heat fluxes) and thermal boundary layers
are interesting phenomena to be studied.

We consider the physical domain �o(µ) shown in Figure 3; all lengths are non-
dimensionalized with respect to a unity length h̃ (dimensional channel width); more-
over, let us denote k̃ the dimensional (thermal) conductivity coefficient for the air
flowing in the duct, ρ̃ its density and c̃p the specific heat capacity under constant
pressure. We introduce the (thermal) diffusion coefficient D̃ = k̃/ρ̃c̃p , as well as the
Péclet number, given by the ratio Pe = Ũ h̃/D̃, being Ũ the reference dimensional ve-
locity for the convective field. We consider here P = 2 parameters: μ1 is the length
of the non-insulated bottom portion of the duct (unity heat flux), while μ2 represents
the Péclet number; the parameter domain is given by D = [1,10] × [0.1,100].

The solution u(µ), defined as the non-dimensional temperature u(µ) = (τ −
τin)/τin (where τ is the dimensional temperature, τin is the dimensional tempera-
ture of the air at the inflow and in the first portion of the duct) satisfies the following
steady advection-diffusion equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

μ2
�u(µ) + x2

∂

∂x1
u(µ) = 0 in �o(µ),

1

μ2

∂u

∂n
(µ) = 0 on Ŵ1 ∪ Ŵ3,

1

μ2

∂u

∂n
(µ) = 1 on Ŵ2,

u(µ) = 0 on Ŵ4 ∪ Ŵ5 ∪ Ŵ6,

with summation (i, j = 1,2) over repeated indices; hence, we impose the tempera-
ture at the top walls and in the ‘inflow’ zone of the duct (Ŵ6), while we consider an
insulated wall (zero heat flux on Ŵ1 and Ŵ3) or heat exchange at a fixed rate (that is,
unity on Ŵ2) on other boundaries. We note that the forced convection field is given by
a linear velocity profile x2Ũ (Couette type flow). The output of interest is the average
temperature of the fluid on the non-insulated portion of the bottom wall of the duct,
given by

s(µ) := Tav(µ) = 1

μ1

∫

Ŵ2

u(µ).

This problem is then mapped to the fixed reference domain � and discretized by
piecewise linear finite elements; the dimension of the corresponding space is N =
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Fig. 4 ‘Couette-Graetz’
conduction-convection problem:
lower bound of the coercivity
constant αN

LB(µ) as a function
of µ.

5,433. Since we are in a non-compliant case, a further dual problem has to be solved
in order to obtain better output evaluations and related error bounds, see Section 7.1.
In particular, we show in Figure 4 the lower bound of the coercivity constant of the
bilinear form associated to our problem.

We plot in Figure 5 the convergence of the greedy algorithm for the primal and
the dual problem, respectively; with a fixed tolerance ε∗

tol = 10−2, Npr,max = 21 and
Ndu,max = 30 basis have been selected, respectively. In Figure 6 the selected parame-
ter values SNpr for the primal and SNdu

for the dual problems, respectively, are shown;
in each case �train is a uniform random sample of size ntrain = 1,000. Moreover, in

Fig. 5 ‘Couette-Graetz’ conduction-convection problem: relative errors maxµ∈�train (�Npr (µ)/

‖uN
Npr

(µ)‖X) and maxµ∈�train (�Ndu
(µ)/‖ψ N

Ndu
(µ)‖X) as a function of Npr and Ndu for the RB ap-

proximations computed during the greedy procedure, for the primal (left) and the dual (right) problem,
respectively. Here �train is a uniform random sample of size ntrain = 1,000 and the RB tolerance is
ǫ∗

tol = 10−2.
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Fig. 6 ‘Couette-Graetz’ conduction-convection problem: selected parameter values SNpr for the primal
(left) and SNdu

for the dual (right) in the parameter space.

Figure 7 some representative solutions (computed for N = Nmax) for selected values
of parameters are reported.

The thermal boundary layer looks very different in the four cases. In particular,
higher variations of temperature, as well as large gradients along the lower wall -
are remarkable for higher Péclet number, when forced convection dominates steady
conduction; moreover, the standard behavior of boundary layer width - usually given
by O(1/Pe) - is captured correctly. In Figure 8 the RB evaluation (for N = Nmax) of
the output of interest is reported as a function of the parameters, as well as the related
error bound. As we can see, for low values of μ2 (Péclet number) the dependence
of the output on μ1 (geometrical aspect) is rather modest; for high values of μ2,
instead, the output shows a larger variations wih respect to μ1. In the same way, for
longer/shorter channels the dependence on the Péclet number is higher/lower.

