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Abstract

In this thesis, we present a new reduced basis approach to parametrized saddle point prob-
lems. The proposed methods allow us to consider flow problems in parametrized domains
with notably greater ease.

Designed for the real-time and many-query context of parameter estimation, optimiza-
tion, and control, the reduced basis method permits the efficient yet reliable approximation
of input-output relationships induced by parametrized partial differential equations. The
essential ingredients are: (i) dimension reduction, through Galerkin projection onto a low-
dimensional reduced basis space; (ii) certainty, through rigorous a posteriori bounds for
the errors in the reduced basis approximations; (iii) computational efficiency, through an
Offline-Online computational strategy; and (iv) effectiveness, through a greedy sampling
approach. Although reduced basis methods are well developed for several classes of partial
differential equations, parametrized saddle point problems pose additional difficulties that
have not been fully addressed: Parameter-dependent constraints cause complications not
only in the choice of stable reduced basis approximation spaces, but also in the construction
of rigorous and computationally efficient a posteriori error bounds.

Based on an analysis of Brezzi’s theory for saddle point problems, this work extends and
improves existing reduced basis approaches with respect to both the construction of effective
reduced basis approximation spaces as well as a posteriori error bounds. This is achieved
as follows: First, we develop new rigorous a posteriori error bounds, which perform better
in terms of sharpness as well as computational efficiency. Second, we present and analyze
several options to construct the reduced basis approximation spaces. Stability is achieved
through enriching the reduced basis approximation space for the primal system variable
appropriately; different strategies may be applied, favoring either the approximations for
the primal or the Lagrange multiplier variables. Third, both a posteriori error bounds and
enrichment strategies are employed in a new adaptive sampling procedure for constructing
reduced basis approximation spaces that are not only stable but also efficient.

Motivated by applications in the field of microfluidics, the methods are applied to a Stokes
flow in a parametrized domain. Providing a direct comparison with former reduced basis
techniques, numerical results demonstrate the methods’ successful performance in practice.





Zusammenfassung

In der vorliegenden Arbeit präsentieren wir einen neuen Zugang zu Reduzierte-Basis-Metho-
den für parametrisierte Sattelpunktprobleme. Die daraus resultierenden numerischen Ver-
fahren vereinfachen die Analyse von Strömungsproblemen in parameterabhängigen Gebieten
erheblich.

Reduzierte-Basis-Methoden ermöglichen eine effiziente und zuverlässige Approximierung
von Input-Output Beziehungen, die durch parametrisierte partielle Differentialgleichungen
beschrieben werden. Die wesentlichen Bestandteile sind die Folgenden: (i) Dimensionsre-
duktion, durch Galerkin Projektion auf einen niedrigdimensionalen Approximationsraum;
(ii) Gewissheit, durch a posteriori Fehlerschranken; (iii) Effizienz, durch eine Offline-Online
Rechenstrategie; und (iv) Effektivität, durch ein Greedy-Sampling-Verfahren. Reduzierte-
Basis-Methoden sind gut entwickelt für bestimmte Klassen von partiellen Differentialglei-
chungen. Parametrisierte Sattelpunktprobleme jedoch stellen uns vor zusätzliche Heraus-
forderungen, die noch nicht vollständig behandelt wurden: Parameterabhängige Nebenbe-
dingungen verursachen Komplikationen nicht nur in der Konstruktion von stabilen Appro-
ximationsräumen, sondern auch in der Entwicklung effizienter a posteriori Fehlerschätzer.

Diese Arbeit erweitert und verbessert bestehende Ansätze basierend auf einer Analyse der
Sattelpunkttheorie von F. Brezzi. Dies erreichen wir wie folgt: Erstens entwickeln wir neue a
posteriori Fehlerschätzer, die sowohl effizienter als auch schärfer sind als bisherige Schranken.
Zweitens präsentieren und untersuchen wir verschiedene Optionen zur Konstruktion des re-
duzierten Approximationsraums. Stabilität wird erzielt durch eine geeignete Anreicherung
des Approximationsraums für die primale Systemvariable; verschiedene Strategien stehen
hier zur Auswahl, die sich entweder auf die Approximation der primalen Systemvariable
oder die des Lagrange-Multiplikators konzentrieren. Drittens stellen wir ein neues adap-
tives Sampling-Verfahren vor, das angepasst ist an die Bedürfnisse von Sattelpunktproble-
men. Die entwickelten Fehlerschätzer und Stabilisierungstechniken werden hier zielführend
eingesetzt zur Konstruktion von Approximationsräumen, die nicht nur stabil, sondern auch
effizient sind.

Die hergeleiteten Methoden werden angewendet auf ein Stokes Strömungsproblem, welches
motiviert ist durch Problemstellungen im Bereich der Mikrofluidik. Numerische Ergebnisse
demonstrieren die Leistungsfähigkeit der entwickelten Verfahren durch einen direkten Ver-
gleich mit derzeit bestehenden Techniken.





Acknowledgments

I have had the most wonderful fortune of having Professor Karen Veroy-Grepl as my super-
visor. To her, I would like to express my deep gratitude. I am most thankful not only for her
extraordinary support, guidance, and counsel during the past three years, but also for her
patience, humor, passion, and trust. Despite her full schedule, she would be approachable
at any time to share her knowledge; she would always have a useful suggestion of how to
tackle a specific issue, check my notes very carefully to point out difficulties or imprecisions,
and provide detailed feedback on my presentations.

I further enjoyed the great fortune of having Professor Arnold Reusken as my second
advisor. I would like to thank him for many invaluable comments and suggestions as well
as for his encouragement and patience. Even at short notice, he would find the time to read
my work or discuss my questions. Often confronted with a particular problem that could
not yet be formulated very clearly, he would find the words that I was looking for.

I would also like to thank the members of my thesis committee, Professor Wolfgang
Dahmen and Professor Josef Bemelmans, for their comments, suggestions, as well as their
time for patiently answering my questions.

During my doctoral studies, I have had the opportunity to highly benefit from the friendly
and inspiring atmosphere within the reduced basis community. I am truly grateful to Pro-
fessor Anthony T. Patera for having me at MIT and for his constant support and counsel
throughout my studies. I would like to thank Professor Stefan Volkwein for inviting me to
the University of Konstanz, where I felt very welcome and enjoyed numerous interesting and
helpful discussions. I am also very grateful to Professor Martin A. Grepl of RWTH Aachen
University and Professor Yvon Maday of Laboratoire Jacques-Louis Lions for their com-
ments, suggestions, and thought-provoking questions. For the numerical results presented
in this thesis, I extensively used open source software. I would like to thank Dr. David J.
Knezevic of Harvard University for his invaluable assistance and support on rbOOmit [65],
providing excellent help typically within minutes. I also very much appreciate the depend-
able support of the developers of libMesh [62].

I would like to thank my fellow colleagues at AICES1 for the open, supportive, and
encouraging atmosphere, the AICES service team for their support on administrative and
organizational tasks, as well as Professor Marek Behr and Dr. Nicole Faber for leading
AICES in such a dedicated way. I am particularly grateful to my current and former office
mates: Markus Bachmayr, for many helpful discussions off and on the topic as well as
for an excellent teamwork while being student representatives; Lorenzo Zanon, for sharing

1Aachen Institute for Advanced Study in Computational Engineering Science
http://www.aices.rwth-aachen.de



numerous computational difficulties and bearing my grim debugging-face without complaint;
and Mark Kärcher, for often being concerned with similar questions, for many valuable
discussions and comments, as well as for proof-reading parts of this thesis very carefully.

I would like to thank Kathrin Knappmann for finding me right at the beginning of the first
semester, studying with me in what I call a most fruitful long-term assignment-partnership,
and staying in my life ever since as my close friend. I am truly grateful to Jan Hendrik
Witte for his exceptional patience and confidence, and particularly, for believing in me and
being my soul mate in many nerdy ways.

Finally, I would like to express my deepest gratitude and love to my family. I would like
to thank my brother Martin, my sister-in-law Kattrin, and my two lovable little nephews,
Anton and Lars, for their continuous support and care. I would like to thank my sister and
best friend, Julia, for joining me in Aachen as well as for numerous home made cakes and
cookies, but most of all, for her generousness, trust, tolerance, and understanding.

Above all, I would like to thank my parents, Claudia and Helmut Gerner, for their infinite
patience, understanding, and love. Without their support, I would never have been able to
pursue my dreams.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 The Reduced Basis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Theory — Parametrized Saddle Point Problems . . . . . . . . . . . . . 5

1.4.2 Application — Incompressible Fluid Flow . . . . . . . . . . . . . . . . 5

1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Approximation of Saddle Point Problems 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Truth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Reduced Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Properties of the Discrete System . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 A Priori Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 A Posteriori Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Error Bound Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Construction of Reduced Basis Approximation Spaces . . . . . . . . . . . . . 23

2.6 Offline-Online Computational Procedure . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Reduced Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 A Posteriori Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Adaptive Sampling Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Approximation of the Stokes Equations 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Strong Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Formulation as a Parametrized Saddle Point Problem . . . . . . . . . 39

i



ii Contents

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Truth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Reduced Basis Approximation Spaces . . . . . . . . . . . . . . . . . . 42

3.3.3 Adaptive Sampling Procedures . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 A Posteriori Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.5 Computation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Approximation of Saddle Point Problems by Penalty 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Truth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Reduced Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Properties of the Discrete System . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 A Priori Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 A Posteriori Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Error Bound Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Construction of Reduced Basis Approximation Spaces . . . . . . . . . . . . . 67

4.6 Offline-Online Computational Procedure . . . . . . . . . . . . . . . . . . . . . 67

4.6.1 Reduced Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 A Posteriori Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Adaptive Sampling Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Approximation of the Stokes Equations by Penalty 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Truth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Reduced Basis Approximation Spaces . . . . . . . . . . . . . . . . . . 76

5.3.3 A Posteriori Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.4 Computation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Approximation of the Instationary Stokes Equations 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Truth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Reduced Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 A Posteriori Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 ε = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents iii

6.4.2 ε > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Offline-Online Computational Procedure . . . . . . . . . . . . . . . . . . . . . 99
6.6 Construction of Reduced Basis Approximation Spaces . . . . . . . . . . . . . 99
6.7 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8.1 ε = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.8.2 ε > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 112

A Notations 121

B Supplementary Comments 123

C Re: Chapter 6 — A Crank–Nicolson Method 125





Chapter 1

Introduction

1.1 Motivation

Despite impressive progress in mechanical modeling, numerical analysis, and computer sci-
ence during the last decades, many engineering problems remain intractable. With the
increase in speed and memory capacity of computing devices and the improvement of dis-
cretization techniques, also new challenges emerged. Models describing physical problems
have to face new requirements in terms of accuracy or real-time applicability, resulting in a
numerical complexity that is prohibitive for current technologies.

In many engineering problems, the aim is to optimize, control, or characterize a system
whose behavior is governed by a partial differential equation (PDE). Such an analysis often
requires the prediction of outputs in dependence of inputs: Outputs are expressed as func-
tionals evaluated at the solution of the governing PDE, whereas inputs are parameters that
define a particular system configuration and enter through the PDE. Outputs of interest
may be given by a temperature distribution, structural frequencies, or a channel flowrate;
inputs often describe material properties, loads and sources, or geometry. For the efficient
numerical simulation of such input-output relationships, classical discretization techniques
such as finite differences, finite volume, or finite element methods are generally too expen-
sive. First, the context of process control, parametric modeling, or shape optimization often
requires the repeated output prediction for many different input parameter values. Second,
numerous branches of science and engineering call for an accurate and reliable response in
real time. Third, light computing devices such as smartphones or tablets, which may be
employed working in the field but are equipped with less computing power, become appeal-
ing alternatives to heavy computing platforms. At the present time, these problems cannot
be tackled in a direct, traditional way. The reduced basis method, a model order reduction
technique, is one means to address this difficulty.

1.2 Model Order Reduction

Reduced order modeling has received considerable attention as it can often capture the
system behavior at significantly less cost. The idea is to replace the original model by an
approximate model that is much smaller in terms of dimension but still describes important
aspects of the system. This involves a number of challenging issues such as (i) the identi-
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fication of crucial system properties that should be preserved by the reduced order model,
(ii) the extraction of relevant data from the original model that is needed to generate the
reduced order model, (iii) the numerically stable computation of the reduced order model,
and (iv) the characterization and quantification of its quality. With its own focus and spe-
cial needs, every discipline tackles these issues differently; as a result, there exist many
model order reduction approaches. Among the most well-known techniques for dynamical
systems are proper orthogonal decomposition (POD), balanced truncation, and Krylov sub-
space methods. For a comprehensive overview of these methods, we refer the reader to, e.g.,
[3, 8, 21, 30, 43, 90] and the references therein; we shall here only summarize the main ideas
that allow us to distinguish the reduced basis method.

One of the central issues of POD is the reduction of data expressing their essential in-
formation by means of a few basis vectors (see, e.g., [67, 93]). Assume that we are given a
set of data in a high-dimensional space, extracted from the original system by either pre-
computations or experiments. The idea is then to find a subspace of a fixed dimension r
such that the error in the projection onto the subspace is minimized. This is achieved by
applying the singular value decomposition (SVD) to the data matrix: The optimal subspace
is obtained as the span of the r orthonormalized eigenvectors associated with the largest
singular values; these vectors are also called the POD modes.

Balanced truncation and Krylov subspace methods aim to reduce the order of a dynamical
system such that the implied input-output relationship is well approximated. The latter is
characterized by an input-output map, the so-called transfer function. The objective is then
to construct a reduced order model with a transfer function resembling the original one as
far as possible.

To this end, balanced truncation (see, e.g., [4, 8, 90]) proceeds as follows: As the name
suggests, the system is first balanced and then truncated. Balancing a dynamical system
refers to identifying which states of the system are important to its input-output map. To
decide whether it affects the system’s input-output map, a state is analyzed with respect
to its controllability and observability: Roughly speaking, a state is controllable if it can be
reached through an input; a state is observable if it noticeably contributes to an output.
Only the states that are both controllable and observable are of relevance. A useful measure
of a state’s controllability and observability is given by the controllability and observability
gramians. A dynamical system is called balanced if these two gramians coincide and equal a
diagonal matrix containing the so-called Hankel Singular Values (HSVs): In this case, states
that are difficult to control are simultaneously difficult to observe; quantifying this behavior,
the HSVs provide an order of relevance to the input-output map. We may then truncate the
state space dimensions with low HSVs to obtain a lower-dimensional, approximate model.

Krylov subspace methods (see, e.g., [6, 30]) do not rely on the computation of singular
values but are based on moment matching. Noting that the transfer function of a dynamical
system can be expanded into a Laurent series, they assume that essential properties of the
input-output relationship are reflected in the associated coefficients; these coefficients are
also called moments. Given a fixed dimension r, the reduced model of corresponding order
is therefore constructed by matching as many moments as possible. Since computing the
moments explicitly is inherently numerically unstable, only the observation that moment
matching is equivalent to projecting the state space onto suitable Krylov subspaces made
the approach feasible in practice.
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We emphasize that, even though coming from various fields with different objectives, the
above model order reduction techniques share a common basic principle: They all can be
interpreted as Galerkin or Petrov-Galerkin type projections of the original space onto a
low-dimensional subspace. However, different from the others in its particular choice of this
subspace (either given through the span of the POD modes, the range of the controllability
and observability gramians, or a Krylov subspace), each method has its own benefits and
limitations. Based on a very general concept, POD is applicable to various fields and has
been successfully used in, e.g., fluid dynamics, signal analysis, data compression, and control
theory (see, e.g., [21, 67, 69] and the references therein); depending on the respective context,
it is also known as principal component analysis or the Karhunen-Loève decomposition. The
method can be applied to high-complexity linear as well as nonlinear systems (see [3]) and is
equipped with useful error estimators (see, e.g., [107] and the references therein). However,
POD can yield unpredictable results as it is sensitive to the data being used and important
system properties such as stability or passivity are generally not preserved; even though the
POD modes are optimal at approximating a given data set, they are not necessarily optimal
for describing the dynamics of the system that generates this data (see [93]). Designed for
the specific needs in optimal control, balanced truncation preserves system properties such
as stability and passivity (see [8, 43]). But, to obtain the required gramians and HSVs, it
involves the computationally highly expensive solution of two Lyapunov equations followed
by an SVD, and is therefore hardly suitable for large-scale problems (see [4, 93]). The latter
can be handled efficiently by Krylov subspace methods (see [6, 30]); however, those often
provide a good approximation quality only locally and lack the availability of useful error
estimates (see [3, 8]).

To overcome each others limitations, the methods are often combined; see, for example,
[93, 108] for approaches combining POD and balanced truncation, and [3] for methods that
aim to team the best features of SVN based and Krylov subspace methods.

1.3 The Reduced Basis Method

The reduced basis method is a model order reduction approach that permits the efficient yet
reliable approximation of input-output relationships induced by parametrized partial differ-
ential equations. In contrast to generic discretization techniques where approximation spaces
are not correlated to the physical properties of the system, the method recognizes that the
solutions to a parametrized PDE are not arbitrary members of the infinite-dimensional so-
lution space but rather reside or evolve on a much lower-dimensional manifold. Exploitation
of this low-dimensionality is the key idea of the reduced basis approach.

Designed for the real-time and many-query context of parameter estimation, optimization,
and control, the method provides rapidly convergent and computationally efficient approx-
imations equipped with practicable and rigorous error bounds. In compliance with model
order reduction techniques outlined in §1.2, this is achieved via Galerkin projection: Built
upon a high-fidelity “truth” finite element discretization, the reduced basis approximation
is defined as a Galerkin projection onto a low-dimensional subspace that focuses on the
solution manifold induced by the parametrized PDE; following the so-called Lagrange ap-
proach, this subspace is constructed as the span of several “truth” solutions of the problem
at various parameter values. The error in the reduced basis approximation is then measured
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relative to the “truth” problem formulation and can be quantified by rigorous a posteriori
error bounds; the latter are typically derived as relaxations of the error-residual equation
or can be obtained through direct application of appropriate a priori stability estimates.
To the method’s key features also belongs an Offline-Online computational strategy that
enables the highly efficient (Online) computation of both reduced basis approximations and
error bounds for any parameter query at the expense of increased pre-processing (Offline)
cost. Finally, reduced basis approximations and error bounds are intimately linked through
a greedy sampling approach, in which the (Online-)inexpensive error bounds are used to
construct the reduced basis approximation spaces more optimally.

A detailed review of the reduced basis method, including its historical background and
further references, can be found in [83, 95]; here, we shall restrict ourselves to the stages that
help us embed this thesis in its natural context. The method was introduced in the late 1970s
as a successful tool for describing large systems in nonlinear structural mechanics with only
a few basis functions (see, e.g., [2, 28, 29, 80, 85, 86]). Thenceforth, literature grew rapidly;
it soon extended the approach to a wider class of applications and equations, such as fluid
dynamics and the incompressible Navier–Stokes equations (see, e.g., [45, 56, 57, 58, 84]).
However, the full potential of the method was not recognized until work in [71, 73, 87] entirely
decoupled the reduced basis model generation from the projection stage and introduced the
concept of computationally inexpensive a posteriori error estimators. Offline-Online decom-
position strategies gained computational savings of several orders of magnitude. A posteriori
error bounds are clearly crucial to the certification of any particular output prediction, but
also play an important role in the effective and efficient model generation: Invoked in a
greedy sampling process, they allow us to determine (i) which basis functions might be
most effective and (ii) how many basis functions are needed to guarantee a desired accuracy.
Much current effort is therefore devoted to the development of computationally inexpensive
rigorous a posteriori error bounds [53, 55] and optimal sampling procedures [10, 15, 46].

Relevant to many applications such as heat conduction and linear elasticity in transport
and continuum mechanics, work in [41, 73, 87, 95] established the reduced basis method
for linear elliptic and parabolic PDEs with an affine parameter dependence. Henceforth,
the method has been extended in various directions: Much of recent research focuses on
its expansion to noncoercive as well as nonlinear equations in fluid dynamics, including the
viscous Burgers’ [78, 105, 110], the Stokes [92, 96], and the incompressible Navier–Stokes
equations [25, 63, 76, 88, 104]. However, it has also been successfully applied to problems in
acoustics [106], electromagnetics [22, 60], and stochastics [11, 49]. An empirical interpolation
method (EIM) [7, 19, 26, 38, 40, 94] makes the approach feasible for PDEs with a nonaffine
parameter dependence; methods in [54, 70, 74] handle hierarchical systems by combining
reduced basis with domain decomposition techniques; and work in [24, 39, 61, 77, 103]
provides a reduced basis framework for the efficient solution of parametrized optimal control
problems.

For the modeling of time-dependent parametrized PDEs, reduced basis methods are often
combined with POD techniques (see §1.2). POD based schemes can be applied within
the parametric reduced basis context [16, 44]; however, most approaches apply reduced
basis greedy sampling strategies in the (multi-dimensional) parameter domain while using
POD in the (one-dimensional) temporal domain (see, e.g., [41, 47, 63]). We note that also
balanced truncation and Krylov subspace methods (see §1.2) have recently been extended
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to parameter-dependent systems; however, many of them in their beginnings, the proposed
methods often lack practicable error estimates or can handle only very few parameters (see,
e.g., [17, 59] and the references therein).

1.4 Contribution of this Thesis

In this thesis, we present a new reduced basis approach to parametrized saddle point prob-
lems. The proposed methods allow us to consider flow problems in parametrized domains
with notably greater ease.

1.4.1 Theory — Parametrized Saddle Point Problems

Saddle point problems often arise in practical applications where a certain quantity has to
be minimized subject to a set of linear constraints; examples of such applications are mixed
finite element methods (see, e.g., [13, 89]) or quadratic programming methods in optimal
control (see, e.g., [66] and the references therein). In many cases, not only the primal system
variable u but also the Lagrange multiplier p associated with the constraints has a physical
interpretation and its computation is also of interest.

Although the reduced basis method is well developed for several classes of partial differ-
ential equations (see §1.3), parametrized saddle point problems pose additional difficulties
that have not been fully addressed: Parameter-dependent constraints cause complications
not only in the choice of stable reduced basis approximation spaces, but also in the con-
struction of rigorous and computationally efficient a posteriori error bounds. Currently,
stable reduced basis approximations are achieved through an enrichment of the approxima-
tion space for u by so-called supremizer functions [72, 92, 96]; resulting in a reduced basis
approximation space for u that is at least twice as large as for p, this is not yet satisfactory.
Error estimators are often based on Babuška’s theory for noncoercive problems [75, 106]; this
provides rigorous upper bounds for the combined error in the reduced basis approximations
for u and p, and requires the expensive computation of lower bounds to the Babuška inf-sup
stability constants [53, 55].

In this work, we extend and improve existing reduced basis approaches for parametrized
saddle point problems with respect to both the construction of effective reduced basis ap-
proximation spaces as well as a posteriori error bounds. This is achieved as follows: First,
we develop new rigorous a posteriori error bounds that do not involve the estimation of the
Babuška inf-sup stability constants but only much less expensive calculations. Second, sep-
arate upper bounds for the errors in the approximations for u and p enable the systematic
estimation of engineering outputs depending on either of the two. Third, we introduce a
new option to construct stable reduced basis approximation spaces that proves to be very ef-
fective. Fourth, recognizing the need for stabilization adaptively, a new sampling procedure
assembles reduced basis approximation spaces that are very efficient.

1.4.2 Application — Incompressible Fluid Flow

Our focus shall be on saddle point problems that appear in the modeling of incompress-
ible fluid flow. The incompressible Navier–Stokes equations are the governing equations to
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describe the motion of a viscous fluid (see, e.g., [36, 89]). They generally consist of two
equations, the momentum and the continuity equations, which are derived from the basic
principles of conservation of momentum and mass in classical mechanics; the unknowns are
the velocity field u of the fluid and the pressure p. In case of a creeping flow, where inertial
forces are assumed to be small compared to viscous forces, the nonlinear convection term in
the Navier–Stokes equations may be neglected and the equations reduce to the linear Stokes
equations.

Quite often, it is crucial to analyze and understand the effects of geometric parameters on
a flow, in particular when the objective is to optimize, control, or characterize the system.
The reduced basis method allows us to perform such an analysis very efficiently. Earlier work
on the Stokes and incompressible Navier–Stokes equations has established the method for
nonparametrized domains [63, 104], and there have been several efforts [25, 54, 70, 76, 88, 92,
96] at extending the techniques to parametrized domains. However, due to the difficulties
explained above (see §1.4.1), rigorous error bounds are often not treated and the geometric
variations considered are very small or applicable only to a very limited set of problems.

Motivated by applications in the field of microfluidics, we apply our new methods to
a Stokes flow in a two-dimensional microchannel with a parametrized, rectangular obsta-
cle. Providing a direct comparison with former reduced basis techniques, numerical results
demonstrate the proposed methods’ successful performance in practice.

1.5 Structure of this Thesis

In Chapter 2, we present the abstract framework of a new reduced basis approach based
on Brezzi’s theory for saddle point problems. We present new a posteriori error estimates
that provide rigorous upper bounds for the errors in the approximation of the primal system
variable u and the Lagrange multiplier p separately; symmetric saddle point problems shall
be treated as a special case in which these bounds may be further sharpened. Moreover, we
analyze several options to construct the reduced basis approximation spaces with respect
to approximation stability as well as their effectiveness. Finally, we present a new adaptive
sampling procedure serving the needs of our saddle point context.

In Chapter 3, we apply the reduced basis approach developed in §2 to the Stokes equations
in a parametrized domain. We consider a Stokes flow in a two-dimensional microchannel
with a parametrized, rectangular obstacle; in the field of microfluidics, such microchannels
are used to enhance the mixing between two adjacent laminar streams. Numerical results
demonstrate the method’s performance in practice through a direct comparison with former
techniques: Reduced basis a posteriori error bounds are compared with respect to sharpness
as well as computational cost; reduced basis approximation spaces are compared with respect
to stability, effectiveness, and computational efficiency.

Chapter 2 and Chapter 3 are based on our work in [31, 33].
In Chapter 4, we present a reduced basis method based on a penalty approach. The anal-

ysis shows how the introduction of a penalty term affects the development of reduced basis
a posteriori error bounds as well as the construction of reduced basis approximation spaces.
At the expense of a perturbed “truth” approximation, we may develop rigorous a posteriori
error bounds that are computationally highly efficient as they do not depend on inf-sup sta-
bility constants; however, they depend on the penalty parameter, and associated effectivities
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increase as we approach the nonperturbed problem. Furthermore, the penalty term regu-
larizes the problem such that an additional enrichment of the reduced basis approximation
space for u is no longer compulsory to obtain stable approximations.

In Chapter 5, we apply the reduced basis approach developed in §4 to a perturbed Stokes
flow in a parametrized domain. Considering the model problem introduced in §3, numerical
results demonstrate the effects of the penalty term in practice.

Chapter 4 and Chapter 5 are based on our work in [35].
In Chapter 6, we provide an outlook on how the techniques presented in the previous part

of this thesis may be extended to the time-dependent setting. To this end, we consider the
instationary Stokes equations. The approach essentially combines techniques developed in
§2, §3 and §4, §5 with current reduced basis techniques for parabolic problems. The analysis
then shows how time integration affects the development of reduced basis a posteriori error
bounds as well as the construction of efficient reduced basis approximation spaces. The re-
sulting methods are applied to a Stokes flow in a parametrized microchannel where evolution
in time is induced by a time-dependent velocity profile on the inflow boundary. Numeri-
cal results focus on differences to the stationary case when demonstrating the method’s
performance in practice. The chapter is based on our work in [32, 34].

Note that each chapter opens with its own introduction, where we outline the chapter’s
purpose and content as well as its structure; each chapter closes with its own conclusion,
where we emphasize particular benefits and limitations of the approach presented.





Chapter 2

Approximation of Saddle Point Problems

2.1 Introduction

In this chapter, we present the abstract framework of a new reduced basis approach based on
Brezzi’s theory for saddle point problems. We shall focus on two important aspects: First, we
present new a posteriori error estimates that, unlike earlier approaches based on Babuška’s
theory for noncoercive problems, provide upper bounds for the errors in the approximations
for the primal system variable and the Lagrange multiplier separately. The proposed method
is a direct application of techniques in [12, 13] to the reduced basis context (see [111] for initial
investigations), which shall be further improved in the special case of a symmetric problem.
Second, based on an analysis of Brezzi’s theory, we present several options to construct the
reduced basis approximation spaces that shall be compared with respect to approximation
stability as well as their effectiveness. We achieve stability through enriching the reduced
basis approximation space for the primal variable appropriately. Different strategies may
be applied, favoring either the approximations for the primal or the Lagrange multiplier
variables. Finally, both a posteriori error bounds and enrichment strategies are employed in
an adaptive sampling procedure for constructing reduced basis approximation spaces that
are not only stable but also computationally efficient.

The chapter is organized as follows: In §2.2, we introduce the general formulation of a
parametrized saddle point problem and its “truth” approximation upon which we shall build
our reduced basis approximation. Section 2.3 defines our reduced basis approximation as
the Galerkin projection onto a low-dimensional reduced basis approximation space; we shall
recall main properties of the reduced basis system as well as a priori convergence results. We
develop rigorous reduced basis a posteriori error bounds in §2.4, and discuss how to construct
the reduced basis approximation space in §2.5; computational efficiency is achieved by the
Offline-Online strategy summarized in §2.6. In §2.7, a new adaptive sampling procedure
then combines error bounds derived in §2.4 and observations in §2.5 to identify reduced
basis approximation spaces that are stable as well as efficient. Finally, in §2.8, we give some
concluding remarks.

9
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2.2 General Problem Statement

2.2.1 Formulation

Let Xe and Ye be two Hilbert spaces with inner products (·, ·)Xe
, (·, ·)Ye

and associated
norms � · �Xe

=
�

(·, ·)Xe
, � · �Ye

=
�

(·, ·)Ye
, respectively.1 We define the product space

Ze ≡ Xe × Ye, with inner product (·, ·)Ze
≡ (·, ·)Xe

+ (·, ·)Ye
and norm � · �Ze

=
�

(·, ·)Ze
.

The associated dual spaces are denoted by X �
e, Y

�
e , and Z �

e.
Furthermore, let D ⊂ R

n be a prescribed n-dimensional, compact parameter set. For any
parameter µ ∈ D, we then consider the continuous bilinear forms a(·, ·;µ) : Xe × Xe → R

and b(·, ·;µ) : Xe × Ye → R,2

γea(µ) ≡ sup
u∈Xe

sup
v∈Xe

a(u, v;µ)

�u�Xe
�v�Xe

< ∞, ∀ µ ∈ D, (2.1)

γeb(µ) ≡ sup
q∈Ye

sup
v∈Xe

b(v, q;µ)

�q�Ye
�v�Xe

< ∞, ∀ µ ∈ D. (2.2)

We moreover assume that a(·, ·;µ) is coercive on Xe,

αe
a(µ) ≡ inf

v∈Xe

a(v, v;µ)

�v�2Xe

> 0, ∀ µ ∈ D, (2.3)

and that b(·, ·;µ) satisfies the inf-sup condition

βe
Br(µ) ≡ inf

q∈Ye

sup
v∈Xe

b(v, q;µ)

�q�Ye
�v�Xe

> 0, ∀ µ ∈ D. (2.4)

By (2.1) and (2.3), the bilinear form a(·, ·;µ) provides with � · �Xe,µ ≡
�

a(·, ·;µ) an energy
norm on Xe that is equivalent to � ·�Xe

for any µ ∈ D. We shall refer to βe
Br(µ) as the “exact

Brezzi” inf-sup constant. We additionally define the “exact Babuška” inf-sup constant

βe
Ba(µ) ≡ inf

(u,p)∈Ze

sup
(v,q)∈Ze

a(u, v;µ) + b(v, p;µ) + b(u, q;µ)

�(u, p)�Ze
�(v, q)�Ze

, ∀ µ ∈ D; (2.5)

it follows that βe
Ba(µ) > 0 for all µ ∈ D from the assumptions (2.1)–(2.4) (see [5, 12, 27]).

We now consider the following variational problem: For any given µ ∈ D, we find
(ue(µ), pe(µ)) ∈ Xe × Ye such that

a(ue(µ), v;µ) + b(v, pe(µ);µ) = f(v;µ), ∀ v ∈ Xe,

b(ue(µ), q;µ) = g(q;µ), ∀ q ∈ Ye,
(2.6)

where f(·;µ) and g(·;µ) are bounded linear functionals in X �
e and Y �

e , respectively. From the
results of Brezzi [12] (see, e.g., also [13, 27, 36]), it is well-known that under the assumptions
(2.1), (2.2), (2.3), and (2.4), the above problem (2.6) is well-posed and has a unique solution
for any f(·;µ) ∈ X �

e, g(·;µ) ∈ Y �
e . We recall that if the bilinear form a(·, ·;µ) is in addition

1Here and in the following, the subscript e denotes “exact”.
2For clarity of exposition, we suppress the obvious requirement of nonzero elements in the denominators.
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symmetric for any µ ∈ D, the solution (ue(µ), pe(µ)) to (2.6) corresponds to a saddle point
of the Lagrangian functional

L(v, q;µ) ≡ 1
2a(v, v;µ) + b(v, q;µ)− f(v;µ)− g(q;µ), ∀ (v, q) ∈ Ze.

Therefore, even though we in fact consider a more general (not necessarily symmetric) case,
we call (2.6) a parametrized saddle point problem.

We pause at this point to briefly comment on the nature of the parameter dependence of
our linear and bilinear forms. The efficiency of the reduced basis method relies on an Offline-
Online computational decomposition strategy (see §2.6) that requires that all bilinear and
linear forms in (2.6) depend affinely on the parameter µ. For instance, we assume that for
some Qa ∈ N, the bilinear form a(·, ·;µ) can be written as

a(u, v;µ) =

Qa
�

k=1

Θ
k
a(µ) a

k(u, v), ∀ u, v ∈ Xe, (2.7)

where for 1 ≤ k ≤ Qa, the parameter-dependent coefficient functions Θk
a(µ) are continuous

over the parameter set D and the parameter-independent bilinear forms ak(·, ·) are contin-
uous on Xe ×Xe. We assume analogous representations for the bilinear form b(·, ·;µ) and
the linear functionals f(·;µ) and g(·;µ).