8.2 A transient thermal treatment problem

This problem considers a transient thermal treatment on a sectional slice of a railroad
rail. Heat treatment is a method used to alter the physical, and sometimes chemical,
properties of a material, which involves the use of heating or chilling, normally to

Fig. 7 ‘Couette-Graetz’ conduction-convection problem: representative solutions for µ = (1,0.1),
µ = (1,100) (top), µ = (10,0.1), µ = (10,100) (bottom).
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Fig. 8 ‘Couette-Graetz’ conduction-convection problem: computed RB output (left) and related error
bound (right) as functions of µ in the parameter space.

extreme temperatures, to achieve a desired result such as hardening or softening of a
material. Heat treatment techniques include annealing, case hardening, precipitation
strengthening, tempering, and quenching. Although the most common application
is metallurgical, heat treatments are also used in the manufacturing of many other
materials.

We consider here P = 2 parameters: μ2 is a geometrical parameter represent-
ing the thickness of the web connecting the top and the bottom of the railroad rail
slice (see Figure 9), while μ1 denotes the non-dimensional Biot number, given by
Bi ≡ h̃cd̃/k̃. We assume that the railroad rail slice has thermal conductivity k̃ and we
characterize the heat transfer coefficient between the railroad section and the fluid
surrounding the railroad rail slice itself by a heat transfer coefficient h̃c; moreover, d̃

denotes the height of the slice of the railroad rail. The parameter domain is given by
D = [0.01,10] × [0.02,0.2].

The (non-dimensional) temperature distribution is denoted u(µ) (the dependence
of time is omitted for sake of simplicity) and is defined in terms of dimensional tem-
perature as u(µ) = (τ − τinit)/(τenv − τinit) where τ is the dimensional temperature,
τinit the initial dimensional temperature (at t = 0) and τenv is the dimensional temper-
ature of the fluid surrounding the railroad slice (at every time) and the (asymptotic)
temperature at the end of the treatment.

Fig. 9 Heat treatment problem: parametrized geometry and domain boundaries.
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The governing equation for u(µ, t) is the following time-dependent linear PDE:
for t ∈ [0, T ],

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(µ)

∂t
− �u(µ) = 0 in �o(µ),

u(µ, t = 0) = 0 in �o(µ),

∂u

∂n
+ μ1u(µ) = μ1g(t) on ∂�o(µ).

The inhomogeneous Robin conditions correspond to the heat exchange between the
railroad rail slice section and the fluid used for the thermal treatment. Here the con-
trol input g(t) is a function of time t ; the problem considers any square-integrable
function for g(t). In practice, the PDE is replaced by a discrete-time (backward Euler
[30]) approximation with time-steps of size �t = 0.005. Note that the final time is
T = 0.75 and that the number of time-steps is nt = 150; the spatial discretization is
made by piecewise linear finite elements, whose corresponding space dimension is
N = 16,737. Our output of interest is the average temperature all over the piece of
railroad rail slice, given by

s(µ) =
∫ T

0

(
h(t)

∫

�o(µ)

u(µ)

)
dt,

where h(t) is a function of time t ; the problem considers any function (including
Dirac delta) for h(t).

In Figure 10 we plot the lower bound of the coercivity constant of the bilinear
form associated to the problem. As in the previous case, a further dual problem has
to be solved in order to obtain better output evaluations and related error bounds.
We show in Figure 11 the convergence of the greedy algorithm for the primal and
the dual problem, respectively; with a fixed tolerance ε∗

tol = 10−2, Npr,max = 22 and
Ndu,max = 6 basis have been selected, respectively.

In Figures 12 and 13 some representative solutions for selected values of param-
eters are reported, for both t = �t and t = T . In particular, two different heat treat-
ments have been investigated: heating and cooling process. In the first case, we have

Fig. 10 Heat treatment
problem: lower bound of the
coercivity constant αN

LB(µ) as a
function of µ.
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Fig. 11 Heat treatment problem: relative errors maxµ∈�train (�Npr (µ)/‖uN
Npr

(µ)‖X) and

maxµ∈�train (�Ndu
(µ)/‖ψ N

Ndu
(µ)‖X) as a function of Npr and Ndu for the RB approximations

computed during the greedy procedure, for the primal (left) and the dual (right) problem, respectively.
Here �train is a uniform random sample of size ntrain = 1,000 and the RB tolerance is ε∗

tol = 10−2 .

imposed a thermal flux g(t) = 10t , while in the second case g(t) = −10t . We can re-
mark more sensible variations of temperature all over the body for larger values of μ1

(Biot number); moreover, the behavior of the temperature changes strongly between
narrower and larger configurations.

Concerning the output (67), two cases have been taken into account: a distributed
(in time) output - corresponding to h(t) = 1 - given by the integral of the temperature
in time and space, and a concentrated (in time) output - corresponding to h(t) = δ(t)

- given by the spatial integral of temperature at each timestep. In Figures 14 and 15
the RB evaluation (for N = Nmax) of these two outputs of interest are reported, as
well as the related error bounds. Higher values of the output are obtained with larger
values of the two parameters; moreover, keeping the geometry fixed, variations w.r.t.
Biot number in output values are of about one order of magnitude.