2.2.2 Truth Approximation

We now introduce a high-fidelity “truth” approximation upon which our reduced basis ap-
proximation will subsequently be built. To this end, let X and Y denote finite-dimensional
subspaces of Xe and Ye, respectively. We define the product space Z ≡ X×Y and denote by
N the dimension of Z. We emphasize that the dimension N is typically very large. These
“truth” approximation subspaces inherit the inner products and norms of the exact spaces:
(·, ·)X ≡ (·, ·)Xe

, � · �X ≡ � · �Xe
, (·, ·)Y ≡ (·, ·)Ye

, � · �Y ≡ � · �Ye
, and (·, ·)Z ≡ (·, ·)Ze

,
� · �Z ≡ � · �Ze

.
The continuity and coercivity properties (2.1), (2.2), and (2.3) are clearly passed on to

the “truth” approximation spaces,

γa(µ) ≡ sup
u∈X

sup
v∈X

a(u, v;µ)

�u�X�v�X
< ∞, ∀ µ ∈ D, (2.8)

γb(µ) ≡ sup
q∈Y

sup
v∈X

b(v, q;µ)

�q�Y �v�X
< ∞, ∀ µ ∈ D, (2.9)

αa(µ) ≡ inf
v∈X

a(v, v;µ)

�v�2X
> 0, ∀ µ ∈ D; (2.10)

thus, � · �X,µ ≡ � · �Xe,µ defines a norm on X that is equivalent to � · �X for any µ ∈ D.
We now further assume that the approximation spaces X and Y are chosen such that they
satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) inf-sup condition (see, e.g., [13])

βBr(µ) ≡ inf
q∈Y

sup
v∈X

b(v, q;µ)

�q�Y �v�X
≥ β0

Br(µ) > 0, ∀ µ ∈ D, (2.11)
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where β0
Br(µ) is a constant independent of the dimension N . We refer to βBr(µ) as the “truth

Brezzi” inf-sup constant. We shall also consider the “truth Babuška” inf-sup constant

βBa(µ) ≡ inf
(u,p)∈Z

sup
(v,q)∈Z

a(u, v;µ) + b(v, p;µ) + b(u, q;µ)

�(u, p)�Z�(v, q)�Z
, ∀ µ ∈ D; (2.12)

again, it follows from (2.8)–(2.11) that βBa(µ) > 0 for all µ ∈ D. In particular, one can
show that βBr(µ) ≥ βBa(µ) ≥ C(αa(µ), γa(µ),βBr(µ)) > 0 for all µ ∈ D; see, e.g., [109] for
an explicit representation of C(αa(µ), γa(µ),βBr(µ)).

We now define our “truth” approximations to be the Galerkin projections of ue(µ) ∈ Xe

and pe(µ) ∈ Ye onto X and Y , respectively: Given any µ ∈ D, we find (u(µ), p(µ)) ∈ X ×Y
such that

a(u(µ), v;µ) + b(v, p(µ);µ) = f(v;µ), ∀ v ∈ X,

b(u(µ), q;µ) = g(q;µ), ∀ q ∈ Y.
(2.13)

As for the exact problem in §2.2.1, it follows from (2.8), (2.9), (2.10), and (2.11) that the
“truth” problem (2.13) has a unique solution for any f(·;µ) ∈ X �

e, g(·;µ) ∈ Y �
e . The bilinear

forms a(·, ·;µ) and b(·, ·;µ) define bounded linear operators A(µ) : X → X �, B(µ) : X → Y �

and its transpose B(µ)t : Y → X � by

�A(µ)u, v� = a(u, v;µ), ∀ u, v ∈ X,

�B(µ) v, q� = b(v, q;µ) = �B(µ)tq, v�, ∀ v ∈ X, ∀ q ∈ Y ;

here, �·, ·� denotes the respective dual pairing. The “truth” system (2.13) can thus be equiv-
alently written as

A(µ)u(µ) +B(µ)t p(µ) = f(µ) in X �,

B(µ)u(µ) = g(µ) in Y �,

where f(µ) ≡ f(·;µ)|X ∈ X � and g(µ) ≡ g(·;µ)|Y ∈ Y � for all µ ∈ D.

2.3 Reduced Basis Approximation

We now turn to the reduced basis method, discussing the approximation procedure, rigorous
a posteriori error estimators, and the construction of stable approximation spaces.

2.3.1 Formulation

Let us suppose for now that we are given a set of nested, low-dimensional reduced basis ap-
proximation subspaces XN ⊂ XN+1 ⊂ X and YN ⊂ YN+1 ⊂ Y , N ∈ Nmax ≡ {1, . . . , Nmax}.
We denote by NX and NY the dimensions of XN and YN , respectively, and the total dimen-
sion of ZN ≡ XN ×YN by NZ ≡ NX+NY . The subspaces XN , YN , and ZN again inherit all
inner products and norms of X, Y , and Z, respectively. The reduced basis approximation
is then defined as the Galerkin projection onto these low-dimensional subspaces: For any
given µ ∈ D, we find uN (µ) ∈ XN and pN (µ) ∈ YN such that

a(uN (µ), vN ;µ) + b(vN , pN (µ);µ) = f(vN ;µ), ∀ vN ∈ XN ,

b(uN (µ), qN ;µ) = g(qN ;µ), ∀ qN ∈ YN .
(2.14)



2.3 Reduced Basis Approximation 13

Written in operator notation, the discrete reduced basis system reads

AN (µ)uN (µ) +BN (µ)t pN (µ) = fN (µ) in X �
N , (2.15)

BN (µ)uN (µ) = gN (µ) in Y �
N , (2.16)

where fN (µ) ≡ f(·;µ)|XN
∈ X �

N , gN (µ) ≡ g(·;µ)|YN
∈ Y �

N , and the bounded linear operators
AN (µ) : XN → X �

N , BN (µ) : XN → Y �
N and its transpose BN (µ)t : YN → X �

N are given by

�AN (µ)uN , vN � = a(uN , vN ;µ), ∀ uN , vN ∈ XN ,

�BN (µ) vN , qN � = b(vN , qN ;µ) = �BN (µ)t qN , vN �, ∀ vN ∈ XN , ∀ qN ∈ YN .

2.3.2 Properties of the Discrete System

We first briefly recall some fundamental properties of the discrete system (2.14). Note
that we did not yet impose any special requirements on the reduced basis approximation
spaces XN , YN . For a given parameter µ ∈ D, the system (2.15), (2.16) is solvable if and
only if gN (µ) belongs to the range of the operator BN (µ). In this case, we can construct
uN (µ) ∈ XN satisfying (2.16) such that fN (µ) − AN (µ)uN (µ) belongs to im(BN (µ)t) and
there exists pN (µ) ∈ YN satisfying (2.15). The solution uN (µ) is unique, pN (µ) is in general
determined only up to an element of ker(BN (µ)t). The system (2.15), (2.16) is therefore
uniquely solvable if and only if gN (µ) belongs to the range of the operator BN (µ) and
the operator BN (µ)t is injective. In the specific case of finite-dimensional spaces XN and
YN , BN (µ)t is injective if and only if BN (µ) is surjective. Since this clearly implies that
gN ∈ im(BN (µ)) for any gN ∈ Y �

N , we obtain the following: For a given parameter µ ∈ D,
the system (2.15), (2.16) is well-posed if and only if BN (µ) is surjective. This may be
equivalently expressed by the inf-sup condition

βN (µ) ≡ inf
qN∈YN

sup
vN∈XN

b(vN , qN ;µ)

�qN�Y �vN�X
= inf

qN∈YN

�BN (µ)tqN�X�

N

�qN�Y
> 0. (2.17)

(For further details on any of the steps above, we refer the reader to [12, 13] and Appendix B.)
In the remainder of this work, a pair of approximation spaces (XN , YN ) satisfying (2.17) for
any parameter value µ ∈ D is called stable.

2.3.3 A Priori Error Estimation

We here consider a priori estimates for the errors in the reduced basis approximations. These
shall also contribute to the construction of reduced basis approximation spaces in §2.5.

In this section, we assume that the low-dimensional reduced basis spaces XN , YN are
constructed such that for any given parameter µ ∈ D, a solution (uN (µ), pN (µ)) ∈ XN ×YN
to (2.14) exists. We then denote the errors in the reduced basis approximations uN (µ) ∈ XN ,
pN (µ) ∈ YN , and (uN (µ), pN (µ)) ∈ ZN with respect to the truth approximations by

euN (µ) ≡ u(µ)− uN (µ) ∈ X,

epN (µ) ≡ p(µ)− pN (µ) ∈ Y, (2.18)

eN (µ) ≡ (euN (µ), epN (µ)) ∈ Z.
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Proposition 2.3.1. For any given µ ∈ D and N ∈ Nmax, we have

�euN (µ)�X ≤
�

1+
γa(µ)

αa(µ)

�

inf
vN∈XN

BN (µ)vN=gN (µ)

�u(µ)−vN�X +
γb(µ)

αa(µ)
inf

qN∈YN

�p(µ)−qN�Y (2.19)

for the error in the reduced basis approximation uN (µ); moreover, if the spaces XN , YN are
stable (see §2.3.2), we also obtain

�epN (µ)�Y ≤
�

1 +
γb(µ)

βN (µ)

�

inf
qN∈YN

�p(µ)− qN�Y +
γa(µ)

βN (µ)
�euN (µ)�X (2.20)

for the error in the reduced basis approximation pN (µ), and

inf
vN∈XN

BN (µ)vN=gN (µ)

�u(µ)− vN�X ≤
�

1 +
γb(µ)

βN (µ)

�

inf
vN∈XN

�u(µ)− vN�X . (2.21)

Proof. The statement directly follows from arguments presented in [13] applied to the re-
duced basis context.

In the special case of a symmetric problem, we may also derive the following result.

Proposition 2.3.2. Let a(·, ·;µ) be symmetric for all µ ∈ D. Then, for any given µ ∈ D
and N ∈ Nmax, we have

�euN (µ)�X ≤ 2

�

γa(µ)

αa(µ)
inf

vN∈XN

BN (µ)vN=gN (µ)

�u(µ)− vN�X +
γb(µ)

αa(µ)
inf

qN∈YN

�p(µ)− qN�Y ; (2.22)

moreover, if the spaces XN , YN are stable (see §2.3.2), we also obtain

�epN (µ)�Y ≤
�

1 +
γb(µ)

βN (µ)

�

1 +

�

γa(µ)

αa(µ)

��

inf
qN∈YN

�p(µ)− qN�Y

+ 2
γa(µ)

βN (µ)
inf

vN∈XN

BN (µ)vN=gN (µ)

�u(µ)− vN�X . (2.23)

Proof. We here use techniques very similar to those presented in [13]. Take any parameter
µ ∈ D and N ∈ Nmax. We note that, as a continuous, symmetric, and coercive bilinear form,
a(·, ·;µ) defines an inner product on X, and recall that the associated norm is denoted by
� · �X,µ =

�

a(·, ·;µ). By the definition of the reduced basis approximation in §2.3.1 as the
Galerkin projection of (u(µ), p(µ)) onto XN × YN , the errors euN (µ) and epN (µ) satisfy

a(euN (µ), vN ;µ) + b(vN , epN (µ);µ) = 0, ∀ vN ∈ XN . (2.24)
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First, we prove that (2.22) holds true. For any vN ∈ XN such that BN (µ) vN = gN (µ) in
Y �
N , we have vN − uN (µ) ∈ ker(BN (µ)) and

�vN − uN (µ)�X,µ =
a(vN − uN (µ), vN − uN (µ);µ)

�vN − uN (µ)�X,µ

≤ sup
wN∈ker(BN (µ))

a(vN − uN (µ), wN ;µ)

�wN�X,µ

= sup
wN∈ker(BN (µ))

a(vN − u(µ), wN ;µ) + a(euN (µ), wN ;µ)

�wN�X,µ

= sup
wN∈ker(BN (µ))

a(vN − u(µ), wN ;µ)− b(wN , epN (µ);µ)

�wN�X,µ
,

where the last equality follows from (2.24). For wN ∈ ker(BN (µ)), b(wN , pN (µ);µ) =
b(wN , qN ;µ) = 0 holds for all qN ∈ YN . Inserting this in the inequality above yields, for any
qN ∈ YN ,

�vN − uN (µ)�X,µ ≤ sup
wN∈ker(BN (µ))

a(vN − u(µ), wN ;µ)− b(wN , p(µ)− qN ;µ)

�wN�X,µ

≤ �vN − u(µ)�X,µ +
γb(µ)

�

αa(µ)
�p(µ)− qN�Y , (2.25)

where the latter is obtained from the Cauchy–Schwarz inequality for the inner product
a(·, ·;µ), (2.9), and (2.10). Using the triangle inequality and (2.25),

�euN (µ)�X,µ ≤ �u(µ)− vN�X,µ + �vN − uN (µ)�X,µ

≤ 2�u(µ)− vN�X,µ +
γb(µ)

�

αa(µ)
�p(µ)− qN�Y , (2.26)

the a priori stability estimate (2.22) then follows from (2.26), (2.8), and (2.10).
We now turn to (2.23). Assuming that XN and YN are stable, the inf-sup condition (2.17)

provides

βN (µ)�qN − pN (µ)�Y ≤ sup
vN∈XN

b(vN , qN − pN (µ);µ)

�vN�X
, ∀ qN ∈ YN . (2.27)

For any vN ∈ XN and qN ∈ YN , we moreover have

b(vN , qN − pN (µ);µ) = b(vN , qN − p(µ);µ) + b(vN , epN (µ);µ)

= b(vN , qN − p(µ);µ)− a(euN (µ), vN ;µ),

where the last equality follows from (2.24). Applying this to (2.27), together with the
Cauchy–Schwarz inequality for a(·, ·;µ) and (2.8), we obtain

�qN − pN (µ)�Y ≤ γb(µ)

βN (µ)
�p(µ)− qN�Y +

�

γa(µ)

βN (µ)
�euN (µ)�X,µ, ∀ qN ∈ YN ; (2.28)

the a priori error estimate (2.23) thus holds again from the triangle inequality, (2.28), (2.26),
and (2.8).
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2.4 A Posteriori Error Estimation

We now aim to develop not only efficient reduced order approximations, but also a posteriori
error estimates that are rigorous, sharp, and computationally inexpensive.

In this section, we again assume that the low-dimensional reduced basis approxima-
tion spaces XN , YN are constructed such that for any given parameter µ ∈ D, a solution
(uN (µ), pN (µ)) ∈ XN × YN to (2.14) exists. We may then derive upper bounds as required
for the errors euN (µ) and epN (µ) in the reduced basis approximations uN (µ) and pN (µ), re-
spectively. Symmetric saddle point problems shall be discussed as a special case in which
these bounds can be further sharpened.

2.4.1 Ingredients

To formulate rigorous and computationally inexpensive upper bounds for the respective
errors defined in (2.18), we first have to introduce further ingredients. The first set of
ingredients consists of computationally (Online-)efficient lower and upper bounds to the
truth continuity and coercivity constants (2.8) and (2.10),

γLBa (µ) ≤ γa(µ) ≤ γUB
a (µ),

αLB
a (µ) ≤ αa(µ) ≤ αUB

a (µ),
∀ µ ∈ D, (2.29)

and to the truth Brezzi and Babuška inf-sup constants (2.11) and (2.12),

βLB
Br (µ) ≤ βBr(µ) ≤ βUB

Br (µ),

βLB
Ba (µ) ≤ βBa(µ) ≤ βUB

Ba (µ),
∀ µ ∈ D. (2.30)

The second set of ingredients consists of dual norms of the residuals associated with the
reduced basis approximation,

�r1N (·;µ)�X� = sup
v∈X

r1N (v;µ)

�v�X
, �r2N (·;µ)�Y � = sup

q∈Y

r2N (q;µ)

�q�Y
, (2.31)

where, for all µ ∈ D, r1N (·;µ) ∈ X � and r2N (·;µ) ∈ Y � are defined as

r1N (v;µ) ≡ f(v;µ)− a(uN (µ), v;µ)− b(v, pN (µ);µ), ∀ v ∈ X, (2.32)

r2N (q;µ) ≡ g(q;µ)− b(uN (µ), q;µ), ∀ q ∈ Y. (2.33)

The total residual is then given by rN ((v, q);µ) ≡ r1N (v;µ)+ r2N (q;µ) for all (v, q) ∈ Z, with
its dual norm (see Appendix B)

�rN (·;µ)�Z� = sup
(v,q)∈Z

rN ((v, q);µ)

�(v, q)�Z
=

�

�r1N (·;µ)�2X� + �r2N (·;µ)�2Y � , ∀ µ ∈ D. (2.34)

2.4.2 Error Bound Formulation

We may now formulate a posteriori error bounds for the respective errors (2.18) in the
reduced basis approximation. The following proposition represents a well-known result for
noncoercive problems [72, 76, 79, 106].
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Proposition 2.4.1. For any given µ ∈ D, N ∈ Nmax, and βLB
Ba (µ) satisfying (2.30), we

define

∆
Ba
N (µ) ≡ �rN (·;µ)�Z�

βLB
Ba (µ)

. (2.35)

Then, ∆Ba
N (µ) is an upper bound for the error eN (µ) such that

�eN (µ)�Z ≤ ∆
Ba
N (µ), ∀ µ ∈ D, ∀ N ∈ Nmax. (2.36)

Proof. The above error bound directly follows from the Banach–Nečas–Babuška theorem
[5, 27] and (2.30).

Since many engineering outputs of interest such as average vorticity or pressure drop
depend on either the primal variable (velocity) u(µ) or the Lagrange multiplier (pressure)
p(µ), we aim to develop separate bounds for the errors in the reduced basis approximations
uN (µ) and pN (µ). Noting that a posteriori reduced basis error bounds for coercive and gen-
eral noncoercive problems can be derived from standard stability results, we apply Brezzi’s
theory for saddle point problems [12] to our problem setting. Since some aspects of this
theory are important also to the construction of reduced basis approximation spaces in §2.5
and §2.7, we briefly summarize the proof below.

Proposition 2.4.2. For any given µ ∈ D, N ∈ Nmax, and αLB
a (µ), γUB

a (µ), βLB
Br (µ) satisfy-

ing (2.29) and (2.30), we define

∆
u,Br
N (µ) ≡ �r1N (·;µ)�X�

αLB
a (µ)

+

�

1 +
γUB
a (µ)

αLB
a (µ)

�

�r2N (·;µ)�Y �

βLB
Br (µ)

, (2.37)

∆
p,Br
N (µ) ≡ �r1N (·;µ)�X�

βLB
Br (µ)

+
γUB
a (µ)

βLB
Br (µ)

∆
u,Br
N (µ). (2.38)

Then, ∆u,Br
N (µ) and ∆

p,Br
N (µ) are upper bounds for the errors euN (µ) and epN (µ) such that

�euN (µ)�X ≤ ∆
u,Br
N (µ), �epN (µ)�Y ≤ ∆

p,Br
N (µ), ∀ µ ∈ D, ∀ N ∈ Nmax. (2.39)

Proof. Let µ ∈ D and N ∈ Nmax. By (2.32), (2.33), and (2.13), the errors euN (µ) ∈ X and
epN (µ) ∈ Y satisfy the equations

a(euN (µ), v;µ) + b(v, epN (µ);µ) = r1N (v;µ), ∀ v ∈ X, (2.40)

b(euN (µ), q;µ) = r2N (q;µ), ∀ q ∈ Y. (2.41)

We first consider the error euN (µ) ∈ X in the approximation of the primal variable. This
may be uniquely decomposed into euN (µ) = e0N (µ) + e⊥N (µ), where e0N (µ) ∈ ker(B(µ)) and
e⊥N (µ) ∈ ker(B(µ))⊥ ≡ { v ∈ X | (v, v0)X = 0 for all v0 ∈ ker(B(µ)) }. From (2.40),
e0N (µ) ∈ ker(B(µ)) then solves

a(e0N (µ), v0;µ) = r1N (v0;µ)− a(e⊥N (µ), v0;µ), ∀ v0 ∈ ker(B(µ)),
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and it is thus bounded by

�e0N (µ)�X ≤ 1

αa(µ)
sup

v0∈ker(B(µ))

r1N (v0;µ)− a(e⊥N (µ), v0;µ)

�v0�X
(2.42)

≤ 1

αa(µ)

�

�r1N (·;µ)�X� + γa(µ)�e⊥N (µ)�X
�

, (2.43)

using (2.8), (2.10), and the classical Lax–Milgram lemma (see, e.g., [27, 89]). By the LBB
inf-sup condition (2.11), it is also true that (see, e.g., [12], [13, §II.1, Proposition 1.2])

βBr(µ) = inf
v∈ker(B(µ))⊥

sup
q∈Y

b(v, q;µ)

�v�X�q�Y
. (2.44)

Applied to e⊥N (µ) ∈ ker(B(µ))⊥, this yields

�e⊥N (µ)�X ≤ 1

βBr(µ)
sup
q∈Y

b(e⊥N (µ), q;µ)

�q�Y
=

�r2N (·;µ)�Y �

βBr(µ)
, (2.45)

where the equality follows from (2.41) as B(µ) e⊥N (µ) = B(µ) euN (µ) in Y �. We then obtain
the bound (2.37) for �euN (µ)�X by combining (2.43), (2.45) and (2.29), (2.30).

We now turn to the error in the approximation of the Lagrange multiplier. From (2.11)
and (2.40), we derive that

�epN (µ)�Y ≤ 1

βBr(µ)
sup
v∈X

b(v, epN (µ);µ)

�v�X
=

1

βBr(µ)
sup
v∈X

r1N (v;µ)− a(euN (µ), v;µ)

�v�X
≤ 1

βBr(µ)

�

�r1N (·;µ)�X� + γa(µ)�euN (µ)�X
�

. (2.46)

Together with (2.37) and again (2.29), (2.30), this finally yields (2.38) and (2.39).

Clearly, we can now construct another rigorous upper bound ∆Br
N (µ) for the combined

error eN (µ) = (euN (µ), epN (µ)): From (2.39), we obtain

�eN (µ)�Z ≤
�

�

∆
u,Br
N (µ)

�2
+
�

∆
p,Br
N (µ)

�2 ≡ ∆
Br
N (µ), ∀ µ ∈ D, N ∈ Nmax. (2.47)

As a measure of the quality of the proposed error estimators, we introduce the associated
effectivities

ηBa
N (µ) ≡ ∆Ba

N (µ)

�eN (µ)�Z
, ηBr

N (µ) ≡ ∆Br
N (µ)

�eN (µ)�Z
, µ ∈ D, N ∈ Nmax. (2.48)

Effectivities ≥ 1 thus indicate that the error estimate is rigorous; effectivities close to unity
indicate that the error estimate is sharp. The following corollary specifies this behavior for
the error bounds derived above.

Corollary 2.4.3. For any given µ ∈ D and N ∈ Nmax, the effectivities of the a posteriori
error bounds (2.35) and (2.47) satisfy

1 ≤ ηBa
N (µ) ≤ γa(µ) + γb(µ)

βLB
Ba (µ)

, 1 ≤ ηBr
N (µ) ≤ C1(µ)

�

γa(µ) + γb(µ)
�

, (2.49)

where C1(µ) > 0 is a constant depending on αLB
a (µ), γUB

a (µ), and βLB
Br (µ).
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Proof. Let µ be any parameter in D and N ∈ Nmax. The error bounds are rigorous by (2.36)
and (2.47), and it only remains to show the validity of the upper bounds for the effectivities.

First, we consider the effectivities associated with ∆Ba
N (µ). By (2.40), (2.41) and (2.8),

(2.9), the total residual satisfies

rN ((v, q);µ) = r1N (v;µ) + r2N (q;µ) = a(euN (µ), v;µ) + b(v, epN (µ);µ) + b(euN (µ), q;µ)

≤ γa(µ)�euN (µ)�X�v�X + γb(µ)�v�X�epN (µ)�Y + γb(µ)�euN (µ)�X�q�Y

=

�

�v�X
�q�Y

�t�
γa(µ) γb(µ)
γb(µ) 0

��

�euN (µ)�X
�epN (µ)�Y

�

, ∀ (v, q) ∈ Z.

This may be estimated in terms of the Euclidean norm � · �2, i.e.,

rN ((v, q);µ) ≤ �(v, q)�Z
�

�

�

�

�

γa(µ) γb(µ)
γb(µ) 0

��

�

�

�

2

�(euN (µ), epN (µ))�Z

≤
�

γa(µ) + γb(µ)
�

�eN (µ)�Z�(v, q)�Z , ∀ (v, q) ∈ Z,

where the last inequality follows from the relation � · �2 ≤
�

� · �1� · �∞ between matrix
norms (see Appendix A). Thus, the first part of (2.49) holds from the definition of ∆Ba

N (µ)
in (2.35).

We now turn to the effectivities associated with ∆Br
N (µ). Again from (2.40), (2.41), and

(2.8), (2.9), it is clearly also true that

�r1N (·;µ)�X� ≤ γa(µ)�euN (µ)�X + γb(µ)�epN (µ)�Y , (2.50)

�r2N (·;µ)�Y � ≤ γb(µ)�euN (µ)�X . (2.51)

Both residual dual norms (using either the Cauchy–Schwarz inequality or by adding terms)
are then particularly bounded by

�

γa(µ)
2 + γb(µ)

2
�1/2

�eN (µ)�Z ≤
�

γa(µ) + γb(µ)
�

�eN (µ)�Z ,

and we obtain for ∆
u,Br
N (µ) and ∆

p,Br
N (µ) that

∆
u,Br
N (µ) ≤

�

1

αLB
a (µ)

+

�

1 +
γUB
a (µ)

αLB
a (µ)

�

1

βLB
Br (µ)

�

�

γa(µ) + γb(µ)
�

�eN (µ)�Z ,

∆
p,Br
N (µ) ≤ 1

βLB
Br (µ)

�

1 +
γUB
a (µ)

αLB
a (µ)

��

1 +
γUB
a (µ)

βLB
Br (µ)

�

�

γa(µ) + γb(µ)
�

�eN (µ)�Z ;

the statement (2.49) now directly follows from the definition of ∆Br
N (µ) in (2.47).

Remark 2.4.4. We here make some additional observations on the a posteriori error bounds
given in Proposition 2.4.2 that shall be important also to the construction of reduced basis
approximation spaces in §2.5.

It is clear from Corollary 2.4.3 that the residual dual norms (2.31) provide an a posteriori
error estimator for �eN (µ)�Z that is not only reliable but also efficient (in the sense that
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the terms are used in the finite element community, i.e., bounding the error up to some
constants from above and from below). Now, for any µ ∈ D and N ∈ Nmax, it follows from
(2.42), (2.45), and (2.8) that the error �euN (µ)�X is in fact bounded by

�euN (µ)�X ≤ 1

αa(µ)
sup

v0∈ker(B(µ))

r1N (v0;µ)

�v0�X
+

�

1 +
γa(µ)

αa(µ)

��r2N (·;µ)�Y �

βBr(µ)
; (2.52)

additionally using (2.51) and

sup
v0∈ker(B(µ))

r1N (v0;µ)

�v0�X
= sup

v0∈ker(B(µ))

a(euN (µ), v0;µ)

�v0�X
≤ γa(µ)�euN (µ)�X , (2.53)

we thus obtain a reliable and efficient a posteriori error estimator only for �euN (µ)�X . �

Remark 2.4.5. Following techniques used in [48] to obtain a priori stability estimates for
the reduced basis approximations, we can derive an upper bound for the error in uN (µ) that
is similar to (2.37) but slightly differs in the weighting of the residual dual norms: For any
µ ∈ D and N ∈ Nmax,

1

2αLB
a (µ)

�

�r1N (·;µ)�X� +
γUB
a (µ)

βLB
Br (µ)

�r2N (·;µ)�Y �

�

+

�

�

1

2αLB
a (µ)

�

�r1N (·;µ)�X� +
γUB
a (µ)

βLB
Br (µ)

�r2N (·;µ)�Y �

��2

+
�r2N (·;µ)�Y ��r1N (·;µ)�X�

αLB
a (µ)βLB

Br (µ)
(2.54)

is a rigorous upper bound for �euN (µ)�X . The proof follows ideas in [48] and we only outline
the main steps. From (2.10), (2.40), and (2.41), we have

αa(µ)�euN (µ)�2X ≤ a(euN (µ), euN (µ);µ) = r1N (euN (µ);µ)− r2N (epN (µ);µ)

≤ �r1N (·;µ)�X��euN (µ)�X + �r2N (·;µ)�Y ��epN (µ)�Y .
Using further (2.46), we obtain the quadratic inequality

αa(µ)�euN (µ)�2X −
�

�r1N (·;µ)�X� +
γa(µ)

βBr(µ)
�r2N (·;µ)�Y �

�

�euN (µ)�X

− �r2N (·;µ)�Y ��r1N (·;µ)�X�

βBr(µ)
≤ 0,

which we may solve for �euN (µ)�X ; this immediately leads to (2.54). Again combined with
(2.46), this clearly also yields an associated error bound for �epN (µ)�Y . �

In the special case of a symmetric problem, the a posteriori error bounds given in Propo-
sition 2.4.2 can be improved. Now, also the following result holds true.

Proposition 2.4.6. Let a(·, ·;µ) be symmetric for all µ ∈ D. For any given µ ∈ D,
N ∈ Nmax, and αLB

a (µ), γUB
a (µ), βLB

Br (µ) satisfying (2.29) and (2.30), we define

∆
u,sym
N (µ) ≡ �r1N (·;µ)�X�

αLB
a (µ)

+

�

γUB
a (µ)

αLB
a (µ)

�r2N (·;µ)�Y �

βLB
Br (µ)

, (2.55)

∆
p,sym
N (µ) ≡

�

1 +

�

γUB
a (µ)

αLB
a (µ)

�

�r1N (·;µ)�X�

βLB
Br (µ)

+
γUB
a (µ)

βLB
Br (µ)

�r2N (·;µ)�Y �

βLB
Br (µ)

. (2.56)
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Then, ∆u,sym
N (µ) and ∆

p,sym
N (µ) are upper bounds for the errors euN (µ) and epN (µ) such that

�euN (µ)�X ≤ ∆
u,sym
N (µ) < ∆

u,Br
N (µ), �epN (µ)�Y ≤ ∆

p,sym
N (µ) < ∆

p,Br
N (µ), (2.57)

for all µ ∈ D and N ∈ Nmax.

Proof. Let µ be an arbitrary but fixed parameter in D and N ∈ Nmax. We now proceed as in
the proof of Proposition 2.4.2, only that we may now exploit the fact that a(·, ·;µ) defines an
inner product on X. We recall that the associated norm is denoted by � · �X,µ =

�

a(·, ·;µ).
The error euN (µ) ∈ X in the approximation of the primal variable may now be uniquely

decomposed into euN (µ) = ẽ0N (µ) + ẽ⊥N (µ) where ẽ0N (µ) ∈ ker(B(µ)) and ẽ⊥N (µ) ∈ X such
that

a(ẽ⊥N (µ), v0;µ) = 0, ∀ v0 ∈ ker(B(µ)). (2.58)

From (2.40) and (2.58), ẽ0N (µ) ∈ ker(B(µ)) then solves

a(ẽ0N (µ), v0;µ) = r1N (v0;µ)− a(ẽ⊥N (µ), v0;µ) = r1N (v0;µ), ∀ v0 ∈ ker(B(µ)).

Setting here v0 = ẽ0N (µ), we have

�ẽ0N (µ)�2X,µ = r1N (ẽ0N (µ);µ) ≤ �ẽ0N (µ)�X sup
v0∈ker(B(µ))

r1N (v0;µ)

�v0�X

≤ 1
�

αa(µ)
�ẽ0N (µ)�X,µ sup

v0∈ker(B(µ))

r1N (v0;µ)

�v0�X
,

where the last inequality follows from (2.10). Hence, ẽ0N (µ) is bounded by

�ẽ0N (µ)�X,µ ≤ 1
�

αa(µ)
sup

v0∈ker(B(µ))

r1N (v0;µ)

�v0�X
≤ �r1N (·;µ)�X�

�

αa(µ)
. (2.59)

To obtain an upper bound for ẽ⊥N (µ), we here consider the inf-sup constant

β̃(µ) ≡ inf
q∈Y

sup
v∈X

b(v, q;µ)

�q�Y �v�X,µ
. (2.60)

From (2.8) and (2.10), we have

βBr(µ)
�

γa(µ)
≤ β̃(µ) ≤ βBr(µ)

�

αa(µ)
, (2.61)

and thus particularly β̃(µ) > 0 by the LBB inf-sup condition (2.11). Consequently, analogous
to (2.44), also

β̃(µ)�v�X,µ ≤ sup
q∈Y

b(v, q;µ)

�q�Y
holds true for any v ∈ X such that a(v, v0;µ) = 0 for all v0 ∈ ker(B(µ)). Applied to ẽ⊥N (µ)
satisfying (2.58), this yields

�ẽ⊥N (µ)�X,µ ≤ 1

β̃(µ)
sup
q∈Y

b(ẽ⊥N (µ), q;µ)

�q�Y
=

�r2N (·;µ)�Y �

β̃(µ)
, (2.62)
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where the equality again follows from (2.41) as B(µ) ẽ⊥N (µ) = B(µ) euN (µ) in Y �. Now, using
the triangle inequality, we may finally derive that

�euN (µ)�X,µ ≤ �ẽ0N (µ)�X,µ + �ẽ⊥N (µ)�X,µ ≤ �r1N (·;µ)�X�

�

αa(µ)
+

�

γa(µ)

βBr(µ)
�r2N (·;µ)�Y � , (2.63)

by combining (2.59), (2.62), and (2.61); the bound (2.55) thus follows from (2.63), (2.10),
and (2.29), (2.30).