8.3 A transient (coupled) diffusion-transport problem around a cylinder

The problem represents the transient evolution of a concentration field near the sur-
face of a body (a two-dimensional cylinder section) immersed into a fluid flowing
into a channel. The mass (for example, of oxygen or drug) can be released or ab-
sorbed through the body surface within the surrounding fluid. This is a well-known
mass transfer problem in the design and sizing of substances diffusers used for many
industrial, civil and, more recently, biomedical applications (drug and/or oxygen re-
lease, stent design); in the same way, it can be seen as an heat transfer problem
through an heat exchanger [56].

The problem is described by the coupling of an unsteady mass (or heat) transfer
phenomenon (or substance release) by diffusion (or conduction) into a body and by
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Fig. 12 Heat treatment problem (heating): representative solutions for µ = (10,0.02) and µ = (10,0.2),
at time t = �t (top) and t = T (bottom).

transport (or convection) phenomena inside the field where the fluid is flowing; the
transport field is given, for example, by a potential solution (see, for example, [55]).

We consider the physical domain �o(µ) shown in Figure 16, non-dimensionalized
with respect to R̃, the unit radius of the cylinder immersed in the fluid. Moreover,
we denote D̃ the dimensional mass diffusion coefficient, Ũ a reference dimensional
velocity for transport field, and we introduce the Péclet number as Pe = Ũ R̃/D̃, while
time is non-dimensionalized by the quantity R̃2/D̃.

In this problem the boundary segments Ŵ1, Ŵ7 are curved (all other boundary seg-
ments are straight lines) and they represent the semi-circular section of the cylinder
immersed in the flow (thanks to symmetry the problem can be simplified by consider-
ing just ‘half’ configuration). The segments Ŵ1, Ŵ7 are given by the parametrization

[
x1
x2

]
=
[

0
0

]
+
[

1 0
0 1

][
1 0
0 1

][
cos(t)
sin(t)

]
,

where for Ŵ1, t ∈ [π,3π/2], for Ŵ7, t ∈ [π/2,π].
We consider here only one parameter μ1, the Péclet number, which is given by

the ratio between the transport and diffusion terms; the parameter domain is given
by D = [0.1,100]. The solution is characterized by the (adimensional) concentration
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Fig. 13 Heat treatment problem (cooling): representative solutions for µ = (10,0.02) and µ = (10,0.2),
at time t = �t (top) and t = T (bottom).

u(µ, t) = (c − cinit)/cinlet, being c the dimensional concentration, cinit the initial di-
mensional concentration (at t = 0), and inlet the dimensional concentration imposed
at the inflow (at every time step). The governing equation for u(µ, t) is the following

Fig. 14 Heat treatment problem: RB distributed output (left) and related error bound (right) as functions
of µ in the parameter space.
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Fig. 15 Heat treatment problem: RB concentrated outputs and related error bounds as functions of time
t , for µ = (0.01,0.02), µ = (0.01,0.2) (left), µ = (10,0.02), µ = (10,0.2) (right).

time-dependent linear PDE: for t ∈ [0, T ],

∂u(µ)

∂t
− 1

μ1
�u(µ)

+
(
vr sin(θ) − vθ cos(θ)

) ∂

∂x1
u(µ)

+
(
vr sin(θ) + vθ cos(θ)

) ∂

∂x2
u(µ) = 0 in �o(µ),

Fig. 16 Diffusion-transport
problem around a cylinder:
parametrized geometry and
domain boundaries.
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u(µ, t = 0) = 0 in �o(µ),

u(µ) = 0 on Ŵ3 ∪ Ŵ4 ∪ Ŵ5,

1

μ1

∂u

∂n
(µ) = 0 on Ŵ2 ∪ Ŵ6,

1

μ1

∂u

∂n
(µ) = g(t) on Ŵ1 ∪ Ŵ7;

the control input g(t) is a (square-integrable) function of time t . The potential veloc-
ity field (ideal inviscid fluid) is given in polar coordinates by (vr , vθ ), being [55]

vr = −
(

1 −
r2

0

r2

)
cos(θ),

vθ =
(

1 +
r2

0

r2

)
sin(θ),

where r =
√

x2
1 + x2

2 , r0 = R̃ = 1 and θ = arcsin(x2/

√
x2

1 + x2
2).

In practice, the PDE is replaced by a discrete-time (backward Euler) approxima-
tion with time steps of size �t = 0.01; note that the final time is T = 1 and that the
number of time steps is nt = 100. The spatial discretization is made by piecewise
linear finite elements, whose corresponding space dimension is N = 13,976.

Our output of interest is the average concentration on the cylinder surface, given
by

s(µ) = 1

T

1

π

∫ T

0
h(t)

(∫

Ŵ1

u(µ) +
∫

Ŵ7

u(µ)

)
dt, (67)

where h(t) may be a function of time t . As for the two previous cases, we deal
with a non-compliant problem, for which the dual problem has to be introduced and
solved. In Figure 17 we plot the lower bound of the coercivity constant of the bilinear
form associated to the problem. We show in Figure 18 the convergence of the greedy
algorithm for the primal and the dual problem, respectively; with a fixed tolerance
ε∗

tol = 10−2, Npr,max = 17 and Ndu,max = 17 basis have been selected, respectively.

Fig. 17 Diffusion-transport
problem around a cylinder:
lower bound of the coercivity
constant αN

LB
(µ) as a function

of μ1.
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Fig. 18 Diffusion-transport problem around a cylinder: relative errors maxµ∈�train (�Npr (µ)/

‖uN
Npr

(µ)‖X) and maxµ∈�train (�Ndu
(µ)/‖ψ N

Ndu
(µ)‖X) as a function of Npr and Ndu for the RB ap-

proximations computed during the greedy procedure, for the primal (left) and the dual (right) problem,
respectively. Here �train is a uniform random sample of size ntrain = 1,000 and the RB tolerance is
ε∗

tol = 10−2 .

In Figures 19 and 20 some representative solutions at time t = T , for selected
values of the parameter, show the physical convective phenomena at different Péclet
numbers, to underline the different nature of the problem: from a diffusion dominated
(lower Péclet number) to a transport dominated (higher Péclet number) problem. Two
different cases have been analyzed, concerning the mass transfer through the cylin-
drical body: in the first case, we have imposed a mass flux g(t) = 10t (substance

Fig. 19 Diffusion-transport problem around a cylinder: representative solutions for μ1 = 0.1 and
μ1 = 100 at time t = T , g(t) = 10t .
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Fig. 20 Diffusion-transport problem around a cylinder: representative solutions for μ1 = 0.1 and
μ1 = 100 at time t = T , g(t) = −10t .

release by the cylinder), while in the second case g(t) = −10t (substance absorption
through the cylinder). In any case, higher values of concentration and higher gradi-
ents are obtained for larger Peclet numbers: absorption or release are more effective
when transport dominates over diffusion.

In the following Figure 21 the behavior of the (RB evaluation of) output (67) is
shown, as well as the related error bounds (magnified by a factor 10), in the case
of heat emission (Figure 19); we have considered a concentrated (in time) output
(corresponding to h(t) = δ(t)), given by the (spatial) average of the concentration
on the cylinder at each timestep. According to the behavior of solutions, we obtain
higher values of the output when μ1 increases.

Fig. 21 Diffusion-transport problem around a cylinder: RB concentrated outputs and related error bounds
as functions of time t , for μ1 = 0.1,1,100.
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8.4 Computational aspects

We conclude this section by discussing some computational aspects related to the
three numerical examples presented above, and showing how reduced basis tech-
niques allow a substantial reduction of computational work. We recall that, in order
to obtain a rapid and reliable procedure, we are interested in (i) the minimization of
the (marginal) cost associated with each input-output evaluation as well as in (ii) the
possibility to provide a certification of each reduced approximation, both with respect
to the corresponding finite element approximation.

All the details are reported in Table 1. Compared to the corresponding FE approx-
imation, RB Online evaluations of field variables and outputs enable a computational
speedup, defined as S = tFE/tonline

RB , of about two orders of magnitude. In particu-
lar, the average time over 2,500 Online output evaluations is of 0.107 for the first
Couette-Graetz problem, of 0.198 for the second heat treatment problem, as well as
of 0.158 for the third diffusion-transport problem. Note that the times related to the
RB Online evaluation take into account also the a posteriori error estimation for solu-
tion and output. This great computational advantage is due, basically, to the reduction
in linear system dimensions, and finally in the huge dimensional reduction - N vs N

- between RB spaces and corresponding FE spaces. For the three cases considered,
this ratio goes from 260 (first case) to 820 (third case). Thanks to the Gram-Schmidt
orthonormalization, the condition number of the RB matrices is limited to O(102),
while without this procedure it will go to O(1014).

In the end, we take into account also the time spent for the Offline construction and
storage; this allows to determine the break-even point, given by QBE = t

offline
RB /tFE . In

particular, we obtain a break-even point of O(102) in the three cases, which can be
considered acceptable whenever interested either in the real-time context, or in the
limit of many queries. The performances described in Table 1 are valid even if we
consider a higher number of parameters (for example, with P between 10 and 25, see
[57]).

9 Perspectives and ongoing research

We end this review paper dedicated to applications of reduced basis method in an
industrial framework by putting current methodology development in perspective.