For the error epN (µ) in the approximation of the Lagrange multiplier, we again obtain from
(2.11) and (2.40) that

�epN (µ)�Y ≤ 1

βBr(µ)
sup
v∈X

b(v, epN (µ);µ)

�v�X
=

1

βBr(µ)
sup
v∈X

r1N (v;µ)− a(euN (µ), v;µ)

�v�X
≤ 1

βBr(µ)

�

�r1N (·;µ)�X� +
�

γa(µ)�euN (µ)�X,µ

�

, (2.64)

where the last inequality holds by the Cauchy–Schwarz inequality for the inner product
a(·, ·;µ) and (2.8). Together with (2.63) and again (2.29), (2.30), this leads to (2.56).

As it is clearly αa(µ) ≤ γa(µ), we have ∆
u,sym
N (µ) < ∆

u,Br
N (µ) and ∆

p,sym
N (µ) < ∆

p,Br
N (µ),

which eventually yields (2.57).

Remark 2.4.7. We here comment on the symmetric case in a little more detail.
First, we clearly obtain

∆
sym
N (µ) ≡

�

�

∆
u,sym
N (µ)

�2
+
�

∆
p,sym
N (µ)

�2
, µ ∈ D, N ∈ Nmax, (2.65)

as a rigorous upper bound for the combined error eN (µ) such that

�eN (µ)�Z ≤ ∆
sym
N (µ) < ∆

Br
N (µ), ∀ µ ∈ D, ∀ N ∈ Nmax.

Analogous to Corollary 2.4.3, the associated effectivities then satisfy

1 ≤ η
sym
N (µ) ≡ ∆

sym
N (µ)

�eN (µ)�Z
≤ Csym

1 (µ)
�

γa(µ) + γb(µ)
�

, ∀ µ ∈ D, ∀ N ∈ Nmax, (2.66)

where 0 < Csym
1 (µ) < C1(µ) is a constant depending on αLB

a (µ), γUB
a (µ), and βLB

Br (µ).
Second, also the error bound (2.52) given in Remark 2.4.4 may be specialized to the

symmetric case: Using (2.59), (2.62), (2.61), (2.10), and (2.51), (2.53),

1

αa(µ)
sup

v0∈ker(B(µ))

r1N (v0;µ)

�v0�X
+

�

γa(µ)

αa(µ)

�r2N (·;µ)�Y �

βBr(µ)

here represents a reliable and efficient a posteriori error estimator for �euN (µ)�X .
Third, the error euN (µ) may clearly also be measured in the energy norm � · �X,µ =

�

a(·, ·;µ). For any given µ ∈ D, N ∈ Nmax, and αLB
a (µ), γUB

a (µ), βLB
Br (µ) satisfying (2.29)

and (2.30), we define

∆̃
u,sym
N (µ) ≡ �r1N (·;µ)�X�

�

αLB
a (µ)

+

�

γUB
a (µ)

βLB
Br (µ)

�r2N (·;µ)�Y � . (2.67)
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Then, from (2.63) and (2.29), (2.30), ∆̃u,sym
N (µ) is an upper bound for euN (µ) such that

�euN (µ)�X,µ ≤ ∆̃
u,sym
N (µ), ∀ µ ∈ D, ∀ N ∈ Nmax. (2.68)

It directly follows from the proof of Proposition 2.4.6 that the effectivities η̃
u,sym
N (µ) ≡

∆̃
u,sym
N (µ)/�euN (µ)�X,µ and η

u,sym
N (µ) ≡ ∆

u,sym
N (µ)/�euN (µ)�X satisfy η̃

u,sym
N (µ) ≤ η

u,sym
N (µ)

for all µ ∈ D, N ∈ Nmax. �

In the following, we shall not only examine the above a posteriori error bounds with respect
to sharpness and computational efficiency (see §2.6.2 and §3.3.4), but also emphasize their
importance to the construction of efficient reduced basis approximation spaces (see §2.7).

2.5 Construction of Reduced Basis Approximation Spaces

We now turn to the construction of the reduced basis approximation spaces XN and YN . In
general, the reduced basis method constructs its low-dimensional approximation spaces by
exploiting the parametric dependence of the problem: Solutions to the truth problem (2.13)
reside on the subset

M ≡ { (u(µ), p(µ)) | µ ∈ D } ⊂ X × Y,

and thus the method typically constructs XN×YN , N ∈ Nmax, by focusing on M. According
to the so-called Lagrange approach, we consider the following option: We assume that we
are given a sample of parameter snapshots DN ≡ {µn | 1 ≤ n ≤ N } ⊂ D, N ∈ Nmax;
for our present purposes, DN may represent any sequence of nested samples in D, i.e.,
D1 ⊂ D2 ⊂ · · · ⊂ DN . For N ∈ Nmax, we then define our reduced basis approximation
spaces XN and YN as

YN ≡ span{ p(µn) | 1 ≤ n ≤ N } = span{ ξn | 1 ≤ n ≤ N }, (2.69)

X0
N ≡ span{u(µn) | 1 ≤ n ≤ N }, (2.70)

where ξn ∈ Y , 1 ≤ n ≤ N , denote (·, ·)Y -orthonormal basis functions; we shall refer to this
choice as Option 0.

For saddle point problems, building the reduced basis approximation space solely from
snapshots (u(µN ), p(µN )) ∈ M, N ∈ Nmax, is not sufficient. We have already seen in §2.3.2
that the inf-sup condition (2.17) represents an additional requirement for XN , YN to provide
a well-posed system (2.14). Now, let µ be an arbitrary but fixed parameter in D. A priori,
it is not known whether (X0

N , YN ) satisfies βN (µ) > 0. More precisely, in case of Option 0,
we meet either of the following two situations:

(i) βN (µ) = 0: The system (2.14) is ill-posed as it is not uniquely solvable (see §2.3.2).

(ii) βN (µ) > 0: The system (2.14) is well-posed (see §2.3.2) and thus uniquely solvable;
we obtain approximations uN (µ) and pN (µ) for u(µ) and p(µ), respectively. However,
choosing the approximation spaces XN , YN as in (2.69), (2.70) is in fact a special case:
Whenever βN (µ) > 0, we in particular have dim(X0

N ) = dim(YN ). Consequently, we
here encounter a locking phenomenon: Positive inf-sup constants βN (µ) provide a well-
posed system (2.14), but the operator BN (µ) is not only surjective but bijective; the
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space ker(BN (µ)) is thus trivial and there exists only one solution, BN (µ)−1gN (µ),
satisfying the constraints (2.16). This solution is unlikely to provide an accurate
approximation for u(µ) as components of u(µ) in ker(B(µ)) determined by the first
equation in (2.13) are essentially neglected.

In summary, Option 0 cannot be expected to provide useful approximations.
We now consider further options to construct the reduced basis approximation spaces that

aim to avoid the situations above. First, we address the situation in (i) and thus the issue
that the inf-sup constants βN (µ) may approach zero for a given parameter µ ∈ D. It is
shown in [92, 96] that the space X0

N can be enriched such that we obtain a provably stable
pair (XN , YN ) where βN (µ) > 0 holds for all µ ∈ D. To explain this in detail, we have to
introduce further notations. For µ ∈ D and 1 ≤ k ≤ Qb, let Tµ : Y → X and T k : Y → X
be the Riesz representers given by

(Tµq, v)X = b(v, q;µ), (T kq, v)X = bk(v, q), ∀ v ∈ X, q ∈ Y ; (2.71)

here, bk(·, ·), 1 ≤ k ≤ Qb, are the parameter-independent bilinear forms in the affine decom-
position (2.7) of b(·, ·;µ). Since Tµ and T k satisfy

Tµq = arg sup
v∈X

b(v, q;µ)

�v�X
, T kq = arg sup

v∈X

bk(v, q)

�v�X
, ∀ q ∈ Y, (2.72)

for all µ ∈ D, 1 ≤ k ≤ Qb, they are also called supremizer functions. By the affine
decomposition (2.7) for b(·, ·;µ), we in particular have

Tµq =

Qb
�

k=1

Θ
k
b (µ)T

kq, ∀ q ∈ Y, ∀ µ ∈ D. (2.73)

Now, to any given discrete space YN ⊆ Y with basis functions ξn ∈ Y , 1 ≤ n ≤ NY , a
sufficient condition for (XN , YN ) to form a stable pair is given by

Tµ ξn ∈ XN , ∀ 1 ≤ n ≤ NY , ∀ µ ∈ D; (2.74)

in this case, it can be shown (see [92, 96]) that

βN (µ) ≥ βBr(µ), ∀ µ ∈ D, (2.75)

and (2.17) thus follows from the LBB inf-sup condition (2.11). Due to the affine expansion
(2.73), (2.74) is satisfied by the finite-dimensional space

span{T kξn | 1 ≤ n ≤ NY , 1 ≤ k ≤ Qb } ⊇ {Tµ ξn | 1 ≤ n ≤ NY , µ ∈ D }. (2.76)

Associated to YN defined as in (2.69), we may therefore choose XN as

X1
N ≡ X0

N ⊕ span{T kξn | 1 ≤ n ≤ N, 1 ≤ k ≤ Qb }, (2.77)

and obtain by (2.74) and (2.76) pairs of approximation spaces (X1
N , YN ), N ∈ Nmax, which

satisfy (2.17) for all parameter values µ ∈ D; we shall refer to this choice as Option 1.



2.6 Offline-Online Computational Procedure 25

However, Option 1 is also rather expensive as it requires QbN additional basis functions
compared to X0

N . For this reason, we consider Option 2 as the following modification (see
[88, 96]): We here add only N supremizer functions instead of QbN as in (2.77) to X0

N ,

X2
N ≡ X0

N ⊕ span{Tµnξn | 1 ≤ n ≤ N }. (2.78)

In this case, we can no longer prove stability of (X2
N , YN ) a priori but obtain significantly

lower space dimensions than in Option 1.
Now, we focus on the situation described in (ii). The primary issue here is not a vanishing

inf-sup constant βN (µ) but rather a trivial space ker(BN (µ)). In Options 1 and 2, the situ-
ation of ker(B(µ)) being trivial has been avoided by an enrichment of X0

N with supremizer
functions providing particularly large inf-sup constants βN (µ). For any parameter µ ∈ D,
it can be expected from (2.52) in Remark 2.4.4 and also the a priori error estimates in
§2.3.3 that small inf-sup constants βN (µ) will have more dramatic effects on �epN (µ)�Y than
on �euN (µ)�X (see also [13, p. 57, Remark 2.8]): By (2.52) and (2.19), (2.22), �euN (µ)�X
clearly profits from a large space ker(BN (µ)) but does not explicitly depend on the values
of βN (µ). The right-hand side in (2.52) suggests that �euN (µ)�X first of all benefits from
a good testing space ker(B(µ)) ∩XN ⊆ ker(BN (µ)). For this purpose, we now enrich X0

N

with additional truth solutions u(µ�) ∈ ker(B(µ�)): Given a second sample of parameter
snapshots D�

N ≡ {µ�
n | 1 ≤ n ≤ N } ⊂ D, D�

N ∩DN = ∅, N ∈ Nmax, we now define Option 3:

X3
N ≡ X0

N ⊕ span{u(µ�
n) | 1 ≤ n ≤ N }. (2.79)

Again, we cannot prove a priori that this choice provides stable pairs (X3
N , YN ), N ∈ Nmax.

Note that for algebraic stability reasons, we in fact express both YN and XN by orthonor-
mal basis functions: Analogous to (2.69), we also set XN = span{φm | 1 ≤ m ≤ NX },
where φm ∈ X, 1 ≤ m ≤ NX , are (·, ·)X -orthonormal.

2.6 Offline-Online Computational Procedure

The basic strategy lies in the µ-affine dependence (2.7) of the involved operators. Since
much of this machinery is by now standard in reduced basis methods (see, e.g., [87, 95]), we
only briefly summarize the Offline-Online procedure and associated computational cost.

2.6.1 Reduced Basis Approximation

Noting that for any µ ∈ D, we can expand uN (µ) ∈ XN and pN (µ) ∈ YN into

uN (µ) =

NX
�

m=1

uN m(µ)φm, pN (µ) =

NY
�

n=1

pN n(µ)ξn, (2.80)

the reduced basis system (2.14) may be written as

NX
�

m=1

Qa
�

k=1

Θ
k
a(µ)A

k
N imuN m(µ) +

NY
�

n=1

Qb
�

k=1

Θ
k
b (µ)B

k
N ni pN n(µ) =

Qf
�

k=1

Θ
k
f (µ)f

k
N i, (2.81)
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for all 1 ≤ i ≤ NX , and

NX
�

m=1

Qb
�

k=1

Θ
k
b (µ)B

k
N jmuN m(µ) =

Qg
�

k=1

Θ
k
g(µ)g

k
N j , ∀ 1 ≤ j ≤ NY ; (2.82)

here, the µ-independent quantities are given by

Ak
N ij ≡ ak(φj ,φi), 1 ≤ i, j ≤ NX , 1 ≤ k ≤ Qa,

Bk
N ji ≡ bk(φi, ξj), 1 ≤ i ≤ NX , 1 ≤ j ≤ NY , 1 ≤ k ≤ Qb,

fk
N i ≡ fk(φi), 1 ≤ i ≤ NX , 1 ≤ k ≤ Qf ,

gkN j ≡ gk(ξj), 1 ≤ j ≤ NY , 1 ≤ k ≤ Qg.

(2.83)

Offline, we first form and store all parameter-independent quantities (2.83) at O(N ∗)
computational cost and storage. Online, for any given parameter value µ ∈ D, we then
perform the required sums in (2.81), (2.82) and solve the resulting NZ ×NZ system of linear
equations for (uN (µ), pN (µ)) at O(N3

Z) computational cost. The expensive Offline stage,
which is performed only once and whose cost depends on the large truth dimension N , thus
enables the subsequent very inexpensive Online stage that does not depend on N but only
on the considerably smaller dimension NZ of the reduced basis approximation space.

2.6.2 A Posteriori Error Bounds

It is clear that there are two sets of components to the computation of the a posteriori error
bounds: the calculation of the residual dual norms (2.31), and the calculation of the required
lower and upper bounds (2.29), (2.30) to the coercivity, continuity, and/or inf-sup stability
constants. The former is again an application of now standard reduced basis techniques that
can be found in, e.g., [95]. The latter is achieved by a successive constraint method (SCM)
proposed by Huynh et al. [55]. We here summarize the main parts of the methodology
focusing on aspects specific to our saddle point context.

Remark 2.6.1. We note that there exist several approaches for the computation of lower
bounds to coercivity and inf-sup stability constants. The applicability of techniques proposed
in [71, 87] is unfortunately very restricted (e.g., to the case of positive coefficient functions
in (2.7)); for problems involving geometry variations, we rely on more general but also more
complicated and Offline-expensive approaches. Compared to earlier proposals [79, 97, 106],
the SCM in [55] represents a method that (i) is very generally applicable, (ii) performs better,
and (iii) is easier to implement. In addition to accurate lower bounds, it also provides upper
bounds that are remarkably sharp and thus constitute valuable estimates for the respective
coercivity and inf-sup constants. Nevertheless, for inf-sup constants, it still involves notable
Offline computations that depend on a Q2-term affine parameter expansion (see (2.99)). This
issue has been tackled by more recent techniques based on a “natural norm” [53]. However,
though well suited for certain problems, the proposed algorithm is in our situation highly
cumbersome and involves eigenvalue problems that are much more difficult to solve; also,
no upper bounds are provided. �
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Dual Norms of the Residuals

We first exploit the µ-affine expansions (2.7) and (2.80) of the involved operators and the
reduced basis approximation, respectively, to express the residuals r1N (·;µ) and r2N (·;µ)
defined in (2.32) and (2.33) as

r1N (v;µ) =

Qf
�

k=1

Θ
k
f (µ)f

k(v)−
NX
�

m=1

Qa
�

k=1

uN m(µ)Θk
a(µ) a

k(φm, v)

−
NY
�

n=1

Qb
�

k=1

pN n(µ)Θ
k
b (µ) b

k(v, ξn), ∀ v ∈ X,

r2N (q;µ) =

Qg
�

k=1

Θ
k
g(µ)g

k(q)−
NX
�

m=1

Qb
�

k=1

uN m(µ)Θk
b (µ) b

k(φm, q), ∀ q ∈ Y.

Setting Q1 ≡ Qf +NXQa +NY Qb and Q2 ≡ Qg +NXQb, this can be written succinctly as

r1N (v;µ) =

Q1
�

k=1

Θ
1,k
N (µ) r1,kN (v), ∀ v ∈ X, (2.84)

r2N (q;µ) =

Q2
�

k=1

Θ
2,k
N (µ) r2,kN (q), ∀ q ∈ Y, (2.85)

where the coefficient functions Θ
1,k
N (µ), 1 ≤ k ≤ Q1, and Θ

2,k
N (µ), 1 ≤ k ≤ Q2, depend on

µ explicitly through the coefficient functions Θk
I(µ), 1 ≤ k ≤ QI , I = a, b, f, g, but also

implicitly through uN (µ) and pN (µ); r1,kN (·) ∈ X �, 1 ≤ k ≤ Q1, and r2,kN (·) ∈ Y �, 1 ≤ k ≤ Q2,
are parameter-independent linear functionals.

We now denote by ê1,kN ∈ X and ê2,kN ∈ Y the Riesz representers associated with r1,kN (·)

and r2,kN (·), respectively, which are obtained as the solutions to the µ-independent linear
problems

(ê1,kN , v)X = r1,kN (v), ∀ v ∈ X, ∀ 1 ≤ k ≤ Q1, (2.86)

(ê2,kN , q)Y = r2,kN (q), ∀ q ∈ Y, ∀ 1 ≤ k ≤ Q2. (2.87)

By (2.84) and (2.85), the Riesz representers ê1N (µ) ∈ X and ê2N (µ) ∈ Y associated with the
residuals r1N (·;µ) and r2N (·;µ) are then given by

ê1N (µ) =

Q1
�

k=1

Θ
1,k
N (µ) ê1,kN , ê2N (µ) =

Q2
�

k=1

Θ
2,k
N (µ) ê2,kN ,

and it finally follows that

�r1N (·;µ)�2X� = (ê1N (µ), ê1N (µ))X =

Q1
�

k,l=1

Θ
1,k
N (µ)Θ1,l

N (µ) (ê1,kN , ê1,lN )X , (2.88)

�r2N (·;µ)�2Y � = (ê2N (µ), ê2N (µ))Y =

Q2
�

k,l=1

Θ
2,k
N (µ)Θ2,l

N (µ) (ê2,kN , ê2,lN )Y . (2.89)



28 2 Approximation of Saddle Point Problems

We may now summarize the Offline-Online decomposition.
In the Offline stage, we find the Riesz representers ê1,kN , 1 ≤ k ≤ Q1, and ê2,kN , 1 ≤ k ≤

Q2, and form the associated inner products (ê1,kN , ê1,lN )X , 1 ≤ k, l ≤ Q1, and (ê2,kN , ê2,lN )Y ,
1 ≤ k, l ≤ Q2. These cost clearly depend on N : We have to solve Q1 and Q2 linear
problems of type (2.86) and (2.87), respectively, and to compute (Q1)

2 and (Q2)
2 inner

products in X and Y . In the Online stage, given the reduced basis coefficients uN m(µ),
1 ≤ m ≤ NX , and pN n(µ), 1 ≤ n ≤ NY , we can then readily compute the coefficient

functions Θ
1,k
N (µ), 1 ≤ k ≤ Q1, and Θ

2,k
N (µ), 1 ≤ k ≤ Q2. From the stored inner products,

we then assemble the sums (2.88) and (2.89) at O((Q1)
2) = O((Qf +NXQa+NY Qb)

2) and
O((Q2)

2) = O((Qg +NXQb)
2) operations, respectively. As desired, the operation count for

the Online stage is thus independent of N .
We now address the second component required for the calculation of the a posteriori

error bounds.

Lower and Upper Bounds to Coercivity Constants

We first discuss the calculation of (Online-)efficient lower and upper bounds (2.29) to the
coercivity constants αa(µ).

Following [55], the coercivity constants (2.10) can be written as the minimum of the
functional J : RQa ×D → R, J(y;µ) ≡ �Qa

k=1Θ
k
a(µ) yk,

αa(µ) = min
y∈Y

J(y;µ), ∀ µ ∈ D, (2.90)

over the set Y ≡ { y ∈ R
Qa | ∃ vy ∈ X : yk = ak(vy, vy)/�vy�2X , 1 ≤ k ≤ Qa }; here, ak(·, ·),

1 ≤ k ≤ Qa, are the parameter-independent bilinear forms in the affine decomposition (2.7).
Now, for any µ ∈ D, we approximate Y by sets YUB, YLB ⊆ R

Qa such that

YUB ⊆ Y ⊆ YLB, (2.91)

and clearly obtain lower and upper bounds to (2.90) by setting

αLB
a (µ) ≡ min

y∈YLB

J(y;µ), αUB
a (µ) ≡ min

y∈YUB

J(y;µ). (2.92)

The sets in (2.91) are constructed as follows: For a given Mα ∈ N and a sample CK ≡ {ωi |
1 ≤ i ≤ K} of parameters in D, let PMα(µ;CK) denote the set of the Mα points closest to
µ in the Euclidean norm. For any µ ∈ D, we then define

YLB(µ;CK) ≡ { y ∈ B | J(y;µ�) ≥ αa(µ
�), ∀ µ� ∈ PMα(µ,CK) }, (2.93)

YUB(CK) ≡ { y∗(ω) | ω ∈ CK } = { y∗(ω1), . . . , y
∗(ωK) }, (2.94)

where B ≡ �Qa

k=1[b
−
k , b

+
k ] ⊆ R

Qa with

b−k ≡ inf
v∈X

ak(v, v)

�v�2X
, b+k ≡ sup

v∈X

ak(v, v)

�v�2X
, ∀ 1 ≤ k ≤ Qa, (2.95)

and y∗(µ) ∈ R
Qa is given by

y∗(µ)k ≡ ak(vµ, vµ)

�vµ�2X
, ∀ 1 ≤ k ≤ Qa, where vµ ≡ arg inf

v∈X

a(v, v;µ)

�v�2X
. (2.96)
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These sets then satisfy (2.91) (see [55]) and thus, αLB
a (µ) and αUB

a (µ) defined by (2.92)
provide the required lower and upper bounds to αa(µ).

Now, the idea is to construct the parameter set CK sufficiently large so that for a given
µ ∈ D, (i) y∗(µ) will be sufficiently close to a member in YUB(CK) to provide a good upper
bound, and (ii) the constraints in YLB(µ;CK) will be sufficiently strict to provide a good
lower bound. For this purpose, we build CK by an Offline greedy algorithm: Starting with
an exhaustive sample Ξ of parameters in D and an initial sample C1 ≡ {ω1}, K = 1, we
enrich CK by the parameter for which the ratio (as an estimator for the relative error in the
lower and upper bounds)

αUB
a (µ)− αLB

a (µ)

αUB
a (µ)

(2.97)

attains its maximum over Ξ. The algorithm stops when (2.97) satisfies a prescribed tolerance
δSCM
tol < 1; we then set Kmax = K.
For the Offline stage, the notable computations are: (i) 2Qa eigenproblems over X to

form B (see (2.95)), (ii) Kmax eigenproblems over X to obtain αa(ω) and vω (see (2.96)) for
all ω ∈ CKmax

, (iii) KmaxQa inner products over X to form YUB(CKmax
), and (iv) |Ξ|Kmax

LP’s with 2Qa +Mα constraints to compute αLB
a (µ). For any given parameter µ ∈ D, we

then obtain αLB
a (µ), αUB

a (µ) in a highly efficient Online stage, where notable computations
are only a single LP with 2Qa+Mα constraints associated with αLB

a (µ). For the exact choice
of δSCM

tol and values for Kmax in practice, we refer to §3.3.4, §5.3.3, and §6.8.

Lower and Upper Bounds to Inf-Sup Constants

As suggested in [55], the calculation of (Online-)efficient lower and upper bounds (2.30) to
inf-sup constants can be traced back to the calculation of bounds to coercivity constants.

For the Brezzi inf-sup constants (2.11), we obtain from (2.72) that

(βBr(µ))
2 = inf

q∈Y

(Tµq, Tµq)X
�q�2Y

, ∀ µ ∈ D, (2.98)

and thus (βBr(µ))
2 represents the coercivity constant of the continuous, symmetric, and

coercive (due to (2.11)) bilinear form B(·, ·;µ) : Y × Y → R with B(p, q;µ) ≡ (Tµp, Tµq)X
for all p, q ∈ Y . From (2.73), B(·, ·;µ) can be µ-affinely expanded as

B(p, q;µ) = (Tµp, Tµq)X =

Q
�

K=1

Θ
K
B(µ)B

K(p, q), ∀ p, q ∈ Y, ∀ µ ∈ D, (2.99)

where Q ≡ Qb(Qb + 1)/2, and ΘK
B(µ), B

K(·, ·) are given by

Θ
K
B(µ) = Θ

(k,l)
B

(µ) ≡
�

1

1 + δkl

�

Θ
k
b (µ)Θ

l
b(µ), ∀ µ ∈ D,

BK(p, q) = B(k,l)(p, q) ≡ (T kp, T lq)X + (T lp, T kq)X , ∀ p, q ∈ Y,

for all 1 ≤ K ≡ (k, l) ≤ Q, 1 ≤ k ≤ l ≤ Qb; here, δkl denotes the Kronecker delta.
We therefore obtain (Online-)efficient lower and upper bounds to (βBr(µ))

2 by the method
described for coercivity constants. However, we note that the computational cost for the
Offline stage here depend on Q = O(Q2

b) ≥ Qb.
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An analogous procedure can be applied to compute (Online-)efficient lower and upper
bounds βLB

Ba (µ), β
UB
Ba (µ) to the Babuška inf-sup constants (2.12) (see [55]). It only differs in

the computational cost for the Offline stage: They here depend on Q2 where max{Qa, Qb} ≤
Q ≤ Qa +Qb.

Lower and Upper Bounds to Continuity Constants

For the calculation of (Online-)efficient lower and upper bounds (2.29) to the continuity con-
stants γa(µ), we distinguish between the symmetric and the nonsymmetric case: If a(·, ·;µ)
is symmetric for all µ ∈ D, lower and upper bounds may be computed by an analogous
procedure as applied for coercivity constants; the nonsymmetric case is then traced back to
the symmetric case by an analogous approach as pursued for inf-sup constants.

The symmetric case: We first consider the case where a(·, ·;µ) is symmetric for all µ ∈ D.
The continuity constants (2.8) are then given by

γa(µ) = sup
v∈X

a(v, v;µ)

�v�2X
= max

y∈Y
J(y;µ), ∀ µ ∈ D,

where the functional J and the set Y are defined as before. Therefore, for any µ ∈ D, we
here construct sets YLB(CK) ⊆ Y ⊆ YUB(µ;CK) by

YLB(CK) ≡ { y∗∗(ω) | ω ∈ CK },

YUB(µ;CK) ≡ { y ∈ B | J(y;µ�) ≤ γa(µ
�), ∀ µ� ∈ PMα(µ;CK) },

where y∗∗(µ) ∈ R
Qa is defined as

y∗∗(µ)k ≡ ak(wµ, wµ)

�wµ�2X
, ∀ 1 ≤ k ≤ Qa, where wµ ≡ arg sup

v∈X

a(v, v;µ)

�v�2X
;

lower and upper bounds to the continuity constants are then obtained by

γLBa (µ) ≡ max
y∈YLB(CK)

J(y;µ), γUB
a (µ) ≡ max

y∈YUB(µ;CK)
J(y;µ).

We build the set CK by the same greedy algorithm as described for coercivity constants,
only that we here consider the ratio

γUB
a (µ)− γLBa (µ)

γLBa (µ)

to estimate the error in the bounds; computational cost essentially remain the same as listed
for the coercivity constants.

The nonsymmetric case: Similar to (2.98), we obtain for the continuity constants (2.8)
that

(γa(µ))
2 = sup

v∈X

(Sµv, Sµv)X
�v�2X

, ∀ µ ∈ D,

where Sµ : X → X denotes the Riesz representer associated with a(·, ·;µ) given by

(Sµu, v)X = a(u, v;µ), ∀ v ∈ X, ∀ u ∈ X, ∀ µ ∈ D.
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Thus, (γa(µ))
2 represents the continuity constant of the continuous (due to (2.8)) and sym-

metric bilinear form A(·, ·;µ) : X ×X → R with A(u, v;µ) ≡ (Sµu, Sµv)X for all u, v ∈ X,
which moreover exhibits a µ-affine expansion analogous to (2.99).

We therefore obtain (Online-)efficient lower and upper bounds to (γa(µ))
2 by the method

described above for the symmetric case. However, as for inf-sup constants, we note that the
computational cost for the Offline stage now depend on Q2

a ≥ Qa.

2.7 Adaptive Sampling Procedures

In this section, all parts of the methodology discussed in §2.4, §2.5, and §2.6 coalesce to
tackle the key question of how to construct reduced basis approximation spaces providing
rapidly convergent approximations.

Rigorous and computationally efficient reduced basis a posteriori error bounds enable us
to invoke a greedy sampling process (see [10, 15] and the references therein) identifying
relatively few basis functions that suffice to warrant a desired accuracy for any parameter
query: Starting with an exhaustive sample Σ of parameter points in D and an initial sample
µ1, it detects the parameter µ2 for which a chosen error bound ∆N (µ) attains its maximum
over Σ and then enriches the current reduced basis approximation spaces with the new basis
functions associated with µ2 (see §2.5); this step is repeated until a prescribed error tolerance
is satisfied. In the case of saddle point problems, the inf-sup condition (2.17) represents an
additional requirement for the reduced basis approximation spaces. Therefore, according to
our observations in §2.5, the above sampling process will in general (e.g., in combination
with Option 0 (see (2.70)) not succeed. In earlier work (see, e.g., [75]), it has been applied
in combination with either Option 1 (see (2.77)) or Option 2 (see (2.78)), where stability is
guaranteed by adding supremizer functions to the reduced basis approximation space XN

for the primal variable in each step. For Option 2, the exact procedure is summarized in
Algorithm 1.

However, using this procedure, the question arises of whether the resulting reduced basis
approximation spaces are indeed computationally efficient and a reduced basis approxima-
tion space XN with a dimension twice as large as for YN is required to guarantee stability.
Addressing this issue, we here present a new adaptive sampling procedure for saddle point
problems: In addition to greedily selecting the parameter snapshots µ1, . . . , µN (see §2.5),
we now also adaptively recognize the need for stabilization and thus identify relatively few
basis functions that suffice to warrant both a desired accuracy and stability for any parame-
ter query. Note that techniques similar to those presented here have also been proposed in
[23] in the context of transport dominated problems.

We assume that we are given a stable pair (XN−1, YN−1) of reduced basis approxima-
tion spaces that is based on the parameter snapshots DN−1 ≡ {µ1, . . . , µN−1 } ⊂ Σ (see
§2.5). As in the standard greedy procedure (see Algorithm 1), we use our rigorous and
(Online-)efficient error bounds (see §2.4 and §2.6) to find µN ∈ Σ and thus the truth solu-
tion (u(µN ), p(µN )) ∈ M that is represented least in the current basis; this solution is then
appended to the current basis, and we obtain a subsequent pair (XN , YN ).

From our observations in §2.3.2, §2.3.3, and §2.5, we see that the new pair (XN , YN ) will
in general provide useful approximations only if the inf-sup constants βN (µ), µ ∈ D, do not
become too small. This can be achieved through an additional enrichment of XN : We may
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Algorithm 1 Standard Greedy Algorithm (using Option 2)

1: Choose Σ ⊂ D, δtol ∈ (0, 1), and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: NY ← NY + 1, YN ← YN−1 ⊕ span{ p(µN ) } = YN−1 ⊕ span{ ξN } (see (2.69))
6: NX ← NX + 2, XN ← XN−1 ⊕ span{u(µN ), TµN

ξN } (see (2.78))
7: for all µ ∈ Σ do

8: Compute (uN (µ), pN (µ)) and ∆N (µ)
9: end for

10: µN+1 ≡ argmaxµ∈Σ ∆N (µ)
11: until ∆N (µN+1) < δtol
12: Nmax ← N

Algorithm 2

1: Choose Σ ⊂ D, δtol, δ
β
tol ∈ (0, 1), and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: NY ← NY + 1, YN ← YN−1 ⊕ span{ p(µN ) } (see (2.69))
6: NX ← NX + 1, XN ← XN−1 ⊕ span{u(µN ) }
7: while (true) do

8: for all µ ∈ Σ do

9: Compute d̂βN (µ) ≡ max
�

βUB
Br

(µ)−βN (µ)

βUB
Br

(µ)
, 0

�

(cf. (2.101))

10: end for

11: µ∗ ≡ argmaxµ∈Σ d̂βN (µ)

12: if d̂βN (µ∗) < δ
β
tol, then

13: break

14: end if

15: NX ← NX + 1, XN ← XN ⊕ span{Tµ∗�N (µ∗) } (see (2.71), (2.100))
16: end while

17: for all µ ∈ Σ do

18: Compute (uN (µ), pN (µ)) and ∆N (µ)
19: end for

20: µN+1 ≡ argmaxµ∈Σ ∆N (µ)
21: until ∆N (µN+1) < δtol
22: Nmax ← N
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Algorithm 3

1: Choose Σ ⊂ D, δtol, δ
β
tol ∈ (0, 1), and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, D� ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: NY ← NY + 1, YN ← YN−1 ⊕ span{ p(µN ) } (see (2.69))
6: if µN /∈ D�, then

7: NX ← NX + 1, XN ← XN−1 ⊕ span{u(µN ) }
8: end if

9: while (true) do

10: for all µ ∈ Σ do

11: Compute (uN (µ), pN (µ)), ∆N (µ), and

12: d̂βN (µ) ≡ max
�

βUB
Br

(µ)−βN (µ)

βUB
Br

(µ)
, 0

�

(cf. (2.101))

13: end for

14: µ�
N ≡ argmaxµ∈Σ ∆N (µ), µ∗ ≡ argmaxµ∈Σ d̂βN (µ)

15: if d̂βN (µ∗) < δ
β
tol, then

16: µN+1 ≡ µ�
N

17: break

18: end if

19: NX ← NX + 1

20: if minµ∈D�∪DN

|µ�

N−µ|

|µ| ≥ 0.1%, then

21: D� ← D� ∪ {µ�
N}

22: XN ← XN ⊕ span{u(µ�
N ) } (see (2.79))

23: else

24: XN ← XN ⊕ span{Tµ∗�N (µ∗) } (see (2.71), (2.100))
25: end if

26: end while

27: until ∆N (µN+1) < δtol
28: Nmax ← N
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add (i) supremizer functions as in (2.78) or (ii) additional truth solutions as in (2.79). We
note from (2.17) that the inf-sup constants βN (µ) may be computed as the solution to a
low-dimensional eigenvalue problem; the associated eigenvector is denoted by �N (µ) ∈ YN ,

�N (µ) ≡ arg inf
qN∈YN

�BN (µ)tqN�X�

N

�qN�Y
, ∀ µ ∈ D. (2.100)

Whether the pair (XN , YN ) needs to be stabilized is now indicated by the relative distance

dβN (µ) between βN (µ) and the truth constant βBr(µ),

dβN (µ) ≡ max

�

βBr(µ)− βN (µ)

βBr(µ)
, 0

�

, ∀ µ ∈ D. (2.101)

We choose the parameter µ∗ ∈ Σ as the argument that maximizes dβN (µ); whenever dβN (µ∗)

exceeds a prescribed tolerance δ
β
tol ∈ (0, 1), we additionally enrich the space XN .

First, in Algorithm 2, we enrich XN with the supremizer function Tµ∗�N (µ∗) ∈ X (see
(2.71)), X+

N ≡ XN ⊕ span{Tµ∗�N (µ∗) }. With X+
N ⊃ XN , the enriched pair (X+

N , YN ) then
clearly satisfies

β+
N (µ) = inf

qN∈YN

sup
vN∈X+

N

b(vN , qN ;µ)

�qN�Y �vN�X
≥ inf

qN∈YN

sup
vN∈XN

b(vN , qN ;µ)

�qN�Y �vN�X
= βN (µ),

for all µ ∈ D. From (2.71), it moreover follows that

�B+
N (µ∗)t�N (µ∗)�(X+

N
)�

��N (µ∗)�Y
=

�B(µ∗)t�N (µ∗)�X�

��N (µ∗)�Y
≥ βBr(µ

∗),

where the inequality holds by the definition of βBr(µ) in (2.11). As long as dβ,+N (µ∗) > 0, we
therefore obtain �+N (µ∗) �= �N (µ∗) and thus β+

N (µ∗) > βN (µ∗) whenever βN (µ∗) is a simple
eigenvalue. Second, in Algorithm 3, we aim to stabilize the pair (XN , YN ) by enriching
XN with additional truth solutions u(µ�

N ). Only if this is not possible do we resort to the
supremizer functions as in Algorithm 2.

2.8 Concluding Remarks

We present in this chapter the abstract framework of a new reduced basis approach for saddle
point problems. Based on Brezzi’s theory [12], we not only derive new rigorous a posteriori
bounds for the errors in the reduced basis approximations, but also present a new option to
construct stable reduced basis approximation spaces. A new sampling procedure for saddle
point problems then assembles computationally efficient reduced basis approximation spaces
by recognizing the need for stabilization adaptively.

The developed rigorous reduced basis a posteriori error bounds exhibit significant ad-
vantages over existing reduced basis error estimates based on Babuška’s theory for general
noncoercive problems. First, they do not rely on the highly expensive Offline stage necessary
for the efficient Online calculation of lower bounds to the truth Babuška inf-sup constants,
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but instead on much less expensive calculations associated with the truth continuity, co-
ercivity, and Brezzi inf-sup constants. Second, as separate upper bounds for the errors in
the approximations of the primal variable and the Lagrange multiplier, they enable the
systematic estimation of engineering outputs depending on either of the two.

Symmetric saddle point problems are discussed as a special case in which the a posteriori
error bounds may be further sharpened. The analysis presents possible techniques but
clearly does not claim to be exhaustive. For example, as current reduced basis techniques
allow their exact computation, a posteriori error bounds are here exclusively formulated in
terms of the residual dual norms (2.31). However, the symmetric case allows us to consider
the dual norm of the residual (2.32) with respect to the energy norm � · �X,µ =

�

a(·, ·;µ),

�r1N (·;µ)�X�,µ ≡ sup
v∈X

r1N (v;µ)

�v�X,µ
, ∀ µ ∈ D.

Using the same techniques as presented in the proof of Proposition 2.4.6, the errors euN (µ) and
epN (µ) in the reduced basis approximations for the primal and Lagrange multiplier variables

may then be bounded in terms of �r1N (·;µ)�X�,µ, �r2N (·;µ)�Y � , and β̃(µ) (see (2.60)): For
any µ ∈ D and N ∈ Nmax, we can derive that

�euN (µ)�X,µ ≤ �r1N (·;µ)�X�,µ +
1

β̃(µ)
�r2N (·;µ)�Y � , (2.102)

�epN (µ)�Y ≤ 2

β̃(µ)
�r1N (·;µ)�X�,µ +

1

(β̃(µ))2
�r2N (·;µ)�Y � . (2.103)

For these to provide useful error bounds in the reduced basis context, �r2N (·;µ)�X�,µ and
β̃(µ) need to be estimated Online-efficiently. Through (2.10) and (2.61), this may be done
in terms of �r1N (·;µ)�X� , αa(µ), γa(µ), and βBr(µ); in this case, (2.102) leads to (2.55) as
well and (2.103) results in an upper bound worse than (2.56).

Even though the reduced basis method is based on the affine decomposition (2.7) of the
involved operators, problems with nonaffine parameter dependencies can also be handled
efficiently: In this case, techniques as proposed in [7, 40] may be applied to recover the
setting of §2.2.





Chapter 3

Approximation of the Stokes Equations

3.1 Introduction

In this chapter, we apply the reduced basis methodology developed in Chapter 2 to a Stokes
flow in a parametrized domain.

Though often performed as a step to the more general Navier–Stokes equations, the anal-
ysis of the Stokes equations remains relevant in many engineering applications. In the
field of microfluidics (see, e.g., [14, 50]), fluids are often geometrically constrained to a sub-
millimeter scale; for example, lab-on-a-chip devices deal with the handling of extremely small
fluid volumes down to less than pico liters. At these scales, flows often exhibit Reynolds
numbers that are small enough for inertial effects to be irrelevant and they can therefore be
described by the Stokes equations (see §1.4.2).

The chapter is organized as follows: In §3.2, we introduce our Stokes model problem.
Motivated by applications in the field of microfluidics, we consider a Stokes flow in a two-
dimensional microchannel with a parametrized rectangular obstacle. We shall state the
strong as well as the weak formulation of the problem and describe the mapping procedure
that eventually yields the formulation of a parametrized saddle point problem as introduced
in §2.2. In §3.3, numerical results then demonstrate: (i) the need to appropriately enrich
the reduced basis approximation space for the primal variable; (ii) the significant effects of
different enrichment stategies; (iii) the rapid convergence of (stable) reduced basis approx-
imations; and (iv) the advantages of the proposed reduced basis a posteriori error bounds
with respect to sharpness and computational cost. Finally, in §3.4, we give some concluding
remarks.

3.2 Model Problem

Many microfluidic devices with applications in chemistry, biology, or medicine require the
mixing and dispersion of reagents (see, e.g., [98, 99]). An important area in microfluidic
research is therefore concerned with the design of so-called micromixers [18] enhancing the
mixing between adjacent streams in a straight, smooth-walled microchannel. Due to the low
value of the Reynolds number, turbulence is uncommon with the consequence that mixing is
difficult: In the expected laminar flow, mixing occurs by diffusion alone, which can result in
very long mixing times. This is clearly unacceptable whenever complete and rapid mixing

37
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Figure 3.1.: Physical domain Ω̃ = Ω(µ): a parametrized two-dimensional microchannel with
an obstacle. The parameters of interest are width µ1 and height µ2 of the
obstacle.

is desired, as required for the initiation of a chemical reaction. To decrease mixing time as
well as mixing length, transverse flows must be generated. In this context, there are two
general strategies (see [99]): active methods, where transverse flows are generated by local,
oscillatory forcing within the channel; and passive methods, where transverse flows result
from the interaction of the externally driven flow with the fixed channel geometry.

Our model problem is motivated by questions appearing in the design of passive micromix-
ers. The challenge here is to generate laminar chaos in an accessible geometry, and a simple
design that satisfies this criterion uses obstructions or grooves on one wall of the channel
to generate transverse components in steady flows (see [99] and the references therein).
Questions of interest then address the exact placing and design of such obstructions. We
therefore assume the following simplified setting: We consider a Stokes or creeping flow in a
two-dimensional channel with a rectangular obstacle as illustrated in Fig. 3.1. The problem
depends on two geometric parameters µ ≡ (µ1, µ2) representing width µ1 and height µ2 of
the obstacle O(µ) ≡ [(A− µ1)/2, (A+ µ1)/2]× [0, µ2], which are assumed to be varying in
the prescribed compact parameter set D ≡ [0.1, 0.5]2 ⊂ R

2. The channel has a fixed aspect
ratio, A ≡ 4. The physical domain is thus Ω̃ ≡ Ω(µ) ≡ ((0,A) × (0, 1)) \ O(µ) with its
boundary Γ̃ ≡ Γ(µ). We further assume fully developed flow conditions with a parabolic
velocity profile on the inflow boundary Γin ≡ {0} × [0, 1], natural outflow conditions on
Γout ≡ {4}× [0, 1], and no-penetration and no-slip velocity conditions on the channel walls
and obstacle boundary Γ̃0 ≡ Γ0(µ) ≡ Γ(µ) \ (Γin ∪ Γout).

3.2.1 Strong Formulation

For the physical domain Ω̃, µ ∈ D, we now seek to find the (inhomogeneous) velocity
ũe,inh : Ω̃ → R

2 and the pressure p̃e : Ω̃ → R such that

−∆̃ũe,inh + ∇̃p̃e = 0 in Ω̃, (3.1)

∇̃ · ũe,inh = 0 in Ω̃, (3.2)

with boundary conditions

ũe,inh = h on Γin, ũe,inh = 0 on Γ̃0,
∂ũe,inh
∂ñ

= p̃eñ on Γ̃out; (3.3)
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here, ∆̃ and ∇̃ are the Laplacian and gradient operator over the physical domain Ω̃ (see
Appendix A), respectively, ñ denotes the unit outward normal, and h : R2 → R

2 is given by
h(x) = h(x1, x2) ≡ (4x2(1− x2), 0) for all x = (x1, x2) ∈ R

2.

3.2.2 Weak Formulation

We first introduce the function spaces

X̃e,inh ≡ { ṽ ∈ (H1(Ω̃))2 | ṽ|Γin
= h, ṽ|

Γ̃0
= 0 },

X̃e ≡ { ṽ ∈ (H1(Ω̃))2 | ṽ|
Γin∪Γ̃0

= 0 },

Ỹe ≡ L2(Ω̃),

where H1(Ω̃) = { ṽ ∈ L2(Ω̃) | ∇̃ṽ ∈ (L2(Ω̃))2 }, and L2(Ω̃) is the space of square integrable
functions over Ω̃; for more details on Sobolev spaces, we refer to [1]. We then consider the
following weak form of the problem (3.1)–(3.3): We seek to find ũe,inh ∈ X̃e,inh and p̃e ∈ Ỹe
such that

ã(ũe,inh, ṽ) + b̃(ṽ, p̃e) = 0, ∀ ṽ ∈ X̃e,

b̃(ũe,inh, q̃) = 0, ∀ q̃ ∈ Ỹe,

where the bilinear forms ã : (H1(Ω̃))2 × (H1(Ω̃))2 → R and b̃ : (H1(Ω̃))2 × Ỹe → R are
defined as

ã(ũ, ṽ) ≡
�

Ω̃

∂ũi
∂x̃j

∂ṽi
∂x̃j

dx̃, ∀ ũ, ṽ ∈ (H1(Ω̃))2,

b̃(ṽ, q̃) ≡ −
�

Ω̃

q̃
∂ṽi
∂x̃i

dx̃, ∀ ṽ ∈ (H1(Ω̃))2, q̃ ∈ Ỹe;

here, repeated indices imply summation.

3.2.3 Formulation as a Parametrized Saddle Point Problem

We now introduce the lifting function ũL ∈ X̃e,inh where

ũL(x̃1, x̃2) ≡
�

(4x̃2(1− x̃2)(1− x̃1), 0), in ΩL ≡ [0, 1]2,

(0, 0), in Ω̃ \ ΩL.
(3.4)

Note that ΩL does not include the µ-dependent part of the domain and ũL is therefore by
construction parameter-independent. The inhomogeneous velocity solution ũe,inh may then
be decomposed into ũe,inh = ũL + ũe, where ũe : Ω̃ → R

2 satisfies homogeneous Dirichlet
boundary conditions on Γin ∪ Γ̃0. The governing equations for the (homogeneous) velocity
ũe and the pressure p̃e are then: We find ũe ∈ X̃e and p̃e ∈ Ỹe such that

ã(ũe, ṽ) + b̃(ṽ, p̃e) = f̃(ṽ), ∀ ṽ ∈ X̃e,

b̃(ũe, q̃) = g̃(q̃), ∀ q̃ ∈ Ỹe,
(3.5)

where the right-hand side is given by f̃ ≡ −ã(ũL, ·) ∈ X̃ �
e and g̃ ≡ −b̃(ũL, ·) ∈ Ỹ �

e .
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Figure 3.2.: (a) Parametrized domain Ω(µ) for µ = µmin = (0.1, 0.1) (solid line) and µ =
µmax = (0.5, 0.5) (dotted line); (b) reference domain Ω with µref = (µ1

ref , µ
2
ref) =

(0.3, 0.3), and corresponding decomposition Ω =
�S

s=1Ω
s, S = 12 (see (3.6)).

To finally obtain a parametrized saddle point problem as defined in §2.2.1, we now
transform the problem statement (3.5) to an equivalent problem posed over a parameter-
independent reference domain Ω. To this end, Ω̃ = Ω(µ) is traced back to Ω ≡ Ω(µref) by a
continuous, piecewise affine mapping; for our model problem, we choose µref ≡ (0.3, 0.3) ∈ D.
The boundary of Ω is then denoted by Γ ≡ Γ0 ∪ Γin ∪ Γout where Γ0 ≡ Γ0(µref). For all
µ ∈ D, the physical domain Ω̃ = Ω(µ) is decomposed into S ∈ N subdomains Ω̃s = Ωs(µ),
1 ≤ s ≤ S,

Ω̃ =

S
�

s=1

Ω̃s, such that Ω̃
s ∩ Ω̃

r = ∅, ∀ 1 ≤ s < r ≤ S;

for our model problem, this is demonstrated in Fig. 3.2. We in particular obtain

Ω =
S
�

s=1

Ωs, where Ω
s ≡ Ω

s(µref) and Ω
s ∩ Ω

r = ∅, ∀ 1 ≤ s < r ≤ S, (3.6)

and for any µ ∈ D, 1 ≤ s ≤ S, the subdomain Ω̃s may be traced back to Ωs by an affine
coordinate transformation Φ̃s ≡ Φs(·;µ) : Ω̃s → Ωs, Φs(x̃;µ) ≡ As(µ)x̃ + bs(µ), where
As(µ) ∈ R

2×2 nonsingular and bs(µ) ∈ R
2. A more detailed discussion of affine geometry

transformations can be found in [95].
We then apply standard techniques to transform the problem statement (3.5) to an equiv-

alent problem statement formulated over the reference domain Ω. We denote the function
spaces associated with Ω by Xe and Ye, respectively. On these spaces, we consider the inner
products and norms

(u, v)Xe
≡

�

Ω

∂ui
∂xj

∂vi
∂xj

dx, ∀ u, v ∈ Xe, � · �Xe
=

�

(·, ·)Xe
,

(p, q)Ye
≡

�

Ω

p q dx, ∀ p, q ∈ Ye, � · �Ye
=

�

(·, ·)Ye
.

By setting v(x) ≡ ṽ(x̃) and q(x) ≡ q̃(x̃) for all x ∈ Ω, we particularly obtain isomorphisms
X̃e → Xe, ṽ �→ v, and Ỹe → Ye, q̃ �→ q (see, e.g., [1]). For any µ ∈ D, the problem (3.5) is
thus equivalent to: Find ue(µ) ∈ Xe and pe(µ) ∈ Ye such that

a(ue(µ), v;µ) + b(v, pe(µ);µ) = f(v;µ), ∀ v ∈ Xe,

b(ue(µ), q;µ) = g(q;µ), ∀ q ∈ Ye,
(3.7)
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where the bilinear and linear forms are given by

a(u, v;µ) =

S
�

s=1

As
kj(µ)A

s
lj(µ)

|det(As(µ))|

�

Ωs

∂ui
∂xk

∂vi
∂xl

dx, ∀ u, v ∈ Xe, (3.8)

b(v, q;µ) = −
S
�

s=1

As
ji(µ)

|det(As(µ))|

�

Ωs

q
∂vi
∂xj

dx, ∀ v ∈ Xe, q ∈ Ye, (3.9)

f(v;µ) = f(v) = −
�

ΩL

∂uLi
∂xj

∂vi
∂xj

dx, ∀ v ∈ Xe, (3.10)

g(q;µ) = g(q) =

�

ΩL

q
∂uLi
∂xi

dx, ∀ q ∈ Ye. (3.11)

The bilinear forms a(·, ·;µ) and b(·, ·;µ) now satisfy all the assumptions (2.1), (2.2), (2.3),
(2.4), and (2.7) (see, e.g., [13, 36, 101]), and we find ourselves exactly in the setting intro-
duced in §2.2.1. We particularly have Qa = 10, Qb = 6, and Qf = Qg = 1 in the respective
µ-affine expansions (2.7).

We choose the truth approximation spaces X and Y in §2.2.2 as the standard conforming
P2-P1 (quadratic-linear) Taylor–Hood finite element approximation subspaces [100] over a
regular triangulation TΩ of Ω. It is a well-known result (see, e.g., [13, 27, 36, 89]) that in
this case, X and Y indeed satisfy the LBB inf-sup condition (2.11).

3.3 Numerical Results

We now apply the reduced basis methodology developed in §2.3–§2.7 to our model problem.
In this section, all numerical results are attained using the open source software rbOOmit [65],
an implementation of the reduced basis framework within the C++ parallel finite element
library libMesh [62].

3.3.1 Truth Approximation

Based on a fine mesh with 16,602 elements, the truth system (2.13) has a dimension of
N = 72,076. Figure 3.3 shows the velocity streamlines for three different parameter values

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

 x
1

 
x

2

Figure 3.3.: Velocity streamlines for µ = (0.1, 0.1) (dashed), µ = (0.3, 0.3) (solid), and
µ = (0.5, 0.5) (dotted) plotted on the reference domain Ω.
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µ = (0.1, 0.1), µ = (0.3, 0.3), and µ = (0.5, 0.5). We observe that the µ-dependence over our
parameter domain is clearly nontrivial.

3.3.2 Reduced Basis Approximation Spaces

We here present numerical results for the different options introduced in §2.5 to construct the
reduced basis approximation spaces XN and YN . For this purpose, the parameter samples
DN and D�

N (see §2.5) here have been chosen randomly.

First, we demonstrate in practice that a reduced basis approximation space constructed
by using Option 0 (see (2.70)) may indeed not provide useful approximations. For our model
problem, we obtain values for the inf-sup constants βN (µ) that are small but still positive (see
Fig. 3.4(a)); the system (2.14) is uniquely solvable, and we obtain approximations uN (µ) and
pN (µ) for u(µ) and p(µ), respectively. We thus find ourselves in the situation (ii) described in
§2.5 and indeed observe the predicted locking phenomenon: There exists only one solution,
BN (µ)−1gN (µ), satisfying the constraints (2.16) (see Fig. 3.4(b)). Consequently, as we
increase N , values of the residual dual norm �r2N (·;µ)�Y � associated with the constraints
become relatively small and negligible in comparison to large values of �r1N (·;µ)�X� (see
Fig. 3.5(a)); our approximations uN (µ) do not converge satisfactorily, and thus, as suggested
by (2.46), neither does pN (µ) (see Fig. 3.5(b)).

Constructing the reduced basis approximation spaces XN , YN via Option 1 (see (2.77)),
Table 3.1(a) contains values of the inf-sup constants βN (µ) for several parameter values
µ ∈ D: We clearly see that they are essentially constant with respect to N and indeed
satisfy (2.75). Table 3.1(b) contains the same data when using Option 2 (see (2.78)): We
observe that the values of the inf-sup constants βN (µ) here differ only insignificantly from
the values obtained by using Option 1; they are also essentially constant in N and satisfy
(2.75). In practice, Option 2 thus provides stable approximation spaces satisfying (2.75) at
a fraction of the computational cost of Option 1 (see Fig. 3.6).

(a) Option 1

µ βBr(µ) β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

(0.1, 0.1) 1.073 · 10−1 1.138 · 10−1 1.137 · 10−1 1.135 · 10−1 1.135 · 10−1 1.135 · 10−1

(0.5, 0.1) 1.070 · 10−1 1.134 · 10−1 1.133 · 10−1 1.132 · 10−1 1.132 · 10−1 1.131 · 10−1

(0.3, 0.3) 9.583 · 10−2 9.964 · 10−2 9.963 · 10−2 9.961 · 10−2 9.961 · 10−2 9.961 · 10−2

(0.1, 0.5) 7.881 · 10−2 8.097 · 10−2 8.088 · 10−2 8.085 · 10−2 8.084 · 10−2 8.083 · 10−2

(0.5, 0.5) 7.684 · 10−2 7.905 · 10−2 7.896 · 10−2 7.875 · 10−2 7.872 · 10−2 7.871 · 10−2

(b) Option 2

µ βBr(µ) β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

(0.1, 0.1) 1.073 · 10−1 1.137 · 10−1 1.136 · 10−1 1.135 · 10−1 1.134 · 10−1 1.134 · 10−1

(0.5, 0.1) 1.070 · 10−1 1.134 · 10−1 1.133 · 10−1 1.132 · 10−1 1.131 · 10−1 1.131 · 10−1

(0.3, 0.3) 9.583 · 10−2 9.946 · 10−2 9.951 · 10−2 9.953 · 10−2 9.955 · 10−2 9.957 · 10−2

(0.1, 0.5) 7.881 · 10−2 8.034 · 10−2 8.040 · 10−2 8.049 · 10−2 8.059 · 10−2 8.072 · 10−2

(0.5, 0.5) 7.684 · 10−2 7.862 · 10−2 7.862 · 10−2 7.848 · 10−2 7.858 · 10−2 7.858 · 10−2

Table 3.1.: Values for the inf-sup constants βN (µ) (see (2.17)) for several parameter val-
ues µ ∈ D = [0.1, 0.5]2 and N evaluated using (a) Option 1 (see (2.77)) and
(b) Option 2 (see (2.78)) based on a random sample DN of parameter snapshots.
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Figure 3.4.: Numerical results for µ = (0.1, 0.5) using Option 0 (see (2.70)) based on a
random sample DN of parameter snapshots: (a) the inf-sup constant βN (µ) (see
(2.17)) shown as a function of N together with the truth inf-sup constant βBr(µ)
(see (2.11)); (b) the (absolute) distance �uN (µ)−BN (µ)−1gN (µ)�X shown as a
function of the total dimension NZ .
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Figure 3.5.: Numerical results for µ = (0.1, 0.5) using Option 0 (see (2.70)) based
on a random sample DN of parameter snapshots: (a) the residual dual
norms �r1N (·;µ)�X� , �r2N (·;µ)�Y � (see (2.31)) and (b) the relative errors
�euN (µ)�X/�u(µ)�X , �epN (µ)�Y /�p(µ)�Y (see (2.18)) shown as functions of the
total dimension NZ .
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Figure 3.6.: Maximum relative errors (a) �euN (µ)�X/�u(µ)�X and (b) �epN (µ)�Y /�p(µ)�Y
(see (2.18)) shown as functions of the total dimension NZ computed using Op-
tion 1, Option 2, and Option 3 (see Table 3.2) based on random samples DN and
D�

N of parameter snapshots; the maximum is taken over 25 parameter values.
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Figure 3.7.: Maximum relative distance dβN (µ) (see (2.101)) shown as a function of N com-
puted using Option 0, Option 1, Option 2, and Option 3 (see Table 3.2) based
on random samples DN and D�

N of parameter snapshots; the maximum is taken
over 25 parameter values.
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Figure 3.7 shows the relative distance dβN (µ) (see (2.101)) between βN (µ) and the truth

constant βBr(µ). We recall that a relative distance dβN (µ) < 1 implies that βN (µ) is positive;

dβN (µ) > 0 indicates that βN (µ) < βBr(µ). In case of Option 1 or Option 2, we thus obtain

dβN (µ) = 0 for all µ ∈ D, N ∈ Nmax, due to (2.75). Option 3 (see (2.79)) provides in practice
inf-sup constants βN (µ) that are clearly positive but generally do not satisfy (2.75).

Figure 3.6 then verifies in practice what has been predicted by a priori and a posteriori
error estimates (see §2.5): Small inf-sup constants βN (µ) have more dramatic effects on
�epN (µ)�Y than on �euN (µ)�X . The error �euN (µ)�X profits from a large space ker(BN (µ)) but
does not explicitly depend on βN (µ). Therefore, it is not surprising that adding supremizers
as in Options 1 and 2, providing through (2.75) comparatively large values for the inf-sup
constants βN (µ), particularly favors the approximations for the Lagrange multiplier. Here,
the reduced basis approximations pN (µ) for p(µ) converge much more rapidly than the
approximations uN (µ) for the primal variable u(µ) (see Fig. 3.6). Compared to Options 1
and 2, approximations for the primal variable improve considerably when constructing the
reduced basis approximation spaces by using Option 3 (see Fig. 3.6(a)). Moreover, in (2.46)
and (2.20), the smaller errors �euN (µ)�X seem to essentially compensate for the effects of
the smaller inf-sup constants βN (µ): Approximations for the Lagrange multiplier are not
significantly worse (see Fig. 3.6(b)).

Table 3.2 summarizes all options to construct the reduced basis approximation spaces
together with their main respective properties.

Option XN Special properties

0 X0
N ≡ span{u(µn) | 1 ≤ n ≤ N } (2.70)

βN (µ) > 0 with d
β

N (µ) large
dim(XN ) = dim(YN )

1 X1
N ≡ X0

N ⊕ span{T kξn | 1 ≤ n ≤ N, 1 ≤ k ≤ Qb } (2.77)
βN (µ) ≥ βBr(µ)

(in theory and practice)

2 X2
N ≡ X0

N ⊕ span{Tµn
ξn | 1 ≤ n ≤ N } (2.78)

βN (µ) ≥ βBr(µ) (in practice)
dim(X2

N ) � dim(X1
N )

3 X3
N ≡ X0

N ⊕ span{u(µ�

n) | 1 ≤ n ≤ N } (2.79)
βN (µ) > 0 with d

β

N (µ) small
good space ker(BN (µ))

Table 3.2.: Options to construct the reduced basis approximation space XN for the pri-
mal variable, where the reduced basis approximation space YN for the Lagrange
multiplier is given as in (2.69).

3.3.3 Adaptive Sampling Procedures

We now discuss numerical results for the adaptive sampling procedures developed in §2.7.
First, we note that our Stokes model problem is clearly symmetric and therefore, ∆u,sym

N (µ),
∆

p,sym
N (µ), and ∆̃

u,sym
N (µ) represent valid upper bounds for the errors in our reduced basis

approximations (see §2.4). All sampling procedures presented in this chapter are now based
on an exhaustive random sample Σ ⊂ D of size |Σ| = 4,900 and the relative error bound
∆N (µ) ≡ ∆̃

u,sym
N (µ)/�uN (µ)�X (see (2.67)).

Figure 3.8 shows results for Algorithm 2 using different values for δ
β
tol ∈ (0, 1); a direct
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Figure 3.8.: Numerical results for Algorithm 2 (see §2.7) using δ
β
tol ∈ {0.9, 0.5, 0.1}: Max-

imum relative errors (a) �euN (µ)�X/�u(µ)�X and (b) �epN (µ)�Y /�p(µ)�Y (see
(2.18)) are shown as functions of NZ ; the maximum is taken over 25 parameter
values.
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Figure 3.9.: Comparison of Algorithm 2 and Algorithm 3 (both using δ
β
tol = 0.1) to the

standard greedy procedure in Algorithm 1 (see §2.7): Maximum relative errors
(a) �euN (µ)�X/�u(µ)�X and (b) �epN (µ)�Y /�p(µ)�Y (see (2.18)) are shown as
functions of NZ ; the maximum is taken over 25 parameter values.
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Figure 3.10.: Comparison of Algorithm 2 and Algorithm 3 (both using δ
β
tol = 0.1) to the

standard greedy procedure in Algorithm 1 (see §2.7): Maximum relative er-
rors �eN (µ)�Z/�(u(µ), p(µ))�Z (see (2.18)) are shown as functions of NZ ; the
maximum is taken over 25 parameter values.

comparison with Algorithm 3 is then given in Fig. 3.9 and Fig. 3.10. Again, it is verified
in practice what a priori and a posteriori error bounds in §2.3.3 and Remark 2.4.4 indicate:
Small inf-sup constants βN (µ) have much stronger effects on �epN (µ)�Y than on �euN (µ)�X .

Even for fairly large tolerances δβtol, we obtain approximation spaces XN , YN providing very
accurate approximations uN (µ) that do not necessarily further improve for lower values

of δβtol (see Fig. 3.8(a)). In contrast, accurate approximations for the Lagrange multiplier

require a smaller tolerance δ
β
tol and improve considerably in the dependence of decreasing

values of δβtol (see Fig. 3.8(b)). The errors �euN (µ)�X benefit primarily from a good testing
space ker(B(µ))∩XN ⊆ ker(BN (µ)) (see §2.5) as achieved in Algorithm 3 (see Fig. 3.9(a)).

Figure 3.9 and Figure 3.10 moreover demonstrate that the standard greedy procedure
(see Algorithm 1) may indeed generally be inefficient: For our model problem, Algorithm 2
provides accurate approximations for the primal variable at much less computational cost;
using Algorithm 3, we obtain even greater computational savings compared to Algorithm 1
of up to 35%.

3.3.4 A Posteriori Error Bounds

We have thus seen how different constructions of the reduced basis approximation spaces
affect the convergence of the reduced basis approximations. However, as the associated
truth solutions are usually not computed, the errors in our reduced basis approximations
are unknown quantities that may only be estimated by a posteriori error bounds. We now
comment on the sharpness and computational efficiency of the rigorous a posteriori error
bounds developed in §2.4.