9.1 Extension to complex problems

Growing research areas are devoted to the following kind of problems.
(i) Nonlinear problems: the reduced basis framework and related model–reduction

approaches are well developed for linear parametrized partial differential equations.
They can be effectively applied also to nonlinear problems [37, 58, 59], even if this
in turn introduces both numerical and theoretical complications, and many open re-
search issues are still to be faced. Classical problems arising in applied sciences are,
for example, Navier-Stokes/Boussinesq and Burgers’ equations in fluid mechanics
[16–18, 47, 48, 60, 61] and nonlinear elasticity in solid mechanics.
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First of all, computational complexity is increasing at both the Offline and the
Online stage: we need to solve nonlinear problems of big dimension O(N ) during
the RB space generation, as well as nonlinear problems of reduced dimension O(N)

for each Online evaluation; in both the cases, classical iterative procedure - such as
fixed point or Newton-type algorithms - can be used. A posteriori error bounds intro-
duced for linear problems can be effectively extended to steady nonlinear problems
(see for example, [62] for steady incompressible Navier-Stokes equations). However,
the most important challenge deals with the reliability and/or the certification of the
methodology in the unsteady - parabolic - problems [23, 63]: in these cases expo-
nential instability seriously compromises a priori and a posteriori error estimates,
yielding to bounds which are limited to modest (final) times and modest Reynolds
numbers. More precisely, stability considerations limit the product of the final time
and the Reynolds number [64].

(ii) Problems dealing with (homogeneous or even heterogeneous) couplings in a

multiphysics setting and based on domain decomposition techniques: a domain de-
composition approach [29, 65] combined with reduced basis method has been suc-
cessfully applied in [27, 28, 66] and further extensions are foreseen [67]. A coupled
multiphysics setting has been proposed for simple fluid-structure interaction prob-
lems [68, 69].

(iii) Optimal control [70–73], shape optimization, inverse and design problems

[74, 75] as many-query applications have been and are subject to extensive research,
which is of interest also in an industrial context. One of the main goals of this field
is the study of efficient techniques to deal with geometrical parameters, in order to
keep the number of parameters reasonable but also to guarantee versatility in the
parametrization in order to treat and represent complex shapes. Recent works [76–79]
deal with free-form deformation techniques combined with empirical interpolation in
bio-medical and aerodynamic problems.

(iv) Another growing field is related with the development and application of the
reduced basis methodology to the quantification of uncertainty [24, 80, 81].

9.2 Efficiency improvement in RB methodology

The efforts are also aimed at improving the computational performance in three-
dimensional settings to have a more efficient implementation of the Offine ‘construc-

tion stage’ (for example, on high-performance parallel supercomputers) and more
and more attractive real-time applications such as the ones currently available on
smartphones [82].

Improvements in the efficiency of parameters space exploration are also crucial;
see, for example, modified greedy algorithms and combined adaptive techniques [83],
such as ‘hp’ RB method [84, 85]. At the same time, (i) improvements in the a pos-

teriori error bounds for nonaffine problems [38]; (ii) reduction of the complexity of
the parametrized operators and more efficient estimation of lower bounds of stability
factors (that is, coercivity or inf-sup constants) for complex nonaffine problems [86];
or (iii) more specialized RB spaces [87] are under investigation.

Acknowledgements A special thank to Prof. Anthony Patera (MIT) for deep insights and several dis-
cussions and ideas. We acknowledge all the people who have contributed to the rbMIT package (beta



Page 46 of 49 Quarteroni et al.

version) used for RB computations presented in this work. In particular, we thank Dr. N.C. Nguyen (MIT)
and Dr. D.B.P. Huynh (MIT) for their insights and contributions, as well as Dr. T. Lassila (EPFL) for his
feedbacks and suggestions.

This work has been supported in part by the Swiss National Science Foundation (Project 200021-
122136) and by the Progetto Roberto Rocca (MIT-Politecnico di Milano).

References

1. Rozza, G., Huynh, P., Patera, A.: Reduced basis approximation and a posteriori error estimation for
affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15,
229–275 (2008)

2. Patera, A., Rozza, G.: Reduced Basis Approximation and a posteriori Error Estimation for
Parametrized Partial Differential Equations. Version 1.0, MIT. http://augustine.mit.edu (2006)

3. Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A., Turinici, G.: Reliable real-time solution
of parametrized partial differential equations: reduced-basis output bounds methods. J. Fluids Eng.
124, 70–80 (2002)

4. Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations.
Math. Comput. 45(172), 487–496 (1985)

5. Ito, K., Ravindran, S.: A reduced-order method for simulation and control of fluid flow. J. Comput.
Phys. 143(2), 403–425 (1998)

6. Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural anal-
ysis. AIAA J. 16, 525–528 (1978)

7. Noor, A.: Recent advances in reduction methods for nonlinear problems. Comput. Struct. 13, 31–44
(1981)

8. Noor, A.: On making large nonlinear problems small. Comput. Methods Appl. Mech. Eng. 34, 955–
985 (1982)

9. Fink, J.P., Rheinboldt, W.C.: On the error behavior of the reduced basis technique for nonlinear finite
element approximations. Z. Angew. Math. Mech. 63, 21–28 (1983)

10. Porsching, T.A., Lee, M.Y.L.: The reduced-basis method for initial value problems. SIAM J. Numer.
Anal. 24, 1277–1287 (1987)

11. Barrett, A., Reddien, G.: On the reduced basis method. Z. Angew. Math. Mech. 75(7), 543–549 (1995)
12. Rheinboldt, W.C.: On the theory and error estimation of the reduced basis method for multi-parameter

problems. Nonlinear Anal. 21(11), 849–858 (1993)
13. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press,

(1989)
14. Ito, K., Ravindran, S.: A reduced basis method for control problems governed by PDEs. In: Desch, W.,

Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter System, pp. 153–168.
(1998)

15. Ito, K., Ravindran, S.: Reduced basis method for optimal control of unsteady viscous flows. Interna-
tional Journal of Computational Fluid Dynamics 15(2), 97–113 (2001)

16. Peterson, J.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci.
Stat. Comput. 10(4), 777–786 (1989)

17. Nguyen, N.C., Veroy, K., Patera, A.T.: Certified real-time solution of parametrized partial differential
equations. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 1523–1558. Springer (2005)

18. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.: A posteriori error bounds for reduced basis
approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In:
Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003). Paper 2003-3847

19. Maday, Y., Patera, A., Turinici, G.: A priori convergence theory for reduced-basis approximations of
single-parameter elliptic partial differential equations. J. Sci. Comput. 17(1-4), 437–446 (2002)

20. Buffa, A., Maday, Y., Patera, A., Prud’homme, C., Turinici, G.: A priori convergence of the greedy
algorithm for the parametrized reduced basis. M2AN Math. Model. Numer. Anal. (2009), submitted

21. Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Sym-
metry. Cambridge University Press, UK (1996)

22. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of
parametrized linear evolution equations. M2AN Math. Model. Numer. Anal. 42(2), 277–302 (2008)

23. Nguyen, N., Rozza, G., Patera, A.: Reduced basis approximation and a posteriori error estimation for
the time-dependent viscous Burgers’ equation. Calcolo 46(3), 157–185 (2009)

http://augustine.mit.edu


Journal of Mathematics in Industry (2011) 1:3 Page 47 of 49

24. Nguyen, N., Rozza, G., Huynh, P., Patera, A.: Reduced basis approximation and a posteriori error es-
timation for parametrized parabolic PDEs; application to real-time Bayesian parameter estimation. In:
Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Marzouk, Y., Tenorio,
L., van Bloemen Waanders, B., Willcox, K. (eds.) Large-Scale Inverse Problems and Quantification
of Uncertainty, Chap. 8, pp. 151–178. John Wiley & Sons, Ltd, UK (2010)

25. Balmes, E.: Parametric families of reduced finite element models: theory and applications. Mech.
Syst. Signal Process. 10(4), 381–394 (1996)

26. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ‘empirical interpolation’ method: application
to efficient reduced-basis discretization of partial differential equations. C.R. Math. Acad. Sci. Paris,
Series I 339(9), 667–672 (2004)

27. Løvgren, A.E., Maday, Y., Rønquist, E.M.: A reduced basis element method for the steady Stokes
problem. M2AN Math. Model. Numer. Anal. 40(3), 529–552 (2006)

28. Løvgren, A.E., Maday, Y., Rønquist, E.M.: The Reduced Basis Element Method for Fluid Flows. In:
Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Dynamics, pp. 129–
154. Birkhäuser, Boston (2007)

29. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag,
(1994)

30. Quarteroni, A.: Numerical Models for Differential Problems, Series MS&A, vol. 2 Springer (2009)
31. Grepl, M., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized

parabolic partial differential equations. M2AN Math. Model. Numer. Anal. 39, 157–181 (2005)
32. Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for

greedy algorithms in reduced basis methods. (2010), in preparation
33. Huynh, P., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for

lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris, Series I
345, 473–478 (2005)

34. Huynh, P., Knezevic, D., Chen, Y., Hesthaven, J., Patera, A.: A natural-norm successive constraint
method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199(29-32), 1963–1975
(2010)

35. Pierce, N., Giles, M.: Adjoint recovery of superconvergent functionals from PDE approximations.
SIAM Rev. 42(2), 247–264 (2000)

36. Rozza, G.: Reduced basis approximation and error bounds for potential flows in parametrized geome-
tries. Commun. Comput. Phys. 9, 1–48 (2011)

37. Grepl, M., Maday, Y., Nguyen, N., Patera, A.: Efficient reduced-basis treatment of nonaffine and non-
linear partial differential equations. ESAIM Math. Modelling Numer. Anal. 41(3), 575–605 (2007)

38. Eftang, J., Grepl, M., Patera, A.: A posteriori error bounds for the empirical interpolation method.
C.R. Math. Acad. Sci. Paris, Series I 348(9-10), 575–579 (2010)

39. Nguyen, N.: A posteriori error estimation and basis adaptivity for reduced-basis approximation of
nonaffine-parametrized linear elliptic partial differential equations. J. Comput. Phys. 227, 983–1006
(2007)

40. Rozza, G., Huynh, P., Manzoni, A.: Reduced basis approximation and error bounds for Stokes flows
in parametrized geometries: roles of the inf-sup stability constants. (2010), submitted

41. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in
parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