We first compare the proposed a posteriori error bounds with respect to sharpness. Fig-
ure 3.11 and Figure 3.12 show the maximum errors in the reduced basis approximations for
the primal variable and the Lagrange multiplier, respectively, together with the respective
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Figure 3.11.: Maximum relative error �euN (µ)�X/�u(µ)�X and maximum relative error

bounds ∆
u,sym
N (µ)/�u(µ)�X , ∆

u,Br
N (µ)/�u(µ)�X , and ∆Ba

N (µ)/�u(µ)�X (see
(2.18), (2.55), (2.37), and (2.35)) shown as functions of NZ for (a) Algorithm 1,

(b) Algorithm 2 with δ
β
tol = 0.1, and (c) Algorithm 3 with δ

β
tol = 0.1 (see §2.7);

the maximum is taken over 25 parameter values; the computation of the error
bounds is based on the exact constants αa(µ), γa(µ), βBr(µ), and βBa(µ).
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Figure 3.12.: Maximum relative error �epN (µ)�Y /�p(µ)�Y and maximum relative error

bounds ∆
p,sym
N (µ)/�p(µ)�Y , ∆

p,Br
N (µ)/�p(µ)�Y , and ∆Ba

N (µ)/�p(µ)�Y (see
(2.18), (2.56), (2.38), and (2.35)) shown as functions of NZ for (a) Algorithm 1,

(b) Algorithm 2 with δ
β
tol = 0.1, and (c) Algorithm 3 with δ

β
tol = 0.1 (see §2.7);

the maximum is taken over 25 parameter values; the computation of the error
bounds is based on the exact constants αa(µ), γa(µ), βBr(µ), and βBa(µ).
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(a) Algorithm 1

N NZ η̃
u,sym
N η

u,sym
N η

u,Br

N η
u,Ba

N η
p,sym
N η

p,Br

N η
p,Ba

N η
sym

N ηBr
N ηBa

N

5 15 13.21 20.68 58.04 353.6 202.1 1534 296.4 148.0 1238 203.6
10 30 12.34 19.94 63.93 277.5 292.5 2268 326.5 168.6 1559 186.7
15 45 13.22 19.57 57.42 309.9 331.5 3223 417.2 201.2 1598 228.6
20 60 13.29 19.35 58.40 255.0 355.9 3240 415.7 208.1 1580 207.1
25 75 11.97 18.77 57.92 242.9 405.8 3513 476.3 198.4 1560 216.4
30 90 13.55 19.93 54.23 282.3 399.2 3423 453.6 227.0 1678 232.6
35 105 13.62 20.44 53.93 281.7 432.1 2502 519.8 235.2 1535 234.9
40 120 14.28 21.53 57.49 295.4 482.6 3317 495.2 253.0 1526 253.1

(b) Algorithm 2

N NZ η̃
u,sym
N η

u,sym
N η

u,Br

N η
u,Ba

N η
p,sym
N η

p,Br

N η
p,Ba

N η
sym

N ηBr
N ηBa

N

5 12 16.11 23.89 55.18 715.1 98.47 756.3 142.5 88.04 673.4 139.7
10 23 22.45 32.53 62.65 1894 121.8 799.9 234.8 99.72 700.7 233.0
15 34 13.57 25.31 68.15 425.1 152.8 766.6 253.9 130.7 660.6 216.6
20 46 13.17 20.31 61.41 505.3 224.0 1268 307.0 172.7 1081 236.1
25 56 16.44 27.51 63.04 1013 97.71 550.1 258.9 94.87 523.1 250.8
30 68 14.63 23.48 61.14 583.5 237.9 1287 294.2 189.6 1023 233.8
35 78 14.80 22.35 59.63 707.3 126.3 843.6 269.0 118.3 778.2 251.5
40 89 14.13 23.70 61.52 613.1 162.4 800.6 285.4 139.3 685.6 244.3

(c) Algorithm 3

N NZ η̃
u,sym
N η

u,sym
N η

u,Br

N η
u,Ba

N η
p,sym
N η

p,Br

N η
p,Ba

N η
sym

N ηBr
N ηBa

N

5 13 18.36 32.56 68.23 1146 85.38 793.3 162.2 79.09 755.4 157.9
10 29 22.08 33.22 72.73 717.1 183.0 996.8 219.0 152.9 830.9 182.5
15 39 15.56 26.58 63.64 446.0 137.4 721.9 195.0 123.8 649.1 173.1
20 49 15.13 24.88 69.96 699.3 118.1 807.8 174.9 104.2 753.7 162.0
25 60 19.45 33.86 71.13 1034 130.3 577.4 206.5 115.1 509.1 195.4
30 73 20.00 40.18 97.51 976.6 102.5 582.7 187.7 94.86 538.1 179.6
35 83 16.90 28.72 71.93 821.5 136.3 692.0 217.4 124.6 631.3 198.3
40 93 17.87 33.31 82.45 973.4 196.7 1012 301.9 165.4 849.5 288.4

Table 3.3.: Maximum effectivities η̃
u,sym
N (µ) = ∆̃

u,sym
N (µ)/�euN (µ)�X,µ (see (2.68)),

η
u,sym
N (µ) = ∆

u,sym
N (µ)/�euN (µ)�X , ηp,symN (µ) ≡ ∆

p,sym
N (µ)/�epN (µ)�Y , ηsymN (µ) =

∆
sym
N (µ)/�eN (µ)�Z (see (2.57) and (2.66)), and η

u,Br
N (µ) ≡ ∆

u,Br
N (µ)/�euN (µ)�X ,

η
p,Br
N (µ) ≡ ∆

p,Br
N (µ)/�epN (µ)�Y , ηBr

N (µ) = ∆Br
N (µ)/�eN (µ)�Z , η

u,Ba
N (µ) ≡

∆Ba
N (µ)/�euN (µ)�X , ηp,Ba

N (µ) ≡ ∆Ba
N (µ)/�epN (µ)�Y , ηBa

N (µ) = ∆Ba
N (µ)/�eN (µ)�Z

(see (2.39), (2.36), and (2.48)) for (a) Algorithm 1, (b) Algorithm 2 with

δ
β
tol = 0.1, and (c) Algorithm 3 with δ

β
tol = 0.1 (see §2.7); the maximum is

taken over 25 parameter values; the computation of the error bounds is based on
the exact constants αa(µ), γa(µ), βBr(µ), and βBa(µ).
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Figure 3.13.: Maximum relative error �eN (µ)�Z/�(u(µ), p(µ))�Z and maximum rela-
tive error bounds ∆

sym
N (µ)/�(u(µ), p(µ))�Z , ∆Br

N (µ)/�(u(µ), p(µ))�Z , and
∆Ba

N (µ)/�(u(µ), p(µ))�Z (see (2.18), (2.65), (2.47), and (2.35)) shown as func-

tions of NZ for (a) Algorithm 1, (b) Algorithm 2 with δ
β
tol = 0.1, and (c) Al-

gorithm 3 with δ
β
tol = 0.1 (see §2.7); the maximum is taken over 25 parameter

values; the computation of the error bounds is based on the exact constants
αa(µ), γa(µ), βBr(µ), and βBa(µ).

error bounds ∆
u,sym
N (µ), ∆u,Br

N (µ), ∆p,sym
N (µ), ∆p,Br

N (µ), and ∆Ba
N (µ) (see §2.4); Figure 3.13

shows the maximum total error in the reduced basis approximation and associated error
bounds ∆sym

N (µ), ∆Br
N (µ), and ∆Ba

N (µ) (see §2.4). The maximum is computed over a sample
of 25 parameter values. For this sample, to analyze only the effects of the a posteriori er-
ror bound formulations and eliminate contributions of the SCM, the exact constants αa(µ),
γa(µ), βBr(µ), and βBa(µ) rather than the lower/upper bounds (2.29), (2.30) are used. Effec-
tivities associated with the error bounds are given in Table 3.3. With maximum effectivities
essentially ranging from 50 to 80, ∆

u,Br
N (µ) represents a reasonably sharp bound for the

error in the reduced basis approximation uN (µ) (see Fig. 3.11 and Table 3.3). However,
exploiting the symmetry of the problem, ∆u,sym

N (µ) provides a sharper bound not only in
theory (see §2.4) but also in practice: Here, effectivities essentially vary between 20 and
40. Furthermore, it is not surprising to observe that the best results are achieved by the
bound ∆̃

u,sym
N (µ) that overestimates the error in the reduced basis approximations for the

primal variable measured in the energy norm (see (2.68)) only by a factor of approximately
15 (see Table 3.3). In contrast, ∆p,Br

N (µ) and ∆
p,sym
N (µ) estimate the error in pN (µ) rather

pessimistically (see Fig. 3.12). For ∆
p,Br
N (µ), exact effectivities strongly depend on how

the underlying reduced basis approximation spaces are constructed: Using Algorithm 1, we
obtain effectivity values of order 3 · 103 (see Table 3.3(a)); in this case, ∆Ba

N (µ) clearly rep-
resents a much sharper bound. Yet, using Algorithm 2 or Algorithm 3, the difference is not
as large (see Table 3.3(b) and (c)). For ∆

p,sym
N (µ), we still obtain rather large effectivities

with average values 362, 161, and 127 in case of Algorithm 1, Algorithm 2, and Algorithm 3,
respectively. However, in neither case, do ∆

u,sym
N (µ) and ∆

p,sym
N (µ) perform worse than

∆Ba
N (µ) but generally provide bounds for the errors in the primal and Lagrange multiplier

variables that are much more accurate (see Table 3.3).

We now turn to the computational efficiency of the a posteriori error bounds. The SCM
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Figure 3.14.: SCM lower and upper bounds αLB
a (µ) and αUB

a (µ) for the coercivity constants
αa(µ) (see (2.10), (2.29)) where |Ξ| = 4,225, Mα = ∞, δSCM

tol = 0.01, and
Kmax = 35.
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Figure 3.15.: SCM lower and upper bounds γLBa (µ) and γUB
a (µ) for the continuity constants

γa(µ) (see (2.8), (2.29)) where |Ξ| = 4,225, Mα = ∞, δSCM
tol = 0.01, and

Kmax = 12.
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Figure 3.16.: SCM lower and upper bounds βLB
Br (µ) and βUB

Br (µ) for the Brezzi inf-sup con-
stants βBr(µ) (see (2.11), (2.30)) where |Ξ| = 4,225, Mα = ∞, δSCM

tol = 0.05,
and Kmax = 163.

(see §2.6.2) enables the (Online-)efficient estimation of the constants αa(µ), γa(µ), and
βBr(µ). We here apply the method for Mα = ∞ and an exhaustive sample Ξ ⊂ D of size
|Ξ| = 4,225. We set the SCM tolerance δSCM

tol = 0.01 (resp., 0.5) and obtain Kmax = 35
(resp., 6) for the coercivity constants αa(µ) and Kmax = 12 (resp., 5) for the continuity
constants γa(µ). For the Brezzi inf-sup constants βBr(µ), we set δSCM

tol = 0.5 (resp., 0.75) and
obtain Kmax = 163 (resp., 111). We receive very accurate (Online-)efficient bounds αLB

a (µ),
γUB
a (µ), and βLB

Br (µ) (see Fig. 3.14, Fig. 3.15, and Fig. 3.16), providing a posteriori error

bounds ∆
u,Br
N (µ), ∆

u,sym
N (µ), ∆̃

u,sym
N (µ) and ∆

p,Br
N (µ), ∆

p,sym
N (µ) that essentially coincide

with their values based on the evaluation of the exact constants; associated effectivities thus
remain the same as shown in Table 3.3.

Using a 2.66 GHz Intel Core 2 Duo processor, Offline computations necessary for the
SCM applied to the Babuška inf-sup constants βBa(µ) are infeasible. The difficulty here lies
in the computations required for the SCM bounding box B (see (2.95)): The differential
operator associated with the Babuška inf-sup constants exhibits a µ-affine decomposition
(2.7) that involves Q terms where max{Qa, Qb} ≤ Q ≤ Qa + Qb; the SCM bounding box
then requires the solution of Q(1 +Q) generalized eigenvalue problems. (Recall that in our
model problem, we have Qa = 10 and Qb = 6; here, Q = 15.) However, even the solution
of a single generalized eigenvalue problem associated with B is a computational challenge:
System matrices on the left-hand side are dense, symmetric, not necessarily positive definite,
and of a very low rank due to the geometric transformations involved. Consequently, even for
our model problem where geometric variations are still relatively simple, we would have to
resort to one of the other approaches discussed in Remark 2.6.1 to obtain (Online-)efficient
lower bounds to the inf-sup constants βBa(µ) (see (2.30)). No matter which of the currently
existing methods is used, though, the (Online-)efficient evaluation of ∆Ba

N (µ) requires either

Offline costs that are prohibitively expensive compared to the ones needed for ∆
u,Br
N (µ),

∆
u,sym
N (µ), ∆̃

u,sym
N (µ) and ∆

p,Br
N (µ), ∆

p,sym
N (µ), or a significant loss in terms of accuracy
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causing associated effectivities to be much worse than in Table 3.3.

Remark 3.3.1. In case of our model problem, the error bounds introduced in Remark 2.4.5
in fact essentially coincide with ∆

u,Br
N (µ) and ∆

p,Br
N (µ), respectively, and we therefore do

not discuss them separately at this point. �

3.3.5 Computation Times

We may now discuss the Online computation times for the proposed methods. For com-
parison, once the µ-independent parts in (2.7) have been formed, direct computation of
the truth approximation (u(µ), p(µ)) (i.e., assembly and solution of (2.13)) takes on aver-
age 6.5 seconds. The rigorous and efficient error bounds ∆

u,sym
N (µ) and ∆

p,sym
N (µ) allow

us to choose the reduced basis system dimension NZ just large enough to obtain a desired
accuracy. In case of Algorithm 1, we need NZ = 51 to achieve a prescribed accuracy of
roughly 1% or better in the reduced basis approximations uN (µ) (see Fig. 3.11(a)). Once
the database has been loaded, the Online calculation of (uN (µ), pN (µ)) (i.e., assembly and
solution of (2.14)) and ∆

u,sym
N (µ), ∆p,sym

N (µ) for any new value of µ ∈ D takes on average
0.31 and 20.99 milliseconds, respectively, which is in total roughly 300 times faster than di-
rect computation of the truth approximation. In the case of Algorithm 3, the same accuracy
is achieved for NZ = 35 (see Fig. 3.11(c)); the Online calculation of (uN (µ), pN (µ)) and
∆

u,sym
N (µ), ∆p,sym

N (µ) then takes on average 0.14 and 13.29 milliseconds, respectively, and is
thus roughly 480 times faster than direct computation of the truth approximation. Detailed
computation times, also for Algorithm 2, are given in Table 3.4.

(a) Accuracy of at least 1% (resp., 0.1%) for the reduced basis approximations uN (µ)

Method NZ N (uN (µ), pN (µ)) ∆
u,sym
N (µ),∆p,sym

N (µ) Total

Algorithm 1 51 (78) 17 (26) 0.31 (0.79) 20.99 (39.60) 21.20 (40.38)

Algorithm 2 44 (61) 19 (27) 0.21 (0.42) 16.25 (24.73) 16.46 (25.15)

Algorithm 3 35 (55) 13 (23) 0.14 (0.32) 13.29 (21.59) 13.43 (21.92)

(b) Accuracy of at least 1% (resp., 0.1%) for the reduced basis approximations pN (µ)

Method NZ N (uN (µ), pN (µ)) ∆
u,sym
N (µ),∆p,sym

N (µ) Total

Algorithm 1 54 (84) 18 (28) 0.35 (0.91) 22.75 (44.70) 23.10 (45.61)

Algorithm 2 44 (72) 19 (32) 0.21 (0.58) 16.25 (31.54) 16.46 (32.12)

Algorithm 3 37 (62) 14 (26) 0.16 (0.44) 13.94 (25.77) 14.09 (26.21)

Table 3.4.: Average computation times in milliseconds for the Online evaluation of
(uN (µ), pN (µ)) (assembly and solution of (2.14)) and the error bounds ∆u,sym

N (µ),
∆

p,sym
N (µ) (see (2.55), (2.56)); times are measured using either Algorithm 1, Al-

gorithm 2 with δ
β
tol = 0.1, or Algorithm 3 with δ

β
tol = 0.1, with a prescribed

accuracy of 1% (resp., 0.1%) for the reduced basis approximations (a) uN (µ)
and (b) pN (µ).
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3.4 Concluding Remarks

We present in this chapter numerical results for the reduced basis approach proposed in
Chapter 2 applied to a Stokes flow model problem. Compared to earlier approaches, the
resulting methods allow us to consider flow problems in parametrized domains with notably
greater ease.

The rigorous reduced basis a posteriori error bounds developed in §2.4 based on Brezzi’s
theory for saddle point problems are not only computationally more efficient than earlier
error estimates based on Babuška’s theory for general noncoercive problems, but numerical
results demonstrate their superiority also in terms of sharpness; in particular, the bounds
provided for the errors in the approximations for the primal variable are reasonably sharp.

Furthermore, numerical results underline theoretical observations in §2.5 that an enrich-
ment of the reduced basis approximation space with supremizer functions is not necessarily
optimal. Adaptively recognizing the need for stabilization, the new sampling procedures
for saddle point problems developed in §2.7 construct reduced basis approximation spaces
that provide accurate approximations at much less computational cost: Depending on the
employed enrichment strategy, we obtain for our Stokes model problem savings compared
to the standard greedy approach of up to 31%. This promises even more significant savings
when extending the method to nonlinear problems such as the Navier–Stokes equations.

Considering that our Stokes flow model problem belongs to the symmetric case discussed
in Chapter 2, future work may be concerned with a more detailed investigation also of the
nonsymmetric case. The exact performance of the adaptive sampling procedures as well
as the a posteriori error bounds (with respect to both computational cost and sharpness)
are here neither obvious nor precisely predictable; a clarification through further numerical
results may thus be of interest. Also, for simplification, our model problem only involves
affine geometry variations. As already mentioned in §2.8, the proposed methods are yet
not limited to this case: Techniques as proposed in [7, 40] can be applied, making the
proposed approach feasible also, e.g., in the context of nonaffine geometric transformations
(see [19, 94]).



Chapter 4

Approximation of Saddle Point Problems by

Regularization or Penalty

4.1 Introduction

In the previous Chapters 2 and 3, we discussed the particular difficulties that appear for
reduced basis approximations to saddle point problems: Special care must be taken in the
construction of stable reduced basis approximation spaces (see §2.5, §2.7, §3.3.2, and §3.3.3),
and rigorous reduced basis a posteriori error bounds (more specifically, the required lower
bounds to inf-sup stability constants) become increasingly expensive and complicated as
geometric variations become more complex (see §2.6.2 and §3.3.4); the latter becomes even
more prominent in nonlinear problems such as the Navier–Stokes equations.

This chapter now focuses on the development of rapidly convergent reduced basis ap-
proximations and associated rigorous a posteriori error bounds for saddle point problems
that arise from a penalty method applied to a constraint problem such as the Stokes or
Navier–Stokes equations (see, e.g., [9, 51, 52] and the references therein). In contrast to
reduced basis approaches presented in [19, 63, 70, 76, 88, 92, 94, 104] and the methods
discussed in Chapter 2, the penalty formulation not only allows us to approximate the pri-
mal system variable as well as the Lagrange multiplier but also enables the development of
rigorous error bounds for the reduced basis approximation that do not depend on inf-sup
stability constants. The expensive evaluation of (lower bounds to) inf-sup constants is thus
avoided and more general parametric variations can therefore be considered with relative
ease. However, these benefits do not come without expense: The penalty term introduces an
O(ε)-error in the “truth” approximations for the primal and Lagrange multiplier variables,
where ε denotes the penalty parameter.

We shall employ the developed methodology in the setting of a perturbed Stokes flow
(see Chapter 5). However, we emphasize that saddle point problems as considered in this
chapter may appear also in other applications such as nearly incompressible materials (see,
e.g., [9, 13, 36]) where they have a physical interpretation.

The chapter is organized as follows: In §4.2, we introduce the penalty formulation. In §4.3,
we define the reduced basis approximation as the Galerkin projection onto a low-dimensional
reduced basis approximation space; we shall also state main properties of the reduced basis
system including a priori convergence results. We then develop rigorous a posteriori error

55
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bounds in §4.4, and discuss how to construct the low-dimensional reduced basis approxima-
tion space in §4.5; computational efficiency is achieved by the Offline-Online computational
strategy summarized in §4.6. A posteriori error bounds derived in §4.4 and observations in
§4.5 are again combined within an adaptive sampling procedure briefly explained in §4.7.
Finally, in §4.8, we provide some concluding remarks.

4.2 General Problem Statement

4.2.1 Formulation

We assume the setting of a parametrized saddle point problem as introduced in §2.2.1.
Furthermore, for any parameter µ ∈ D, let c(·, ·;µ) : Ye × Ye → R be a bilinear form that is
continuous and coercive,

γec(µ) ≡ sup
p∈Ye

sup
q∈Ye

c(p, q;µ)

�p�Ye
�q�Ye

< ∞, ∀ µ ∈ D, (4.1)

αe
c(µ) ≡ inf

q∈Ye

c(q, q;µ)

�q�2Ye

> 0, ∀ µ ∈ D, (4.2)

and which exhibits a µ-affine representation analogous to (2.7). We note that by (4.1) and
(4.2), c(·, ·;µ) provides with � · �Ye,µ ≡

�

c(·, ·;µ) an energy norm on Ye that is equivalent
to � · �Ye

for any µ ∈ D.
For a penalty parameter ε > 0 that will tend to zero, we now replace the problem (2.6)

considered in §2.2.1 by a slightly more regular one: Given any µ ∈ D, we find uεe(µ) ∈ Xe

and pεe(µ) ∈ Ye such that

a(uεe(µ), v;µ) + b(v, pεe(µ);µ) = f(v;µ), ∀ v ∈ Xe,

b(uεe(µ), q;µ)− ε c(pεe(µ), q;µ) = g(q;µ), ∀ q ∈ Ye.
(4.3)

By the assumptions (2.1), (2.2), (2.3), (4.1), and (4.2), the problem is well-posed and has a
unique solution for any f(·;µ) ∈ X �

e and g(·;µ) ∈ Y �
e (see, e.g., [13]).

Moreover, as we also assumed (2.4), the penalty solution (uεe(µ), p
ε
e(µ)) of (4.3) converges

to the solution (ue(µ), pe(µ)) of the nonpenalized problem (2.6) as ε approaches zero. For
details, we refer to [9, 101] and to the standard texts [13, 36]. For our specific situation, the
following proposition states the main result in this context.

Proposition 4.2.1. For ε > 0 and µ ∈ D, let (ue(µ), pe(µ)) and (uεe(µ), p
ε
e(µ)) denote the

solutions to (2.6) and (4.3), respectively. Then, for any µ ∈ D, we have

�ue(µ)− uεe(µ)�Xe
≤ Ce

2(µ) ε, �pe(µ)− pεe(µ)�Ye
≤ γea(µ)

βe
Br(µ)

Ce
2(µ) ε,

where the constant Ce
2(µ) > 0 depends only on f(·;µ), g(·;µ), γea(µ), αe

a(µ), γec(µ), and
βe
Br(µ),

Ce
2(µ) ≡

γea(µ)γ
e
c(µ)

αe
a(µ)(β

e
Br(µ))

2

�

1 +
γea(µ)

αe
a(µ)

��

�f(·;µ)�Xe
� +

γea(µ)

βe
Br(µ)

�g(·;µ)�Ye
�

�

.
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Proof. Take ε > 0 and let µ be any parameter in D. It follows from (2.6) and (4.3) that

a(ue(µ)− uεe(µ), v;µ) + b(v, pe(µ)− pεe(µ);µ) = 0, ∀ v ∈ Xe, (4.4)

b(ue(µ)− uεe(µ), q;µ)− ε c(pe(µ)− pεe(µ), q;µ) = −ε c(pe(µ), q;µ), ∀ q ∈ Ye. (4.5)

First, combining the inf-sup condition (2.4) with (4.4) and (2.1), we obtain that

βe
Br(µ)�pe(µ)− pεe(µ)�Ye

≤ sup
v∈Xe

b(v, pe(µ)− pεe(µ);µ)

�v�Xe

= sup
v∈Xe

−a(ue(µ)− uεe(µ), v;µ)

�v�Xe

≤ γea(µ)�ue(µ)− uεe(µ)�Xe
. (4.6)

Second, setting v = ue(µ) − uεe(µ), q = pe(µ) − pεe(µ) in (4.4), (4.5) and subtracting the
second from the first equation yields

�ue(µ)− uεe(µ)�2Xe,µ + ε �pe(µ)− pεe(µ)�2Ye,µ = ε c(pe(µ), pe(µ)− pεe(µ);µ), (4.7)

which provides by (2.3), (4.2), and (4.1) that

αe
a(µ)�ue(µ)− uεe(µ)�2Xe

≤ εγec(µ)�pe(µ)�Ye
�pe(µ)− pεe(µ)�Ye

.

We may then apply (4.6) and divide by αe
a(µ)�ue(µ)− uεe(µ)�Xe

such that

�ue(µ)− uεe(µ)�Xe
≤ γea(µ)γ

e
c(µ)

αe
a(µ)β

e
Br(µ)

�pe(µ)�Ye
ε. (4.8)

The statement then follows from (4.6), (4.8), and the stability estimate (see [13], cf. (2.38))

�pe(µ)�Ye
≤ 1

βe
Br(µ)

�

1 +
γea(µ)

αe
a(µ)

��

�f(·;µ)�Xe
� +

γea(µ)

βe
Br(µ)

�g(·;µ)�Ye
�

�

.

In the special case that a(·, ·;µ) is symmetric for all µ ∈ D, the ε-independent constants
given in Proposition 4.2.1 can be sharpened.

Proposition 4.2.2. Let a(·, ·;µ) be symmetric for all µ ∈ D. For ε > 0 and µ ∈ D, let
(ue(µ), pe(µ)) and (uεe(µ), p

ε
e(µ)) denote the solutions to (2.6) and (4.3), respectively. Then,

for any µ ∈ D, we have

�ue(µ)− uεe(µ)�Xe
≤ Ce,sym

2 (µ)
�

αe
a(µ)

ε, �pe(µ)− pεe(µ)�Ye
≤

�

γea(µ)

βe
Br(µ)

Ce,sym
2 (µ) ε,

where the constant Ce,sym
2 (µ) > 0 may be expressed as

Ce,sym
2 (µ) ≡

�

γea(µ)γ
e
c(µ)

(βe
Br(µ))

2

��

1 +

�

γea(µ)

αe
a(µ)

�

�f(·;µ)�Xe
� +

γea(µ)

βe
Br(µ)

�g(·;µ)�Ye
�

�

.
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Proof. We recall that, as a continuous, symmetric, and coercive bilinear form, a(·, ·;µ)
defines an inner product on Xe for any µ ∈ D. Therefore, following the steps presented in
the previous proof, we now obtain that

βe
Br(µ)�pe(µ)− pεe(µ)�Ye

≤
�

γea(µ) �ue(µ)− uεe(µ)�Xe,µ (4.9)

from the Cauchy-Schwarz inequality for the inner product a(·, ·;µ). Using (4.7), (4.2), (4.1),
and (4.9) then yields

�ue(µ)− uεe(µ)�Xe,µ ≤
�

γea(µ)
γec(µ)

βe
Br(µ)

�pe(µ)�Ye
ε, (4.10)

and the statement follows from combining (4.10) and the stability estimate (cf. (2.56))

�pe(µ)�Ye
≤ 1

βe
Br(µ)

��

1 +

�

γea(µ)

αe
a(µ)

�

�f(·;µ)�Xe
� +

γea(µ)

βe
Br(µ)

�g(·;µ)�Ye
�

�

with either (2.3) or (4.9).

4.2.2 Truth Approximation

As in §2.2.2, we denote by X and Y finite-dimensional subspaces of Xe and Ye satisfying
(2.8), (2.9), (2.10), and (2.11). These in particular also inherit the continuity and coercivity
properties of c(·, ·;µ),

γc(µ) ≡ sup
p∈Y

sup
q∈Y

c(p, q;µ)

�p�Y �q�Y
< ∞, ∀ µ ∈ D, (4.11)

αc(µ) ≡ inf
q∈Y

c(q, q;µ)

�q�2Y
> 0, ∀ µ ∈ D; (4.12)

for any µ ∈ D, � ·�Y,µ ≡ � ·�Ye,µ thus defines a norm on Y that is equivalent to � ·�Y . Again,
we denote by N the large dimension of the approximation space Z = X × Y .

We now define the “truth” approximation as follows: For a sufficiently small penalty
parameter ε > 0 and any given µ ∈ D, we look for uε(µ) ∈ X and pε(µ) ∈ Y such that

a(uε(µ), v;µ) + b(v, pε(µ);µ) = f(v;µ), ∀ v ∈ X,

b(uε(µ), q;µ)− ε c(pε(µ), q;µ) = g(q;µ), ∀ q ∈ Y.
(4.13)

As for the exact problem in §4.2.1, it follows from (2.8), (2.9), (2.10), (4.11), and (4.12) that
the “truth” problem (4.13) is well-posed and has a unique solution for any f(·;µ) ∈ X �

e and
g(·;µ) ∈ Y �

e . The system (4.13) may be equivalently written as

A(µ)uε(µ) +B(µ)t pε(µ) = f(µ) in X �,

B(µ)uε(µ)− εC(µ) pε(µ) = g(µ) in Y �,

where A(µ), B(µ), B(µ)t, f(µ), and g(µ) are defined as in §2.2.2, and the bounded linear
operator C(µ) : Y → Y � is given by

�C(µ) p, q� = c(p, q;µ), ∀ p, q ∈ Y.
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Since X and Y are moreover assumed to satisfy the LBB inf-sup condition (2.11), the
penalty solution (uε(µ), pε(µ)) of (4.13) converges to the solution (u(µ), p(µ)) of the non-
penalized problem (2.13) as ε approaches zero; more precisely, corresponding to Proposi-
tion 4.2.1 and Proposition 4.2.2, the following results hold true.

Proposition 4.2.3. For ε > 0 and µ ∈ D, let (u(µ), p(µ)) and (uε(µ), pε(µ)) denote the
solutions to (2.13) and (4.13), respectively. Then, for any µ ∈ D, we have

�u(µ)− uε(µ)�X ≤ C2(µ) ε, �p(µ)− pε(µ)�Y ≤ γa(µ)

βBr(µ)
C2(µ) ε,

where the constant C2(µ) > 0 depends only on f(·;µ), g(·;µ), γa(µ), αa(µ), γc(µ), and
βBr(µ),

C2(µ) ≡
γa(µ)γc(µ)

αa(µ)(βBr(µ))2

�

1 +
γa(µ)

αa(µ)

��

�f(·;µ)�X� +
γa(µ)

βBr(µ)
�g(·;µ)�Y �

�

.

Proof. Replacing the spaces Xe and Ye with X and Y , respectively, this is a direct application
of Proposition 4.2.1.

Proposition 4.2.4. Let a(·, ·;µ) be symmetric for all µ ∈ D. For ε > 0 and µ ∈ D, let
(u(µ), p(µ)) and (uε(µ), pε(µ)) denote the solutions to (2.13) and (4.13), respectively. Then,
for any µ ∈ D, we have

�u(µ)− uε(µ)�X ≤ Csym
2 (µ)

�

αa(µ)
ε, �p(µ)− pε(µ)�Y ≤

�

γa(µ)

βBr(µ)
Csym
2 (µ) ε,

where the constant Csym
2 (µ) > 0 may be expressed as

Csym
2 (µ) ≡

�

γa(µ)γc(µ)

(βBr(µ))2

��

1 +

�

γa(µ)

αa(µ)

�

�f(·;µ)�X� +
γa(µ)

βBr(µ)
�g(·;µ)�Y �

�

.

Proof. Replacing the spaces Xe and Ye with X and Y , respectively, this is a direct application
of Proposition 4.2.2.

We shall build our reduced basis approximation upon the “truth” discretization (4.13),
and we shall measure the error in our reduced basis prediction relative to (uε(µ), pε(µ)).

4.3 Reduced Basis Approximation

We now turn to the reduced basis method, discussing the approximation procedure, rigorous
a posteriori error estimators, and the effects of the penalty parameter ε.
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4.3.1 Formulation

Suppose that we are given a set of nested, low-dimensional reduced basis approximation
subspaces XN ⊂ XN+1 ⊂ X and YN ⊂ YN+1 ⊂ Y , N ∈ Nmax ≡ {1, . . . , Nmax}, then the
reduced basis approximation is again defined as the Galerkin projection with respect to the
truth problem (4.13) onto these low-dimensional subspaces: For ε > 0 sufficiently small and
any given µ ∈ D, we find uεN (µ) ∈ XN and pεN (µ) ∈ YN such that

a(uεN (µ), vN ;µ) + b(vN , pεN (µ);µ) = f(vN ;µ), ∀ vN ∈ XN ,

b(uεN (µ), qN ;µ)− ε c(pεN (µ), qN ;µ) = g(qN ;µ), ∀ qN ∈ YN .
(4.14)

Written in operator notation, the discrete system reads

AN (µ)uεN (µ) +BN (µ)t pεN (µ) = fN (µ) in X �
N , (4.15)

BN (µ)uεN (µ)− εCN (µ) pεN (µ) = gN (µ) in Y �
N , (4.16)

where AN (µ), BN (µ), BN (µ)t, fN (µ), and gN (µ) are defined as in §2.3.1, and the operator
CN (µ) : YN → Y �

N is given by

�CN (µ) pN , qN � = c(pN , qN ;µ), ∀ pN , qN ∈ YN .

4.3.2 Properties of the Discrete System

The introduction of the penalty term regularizes the reduced basis problem such that no
further requirements for the reduced basis approximation spaces XN and YN are needed for
(4.14) to be well-posed. Let ε > 0 and µ ∈ D. As the bilinear form c(·, ·;µ) satisfies (4.11)
and (4.12), the operator CN (µ) is nonsingular and (4.16) is equivalent to

pεN (µ) = 1
ε
CN (µ)−1

�

BN (µ)uεN (µ)− gN (µ)
�

. (4.17)

Inserting this in (4.15), uεN (µ) is given as the unique solution to the coercive problem
�

AN (µ) + 1
ε
BN (µ)tCN (µ)−1BN (µ)

�

uεN (µ) = fN (µ) + 1
ε
BN (µ)tCN (µ)−1gN (µ) in X �

N ,

and pεN (µ) is clearly obtained through (4.17). In contrast to our observations for (2.14) in
§2.3.2 where the inf-sup condition (2.17) represents an additional requirement for XN , YN
that needs to be satisfied, the system (4.14) is thus uniquely solvable for any parameter
µ ∈ D for any choice of XN , YN .

4.3.3 A Priori Error Estimation

We here consider a priori estimates for the errors in our reduced basis approximations.
For any ε > 0 and µ ∈ D, we denote the errors in the reduced basis approximations

uεN (µ) ∈ XN , pεN (µ) ∈ YN , and (uεN (µ), pεN (µ)) ∈ ZN = XN × YN with respect to the truth
penalty approximations by

eu,εN (µ) ≡ uε(µ)− uεN (µ) ∈ X,

ep,εN (µ) ≡ pε(µ)− pεN (µ) ∈ Y, (4.18)

eεN (µ) ≡ (eu,εN (µ), ep,εN (µ)) ∈ Z.
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The total error eεN (µ) shall be measured in the ε-dependent energy norm � · �Z,ε,µ given on
the combined space Z = X × Y by

�(v, q)�Z,ε,µ ≡
�

a(v, v;µ) + ε c(q, q;µ)
�1/2

=
�

�v�2X,µ + ε �q�2Y,µ
�1/2

, ∀ (v, q) ∈ Z. (4.19)

From (2.8), (2.10), (4.11), and (4.12), this norm is clearly equivalent to � · �Z ; however, we
note that this relationship depends on the penalty parameter ε,

�

min{αa(µ), εαc(µ)} � · �Z ≤ � · �Z,ε,µ ≤
�

max{γa(µ), εγc(µ)} � · �Z , ∀ µ ∈ D.

Proposition 4.3.1. For ε > 0, µ ∈ D, and N ∈ Nmax, we have

�eεN (µ)�Z,ε,µ ≤ C
�

1√
ε
, µ

�

inf
(vN ,qN )∈ZN

�(uε(µ), pε(µ))− (vN , qN )�Z,ε,µ, (4.20)

where the constant C
�

1√
ε
, µ

�

> 0 may be expressed as

C
�

1√
ε
, µ

�

≡ 1 + max

�

γa(µ)

αa(µ)
,
γc(µ)

αc(µ)

�

+
γb(µ)

�

αa(µ)αc(µ)ε
.

Proof. Let ε > 0, µ ∈ D, and N ∈ Nmax. (We suppress the argument µ in this proof for
clarity of exposition.) For any vN ∈ XN and qN ∈ YN , it follows from (4.13) and (4.14) that

a(vN − uεN , wN ) + b(wN , qN − pεN ) = a(vN − uε, wN ) + b(wN , qN − pε), ∀ wN ∈ XN ,

b(vN − uεN , rN )− ε c(qN − pεN , rN ) = b(vN − uε, rN )− ε c(qN − pε, rN ), ∀ rN ∈ YN .