42. Rozza, G.: Reduced basis methods for Stokes equations in domains with non-affine parameter depen-
dence. Comput. Vis. Sci. 12(1), 23–35 (2009)

43. Gerner, A., Veroy, K.: Reduced basis a posteriori error bounds for the Stokes equations in
parametrized domains: a penalty approach. Math. Mod. and Meth. in Appl. Sc., (2011), in press

44. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis method for linear elasticity problems with many
parameters. Comput. Methods Appl. Mech. Eng. 197, 4812–4829 (2008)

45. Huynh, P., Patera, A.: Reduced basis approximation and a posteriori error estimation for stress inten-
sity factors. Int. J. Numer. Methods Eng. 72(10), 1219–1259 (2007)

46. Huynh, P., Rozza, G.: Reduced basis method and a posteriori error estimation: application to linear
elasticity problems. (2011), submitted

47. Deparis, S., Rozza, G.: Reduced basis method for multi-parameter-dependent steady Navier-Stokes
equations: applications to natural convection in a cavity. J. Comput. Phys. 228(12), 4359–4378 (2009)

48. Rozza, G., Nguyen, C., Patera, A., Deparis, S.: Reduced basis methods and a posteriori error esti-
mators for heat transfer problems. In: Proceedings of HT2009, 2009 ASME Summer Heat Transfer
Conference, S. Francisco, USA (2009). Paper HT 2009–88211



Page 48 of 49 Quarteroni et al.

49. Rozza, G., Nguyen, C., Huynh, P., Patera, A.: Real-time reliable simulation of heat transfer phenom-
ena. In: Proceedings of HT2009, 2009 ASME Summer Heat Transfer Conference, S. Francisco, USA
(2009). Paper HT 2009–88212

50. Gelsomino, F., Rozza, G.: Comparison and combination of reduced order modelling techniques in 3D
parametrized heat transfer problems. Math. Comput. Model. Dyn. Syst. 17, 371–394 (2011)

51. Sen, S., Veroy, K., Huynh, P., Deparis, S., Nguyen, N., Patera, A.: ‘Natural norm’ a posteriori error
estimators for reduced basis approximations. J. Comput. Phys. 217, 37–62 (2006)

52. Chen, Y., Hesthaven, J., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds
for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)

53. rbMIT Software: MIT http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm
(2007–2011)

54. Reduced Basis at MIT: MIT http://augustine.mit.edu/methodology.htm (2007–2011)
55. Panton, R.L.: Incompressible Flow, 3rd edn. John Wiley & Sons, Inc. (2005)
56. Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. John Wiley & Sons (1990)
57. Sen, S.: Reduced basis approximation and a posteriori error estimation for many-parameter heat con-

duction problems. Numer. Heat Transf., Part B, Fundam. 54(5), 369–389 (2008)
58. Canuto, C., Tonn, T., Urban, K.: A posteriori error analysis of the reduced basis method for non-affine

parameterized nonlinear PDEs. SIAM J. Numer. Anal. 47(3), 2001–2022 (2009)
59. Jung, N., Haasdonk, B., Kröner, D.: Reduced basis method for quadratically nonlinear transport equa-

tions. International Journal of Computing Science and Mathematics 2(4), 334–353 (2009)
60. Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers equa-

tion: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, Série I 337(9), 619–624 (2003)
61. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier-Stokes equations by reduced

basis methods. Numer. Methods Partial Differ. Equ. 23(4), 923–948 (2007)
62. Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier-

Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47,
773–788 (2005)

63. Knezevic, D., Nguyen, N., Patera, A.: Reduced basis approximation and a posteriori error estimation
for the parametrized unsteady Boussinesq equations. Math. Models Methods Appl. Sci. 21, 1415–
1442 (2011)

64. Johnson, C., Rannacher, R., Boman, M.: Numerics and hydrodynamic stability: toward error control
in computational fluid dynamics. SIAM J. Numer. Anal. 32(4), 1058–1079 (1995)

65. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford
University Press, (1999)

66. Løvgren, A.E., Maday, Y., Rønquist, EM: The reduced basis element method: offline-online decom-
position in the nonconforming, nonaffine case. In: Hesthaven, J.S., Rønquist, E.M. (ed.) Spectral and
High Order Methods for Partial Differential Equations. Selected papers from the ICOSAHOM ’09
Conference, June 22-26, Trondheim, Norway. Lecture Notes in Computational Science and Engineer-
ing, vol. 76, pp. 247–254. Springer (2011)

67. Iapichino, L., Quarteroni, A., Rozza, G.: A reduced basis hybrid method for the coupling of
parametrized domains represented by fluidic networks. (2011), submitted

68. Lassila, T., Rozza, G.: Model reduction of steady fluid-structure interaction problems with free-form
deformations and reduced basis method. In: Proceedings of 10th Finnish Mechanics Days, Jyvaskyla,
Finland, pp. 454–465 (2009)

69. Lassila, T., Quarteroni, A., Rozza, G.: A reduced model with parametric coupling for fluid-structure
interaction problems. (2011), submitted