Setting here wN = vN − uεN ∈ XN , rN = qN − pεN ∈ YN and subtracting the second from
the first equation yields

�(vN − uεN , qN − pεN )�2Z,ε,µ = �vN − uεN�2X,µ + ε �qN − pεN�2Y,µ
= a(vN − uε, vN − uεN ) + b(vN − uεN , qN − pε) (4.21)

− b(vN − uε, qN − pεN ) + ε c(qN − pε, qN − pεN ),

which, from (2.8), (2.9), (2.10), (4.11), and (4.12), can be estimated by

≤ γa

αa
�vN − uε�X,µ�vN − uεN�X,µ +

γb√
αaαc

�vN − uεN�X,µ�qN − pε�Y,µ

+
γb√
αaαc

�vN − uε�X,µ�qN − pεN�Y,µ + ε
γc

αc
�qN − pε�Y,µ�qN − pεN�Y,µ. (4.22)

Written in matrix-vector notation, this reads

�(vN − uεN , qN − pεN )�2Z,ε,µ ≤
�

�vN − uεN�X,µ√
ε �qN − pεN�Y,µ

�t
�

γa
αa

γb√
αaαcε

γb√
αaαcε

γc
αc

�

�

�vN − uε�X,µ√
ε �qN − pε�Y,µ

�

,

which is further bounded by

≤
�

max

�

γa

αa
,
γc

αc

�

+
γb√
αaαcε

�

�(vN − uεN , qN − pεN )�Z,ε,µ �(vN − uε, qN − pε)�Z,ε,µ
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from the same techniques as used in the proof of Corollary 2.4.3. We finally have

�(vN − uεN , qN − pεN�Z,ε,µ ≤
�

max

�

γa

αa
,
γc

αc

�

+
γb√
αaαcε

�

�(uε − vN , pε − qN )�Z,ε,µ (4.23)

for all vN ∈ XN , qN ∈ YN , and (4.20) follows from the triangle inequality

�eεN�Z,ε,µ = �(uε − uεN , pε − pεN )�Z,ε,µ
≤ �(uε − vN , pε − qN )�Z,ε,µ + �(vN − uεN , qN − pεN )�Z,ε,µ

and (4.23).

In the case of a symmetric problem (4.3), the constant given in (4.20) can be improved;
we may then derive the following a priori error estimate.

Proposition 4.3.2. Let a(·, ·;µ) and c(·, ·;µ) be symmetric for all µ ∈ D. For ε > 0, µ ∈ D,
and N ∈ Nmax, we then have

�eεN (µ)�Z,ε,µ ≤
�

2 +
γb(µ)

�

αa(µ)αc(µ)ε

�

inf
(vN ,qN )∈ZN

�(uε(µ), pε(µ))− (vN , qN )�Z,ε,µ.

Proof. As continuous and symmetric bilinear forms satisfying (2.10) and (4.12), a(·, ·;µ) and
c(·, ·;µ) define inner products on X and Y , respectively, for any parameter µ ∈ D. Therefore,
proceeding as in the previous proof, we may now apply the Cauchy–Schwarz inequality in
(4.21) that yields

�(vN − uεN , qN − pεN )�2Z,ε,µ
≤ �vN − uε�X,µ�vN − uεN�X,µ +

γb√
αaαc

�vN − uεN�X,µ�qN − pε�Y,µ

+
γb√
αaαc

�vN − uε�X,µ�qN − pεN�Y,µ + ε �qN − pε�Y,µ�qN − pεN�Y,µ

instead of (4.22). The statement then follows from analogous steps as presented above.

Through the introduction of the penalty term, we thus obtain a priori error estimates
that do not depend on inf-sup constants. However, we note that they depend on the penalty
parameter ε: The rate at which the reduced basis approximation (uεN (µ), pεN (µ)) converges
to the truth solution (uε(µ), pε(µ)) behaves as O

�

1√
ε

�

and thus may be poor for ε small if

no further precautions are taken. Sufficient precautions are, for example, to construct the
reduced basis approximation spaces XN , YN such that they are stable as defined in §2.3.2;
in this case, there moreover holds the following result.

Proposition 4.3.3. If the spaces XN , YN are stable (see §2.3.2), we have for ε ∈ (0, 1),
µ ∈ D, and N ∈ Nmax,

�eεN (µ)�Z ≤ C(µ) inf
(vN ,qN )∈ZN

�(uε(µ), pε(µ))− (vN , qN )�Z , (4.24)

where the constant C(µ) > 0 depends only on γa(µ), αa(µ), γc(µ), αc(µ), γb(µ), and βN (µ).
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Proof. We here essentially combine the approach in the proof of Proposition 4.3.1 with
techniques used for Proposition 2.3.2. Let ε > 0, µ ∈ D, and N ∈ Nmax. (We suppress all
µ-dependence in this proof for clarity of exposition.)

Take any vN ∈ XN and qN ∈ YN . We start as in the proof of Proposition 4.3.1 and obtain
(4.21). From (2.8), (2.10), (4.11), (4.12), and (2.9), it then follows that

αa�vN − uεN�2X + εαc�qN − pεN�2Y
≤ γa�vN − uε�X�vN − uεN�X + εγc�qN − pε�Y �qN − pεN�Y

+ γb�vN − uεN�X�qN − pε�Y + γb�vN − uε�X�qN − pεN�Y . (4.25)

We now proceed as in the proof of Proposition 2.3.2: As the Galerkin projection (4.14)
to (4.13) onto the low-dimensional reduced basis approximation spaces XN , YN , the errors
eu,εN and ep,εN satisfy

a(eu,εN , vN ) + b(vN , ep,εN ) = 0, ∀ vN ∈ XN . (4.26)

Since XN , YN are stable, the inf-sup condition (2.17) and (4.26) provide that

βN�qN − pεN�Y ≤ sup
vN∈XN

b(vN , qN − pεN )

�vN�X
= sup

vN∈XN

b(vN , qN − pε) + b(vN , ep,εN )

�vN�X

= sup
vN∈XN

b(vN , qN − pε)− a(eu,εN , vN )

�vN�X
≤ γb�qN − pε�Y + γa�eu,εN �X , (4.27)

where the last inequality follows from (2.8) and (2.9).
Combining (4.25) and (4.27) now yields

αa�vN − uεN�2X + εαc�qN − pεN�2Y
≤ γa�vN − uε�X�vN − uεN�X + εγc�qN − pε�Y �qN − pεN�Y

+ γb�vN − uεN�X�qN − pε�Y +
γb

βN
�vN − uε�X

�

γb�qN − pε�Y + γa�eu,εN �X
�

;

from the triangle inequality �eu,εN �X ≤ �uε − vN�X + �vN − uεN�X , the above is further
bounded by

≤
�

γa

�

1 +
γb

βN

�

�vN − uε�X + γb�qN − pε�Y
�

�vN − uεN�X

+ εγc�qN − pε�Y �qN − pεN�Y +
γ2b
βN

�vN − uε�X�qN − pε�Y +
γaγb

βN
�vN − uε�2X .

We apply Young’s inequality with ρ1, ρ2 > 0 such that

(2αa − ρ1)�vN − uεN�2X + (2εαc − ε2ρ2)�qN − pεN�2Y

≤ 1

ρ1

�

γa

�

1 +
γb

βN

�

�vN − uε�X + γb�qN − pε�Y
�2

+
γ2c
ρ2

�qN − pε�2Y

+ 2
γ2b
βN

�vN − uε�X�qN − pε�Y + 2
γaγb

βN
�vN − uε�2X ;
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choosing ρ1 ≡ αa and ρ2 ≡ 2αc, we obtain 2εαc − ε2ρ2 = 2ε(1− ε)αc > 0 for ε ∈ (0, 1) and
therefore,

�vN − uεN�X ≤ C
�

�uε − vN�X + �pε − qN�Y
�

, (4.28)

where C > 0 depends only on γa, αa, γc, αc, γb, and βN . The statement thus follows from
the triangle inequality, (4.27), and (4.28).

4.4 A Posteriori Error Estimation

Using the penalty formulation, we may now develop rigorous a posteriori error bounds that
do not require the computation of lower bounds to inf-sup stability constants.

4.4.1 Ingredients

Before we are able to formulate our a posteriori error bounds, we again need to introduce
two sets of ingredients. The first set of ingredients consists of lower (and upper bounds) to
the truth coercivity constants (2.10) and (4.12),

αLB
a (µ) ≤ αa(µ) ≤ αUB

a (µ),

αLB
c (µ) ≤ αc(µ) ≤ αUB

c (µ),
∀ µ ∈ D. (4.29)

The second set of ingredients consists of the dual norms of the residuals associated with the
reduced basis approximation (uεN (µ), pεN (µ)),

�r1,εN (·;µ)�X� = sup
v∈X

r1,εN (v;µ)

�v�X
, �r2,εN (·;µ)�Y � = sup

q∈Y

r2,εN (q;µ)

�q�Y
, (4.30)

where, for all µ ∈ D, r1,εN (·;µ) ∈ X � and r2,εN (·;µ) ∈ Y � are defined as

r1,εN (v;µ) ≡ f(v;µ)− a(uεN (µ), v;µ)− b(v, pεN (µ);µ), ∀ v ∈ X, (4.31)

r2,εN (q;µ) ≡ g(q;µ)− b(uεN (µ), q;µ) + ε c(pεN (µ), q;µ), ∀ q ∈ Y. (4.32)

4.4.2 Error Bound Formulation

We can now state the following result.

Proposition 4.4.1. For ε > 0, µ ∈ D, N ∈ Nmax, and αLB
a (µ), αLB

c (µ) satisfying (4.29),
we define

∆
ε
N (µ) ≡

��r1,εN (·;µ)�2X�

αLB
a (µ)

+
�r2,εN (·;µ)�2Y �

εαLB
c (µ)

�1/2

. (4.33)

Then, ∆ε
N (µ) is an upper bound for the error eεN (µ) measured in the ε-dependent energy

norm (4.19),

�eεN (µ)�Z,ε,µ ≤ ∆
ε
N (µ), ∀ µ ∈ D, ∀ N ∈ Nmax. (4.34)
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Proof. We follow the proof of Proposition 4.1 in [35]. Let ε > 0, µ ∈ D, and N ∈ Nmax.
From (4.31), (4.32), and (4.13), the errors eu,εN (µ) and ep,εN (µ) satisfy the equations

a(eu,εN (µ), v;µ) + b(v, ep,εN (µ);µ) = r1,εN (v;µ), ∀ v ∈ X, (4.35)

b(eu,εN (µ), q;µ)− ε c(ep,εN (µ), q;µ) = r2,εN (q;µ), ∀ q ∈ Y. (4.36)

Setting v = eu,εN (µ), q = ep,εN (µ) and subtracting the second from the first equation yields

�eu,εN (µ)�2X,µ + ε �ep,εN (µ)�2Y,µ = r1,εN (eu,εN (µ);µ)− r2,εN (ep,εN (µ);µ)

≤ �r1,εN (·;µ)�X��eu,εN (µ)�X + �r2,εN (·;µ)�Y ��ep,εN (µ)�Y ;

from (2.10) and (4.12), this is then further bounded by

≤ �r1,εN (·;µ)�X�

�

αa(µ)
�eu,εN (µ)�X,µ +

�r2,εN (·;µ)�Y �

�

αc(µ)
�ep,εN (µ)�Y,µ

≤
�

�eu,εN (µ)�2X,µ + ε �ep,εN (µ)�2Y,µ
�1/2

��r1,εN (·;µ)�2X�

αa(µ)
+

�r2,εN (·;µ)�2Y �

εαc(µ)

�1/2

,

where the second estimate is obtained from the Cauchy–Schwarz inequality for the Euclidean
distance. The statement then directly follows from (4.29).

Again, as a measure of the quality of the proposed error estimators, we consider the
effectivities

ηεN (µ) ≡ ∆ε
N (µ)

�eεN (µ)�Z,ε,µ
, ε > 0, µ ∈ D, N ∈ Nmax. (4.37)

We recall that effectivities ≥ 1 indicate that the error estimate is rigorous; effectivities close
to unity indicate that the error estimate is sharp. The following corollary specifies this
behavior for the error bounds derived above.

Corollary 4.4.2. For ε ∈ (0, 1], µ ∈ D, and N ∈ Nmax, the effectivity ηεN (µ) associated
with the error bound (4.33) satisfies

1 ≤ ηεN (µ) ≤ C3(µ)√
ε

, (4.38)

where the constant C3(µ) > 0 may be expressed as

C3(µ) ≡
�

(γb(µ))
2

αLB
a (µ)αc(µ)

+
(γb(µ))

2

αLB
c (µ)αa(µ)

+
(γa(µ))

2

αLB
a (µ)αa(µ)

+
(γc(µ))

2

αLB
c (µ)αc(µ)

�1/2

.

Proof. Let ε > 0, µ ∈ D, and N ∈ Nmax. (Again, we suppress the argument µ for clarity
of exposition.) The first inequality in (4.38) immediately follows from (4.34) in Proposi-
tion 4.4.1. In order to derive the upper bound for the effectivity, we note from (4.35) and
(4.36) that the dual norms of the residuals satisfy

�r1,εN �X� ≤ γa�eu,εN �X + γb�ep,εN �Y ≤ γa√
αa

�eu,εN �X,µ +
γb√
αc

�ep,εN �Y,µ,

�r2,εN �Y � ≤ γb�eu,εN �X + εγc�ep,εN �Y ≤ γb√
αa

�eu,εN �X,µ + ε
γc√
αc

�ep,εN �Y,µ
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by (2.8), (2.9), (2.10), (4.11), and (4.12). Using the Cauchy–Schwarz inequality for the
Euclidean distance, we obtain

�r1,εN �X� ≤
�

γ2a
αa

+
γ2b
εαc

�1/2

�eεN�Z,ε,µ, �r2,εN �Y � ≤
�

γ2b
αa

+ ε
γ2c
αc

�1/2

�eεN�Z,ε,µ. (4.39)

Applying this to (4.33), we have

�

∆
ε
N

�2 ≤
�

1

αLB
a

�

γ2a
αa

+
γ2b
εαc

�

+
1

εαLB
c

�

ε
γ2c
αc

+
γ2b
αa

�

�

�eεN�2Z,ε,µ

=

�

1

ε

�

γ2b
αLB
a αc

+
γ2b

αLB
c αa

�

+
γ2a

αLB
a αa

+
γ2c

αLB
c αc

�

�eεN�2Z,ε,µ,

which finally yields the statement for ε ∈ (0, 1].

In the special case of a symmetric problem, the constant given in Corollary 4.4.2 can be
sharpened as follows.

Corollary 4.4.3. Let a(·, ·;µ) and c(·, ·;µ) be symmetric for all µ ∈ D. For ε ∈ (0, 1],
µ ∈ D, and N ∈ Nmax, the effectivity ηεN (µ) associated with the error bound (4.33) satisfies

1 ≤ ηεN (µ) ≤ Csym
3 (µ)√

ε
,

where the constant Csym
3 (µ) > 0 may be expressed as

Csym
3 (µ) ≡

�

(γb(µ))
2

αLB
a (µ)αc(µ)

+
(γb(µ))

2

αLB
c (µ)αa(µ)

+
γa(µ)

αLB
a (µ)

+
γc(µ)

αLB
c (µ)

�1/2

≤ C3(µ). (4.40)

Proof. Proceeding as in the previous proof, the dual norms of the residuals may now be
estimated by

�r1,εN �X� ≤ √
γa�eu,εN �X,µ + γb�ep,εN �Y ≤ √

γa�eu,εN �X,µ +
γb√
αc

�ep,εN �Y,µ,

�r2,εN �Y � ≤ γb�eu,εN �X + ε
√
γc�ep,εN �Y,µ ≤ γb√

αa
�eu,εN �X,µ + ε

√
γc�ep,εN �Y,µ

from (4.35), (4.36), the Cauchy–Schwarz inequalities for the inner products a(·; ·;µ) and
c(·, ·;µ), (2.8), (2.9), (4.11), and (2.10), (4.12). Therefore, (4.39) now becomes

�r1,εN �X� ≤
�

γa +
γ2b
εαc

�1/2

�eεN�Z,ε,µ, �r2,εN �Y � ≤
�

γ2b
αa

+ εγc

�1/2

�eεN�Z,ε,µ,

and applying this to (4.33) again yields the desired result. Note that the constant Csym
3

differs from C3 in the last two terms; the inequality in (4.40) then follows as we clearly have
γa
αa

, γc
αc

≥ 1 from the definitions in (2.8), (2.10) and (4.11), (4.12).
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4.5 Construction of Reduced Basis Approximation Spaces

We introduced several options to construct the low-dimensional reduced basis approximation
space in §2.5. Accordingly, the reduced basis approximation space YN for the Lagrange
multiplier is defined as the span of several truth solutions pε(µn), 1 ≤ n ≤ N , associated
with chosen parameter snapshots µ1, . . . , µN ∈ D (see (2.69)),

YN ≡ span{ pε(µn) | 1 ≤ n ≤ N } = span{ ξn | 1 ≤ n ≤ N}, (4.41)

where ξn ∈ Y , 1 ≤ n ≤ N , are (·, ·)Y -orthonormal basis functions. The reduced basis
approximation space XN for the primal variable may then be constructed by using either
Option 0, Option 1, Option 2, or Option 3; for the reader’s convenience, we restate their
definitions in Table 4.1 but refer to §2.5 for details on their respective properties. Again, for
algebraic stability reasons, also XN is in particular expressed by orthonormal basis functions,
i.e., XN ≡ span{φm | 1 ≤ m ≤ NX }, where φm ∈ X, 1 ≤ m ≤ NX , are (·, ·)X -orthonormal.

Option XN

0 X0
N ≡ span{uε(µn) | 1 ≤ n ≤ N } (see (2.70))

1 X1
N ≡ X0

N ⊕ span{T kξn | 1 ≤ n ≤ N, 1 ≤ k ≤ Qb } (see (2.77))

2 X2
N ≡ X0

N ⊕ span{Tµn
ξn | 1 ≤ n ≤ N } (see (2.78))

3 X3
N ≡ X0

N ⊕ span{uε(µ�

n) | 1 ≤ n ≤ N } (see (2.79))

Table 4.1.: Options to construct of the reduced basis approximation space XN for the pri-
mal variable, where the reduced basis approximation space YN for the Lagrange
multiplier is given as in (4.41).

We recall (see §4.3.2) that for all options considered in Table 4.1, the problem (4.14) is
uniquely solvable and we obtain valid approximations uεN (µ) and pεN (µ) for uε(µ) and pε(µ),
respectively. In contrast to the situation described in §2.5, we emphasize that also Option 0
no longer disqualifies itself a priori but may possibly provide useful results.

4.6 Offline-Online Computational Procedure

Again, we exploit the parameter-affine dependence (2.7) of the problem to invoke an efficient
Offline-Online computational strategy.

4.6.1 Reduced Basis Approximation

Noting that for ε > 0 and µ ∈ D, we can expand uεN (µ) ∈ XN and pεN (µ) ∈ YN as

uεN (µ) =

NX
�

m=1

uεN m(µ)φm, pεN (µ) =

NY
�

n=1

pεN n(µ)ξn, (4.42)

the reduced basis system (4.14) may be written as

NX
�

m=1

Qa
�

k=1

Θ
k
a(µ)A

k
N imuεN m(µ) +

NY
�

n=1

Qb
�

k=1

Θ
k
b (µ)B

k
N ni p

ε
N n(µ) =

Qf
�

k=1

Θ
k
f (µ)f

k
N i,
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for all 1 ≤ i ≤ NX , and

NX
�

m=1

Qb
�

k=1

Θ
k
b (µ)B

k
N jmuεN m(µ)− ε

NY
�

n=1

Qc
�

k=1

Θ
k
c (µ)C

k
N jn p

ε
N n(µ) =

Qg
�

k=1

Θ
k
g(µ)g

k
N j ,

for all 1 ≤ j ≤ NY ; here, the µ-independent quantities Ak
N im, Bk

N ni, f
k
N i, and gkN j are given

as in §2.6.1 and
Ck
N ij ≡ ck(ξj , ξi), 1 ≤ i, j ≤ NY , 1 ≤ k ≤ Qc.

Again, the expensive Offline stage where we form and store all parameter-independent
quantities enables the highly efficient Online evaluation of the reduced basis approximation
for any parameter query; computational costs essentially remain the same as listed in §2.6.1.

4.6.2 A Posteriori Error Bounds

The computation of the a posteriori error bounds ∆ε
N (µ) again consists of two components:

the calculation of the residual dual norms (4.30), and the calculation of the required lower
(and upper) bounds (4.29) to the coercivity constants αa(µ) and αc(µ).

As in §2.6.2, we use the µ-affine expansions (2.7) and (4.42) to express the residual r1,εN (·;µ)
defined in (4.31) as

r1,εN (v;µ) =

Qf
�

k=1

Θ
k
f (µ)f

k(v)−
NX
�

m=1

Qa
�

k=1

uεN m(µ)Θk
a(µ) a

k(φm, v)

−
NY
�

n=1

Qb
�

k=1

pεN n(µ)Θ
k
b (µ) b

k(v, ξn), ∀ v ∈ X,

and the residual r2,εN (·;µ) defined in (4.32) as

r2,εN (q;µ) =

Qg
�

k=1

Θ
k
g(µ)g

k(q)−
NX
�

m=1

Qb
�

k=1

uεN m(µ)Θk
b (µ) b

k(φm, q)

+ ε

NY
�

n=1

Qc
�

k=1

pεN n(µ)Θ
k
c (µ) c

k(ξn, q), ∀ q ∈ Y.

Setting Q1 ≡ Qf + NXQa + NY Qb and Qε
2 ≡ Qg + NXQb + NY Qc, this can be written

succinctly as

r1,εN (v;µ) =

Q1
�

k=1

Θ
1,ε,k
N (µ) r1,ε,kN (v), ∀ v ∈ X, (4.43)

r2,εN (q;µ) =

Qε
2

�

k=1

Θ
2,ε,k
N (µ) r2,ε,kN (q), ∀ q ∈ Y, (4.44)

where the coefficient functions Θ
1,ε,k
N (µ), 1 ≤ k ≤ Q1, and Θ

2,ε,k
N (µ), 1 ≤ k ≤ Qε

2, depend
on µ explicitly through the coefficient functions Θk

I(µ), 1 ≤ k ≤ QI , I = a, b, c, f, g, but
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also implicitly through uεN (µ) and pεN (µ); r1,ε,kN (·) ∈ X �, 1 ≤ k ≤ Q1, and r2,ε,kN (·) ∈ Y �,
1 ≤ k ≤ Qε

2, are parameter-independent linear functionals.

We denote by ê1,ε,kN ∈ X and ê2,ε,kN ∈ Y the Riesz representers associated with r1,ε,kN (·)

and r2,ε,kN (·), respectively, which are obtained as the solutions to the µ-independent linear
problems

(ê1,ε,kN , v)X = r1,ε,kN (v), ∀ v ∈ X, ∀ 1 ≤ k ≤ Q1, (4.45)

(ê2,ε,kN , q)Y = r2,ε,kN (q), ∀ q ∈ Y, ∀ 1 ≤ k ≤ Qε
2. (4.46)

By (4.43) and (4.44), the Riesz representers ê1,εN (µ) ∈ X and ê2,εN (µ) ∈ Y associated with

the residuals r1,εN (·;µ) and r2,εN (·;µ) are then given by

ê1,εN (µ) =

Q1
�

k=1

Θ
1,ε,k
N (µ) ê1,ε,kN , ê2,εN (µ) =

Qε
2

�

k=1

Θ
2,ε,k
N (µ) ê2,ε,kN ,

and it finally follows that

�r1,εN (·;µ)�2X� = (ê1,εN (µ), ê1,εN (µ))X =

Q1
�

k,l=1

Θ
1,ε,k
N (µ)Θ1,ε,l

N (µ) (ê1,ε,kN , ê1,ε,lN )X , (4.47)

�r2,εN (·;µ)�2Y � = (ê2,εN (µ), ê2,εN (µ))Y =

Qε
2

�

k,l=1

Θ
2,ε,k
N (µ)Θ2,ε,l

N (µ) (ê2,ε,kN , ê2,ε,lN )Y . (4.48)

We may now summarize the Offline-Online decomposition.
In the Offline stage, we find the Riesz representers ê1,ε,kN , 1 ≤ k ≤ Q1, and ê2,ε,kN , 1 ≤ k ≤

Qε
2, and form the associated inner products (ê1,ε,kN , ê1,ε,lN )X , 1 ≤ k, l ≤ Q1, and (ê2,ε,kN , ê2,ε,lN )Y ,

1 ≤ k, l ≤ Qε
2. Again (see §2.6.2), these computations clearly depend on N : We have to

solve Q1 and Qε
2 linear problems of type (4.45) and (4.46), respectively, and to compute

(Q1)
2 and (Qε

2)
2 inner products in X and Y . In the Online stage, given the reduced basis

coefficients uεN m(µ), 1 ≤ m ≤ NX , and pεN n(µ), 1 ≤ n ≤ NY , we then compute the

coefficient functions Θ
1,ε,k
N (µ), 1 ≤ k ≤ Q1, and Θ

2,ε,k
N (µ), 1 ≤ k ≤ Qε

2, and assemble
the sums (4.47) and (4.48) at O((Q1)

2) = O((Qf + NXQa + NY Qb)
2) and O((Qε

2)
2) =

O((Qg +NXQb +NY Qc)
2) operations, respectively. As desired, the operation count for the

Online stage is thus independent of N .
We obtain (Online-)efficient lower and upper bounds (4.29) to the coercivity constants

αa(µ) and αc(µ) by the SCM methodology described in §2.6.2.

4.7 Adaptive Sampling Procedures

We discussed adaptive sampling procedures constructing reduced basis approximation spaces
(XN , YN ), N ∈ Nmax, that are computationally efficient in §2.7. Again, we consider the
standard greedy sampling process combined with Option 2 (see §2.7, Algorithm 1) and
the sampling procedures Algorithm 2 and Algorithm 3 where the need for stabilization is
recognized adaptively. In addition, according to our observations in §4.5, a standard greedy
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approach (see §2.7) based on Option 0 (see Table 4.1) cannot categorically be excluded
from further considerations but may provide useful results; the exact sampling procedure is
therefore summarized in Algorithm 4. In contrast to the other sampling processes, we here
do not pursue additional stabilization techniques but construct XN and YN based solely
on the respective truth solutions associated with the greedily selected parameter snapshots.
However, we bear in mind that for penalty parameters ε tending to zero, a priori error
estimates in §4.3.3 suggest poor convergence for approximation spaces XN , YN that exhibit
small inf-sup constants βN (µ) (see (2.17)).

Algorithm 4 Standard Greedy Algorithm (using Option 0)

1: Choose Σ ⊂ D, δtol ∈ (0, 1), and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: NY ← NY + 1, YN ← YN−1 ⊕ span{ pε(µN ) } (see (4.41))
6: NX ← NX + 1, XN ← XN−1 ⊕ span{uε(µN ) } (see §4.5, Table 4.1)
7: for all µ ∈ Σ do

8: Compute (uεN (µ), pεN (µ)) and ∆N (µ)
9: end for

10: µN+1 ≡ argmaxµ∈Σ ∆N (µ)
11: until ∆N (µN+1) < δtol
12: Nmax ← N

Remark 4.7.1. We here note that Algorithm 2 and Algorithm 3 involve the (Online-)effi-
cient estimation of the truth Brezzi inf-sup constants βBr(µ) and are therefore not optimally
suited to the penalty context where we aim to avoid such computations. However, the
estimated truth Brezzi inf-sup constants are only used as reference values for the reduced
basis inf-sup constants βN (µ) (see (2.101)). In the penalty context, such a reference could
for example also be given by βBr(µref) for a chosen reference parameter µref ∈ D.

4.8 Concluding Remarks

We present in this chapter the abstract framework of a new reduced basis method for saddle
point problems based on a penalty formulation. At the expense of a less accurate truth
approximation, the proposed approach enables the circumvention of the inf-sup condition.
The analysis demonstrates how this affects the construction of reduced basis approximation
spaces as well as the development of a posteriori error bounds.

Through the introduction of the penalty term, fulfillment of the inf-sup condition (2.17)
is no longer a compulsory requirement for the reduced basis approximation spaces. In case
of small inf-sup constants, a priori error estimates predict poor convergence for penalty pa-
rameters tending to zero; however, computationally efficient construction techniques where
we do not enrich the reduced basis approximation space for the primal variable cannot cat-
egorically be excluded from further considerations but may possibly provide useful results.
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The developed rigorous a posteriori error bounds are independent of inf-sup stability
constants and can therefore be computed very easily. However, they do depend on the
penalty parameter ε: As ε decreases and we approach the nonpenalized problem, the error
bounds become increasingly pessimistic. Nevertheless, with associated effectivities growing
by an order of O

�

1√
ε

�

, these effects are relatively benign.





Chapter 5

Approximation of the Stokes Equations by

Regularization or Penalty

5.1 Introduction

First introduced in the context of constrained optimization, the penalty method gained
popularity as a numerical solution method for the Stokes and Navier–Stokes equations in
the 1980s and 1990s (see, for example, [9, 20, 52, 81, 82] and the review papers [51, 91]).
Combined with reduced integration techniques [112], it allows the elimination of the pressure
and circumvention of the Babuška–Brezzi inf-sup condition [9, 13].

In the previous chapter, we presented an abstract framework of how the penalty formula-
tion may be employed in the reduced basis context. With the increase in speed and memory
capacity of computing devices, the penalty approach lost popularity in the finite element
community after the 1990s; in the parametric reduced basis setting, it still provides a re-
duction of computational effort that is significant. In this chapter, we apply the method
developed in Chapter 4 to a perturbed Stokes flow in a parametrized domain. Consider-
ing the model problem introduced in §3.2, numerical results demonstrate the effects of the
penalty term in practice.

The chapter is organized as follows: In §5.2, we derive the penalty formulation for the
Stokes model problem introduced in §3.2. In §5.3, we then apply the reduced basis approach
discussed in §4: Numerical results illustrate the effects of the penalty term on (i) the per-
turbed truth velocity and pressure approximations, (ii) convergence of the reduced basis
approximations, (iii) computational efficiency, and (iv) error bound effectivity.

5.2 Model Problem

We again consider a Stokes flow through a two-dimensional microchannel with a parametrized
rectangular obstacle as described in §3.2. We now introduce a penalty term to the continuity
equation (3.2),

∇ · ũεe,inh = −ε p̃εe in Ω̃, (5.1)

for some small penalty parameter ε > 0. We recall that (5.1) essentially approximates the
fluid as nearly incompressible. From (3.1), (5.1), and (3.3), the governing equations for the

73
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velocity ũεe,inh and the pressure p̃εe are then

−∆̃ũεe,inh + ∇̃p̃εe = 0 in Ω̃, (5.2)

∇̃ · ũεe,inh + ε p̃εe = 0 in Ω̃, (5.3)

with boundary conditions

ũεe,inh = h on Γin, ũεe,inh = 0 on Γ̃0,
∂ũεe,inh
∂ñ

= p̃εeñ on Γ̃out; (5.4)

here, ∆̃ and ∇̃ again denote the Laplacian and gradient operator over the physical domain
Ω̃ (see Appendix A), respectively, ñ is the unit outward normal, and h : R2 → R

2 is given
by h(x) = h(x1, x2) ≡ (4x2(1− x2), 0) for all x = (x1, x2) ∈ R

2.
Following the steps discussed in §3.2.2 and §3.2.3, the problem (5.2)–(5.4) may be written

as a parametrized saddle point problem of the form (4.3). Here, for any µ ∈ D, the bilinear
forms a(·, ·;µ), b(·, ·;µ) and the linear functionals f(·;µ), g(·;µ) are given as in (3.8)–(3.11);
accordingly, the bilinear form c(·, ·;µ) : Ye × Ye → R represents the L2-inner product over
the physical domain Ω̃ formulated on the reference domain Ω (see §3.2.3),

c(p, q;µ) =

S
�

s=1

1

|det(As(µ))|

�

Ωs

p q dx, ∀ p, q ∈ Ye. (5.5)

The bilinear forms a(·, ·;µ), b(·, ·;µ), and c(·, ·;µ) then satisfy the assumptions (2.1)–(2.4),
(4.1), and (4.2), and we thus find ourselves in the setting introduced in §4.2.1. We particu-
larly have Qa = 10, Qb = 6, Qf = Qg = 1, and Qc = 5 in the respective µ-affine expansions
(2.7). Choosing again the truth approximation spaces X and Y as the standard conforming
P2-P1 Taylor–Hood finite element approximation subspaces [100] over the regular triangula-
tion TΩ, we ensure that also (2.11) is satisfied and therefore recover the situation described
in §4.2.2.

5.3 Numerical Results

We now apply the reduced basis methodology developed in §4.3–§4.7 to our model problem.
In this section, all numerical results are attained using the open source software rbOOmit [65],
an implementation of the reduced basis framework within the C++ parallel finite element
library libMesh [62].

5.3.1 Truth Approximation

First, we compare our perturbed truth approximations uε(µ) and pε(µ) with the solutions
u(µ) and p(µ) of the nonpenalized Stokes equations (ε = 0).

Again based on a fine mesh with 16,602 elements, the truth system (4.13) has a di-
mension of N = 72,076. Figure 5.1 shows the velocity streamlines computed using ε =
10−2, 10−3, 10−4, and 10−5; for comparison, they are also plotted for ε = 0. We observe
that our penalized truth approximation is certainly less-than-perfect, but for most engineer-
ing applications, the approximation is sufficiently accurate even for reasonably large values
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(a) ε = 10−2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

 x
1

 
x

2

(b) ε = 10−3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

 x
1

 
x

2

(c) ε = 10−4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

 x
1

 
x

2

(d) ε = 10−5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

 x
1

 
x

2

Figure 5.1.: Velocity streamlines computed using (a) ε = 10−2, (b) ε = 10−3, (c) ε = 10−4,
and (d) ε = 10−5; comparison with the solution for ε = 0 (solid).
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Figure 5.2.: Errors in the penalized truth approximations and associated upper bounds (see
Proposition 4.2.4) as functions of the penalty parameter ε for different param-
eter values µ: (a) �u(µ) − uε(µ)�X (solid) and

�

Csym
2 (µ)/

�

αa(µ)
�

ε (dashed),

(b) �p(µ)− pε(µ)�Y (solid) and
�
�

γa(µ)/βBr(µ)
�

Csym
2 (µ) ε (dashed).

of the penalty parameter ε. This is further illustrated in Fig. 5.2, which presents the er-
ror introduced by the penalty term as a function of ε. Moreover, the results in Fig. 5.2
clearly manifest the O(ε)-dependence of the error predicted by Proposition 4.2.3 and Propo-
sition 4.2.4.

5.3.2 Reduced Basis Approximation Spaces

We now turn to the reduced basis approximation. We here present numerical results for the
different options to construct the reduced basis approximation spaces XN and YN . As dis-
cussed in §4.5 and §4.7, we now build XN and YN by using either Algorithm 1, Algorithm 2,
Algorithm 3, or Algorithm 4. All sampling procedures are based on an exhaustive random
sample Σ ⊂ D of size |Σ| = 4,900 and the relative error bound ∆N (µ) ≡ ∆ε

N (µ)/�eεN (µ)�Z,ε,µ
(see (4.33)); in Algorithm 2 and Algorithm 3, we further set δ

β
tol = 0.1 (see §2.7).

We first compare the resulting reduced basis approximation spaces XN , YN with respect
to stability. We recall that in Algorithm 1, Algorithm 2, and Algorithm 3, the spaces are
stabilized through an additional enrichment of the reduced basis approximation space XN

for the primal variable; in Algorithm 4, we abandon any special stabilization techniques. Ta-
ble 5.1 now provides minimum values of the inf-sup constants βN (µ) (see (2.17)) for different
values of the penalty parameter ε. In case of Algorithm 1, Algorithm 2, and Algorithm 3, the
inf-sup constants βN (µ) are essentially constant in N with values of approximately 8 · 10−2

(see Table 5.1(a), (b), and (c)); using Algorithm 4, we obtain much lower values that range
from 1.5 ·10−2 to 7 ·10−5 (see Table 5.1(d)). Furthermore, we note that the constants βN (µ)
show in neither case a noticeable dependence on the penalty parameter ε.
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(a) Algorithm 1

ε β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

10−2 8.574 · 10−2 8.529 · 10−2 8.471 · 10−2 8.370 · 10−2 8.283 · 10−2

10−3 7.894 · 10−2 7.899 · 10−2 7.897 · 10−2 7.901 · 10−2 7.899 · 10−2

10−4 7.850 · 10−2 7.853 · 10−2 7.848 · 10−2 7.856 · 10−2 7.860 · 10−2

10−5 7.846 · 10−2 7.848 · 10−2 7.844 · 10−2 7.851 · 10−2 7.855 · 10−2

(b) Algorithm 2

ε β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

10−2 7.846 · 10−2 8.061 · 10−2 7.941 · 10−2 7.848 · 10−2 7.732 · 10−2

10−3 7.781 · 10−2 7.772 · 10−2 7.773 · 10−2 7.705 · 10−2 7.771 · 10−2

10−4 7.757 · 10−2 7.747 · 10−2 7.738 · 10−2 7.755 · 10−2 7.764 · 10−2

10−5 7.754 · 10−2 7.745 · 10−2 7.735 · 10−2 7.752 · 10−2 7.761 · 10−2

(c) Algorithm 3

ε β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

10−2 8.089 · 10−2 8.059 · 10−2 7.960 · 10−2 7.801 · 10−2 7.786 · 10−2

10−3 7.610 · 10−2 7.793 · 10−2 7.715 · 10−2 7.688 · 10−2 7.606 · 10−2

10−4 7.656 · 10−2 7.761 · 10−2 7.699 · 10−2 7.723 · 10−2 7.644 · 10−2

10−5 7.682 · 10−2 7.767 · 10−2 7.742 · 10−2 7.739 · 10−2 7.725 · 10−2

(d) Algorithm 4

ε β5(µ) β10(µ) β20(µ) β30(µ) β40(µ)

10−2 2.605 · 10−3 2.733 · 10−4 9.048 · 10−4 2.456 · 10−4 7.420 · 10−5

10−3 3.315 · 10−4 1.569 · 10−2 4.616 · 10−3 3.591 · 10−3 1.072 · 10−3

10−4 7.513 · 10−4 2.369 · 10−2 1.571 · 10−3 9.581 · 10−5 1.722 · 10−4

10−5 8.031 · 10−4 1.478 · 10−2 1.076 · 10−3 2.061 · 10−4 6.661 · 10−4

Table 5.1.: Minimum inf-sup constants βN (µ) (see (2.17)) evaluated using (a) Algorithm 1,
(b) Algorithm 2, (c) Algorithm 3, and (d) Algorithm 4 (see §2.7 and §4.7) for
different values of N and ε; the minimum is taken over 25 parameter values.
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Figure 5.3.: Maximum condition number κεN (µ) (see (5.6)) of the reduced basis system ma-
trix as a function of NZ for different values of ε evaluated using Algorithm 1,
Algorithm 2, Algorithm 3, and Algorithm 4 (see §2.7 and §4.7); the maximum
is taken over 25 parameter values.
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In addition to the inf-sup constants βN (µ), we also consider the condition number

κεN (µ) ≡ σ
ε,max
N (µ)

σ
ε,min
N (µ)

, ε > 0, ∀ µ ∈ D, N ∈ Nmax, (5.6)

associated with the reduced basis system (4.15), (4.16); here, σε,max
N (µ) and σ

ε,min
N (µ) de-

note the maximum and minimum singular values of the corresponding system matrix (see
also Appendix A). Figure 5.3 presents maximum values of κεN (µ) as a function of NZ for
different values of ε. We observe that the penalty term has a significant impact on the
condition number of the reduced basis system matrix: As ε decreases and we approach the
nonpenalized problem, values of κεN (µ) increase. In case of Algorithm 1, Algorithm 2, and
Algorithm 3, this correlation is fairly weak and condition numbers seem to level off at a max-
imum of roughly 700. In case of Algorithm 4, the situation is different: Here, values of κεN (µ)
explode and the reduced basis system becomes ill-conditioned as the penalty parameter ε

tends towards zero.

Accordingly reflected in our reduced basis approximations, this behavior manifests in
practice what has been predicted by a priori stability estimates in §4.3.3. We present in
Fig. 5.4 the maximum relative errors �eu,εN (µ)�X/�uε(µ)�X and �ep,εN (µ)�Y /�pε(µ)�Y (see
(4.18)) in the reduced basis velocity and pressure approximations using Algorithm 4 for
different values of the penalty parameter ε; a direct comparison with the other sampling
procedures is then given in Fig. 5.5 and Fig. 5.6. In case of Algorithm 1, Algorithm 2, and
Algorithm 3, the velocity approximation spaces are rich enough to ensure stable reduced
basis approximations whose convergence is not affected by the penalty parameter ε; for
different values of ε, we obtain approximations uεN (µ) for uε(µ) (see Fig. 5.5) and pεN (µ) for
pε(µ) (see Fig. 5.6) that are equally accurate and rapidly convergent. In case of Algorithm 4
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Figure 5.4.: Numerical results for Algorithm 4 (see §4.7) for different values of ε: Maxi-
mum relative errors (a) �eu,εN (µ)�X/�uε(µ)�X and (b) �ep,εN (µ)�Y /�pε(µ)�Y (see
(4.18)) are shown as functions of NZ ; the maximum is taken over 25 parameter
values.
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Figure 5.5.: Maximum relative error �eu,εN (µ)�X/�uε(µ)�X (see (4.18)) as a function of NZ

for different values of ε evaluated using Algorithm 1, Algorithm 2, Algorithm 3,
and Algorithm 4 (see §2.7 and §4.7); the maximum is taken over 25 parameter
values.
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Figure 5.6.: Maximum relative error �ep,εN (µ)�Y /�pε(µ)�Y (see (4.18)) as a function of NZ

for different values of ε evaluated using Algorithm 1, Algorithm 2, Algorithm 3,
and Algorithm 4 (see §2.7 and §4.7); the maximum is taken over 25 parameter
values.
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where the inf-sup constants βN (µ) associated with XN and YN are comparatively small,
convergence of the reduced basis approximations is remarkably good in the case of ε ≥ 10−2

but deteriorates for penalty parameters approaching zero (see Fig. 5.4). However, we note
that this behavior is in practice much more prominent for the pressure than for the velocity
approximations: For ε ≤ 10−3, errors in the approximations pεN (µ) are much larger than in
case of the other sampling procedures (see Fig. 5.6) whereas the approximations uεN (µ) are
still very accurate (see Fig. 5.4(a) and Fig. 5.5).

Again, we observe that stabilizing adaptively pays off: Compared to the standard greedy
procedure in Algorithm 1, Algorithm 2 and Algorithm 3 achieve reduced basis approxima-
tions that are for the pressure equally well (see Fig. 5.6) but for the velocity noticeably
better (see Fig. 5.5).

5.3.3 A Posteriori Error Bounds

We now investigate how the error bounds ∆ε
N (µ) developed in §4.4 perform in practice.

The SCM (see §4.6.2 and §2.6.2) enables the (Online-)efficient estimation of the coercivity
constants αa(µ) and αc(µ) (see (2.10) and (4.12)). We here apply the method for Mα = ∞
and an exhaustive sample Ξ ⊂ D of size |Ξ|= 4,225. Setting further δSCM

tol = 0.01, we obtain
Kmax = 35 for the coercivity constants αa(µ), and Kmax = 4 for the coercivity constants
αc(µ). We receive very accurate (Online-)efficient lower bounds αLB

a (µ) and αLB
c (µ) (see

Fig. 3.14 in §3.3.4 and Fig. 5.7), providing a posteriori error bounds ∆ε
N (µ) that essentially

coincide with their values based on the evaluation of the exact constants αa(µ) and αc(µ).
In Fig. 5.8, Fig. 5.9, and Fig. 5.10, we now show the error �eεN (µ)�Z,ε,µ (see (4.18), (4.19))

and the associated reduced basis a posteriori error bound ∆ε
N (µ) (see (4.33)) normalized

relative to �(uε(µ), pε(µ))�Z,ε,µ evaluated using Algorithm 1, Algorithm 2, and Algorithm 3,
respectively, for different values of the penalty parameter ε. We see that for ε = 10−2, the
error bounds are tight and the effectivities are relatively small; however, the associated truth
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Figure 5.7.: SCM lower and upper bounds αLB
c (µ) and αUB

c (µ) for the coercivity constants
αc(µ) (see (4.12), (4.29)) where |Ξ| = 4,225, Mα = ∞, δSCM

tol = 0.01, and
Kmax = 4.
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Figure 5.8.: Maximum relative error �eεN (µ)�Z,ε,µ/�(uε(µ), pε(µ))�Z,ε,µ (see (4.18), (4.19))
and maximum relative error bound ∆ε

N (µ)/�(uε(µ), pε(µ))�Z,ε,µ (see (4.33)) as
functions of NZ for different values of ε evaluated using Algorithm 1 (see §2.7);
the maximum is taken over 25 parameter values.
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Figure 5.9.: Maximum relative error �eεN (µ)�Z,ε,µ/�(uε(µ), pε(µ))�Z,ε,µ (see (4.18), (4.19))
and maximum relative error bound ∆ε

N (µ)/�(uε(µ), pε(µ))�Z,ε,µ (see (4.33)) as
functions of NZ for different values of ε evaluated using Algorithm 2 (see §2.7);
the maximum is taken over 25 parameter values.
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Figure 5.10.: Maximum relative error �eεN (µ)�Z,ε,µ/�(uε(µ), pε(µ))�Z,ε,µ (see (4.18), (4.19))
and maximum relative error bound ∆ε

N (µ)/�(uε(µ), pε(µ))�Z,ε,µ (see (4.33)) as
functions of NZ for different values of ε evaluated using Algorithm 3 (see §2.7);
the maximum is taken over 25 parameter values.
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(a) Algorithm 1

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

5 1.163 · 101 3.357 · 101 1.035 · 102 3.273 · 102

10 1.149 · 101 3.407 · 101 1.065 · 102 3.368 · 102

15 1.150 · 101 3.353 · 101 1.027 · 102 3.248 · 102

20 1.030 · 101 3.515 · 101 1.111 · 102 3.511 · 102

25 1.300 · 101 3.224 · 101 1.108 · 102 3.504 · 102

30 1.171 · 101 3.145 · 101 9.657 · 101 3.053 · 102

35 1.041 · 101 3.435 · 101 1.129 · 102 3.572 · 102

40 1.068 · 101 3.456 · 101 1.017 · 102 3.217 · 102

(b) Algorithm 2

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

5 1.167 · 101 3.277 · 101 1.040 · 102 3.288 · 102

10 9.699 · 100 3.176 · 101 9.979 · 101 3.153 · 102

15 9.903 · 100 3.259 · 101 1.046 · 102 3.308 · 102

20 9.982 · 100 3.076 · 101 9.646 · 101 3.049 · 102

25 9.710 · 100 3.110 · 101 9.811 · 101 3.107 · 102

30 9.771 · 100 3.727 · 101 1.260 · 102 3.977 · 102

35 1.070 · 101 2.899 · 101 8.831 · 101 2.790 · 102

40 1.072 · 101 2.911 · 101 9.391 · 101 2.964 · 102

(c) Algorithm 3

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

5 1.209 · 101 3.486 · 101 1.051 · 102 3.313 · 102

10 1.249 · 101 4.018 · 101 1.215 · 102 3.155 · 102

15 1.191 · 101 3.548 · 101 9.780 · 101 3.327 · 102

20 1.207 · 101 3.281 · 101 1.121 · 102 3.229 · 102

25 1.083 · 101 3.473 · 101 1.094 · 102 3.539 · 102

30 1.160 · 101 3.322 · 101 1.102 · 102 3.623 · 102

35 1.146 · 101 3.073 · 101 1.061 · 102 4.799 · 102

40 1.056 · 101 3.629 · 101 9.906 · 101 3.742 · 102

Table 5.2.: Maximum effectivities ηεN (µ) (see (4.37)) for several values of N and ε evaluated
using (a) Algorithm 1, (b) Algorithm 2, and (c) Algorithm 3 (see §2.7); the
maximum is taken over 25 parameter values.
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Figure 5.11.: Maximum effectivities ηεN (µ) (see (4.37)) as a function of ε for different values
of N evaluated using (a) Algorithm 1, (b) Algorithm 2, and (c) Algorithm 3
(see §2.7); the maximum is taken over 25 parameter values.
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finite element approximation may not be sufficiently accurate (see Fig. 5.2). As we decrease
ε, we obtain a more accurate truth approximation, but the reduced basis error bounds
become less sharp. Nevertheless, these results show that even for relatively small values of
the penalty parameter, the effectivities remain reasonably small, and the dependence on ε is
relatively weak as predicted by Corollary 4.4.2 and Corollary 4.4.3. To further quantify this
statement, we present in Table 5.2(a), (b), and (c) the effectivities associated with ∆ε

N (µ)
for several values of N and ε evaluated using Algorithm 1, Algorithm 2, and Algorithm 3,
respectively. We note that for all three methods, the effectivities remain more or less constant
with N . Furthermore, we show in Fig. 5.11 the dependence of the effectivities on the
penalty parameter; we clearly observe the O

�

1√
ε

�

-dependence predicted by Corollary 4.4.2

and Corollary 4.4.3. The effects of the penalty parameter on the effectivities are thus
relatively benign, and we obtain meaningful bounds for reasonably small values of ε. In
particular, even at larger effectivities, the error bounds reflect the behavior of the actual
error (see Fig. 5.8, Fig. 5.9, and Fig. 5.10), and our greedy sampling processes perform
successfully as they are able to choose the parameter snapshots properly (i.e., where the
error is largest).

5.3.4 Computation Times

We now discuss the Online computation times. The following timing tests were performed
on a 2.66 GHz Intel Core 2 Duo processor. For comparison, once the µ-independent parts
in (2.7) have been formed, direct computation of the truth approximation (uε(µ), pε(µ))
(i.e., assembly and solution of (2.13)) takes on average 5.7 seconds. Again, the rigorous and
efficient error bounds ∆ε

N (µ) allow us to choose the reduced basis system dimension NZ just
large enough to obtain a desired accuracy.

For the penalty parameter ε = 10−2, the error bounds are sharp with effectivities of
approximately 11 (see Table 5.2). If we construct the reduced basis approximations spaces
by using the standard greedy procedure given in Algorithm 1, we then need NZ = 42 basis
functions to achieve a prescribed accuracy of roughly 1% or better in the reduced basis
approximations (uεN (µ), pεN (µ)) (see Fig. 5.8). Once the database has been loaded, the
Online calculation of (uεN (µ), pεN (µ)) (i.e., assembly and solution of (4.14)) and ∆ε

N (µ) for
any new value of µ ∈ D takes on average 0.21 and 8.94 milliseconds, respectively, which is
in total roughly 600 times faster than direct computation of the truth approximation. In
case of Algorithm 3, the same accuracy is achieved for NZ = 27 (see Fig. 5.10); the Online
calculation of (uεN (µ), pεN (µ)) and ∆ε

N (µ) then takes on average 0.1 and 3.87 milliseconds,
respectively, and is thus roughly 1,400 times faster than direct computation of the truth
approximation.

We now set ε = 10−5. As they become more pessimistic with decreasing values of ε,
the error bounds here dictate larger system dimensions at which they guarantee the same
order of accuracy. Using Algorithm 1, we need NZ = 93 to achieve an accuracy of roughly
1% or better in the reduced basis approximations (uεN (µ), pεN (µ)); the Online calculation
of (uεN (µ), pεN (µ)) and ∆ε

N (µ) for any new value of µ ∈ D then takes on average 1.12
and 42.1 milliseconds, respectively, which is in total roughly 130 times faster than direct
computation of the truth approximation. Using Algorithm 3, we need NZ = 60; the Online
calculation of (uεN (µ), pεN (µ)) and ∆ε

N (µ) then takes on average 0.4 and 16.76 milliseconds,
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respectively, which is in total roughly 330 times faster than direct computation of the truth
approximation. Therefore, even for small penalty parameters ε, accurate approximations
are guaranteed at significant Online savings.

Detailed computation times for different values of ε are given in Table 5.3.

(a) ε = 10−2

Method NZ N (uε
N (µ), pεN (µ)) ∆

ε
N (µ) Total

Algorithm 1 42 (66) 14 (22) 0.21 (0.54) 8.94 (21.53) 9.14 (22.07)

Algorithm 2 34 (53) 15 (23) 0.13 (0.30) 5.43 (12.67) 5.56 (12.97)

Algorithm 3 27 (47) 10 (19) 0.10 (0.24) 3.87 (10.36) 3.97 (10.59)

(b) ε = 10−3

Method NZ N (uε
N (µ), pεN (µ)) ∆

ε
N (µ) Total

Algorithm 1 60 (78) 20 (26) 0.42 (0.78) 17.84 (29.90) 18.26 (30.69)

Algorithm 2 43 (65) 19 (29) 0.19 (0.47) 8.39 (18.77) 8.58 (19.25)

Algorithm 3 35 (56) 14 (23) 0.14 (0.35) 5.96 (14.39) 6.09 (14.74)

(c) ε = 10−4

Method NZ N (uε
N (µ), pεN (µ)) ∆

ε
N (µ) Total

Algorithm 1 63 (102) 21 (34) 0.48 (1.38) 19.60 (50.55) 20.08 (51.92)

Algorithm 2 53 (79) 23 (35) 0.30 (0.74) 12.68 (27.54) 12.98 (28.28)

Algorithm 3 51 (66) 22 (27) 0.28 (0.50) 11.81 (20.04) 12.09 (20.54)

(d) ε = 10−5

Method NZ N (uε
N (µ), pεN (µ)) ∆

ε
N (µ) Total

Algorithm 1 93 (117) 31 (39) 1.12 (1.79) 42.10 (66.10) 43.22 (67.89)

Algorithm 2 66 (97) 29 (44) 0.48 (1.12) 19.44 (40.69) 19.92 (41.80)

Algorithm 3 60 (86) 24 (35) 0.40 (0.91) 16.76 (33.63) 17.16 (34.53)

Table 5.3.: Average computation times in milliseconds for the Online evaluation of
(uεN (µ), pεN (µ)) (assembly and solution of (4.14)) and the error bounds ∆ε

N (µ)
(see (4.33)): For (a) ε = 10−2, (b) ε = 10−3, (c) ε = 10−4, and (d) ε = 10−5,
times are measured using either Algorithm 1, Algorithm 2, or Algorithm 3 (see
§2.7) with a prescribed accuracy of at least 1% (resp., 0.1%) for the reduced basis
approximations (uεN (µ), pεN (µ)).

5.4 Concluding Remarks

We present in this chapter numerical results for the reduced basis approach based on a
penalty formulation proposed in Chapter 4. The method is applied to a perturbed Stokes
flow in a parametrized microchannel.

As the computation of (Online-)efficient lower bounds to inf-sup stability constants is
avoided, we obtain reduced basis approximations and rigorous a posteriori error bounds
that are computed very easily. Numerical results show that the approximations for both the
velocity and the pressure converge rapidly and that the error bounds are reasonably sharp.
While the computation of inf-sup constants may be manageable for the Stokes problem,
it becomes computationally even more intensive in case of the nonlinear Navier–Stokes
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equations. The penalty approach enables us to consider flow problems in parametrized
domains with significantly less effort and thus provides a convenient way to also handle
more complex geometric variations.

Clearly, the method also comes with several disadvantages. First, the introduced penalty
term causes an additional error in the truth velocity and pressure approximations. For
engineering problems of interest, these errors are generally acceptable but choosing an ap-
propriate value of the penalty parameter ε is a nontrivial issue. Second, the penalty term’s
regularizing effect is manifested in a significant impact on the condition number of the
reduced basis system; yet, stable convergence cannot be guaranteed for reduced basis ap-
proximation spaces with small inf-sup constants (2.17). The problem can be resolved by an
additional enrichment of the reduced basis approximation space for the primal variable: In
this case, we obtain stable approximations whose convergence is not affected by the penalty
parameter. Third, our a posteriori error bounds become more pessimistic as the penalty
parameter ε decreases and our truth approximations become more accurate. However, the-
oretical and numerical results show that these effects are relatively benign and we obtain
meaningful and useful error bounds even for reasonably small values of ε.

Compared to former approaches, sampling procedures that recognize the need for stabi-
lization adaptively again construct reduced basis approximation spaces that are computa-
tionally much more efficient. Even though the procedures used are not optimally suited for
the penalty context (see Remark 4.7.1), they demonstrate the computational savings that
are generally achievable; in the case of our Stokes model problem, we obtain computational
savings of up to 40%. Numerical results show that in the penalty context, the reduced basis
inf-sup constants βN (µ) are not necessarily appropriate indicators for an ill-conditioned sys-
tem; well-suited adaptive sampling procedures should include the condition number κεN (µ).





Chapter 6

Approximation of the Instationary

Stokes Equations

6.1 Introduction

In this chapter, we provide an outlook on how the techniques presented in the previous part
of this thesis may be extended to the time-dependent setting. To this end, we consider
the instationary Stokes equations. We shall discuss both a method based on the standard
formulation as well as a method based on a penalty approach, which combine approaches
developed in §2, §3 and §4, §5 with current reduced basis techniques for parabolic problems
(see, e.g., [37, 41, 47] and also [63, 64]). The analysis then shows how time integration affects
the development of reduced basis a posteriori error bounds as well as the construction of
computationally efficient reduced basis approximation spaces.

Starting from the standard mixed formulation of the instationary Stokes equations, we
develop rigorous a posteriori error bounds for the reduced basis velocity approximations.
As in the stationary case presented in §2 and §3, they involve the (Online-)estimation of
coercivity, continuity, and inf-sup stability constants associated with the diffusion term and
incompressibility constraint; in addition, they now also depend on continuity constants
associated with the mass term. Employing a penalty formulation, we obtain rigorous upper
bounds for the errors in both the velocity and pressure approximations. As in the stationary
case presented in §4 and §5, they are computationally very efficient since they do not involve
the estimation of inf-sup constants but only depend on coercivity constants associated with
the diffusion and penalty terms; however, they again also depend on the penalty parameter
such that associated effectivities increase as we approach the nonpenalized problem. To
construct efficient reduced basis approximation spaces, we consider a POD greedy procedure
(see [37, 46, 47]) that is coupled with adaptive stabilization techniques developed in §2.7. To
demonstrate their performance in practice, the methods are then applied to a Stokes flow
in a parametrized domain where evolution in time is induced by a time-dependent velocity
profile on the inflow boundary.

The chapter is organized as follows: In §6.2, we introduce the general problem formulation
and its “truth” approximation. We start from a time-discrete framework already that allows
us to directly recover the settings discussed in §2.2 and §4.2; now, we have a saddle point
problem associated with each time step. The time discretization scheme is here given by a
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backward Euler method. Section 6.3 defines our reduced basis approximation as the Galerkin
projection onto a low-dimensional reduced basis approximation space. We develop rigorous
a posteriori error bounds in §6.4. Again, reduced basis approximations and error bounds can
be computed Online-efficiently as summarized in §6.5. This enables us to engage adaptive
sampling processes for constructing computationally efficient reduced basis approximation
spaces, which shall be discussed in §6.6. In §6.7, we introduce our instationary Stokes model
problem. Numerical results in §6.8 then illustrate (i) the rapid convergence of reduced basis
approximations, (ii) the performance of a posteriori error bounds with respect to sharpness,
and (iii) computational efficiency. Finally, in §6.9, we give some concluding remarks.

6.2 General Problem Statement

6.2.1 Formulation

We assume the setting as introduced in §2.2.1 and §4.2.1. Furthermore, for any parameter
µ ∈ D, let m(·, ·;µ) : Xe × Xe → R be a bilinear form that is symmetric, continuous, and
positive definite,

γem(µ) ≡ sup
u∈Xe

sup
v∈Xe

m(u, v;µ)

�u�Xe
�v�Xe

< ∞, ∀ µ ∈ D, (6.1)

m(v, v;µ) > 0, ∀ 0 �= v ∈ Xe, ∀ µ ∈ D, (6.2)

and which exhibits a µ-affine representation analogous to (2.7). For any µ ∈ D, m(·, ·;µ) then
defines an inner product on Xe; the associated norm shall be denoted by � ·�µ ≡

�

m(·, ·;µ).
We further assume that we are given a time interval [0, T ], T > 0, and linear func-

tionals f(·;µ) ∈ C0(0, T ;X �
e) and g(·;µ) ∈ C0(0, T ;Y �

e ) for all µ ∈ D; for a vector space
V , C0(0, T ;V ) here denotes the space of V -valued functions of class C0 with respect to
t ∈ [0, T ]. Throughout this thesis, we directly consider a time-discrete framework: We
divide the time interval [0, T ] into K subintervals of equal length ∆t ≡ T/K, and define
tk ≡ k∆t for all k = 0, . . . ,K; for notational convenience, we also introduce K ≡ {1, . . . ,K}
and K0 ≡ K ∪ {0}. We then set fk(·;µ) ≡ f(tk;µ) ∈ X �

e and gk(·;µ) ≡ g(tk;µ) ∈ Y �
e for all

k ∈ K0, µ ∈ D.
For ε ≥ 0, we now consider the following “exact” — more precisely, semi-discrete —

problem resulting from a backward Euler method (see, e.g., [27, 42, 89, 102]): For any given

µ ∈ D, we find uε,ke (µ) ∈ Xe and pε,ke (µ) ∈ Ye, k ∈ K, such that uε,0e (µ) = 01 and

1
∆t m(uε,ke (µ)− uε,k−1

e (µ), v;µ)

+ a(uε,ke (µ), v;µ) + b(v, pε,ke (µ);µ) = fk(v;µ), ∀ v ∈ Xe,

b(uε,ke (µ), q;µ)− ε c(pε,ke (µ), q;µ) = gk(q;µ), ∀ q ∈ Ye,
k ∈ K. (6.3)

Even though we here use a common notation for simplicity in exposition, we point out that
(6.3) states very different problems for ε = 0 and ε > 0, respectively. For ε = 0, we also

denote uke (µ) ≡ u0,ke (µ), k ∈ K0, and pke (µ) ≡ p0,ke (µ), k ∈ K, for all µ ∈ D. For ε > 0,

1We here assume zero initial conditions for simplicity; note that nonzero initial conditions can be handled
as well without much difficulty (see [41]).
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corresponding to our discussions in Chapter 4, (6.3) can be considered as a perturbed or
regularized version of the problem associated with ε = 0; in this case, we therefore call
(uε,ke (µ), pε,ke (µ)), k ∈ K, also the penalty solution. Since these problems differ considerably
in their general nature (see §2 and §4), we shall often treat them separately in the following
analysis and explicitly distinguish between the two cases ε = 0 and ε > 0. From (6.2) and
(2.3), the bilinear form 1

∆tm(·, ·;µ)+ a(·, ·;µ) is coercive on Xe for any µ ∈ D. The problem

(6.3) is thus uniquely solvable for (uke (µ), p
k
e (µ)), k ∈ K, and (uε,ke (µ), pε,ke (µ)), k ∈ K, as a

saddle point problem according to §2.2.1 and §4.2.1, respectively.

6.2.2 Truth Approximation

As in §2.2.2 and §4.2.2, we denote by X and Y finite-dimensional subspaces of Xe and Ye
satisfying the assumptions (2.8)–(2.11), (4.11), and (4.12). These in particular also inherit
the inner product m(·, ·;µ) and associated norm � · �µ,

γm(µ) ≡ sup
u∈X

sup
v∈X

m(u, v;µ)

�u�X�v�X
= sup

v∈X

m(v, v;µ)

�v�2X
< ∞, (6.4)

m(v, v;µ) > 0, ∀ 0 �= v ∈ X, ∀ µ ∈ D. (6.5)

Again, we denote by N the large dimension of the approximation space Z = X × Y .

Our high-fidelity “truth” discretization for (6.3) now reads as follows: For ε ≥ 0 and any
given µ ∈ D, we find uε,k(µ) ∈ X and pε,k(µ) ∈ Y , k ∈ K, such that uε,0(µ) = 0 and

1
∆t m(uε,k(µ)− uε,k−1(µ), v;µ)

+ a(uε,k(µ), v;µ) + b(v, pε,k(µ);µ) = fk(v;µ), ∀ v ∈ X,

b(uε,k(µ), q;µ)− ε c(pε,k(µ), q;µ) = gk(q;µ), ∀ q ∈ Y,
k ∈ K. (6.6)

In case of ε = 0, we also denote uk(µ) ≡ u0,k(µ), k ∈ K0, and pk(µ) ≡ p0,k(µ), k ∈ K. As
the exact problem in §6.2.1, the problem (6.6) is uniquely solvable for (uk(µ), pk(µ)), k ∈ K,
and (uε,k(µ), pε,k(µ)), k ∈ K, according to §2.2.2 and §4.2.2, respectively.

Let A(µ), B(µ), B(µ)t, and C(µ) be the linear operators associated with the bilinear
forms a(·, ·;µ), b(·, ·;µ), and c(·, ·;µ) as introduced in §2.2.2 and §4.2.2; accordingly, we also
define the bounded linear operator M(µ) : X → X � by

�M(µ)u, v� = m(u, v;µ), ∀ u, v ∈ X.

The system (6.6) may then be equivalently written as

M(µ)
uε,k(µ)− uε,k−1(µ)

∆t
+A(µ)uε,k(µ) +B(µ)t pε,k(µ) = fk(µ) in X �,

B(µ)uε,k(µ)− εC(µ) pε,k(µ) = gk(µ) in Y �,

k ∈ K,

where fk(µ) ≡ fk(·;µ)|X ∈ X � and gk(µ) ≡ gk(·;µ)|Y ∈ Y � for all k ∈ K0.
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6.3 Reduced Basis Approximation

We now turn to the reduced basis method, discussing the approximation procedure, rigor-
ous a posteriori error estimators, and the construction of stable approximation spaces that
capture the causality associated with the parameter dependence as well as with evolution
in time.

Suppose that we are given a set of nested, low-dimensional reduced basis approximation
subspaces XN ⊂ XN+1 ⊂ X and YN ⊂ YN+1 ⊂ Y , N ∈ Nmax ≡ {1, . . . , Nmax}, then the
reduced basis approximation is defined as the Galerkin projection with respect to the truth
problem (6.6) onto these low-dimensional subspaces: For ε ≥ 0 and any given µ ∈ D, we

find uε,kN (µ) ∈ XN and pε,kN (µ) ∈ YN , k ∈ K, such that uε,0N (µ) = 0 and

1
∆t m(uε,kN (µ)− uε,k−1

N (µ), vN ;µ)

+ a(uε,kN (µ), vN ;µ) + b(vN , pε,kN (µ);µ) = fk(vN ;µ), ∀ vN ∈ XN ,

b(uε,kN (µ), qN ;µ)− ε c(pε,kN (µ), qN ;µ) = gk(qN ;µ), ∀ qN ∈ YN ,
k ∈ K. (6.7)

Again, we denote ukN (µ) ≡ u0,kN (µ), k ∈ K0, and pkN (µ) ≡ p0,kN (µ), k ∈ K. Written in
operator notation, the discrete system (6.7) reads

1

∆t
MN (µ)

�

uε,kN (µ)− uε,k−1
N (µ)

�

+ AN (µ)uε,kN (µ) +BN (µ)t pε,kN (µ) = fk
N (µ) in X �

N ,

BN (µ)uε,kN (µ)− εCN (µ) pε,kN (µ) = gkN (µ) in Y �
N ,

k ∈ K, (6.8)

where AN (µ), BN (µ), BN (µ)t, and CN (µ) are the linear operators defined in §2.3.1 and
§4.3.1, and MN (µ) : XN → X �

N is given by

�MN (µ)uN , vN � = m(uN , vN ;µ), ∀ uN , vN ∈ XN , ∀ µ ∈ D;

moreover, fk
N (µ) ≡ fk(·;µ)|XN

∈ X �
N and gkN (µ) ≡ gk(·;µ)|YN

∈ Y �
N for all k ∈ K0.