70. Quarteroni, A., Rozza, G., Quaini, A.: Reduced basis methods for optimal control of advection-
diffusion problem. In: Fitzgibbon, W., Hoppe, R., Periaux, J., Pironneau, O., Vassilevski, Y. (eds.)
Advances in Numerical Mathematics, pp. 193–216 (2007)

71. Tonn, T., Urban, K., Volkwein, S.: Optimal control of parameter-dependent convection-diffusion prob-
lems around rigid bodies. SIAM J. Sci. Comput. 32(3), 1237–1260 (2010)

72. Dedè, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic
optimal control problems. SIAM J. Sci. Comput. 32(2), 997–1019 (2010)

73. Tonn, T., Urban, K., Volkwein, S.: Comparison of the reduced basis and POD a posteriori error
estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Model. Dyn. Syst.
17, 355–369 (2011)

74. Rozza, G.: Shape design by optimal flow control and reduced basis techniques: applications to bypass
configurations in haemodynamics. Ph.D. thesis, N. 3400, École Polytechnique Fédérale de Lausanne
(2005)

http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm
http://augustine.mit.edu/methodology.htm


Journal of Mathematics in Industry (2011) 1:3 Page 49 of 49

75. Rozza, G.: On optimization, control and shape design of an arterial bypass. Int. J. Numer. Methods
Fluids 47(10-11), 1411–1419 (2005)

76. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method.
Comput. Methods Appl. Mech. Eng. 199, 1583–1592 (2010)

77. Rozza, G., Lassila, T., Manzoni, A.: Reduced basis approximation for shape optimization in ther-
mal flows with a parametrized polynomial geometric map. In: Hesthaven, J.S., Rønquist, E.M. (ed.)
Spectral and High Order Methods for Partial Differential Equations. Selected papers from the ICOSA-
HOM ’09 Conference, June 22-26, Trondheim, Norway. Lecture Notes in Computational Science and
Engineering, vol. 76, pp. 307–315. Springer (2011)

78. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis meth-
ods and free-form deformation. (2011), submitted

79. Rozza, G., Manzoni, A.: Model order reduction by geometrical parametrization for shape optimization
in computational fluid dynamics. In: Pereira, J.C.F., Sequeira, A. (eds.) Proceedings of ECCOMAS
CFD 2010, V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010)

80. Boyaval, S., Le Bris, C., Maday, Y., Nguyen, N., Patera, A.: A reduced basis approach for variational
problems with stochastic parameters: Application to heat conduction with variable Robin coefficient.
Comput. Methods Appl. Mech. Eng. 198(41-44), 3187–3206 (2009)

81. Huynh, P., Knezevic, D., Patera, A.: Certified reduced basis model characterization: a frequentistic
uncertainty framework. Comput. Methods Appl. Mech. Engrg (2011), submitted

82. Huynh, P., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed plat-
forms. Comput. Fluids 43, 74–81 (2011)

83. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach
for parametrized model reduction based on adaptive grids in parameter space. (2010), submitted

84. Eftang, J., Patera, A., Rønquist, E.: An “hp” certified reduced basis method for parametrized elliptic
partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010)

85. Eftang, J., Knezevic, D., Patera, A.: An “hp” certified reduced basis method for parametrized parabolic
partial differential equations. Math. Comput. Model. Dyn. Syst. 17, 395–422 (2011)

86. Lassila, T., Rozza, G.: Model reduction of semiaffinely parametrized partial differential equations by
two-level affine approximation. C.R. Math. Acad. Sci. Paris, Series I 349(1-2), 61–66 (2011)

87. Eftang, J., Huynh, P., Knezevic, D., Patera, A.: A two-step certified reduced basis method. J. Sci.
Comput. (2011), submitted


	Certified reduced basis approximation for parametrized partial differential equations and applications
	Abstract
	Introduction and motivation
	State of the art of the methodology
	Computational opportunities and collaborations
	A brief historical path
	Essential RB components

	Elliptic & parabolic parametric PDEs
	Elliptic coercive parametric PDEs
	Parabolic coercive parametric PDEs
	Parametrized formulation

	The reduced basis method
	Elliptic case
	Galerkin projection
	Offline-Online procedure

	Parabolic case

	Sampling strategies
	Elliptic case
	Parabolic case

	A posteriori error estimation
	Elliptic case
	Basic ingredients
	Error bounds
	Offline-Online for || ê (µ)||X computation

	Parabolic case

	Extensions to more general problems
	Non-compliant problems
	Nonaffine and noncoercive problems
	Nonaffine problems
	Noncoercive problems


	Working examples
	A `Couette-Graetz' conduction-convection problem
	A transient thermal treatment problem
	A transient (coupled) diffusion-transport problem around a cylinder
	Computational aspects

	Perspectives and ongoing research
	Extension to complex problems
	Efficiency improvement in RB methodology

	Acknowledgements
	References