The discrete reduced basis system now essentially behaves as in the stationary case: In
case of ε = 0, (6.7) is uniquely solvable for (ukN (µ), pkN (µ)), k ∈ K, if and only if the reduced
basis approximation spaces XN , YN are stable (as defined in §2.3.2); in case of ε > 0, (6.7)

is uniquely solvable for (uε,kN (µ), pε,kN (µ)), k ∈ K, for any choice of XN , YN (see §4.3.2).

6.4 A Posteriori Error Estimation

We now develop upper bounds for the errors in our reduced basis approximations that
are rigorous, sharp, and computationally efficient. As before, the errors shall be measured
relative to the respective truth approximations.

In this section, we assume that the low-dimensional reduced basis spaces XN , YN are
constructed such that for any given parameter µ ∈ D, a solution (uε,kN (µ), pε,kN (µ)) ∈ XN×YN ,
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k ∈ K, to (6.7) exists. For µ ∈ D, we then consider the errors

euN (µ) ≡ (eu,kN (µ))k∈K, where eu,kN (µ) ≡ uε,k(µ)− uε,kN (µ) ∈ X, k ∈ K,

epN (µ) ≡ (ep,kN (µ))k∈K, where ep,kN (µ) ≡ pε,k(µ)− pε,kN (µ) ∈ Y, k ∈ K, (6.9)

eεN (µ) ≡ (eε,kN (µ))k∈K, where eε,kN (µ) ≡ (eu,kN (µ), ep,kN (µ)) ∈ Z, k ∈ K,

in the reduced basis approximations (uε,kN (µ), pε,kN (µ)), k ∈ K, with respect to the truth

solution (uε,k(µ), pε,k(µ)), k ∈ K; we note that in particular eu,0N (µ) ≡ uε,0(µ)− uε,0N (µ) = 0
from our initial conditions.

To formulate our reduced basis a posteriori error bounds, we again rely on the residuals
associated with the reduced basis approximation (uε,kN (µ), pε,kN (µ)), k ∈ K,

r1,kN (·;µ) ≡ fk(µ)−M(µ)
uε,kN (µ)− uε,k−1

N (µ)

∆t
−A(µ)uε,kN (µ)−B(µ)t pε,kN (µ) ∈ X �, (6.10)

r2,kN (·;µ) ≡ gk(µ)−B(µ)uε,kN (µ) + εC(µ) pε,kN (µ) ∈ Y �, (6.11)

for k ∈ K and µ ∈ D.
In the following analysis, we distinguish between the cases ε = 0 and ε > 0.

6.4.1 ε = 0

We here derive rigorous upper bounds for the error euN (µ) measured in the “spatio-temporal”
energy norm

�(vj)j∈K��2(0,k;X) ≡
�

�vk�2µ +∆t

k
�

j=1

�vj�2X,µ

�1/2

, (vj)j∈K ⊆ X, k ∈ K. (6.12)

As before, our reduced basis a posteriori error bounds shall be formulated in terms of the
dual norms of the residuals (6.10) and (6.11), and (Online-)efficient lower and upper bounds
to the truth continuity, coercivity, and inf-sup stability constants (2.8), (2.10), and (2.11).
In addition to (2.29) and (2.30), we also introduce computationally (Online-)efficient (lower
and) upper bounds to the truth continuity constants (6.4),

γLBm (µ) ≤ γm(µ) ≤ γUB
m (µ), ∀ µ ∈ D. (6.13)

We can now state the following result.

Proposition 6.4.1. For any given µ ∈ D, N ∈ Nmax, k ∈ K, and αLB
a (µ), γUB

a (µ), βLB
Br (µ),

γUB
m (µ) satisfying (2.29), (2.30), and (6.13), we define

∆
k
N (µ) ≡

�

∆t
k

�

j=1

�r1,jN (·;µ)�2X�

αLB
a (µ)

+
2

βLB
Br (µ)

�

1 +
γUB
a (µ)

αLB
a (µ)

�

�r1,jN (·;µ)�X��r2,jN (·;µ)�Y �

+

�

γUB
m (µ)

∆t
+

(γUB
a (µ))2

αLB
a (µ)

�

�r2,jN (·;µ)�2Y �

(βLB
Br (µ))

2

�1/2

. (6.14)
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Then, ∆k
N (µ) represents an upper bound for the error euN (µ) measured in the “spatio-temporal”

energy norm (6.12),

�euN (µ)��2(0,k;X) ≤ ∆
k
N (µ), ∀ k ∈ K, µ ∈ D, N ∈ Nmax. (6.15)

Proof. Let µ be any parameter in D, N ∈ Nmax, and k ∈ K. For clarity of exposition, we
suppress the argument µ in this proof.

Take any 1 ≤ j ≤ k. From (6.10), (6.11), and (6.6), the errors eu,jN ∈ X and ep,jN ∈ Y
satisfy the equations

1
∆t m(eu,jN − eu,j−1

N , v) + a(eu,jN , v) + b(v, ep,jN ) = r1,jN (v), ∀ v ∈ X, (6.16)

b(eu,jN , q) = r2,jN (q), ∀ q ∈ Y. (6.17)

By the LBB inf-sup condition (2.11) and (6.16), we have

βBr�ep,jN �Y ≤ sup
v∈X

b(v, ep,jN )

�v�X
= sup

v∈X

r1,jN (v)− a(eu,jN , v)− 1
∆tm(eu,jN − eu,j−1

N , v)

�v�X

≤ �r1,jN �X� + γa�eu,jN �X +

√
γm

∆t
�eu,jN − eu,j−1

N �µ, (6.18)

where the last inequality follows from the Cauchy–Schwarz inequality for the inner product
m(·, ·), (2.8), and (6.4). We then set v = eu,jN , q = ep,jN in (6.16), (6.17) and subtract the
second from the first equation such that

1
∆t m(eu,jN − eu,j−1

N , eu,jN ) + �eu,jN �2X,µ = r1,jN (eu,jN )− r2,jN (ep,jN )

≤ �r1,jN �X��eu,jN �X + �r2,jN �Y ��ep,jN �Y .
Applying now (6.18) and (2.10) yields

1
∆t m(eu,jN − eu,j−1

N , eu,jN ) + �eu,jN �2X,µ

≤ 1

βBr
�r1,jN �X��r2,jN �Y � +

�

�r1,jN �X� +
γa

βBr
�r2,jN �Y �

��eu,jN �X,µ√
αa

+
1

∆t

√
γm

βBr
�r2,jN �Y ��eu,jN − eu,j−1

N �µ,

which can be further bounded from Young’s inequality by

≤ 1

βBr
�r1,jN �X��r2,jN �Y � +

1

2αa

�

�r1,jN �X� +
γa

βBr
�r2,jN �Y �

�2

+
1

2
�eu,jN �2X,µ

+
1

2∆t

γm

β2
Br

�r2,jN �2Y � +
1

2∆t
�eu,jN − eu,j−1

N �2µ.

Rearranging terms, the inequality now reads

1

∆t

�

�eu,jN �2µ − �eu,j−1
N �2µ

�

+ �eu,jN �2X,µ

≤ �r1,jN �2X�

αa
+

2

βBr

�

1 +
γa

αa

�

�r1,jN �X��r2,jN �Y � +

�

γm

∆t
+

γ2a
αa

��r2,jN �2Y �

β2
Br

,

and the result follows from applying the sum
�k

j=1, e
u,0
N = 0, and (2.29), (2.30), (6.13).
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Again, in the special case of a symmetric problem, the error bounds given in Proposi-
tion 6.4.1 can be improved. We may then derive the following result.

Proposition 6.4.2. Let a(·, ·;µ) be symmetric for all µ ∈ D. For any given µ ∈ D, N ∈
Nmax, k ∈ K, and αLB

a (µ), γUB
a (µ), βLB

Br (µ), γUB
m (µ) satisfying (2.29), (2.30), and (6.13),

we define

∆
sym,k
N (µ) ≡

�

∆t

k
�

j=1

�r1,jN (·;µ)�2X�

αLB
a (µ)

+
2

βLB
Br (µ)

�

1 +

�

γUB
a (µ)

αLB
a (µ)

�

�r1,jN (·;µ)�X��r2,jN (·;µ)�Y �

+

�

γUB
m (µ)

∆t
+ γUB

a (µ)

�

�r2,jN (·;µ)�2Y �

(βLB
Br (µ))

2

�1/2

. (6.19)

Then, ∆
sym,k
N (µ) represents an upper bound for the error euN (µ) measured in the “spatio-

temporal” energy norm (6.12),

�euN (µ)��2(0,k;X) ≤ ∆
sym,k
N (µ), ∀ k ∈ K, µ ∈ D, N ∈ Nmax. (6.20)

Proof. Following the lines of the previous proof, we may now apply the Cauchy–Schwarz
inequality for the inner product a(·, ·) to obtain

βBr�ep,jN �Y ≤ �r1,jN �X� +
√
γa�eu,jN �X,µ +

√
γm

∆t
�eu,jN − eu,j−1

N �µ,

instead of (6.18). Proceeding as before, this yields

1
∆t m(eu,jN − eu,j−1

N , eu,jN ) + �eu,jN �2X,µ

≤ 1

βBr
�r1,jN �X��r2,jN �Y � +

��r1,jN �X�

√
αa

+

√
γa

βBr
�r2,jN �Y �

�

�eu,jN �X,µ

+
1

∆t

√
γm

βBr
�r2,jN �Y ��eu,jN − eu,j−1

N �µ,

and the statement again follows from applying Young’s inequality, the sum
�k

j=1, e
u,0
N = 0,

and (2.29), (2.30), (6.13).

6.4.2 ε > 0

We here derive rigorous upper bounds for the error eεN (µ) measured in the “spatio-temporal”
energy norm

�(vj , qj)j∈K��2(0,k;Z) ≡
�

�vk�2µ +∆t
k

�

j=1

�vj�2X,µ + ε �qj�2Y,µ

�1/2

, (6.21)

where (vj , qj)j∈K ⊆ Z, k ∈ K.
In addition to the dual norms of the residuals (6.10) and (6.11), we again also rely on

(Online-)efficient lower (and upper) bounds (4.29) to the truth coercivity constants (2.10)
and (4.12) to formulate our reduced basis a posteriori error bounds.

We can then formulate the following result.
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Proposition 6.4.3. For any given µ ∈ D, N ∈ Nmax, k ∈ K, and αLB
a (µ), αLB

c (µ) satisfying
(4.29), we define

∆
ε,k
N (µ) ≡

�

∆t
k

�

j=1

�r1,jN (·;µ)�2X�

αLB
a (µ)

+
�r2,jN (·;µ)�2Y �

εαLB
c (µ)

�1/2

. (6.22)

Then, ∆
ε,k
N (µ) represents an upper bound for the error eεN (µ) measured in the “spatio-

temporal” energy norm (6.21),

�eεN (µ)��2(0,k;Z) ≤ ∆
ε,k
N (µ), ∀ k ∈ K, µ ∈ D, N ∈ Nmax. (6.23)

Proof. Let µ be any parameter in D, N ∈ Nmax, and k ∈ K. For clarity of exposition, we
suppress the argument µ in this proof.

Take any 1 ≤ j ≤ k. From (6.10), (6.11), and (6.6), the errors eu,jN ∈ X and ep,jN ∈ Y
satisfy the equations

1
∆t m(eu,jN − eu,j−1

N , v) + a(eu,jN , v) + b(v, ep,jN ) = r1,jN (v), ∀ v ∈ X,

b(eu,jN , q)− ε c(ep,jN , q) = r2,jN (q), ∀ q ∈ Y.

Setting here v = eu,jN , q = ep,jN and subtracting the second from the first equation, we obtain

1
∆t m(eu,jN − eu,j−1

N , eu,jN ) + �eu,jN �2X,µ + ε �ep,jN �2Y,µ = r1,jN (eu,jN )− r2,jN (ep,jN )

≤ �r1,jN �X��eu,jN �X + �r2,jN �Y ��ep,jN �Y . (6.24)

On the right-hand side, we now use (2.10), (4.12), and Young’s inequality so that

�r1,jN �X��eu,jN �X + �r2,jN �Y ��ep,jN �Y ≤ �r1,jN �X�

√
αa

�eu,jN �X,µ +
�r2,jN �Y �

√
αc

�ep,jN �Y,µ

≤ 1

2

�

�r1,jN �2X�

αa
+ �eu,jN �2X,µ +

�r2,jN �2Y �

εαc
+ ε �ep,jN �2Y,µ

�

;

on the left-hand side, we use the Cauchy–Schwarz inequality for the inner product m(·, ·)
followed by Young’s inequality so that

m(eu,jN − eu,j−1
N , eu,jN ) ≥ �eu,jN �2µ − �eu,j−1

N �µ�eu,jN �µ ≥ 1

2

�

�eu,jN �2µ − �eu,j−1
N �2µ

�

.

Rearranging terms, the inequality (6.24) finally reads

1

∆t

�

�eu,jN �2µ − �eu,j−1
N �2µ

�

+ �eu,jN �2X,µ + ε �ep,jN �2Y,µ ≤ �r1,jN �2X�

αa
+

�r2,jN �2Y �

εαc
,

and the statement follows from applying the sum
�k

j=1, e
u,0
N = 0, and (4.29).



6.5 Offline-Online Computational Procedure 99

6.5 Offline-Online Computational Procedure

Again, the basic strategy lies in the µ-affine dependence of the involved operators. All µ-
independent quantities in (2.7) can be formed and stored within a computationally expensive
Offline stage, which is performed only once and the cost of which depends on the large finite
element dimension N . For any given parameter µ ∈ D, the reduced basis approximation
(uε,kN (µ), pε,kN (µ)), k ∈ K, is then computed within a highly efficient Online stage; the cost
does not depend on N but only on the much smaller dimension of the reduced basis ap-
proximation space. The computation of the a posteriori error bounds again consists of two
components: the calculation of the residual dual norms �r1,kN (·;µ)�X� , �r2,kN (·;µ)�Y � , k ∈ K,
and the calculation of the required lower and upper bounds (2.29), (2.30), (6.13) and (4.29),
respectively, to the involved constants. Except for the additional mass term, the exact com-
putational procedure does not significantly differ from the stationary case; therefore, we do
not give further explanations at this point but refer the reader to §2.6, §4.6, and [37].

6.6 Construction of Reduced Basis Approximation Spaces

We now turn to the construction of the reduced basis approximation spaces XN , YN , N ∈
Nmax. According to the reduced basis idea (see §2.5), the low-dimensional spaces XN , YN
are again constructed by exploiting the parametric structure of the problem: Basis functions
are essentially given by truth solutions associated with several chosen parameter snapshots.
To provide accurate approximations (uε,kN (µ), pε,kN (µ)) for (uε,k(µ), pε,k(µ)), k ∈ K, for any
parameter query, XN and YN here not only have to appropriately represent the manifold
M induced by the parametric dependence (see §2.5), but also need to capture the causality
associated with evolution in time. Again, keeping computational cost to a minimum, we
aim to achieve this with as few basis functions as possible.

The POD greedy procedure represents an adaptive sampling process for parabolic prob-
lems that properly accounts for temporal and parametric causality: It combines the proper
orthogonal decomposition (POD) method in k (see [68, 69]) and also §1.2) with the greedy
procedure in µ (see §2.7, [10, 15]). To begin with, we briefly recall the optimality property
of the POD as described in [68, 69]. For a given finite set XI ≡ {χ1, . . . ,χI} ⊆ X and
MX ≤ dim(span(XI)), the POD basis of rank MX consists of MX (·, ·)X -orthonormal basis
functions that approximate XI best in the sense that

span(PODX(XI ,MX)) = arg inf
X ⊆ span(XI)
dim(X )=MX

�

1

I

I
�

i=1

inf
χ∈X

�χi − χ�2X

�1/2

;

analogously, we denote by PODY (YI ,MY ) the POD basis of rank MY for a finite set YI ⊆ Y ,
MY ≤ dim(span(YI)). Assuming that we are given a current pair (XN−1, YN−1) of reduced
basis approximation spaces, the POD greedy algorithm now proceeds as follows: In compli-
ance with the greedy approach, it detects the parameter µN for which the (Online-)efficient
reduced basis error bound attains its maximum over an exhaustive sample Σ ⊂ D. For a
prescribed ∆N ∈ K, we then compute the POD bases of rank ∆N associated with the truth
solutions uε,k(µN ) and pε,k(µN ), k ∈ K; more specifically, we compute PODX(Eu,∆N) and
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PODY (E
p,∆N) for

Eu ≡ {uε,k(µN )−ΠXN−1
uε,k(µN ) | k ∈ K },

Ep ≡ { pε,k(µN )−ΠYN−1
pε,k(µN ) | k ∈ K },

where ΠXN−1
and ΠYN−1

refer to the (·, ·)X - and (·, ·)Y -orthogonal projections on the current
reduced basis approximation spaces XN−1 and YN−1, respectively. Finally, the ∆N POD
basis functions are appended to XN−1 and YN−1, and we obtain a subsequent pair (XN , YN ).
As before, this process is then repeated until a prescribed error tolerance is satisfied. We
refer the reader to [37, 46, 47] for a detailed discussion of the POD greedy procedure, and
to [63, 64] for an application to the Boussinesq and Fokker–Planck equations.

Algorithm 5 Adaptive Sampling Procedure for ε = 0

1: Choose Σ ⊂ D, δtol, δ
β
tol ∈ (0, 1), ∆N ∈ K, and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, D� ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: Ep = { pk(µN )−ΠYN−1

pk(µN ) | k ∈ K }
6: NY ← NY +∆N , YN ← YN−1 ⊕ span(PODY (E

p,∆N))
7: if µN /∈ D�, then

8: Eu = {uk(µN )−ΠXN−1
uk(µN ) | k ∈ K }

9: NX ← NX +∆N , XN ← XN−1 ⊕ span(PODX(Eu,∆N))
10: end if

11: while (true) do

12: for all µ ∈ Σ do

13: Compute (ukN (µ), pkN (µ)), k ∈ K, ∆N (µ), and

14: d̂βN (µ) ≡ max
�

βUB
Br

(µ)−βN (µ)

βUB
Br

(µ)
, 0

�

(cf. (2.101))

15: end for

16: µ�
N ≡ argmaxµ∈Σ ∆N (µ), µ∗ ≡ argmaxµ∈Σ d̂βN (µ)

17: if d̂βN (µ∗) < δ
β
tol, then

18: µN+1 ≡ µ�
N

19: break

20: end if

21: if minµ∈D�∪DN

|µ�

N−µ|

|µ| ≥ 0.1%, then

22: D� ← D� ∪ {µ�
N}

23: Eu = {uk(µ�
N )−ΠXN

uk(µ�
N ) | k ∈ K }

24: NX ← NX +∆N , XN ← XN ⊕ span(PODX(Eu,∆N))
25: else

26: NX ← NX + 1, XN ← XN ⊕ span{Tµ∗�N (µ∗) } (see (2.71), (2.100))
27: end if

28: end while

29: until ∆N (µN+1) < δtol
30: Nmax ← N
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For our saddle point problems, we now couple the above procedure with stabilization
techniques developed in §2.7. In §3.3.3 and §5.3.2, best convergence results were achieved
by Algorithm 3 where we aim to stabilize through an enrichment of the primal reduced basis
approximation space with additional truth solutions. According to these observations, we
here apply the sampling procedures presented in Algorithm 5 and Algorithm 6. In case of
ε = 0, we again use the distance dβN (µ) (see (2.101)) of the inf-sup constants βN (µ) to the
truth Brezzi inf-sup constants βBr(µ) as an indicator whether a current pair of reduced basis
approximation spaces needs to be stabilized; the exact procedure is given in Algorithm 5.
In case of ε > 0, numerical results in §5.3.2 showed that the inf-sup constants βN (µ) may
not be appropriate indicators for an ill-conditioned system but an adaptive sampling process
should be based rather on the condition number κεN (µ) (see (5.6)); Algorithm 6 now presents
a possibility how this could be realized.

Algorithm 6 Adaptive Sampling Procedure for ε > 0

1: Choose Σ ⊂ D, δtol ∈ (0, 1), δκtol > 0, ∆N ∈ K, and µ1 ∈ Σ

2: Set N ← 0, DN ← {}, D� ← {}, NY ← 0, YN ← {}, NX ← 0, XN ← {}
3: repeat

4: N ← N + 1, DN ← DN−1 ∪ {µN}
5: Ep = { pε,k(µN )−ΠYN−1

pε,k(µN ) | k ∈ K }
6: NY ← NY +∆N , YN ← YN−1 ⊕ span(PODY (E

p,∆N))
7: if µN /∈ D�, then

8: Eu = {uε,k(µN )−ΠXN−1
uε,k(µN ) | k ∈ K }

9: NX ← NX +∆N , XN ← XN−1 ⊕ span(PODX(Eu,∆N))
10: end if

11: while (true) do

12: for all µ ∈ Σ do

13: Compute (uε,kN (µ), pε,kN (µ)), k ∈ K, ∆N (µ), and κεN (µ) (see (5.6))
14: end for

15: µ�
N ≡ argmaxµ∈Σ ∆N (µ), µ∗ ≡ argmaxµ∈Σ κεN (µ)

16: if κεN (µ∗) < δκtol, then

17: µN+1 ≡ µ�
N

18: break

19: end if

20: if minµ∈D�∪DN

|µ�

N−µ|

|µ| ≥ 0.1%, then

21: D� ← D� ∪ {µ�
N}

22: Eu = {uε,k(µ�
N )−ΠXN

uε,k(µ�
N ) | k ∈ K }

23: NX ← NX +∆N , XN ← XN ⊕ span(PODX(Eu,∆N))
24: else

25: NX ← NX + 1, XN ← XN ⊕ span{Tµ∗�N (µ∗) } (see (2.71), (2.100))
26: end if

27: end while

28: until ∆N (µN+1) < δtol
29: Nmax ← N
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6.7 Model Problem

We again consider a Stokes flow in a two-dimensional microchannel with an obstacle as
introduced in §3.2; evolution in time is now induced by a time-dependent velocity profile on
the inflow boundary.

Let µ be any parameter in D. For the physical domain Ω̃ and a given time interval [0, T ],
T > 0, we now seek to find the (inhomogeneous) velocity ũe,inh : Ω̃ × (0, T ) → R

2 and the
pressure p̃e : Ω̃× (0, T ) → R satisfying

∂ũe,inh
∂t

− ∆̃ũe,inh + ∇̃p̃e = 0 in Ω̃× (0, T ), (6.25)

∇̃ · ũe,inh = 0 in Ω̃× (0, T ), (6.26)

subject to initial conditions ũe,inh(·, 0) = 0 and with boundary conditions

ũe,inh(x̃, t) = H(t)h(x̃) on Γin × (0, T ), ũe,inh = 0 on Γ̃0 × (0, T ),

∂ũe,inh
∂ñ

= p̃eñ on Γout × (0, T );
(6.27)

here, ∆̃ and ∇̃ again denote the Laplacian and gradient operator over the physical domain
Ω̃ (see Appendix A), ñ is the unit outward normal, h : R2 → R

2 is given as in §3.2.1 by
h(x) ≡ (4x2(1 − x2), 0) for all x = (x1, x2) ∈ R

2, and we choose H : [0, T ] → R with
H(t) ≡ t(sin(2πt) + 1) for all t ∈ [0, T ]. According to the setting introduced in §5.2, we also
consider the following perturbation of the problem (6.25)–(6.27): For a sufficiently small
ε > 0, we again introduce a penalty term to the continuity equation (6.26) such that

∇̃ · ũεe,inh = −ε pεe in Ω̃× (0, T ). (6.28)

We now follow the steps discussed in §3.2.2, §3.2.3, and §5.2: We choose the lifting function
ũHL ≡ HũL where ũL is defined as in (3.4), and transform the problem statement for the
homogeneous velocity ũεe ≡ ũεe,inh − ũHL to an equivalent problem posed over the reference
domain Ω. Furthermore, as required for the time-discrete setting introduced in §6.2, we
divide the time interval [0, T ] into K subintervals of equal length ∆t ≡ T/K, and consider a
backward Euler method for time integration. The problems (6.25)–(6.27) and (6.25), (6.28),
(6.27) may thus be written as a parametrized saddle point problem of the form (6.3). Here,
for any µ ∈ D, the bilinear forms a(·, ·;µ), b(·, ·;µ), and c(·, ·;µ) are given as in (3.8), (3.9),
and (5.5), respectively; accordingly, the bilinear form m(·, ·;µ) : Xe × Xe → R represents
the L2-inner product for vector functions over the physical domain Ω̃ formulated on the
reference domain Ω (see §3.2.3),

m(u, v;µ) =
S
�

s=1

1

|det(As(µ))|

�

Ωs

u · v dx, ∀ u, v ∈ Xe, (6.29)

and the linear functionals f(·;µ) and g(·;µ) are given by

f(v, t;µ) = f(v, t) = −H �(t)

�

ΩL

uL · v dx−H(t)

�

ΩL

∂uLi
∂xj

∂vi
∂xj

dx, ∀ v ∈ Xe, t ∈ [0, T ],

g(q, t;µ) = g(q, t) = H(t)

�

ΩL

q
∂uLi
∂xi

dx, ∀ q ∈ Ye, t ∈ [0, T ].
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We recall that the bilinear forms a(·, ·;µ), b(·, ·;µ), and c(·, ·;µ) then satisfy the assumptions
(2.1)–(2.4), (4.1), and (4.2). For all µ ∈ D, m(·, ·;µ) defines an inner product on Xe such that
(6.2) holds true; moreover, there exists a constant Ce

4(µ) > 0 from the Poincaré inequality
(see, e.g., [89]) such that

m(v, v;µ) ≤ Ce
4(µ) a(v, v;µ), ∀ v ∈ Xe, ∀ µ ∈ D,

and thus (6.1) is satisfied with

γem(µ) ≡ sup
u∈Xe

sup
v∈Xe

m(u, v;µ)

�u�Xe
�v�Xe

≤ Ce
4(µ) γ

e
a(µ) < ∞, ∀ µ ∈ D.

We particularly have Qa = 10, Qb = 6, Qf = Qg = 1, and Qm = Qc = 5 in the respective
µ-affine expansions (2.7). Choosing again the truth approximation spaces X and Y as the
standard conforming P2-P1 Taylor–Hood finite element approximation subspaces [100] over
the regular triangulation TΩ, we ensure that also (2.11) is satisfied and therefore recover the
situation described in §6.2.2.

6.8 Numerical Results

We now apply the reduced basis methodology developed in §6.3–§6.6 to our model problem.
We set T = 1 and consider a constant time step size ∆t corresponding to K = 100 time
levels. The truth discretization is based on a fine mesh with a total of N = 72,076 velocity
and pressure degrees of freedom. In this section, all numerical results are attained using
the open source software rbOOmit [65], an implementation of the reduced basis framework
within the C++ parallel finite element library libMesh [62].

6.8.1 ε = 0

We first turn to the coercivity, continuity, and inf-sup constants required for our reduced
basis procedure. We again obtain (Online-)efficient lower and upper bounds to αa(µ), γa(µ),
and βBr(µ) by using the SCM (see §2.6.2) with the configurations specified in §3.3.4. To
estimate the continuity constants γm(µ), we apply the method for Mα = ∞, an exhaustive
sample Ξ ⊂ D of size |Ξ| = 4,225, and δSCM

tol = 0.01. We then obtain Kmax = 5, and
Fig. 6.1 presents the resulting accurate (Online-)efficient lower and upper bounds γLBm (µ)
and γUB

m (µ).
We now turn to the reduced basis approximation. To build our low-dimensional reduced

basis approximation spaces XN , YN , N ∈ Nmax, we apply the POD greedy procedure de-
scribed in Algorithm 5 (see §6.6). The sampling process is based on an exhaustive random

sample Σ ⊂ D of size |Σ| = 4,900, ∆N = 2, and δ
β
tol = 0.1; since our Stokes model prob-

lem is clearly symmetric, we here in particular use the relative reduced basis a posteriori
error bound ∆N (µ) ≡ ∆

sym,K
N (µ)/�(ujN (µ))j∈K��2(0,K;X) (see (6.12), (6.19)). Figure 6.2 now

shows the maximum error �euN (µ)��2(0,K;X) (see (6.9)) in the reduced basis velocity approx-

imations and associated error bounds ∆sym,K
N (µ) and ∆K

N (µ) (see (6.14)) as functions of the
dimension NZ ; Figure 6.3 presents the maximum error �euN (µ)��2(0,k;X) and associated error

bounds ∆
sym,k
N (µ), ∆k

N (µ) as functions of k ∈ K for several values of NZ . First, we observe
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Figure 6.1.: SCM lower and upper bounds γLBm (µ) and γUB
m (µ) for the continuity constants

γm(µ) (see (6.4), (6.13)) where |Ξ| = 4,225, Mα = ∞, δSCM
tol = 0.01, and

Kmax = 5.
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Figure 6.2.: Maximum error �euN (µ)��2(0,K;X) (see (6.9), (6.12)) and maximum error bounds

∆
sym,K
N (µ) and ∆K

N (µ) (see (6.19) and (6.14)) normalized with respect to
�(uj(µ))j∈K��2(0,K;X) shown as functions of NZ ; the maximum is taken over

25 parameter values.
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N = 13 (NZ = 76) N = 20 (NZ = 109) N = 41 (NZ = 226)
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Figure 6.3.: Maximum error �euN (µ)��2(0,k;X) (see (6.9), (6.12)) and maximum error bounds

∆
sym,k
N (µ) and ∆k

N (µ) (see (6.19) and (6.14)) normalized with respect to
�(uj(µ))j∈K��2(0,k;X) shown as functions of k ∈ K for several values of N ; the

maximum is taken over 25 parameter values.

(a) Effectivities η
sym,k
N (µ) associated with ∆

sym,k
N (µ)

N NZ k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100

5 36 28.90 30.38 30.96 31.30 31.51 31.61 31.63 31.63 31.52 31.13
10 63 30.41 31.35 31.82 32.20 32.35 32.37 32.29 32.16 32.01 31.91
15 93 25.83 28.05 29.12 29.39 29.48 29.51 29.49 29.44 29.40 29.38
20 109 23.31 24.25 26.10 26.79 27.08 27.23 27.22 27.08 27.00 27.21
25 142 25.29 28.15 29.20 29.54 29.68 29.73 29.72 29.66 29.60 29.64
30 177 26.28 26.05 27.18 28.77 30.06 30.58 30.72 30.70 30.59 30.60
35 201 24.77 24.86 25.70 26.68 27.18 27.36 27.45 27.51 27.50 27.81
40 222 24.18 23.96 24.04 24.19 24.65 25.03 25.37 25.51 25.50 25.54

(b) Effectivities ηk
N (µ) associated with ∆

k
N (µ)

N NZ k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100

5 36 39.58 41.51 42.30 42.76 43.05 43.20 43.22 43.22 43.06 42.53
10 63 39.90 41.66 42.46 42.82 43.08 43.21 43.16 43.00 42.91 42.90
15 93 38.58 43.21 44.23 44.64 44.93 45.13 45.17 45.14 45.18 45.07
20 109 32.59 34.10 35.30 37.11 37.61 37.60 37.34 37.17 36.88 37.19
25 142 35.52 39.26 42.22 42.93 42.87 42.73 42.71 42.63 42.67 43.55
30 177 34.31 34.27 34.61 36.41 37.23 37.31 38.27 39.67 40.42 40.64
35 201 32.86 33.59 35.05 36.52 37.33 37.39 36.98 36.65 36.77 37.54
40 222 33.67 33.76 34.45 35.25 35.59 35.42 35.01 34.78 34.87 35.17

Table 6.1.: Maximum effectivities (a) η
sym,k
N (µ) ≡ ∆

sym,k
N (µ)/�euN (µ)��2(0,k;X) (see (6.20))

and (b) ηkN (µ) ≡ ∆k
N (µ)/�euN (µ)��2(0,k;X) (see (6.15)) for several values of k ∈ K

and N ; the maximum is taken over 25 parameter values.
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that the reduced basis error and error bounds are roughly uniform in time (see Fig. 6.3) and
decrease rapidly as NZ increases (see Fig. 6.2). We obtain stable, rapidly convergent reduced
basis approximations, and rigorous a posteriori error bounds that reflect the behavior of the
error very accurately. Second, the error bounds are tight. To quantify this statement, we
present in Table 6.1 maximum effectivities associated with ∆

sym,k
N (µ) and ∆k

N (µ) for several
values of k and N . We notice that their values remain more or less constant with k. More-
over, as in the stationary case (see §3.3.4), we again benefit from exploiting the symmetry
of the problem: Effectivities range from 33 to 45 in case of ∆k

N (µ) (see Table 6.1(b)) and

improve in case of ∆sym,k
N (µ) by roughly 10 (see Table 6.1(a)). We emphasize at this point

that the error bound formulations in (6.14) and (6.19) in fact suggest a growth in time. In
practice, this behavior seems rather weak (see Table 6.1) but may be investigated in greater
detail within future work.

We now discuss the Online computation times for the proposed method. For comparison,
once the µ-independent parts in (2.7) have been formed, direct computation of the truth
approximation (uk(µ), pk(µ)), k ∈ K, (i.e., assembly and solution of (6.6)) requires roughly
30 seconds on a 2.66 GHz Intel Core 2 Duo processor. We initially take a total reduced
basis dimension of NZ = 226. Once the database has been loaded, the Online calculation of
(ukN (µ), pkN (µ)), k ∈ K, (i.e., assembly and solution of (6.7)) and ∆

sym,k
N (µ), k ∈ K, for any

new value of µ ∈ D takes on average 27.97 and 80.76 milliseconds, respectively, which is in
total roughly 270 times faster than direct computation of the truth approximation. Thus,
even for this large value of NZ , we obtain significant Online savings. In practice, however,
we quite often need not take such a large value of NZ — our rigorous and inexpensive
error bounds ∆

sym,k
N (µ), k ∈ K, allow us to choose the reduced basis dimension just large

enough to obtain a desired accuracy. To achieve a prescribed accuracy of at least 1%
(resp., 0.1%) in the reduced basis approximations ukN (µ), k ∈ K, we need NZ = 76 (resp.,
NZ = 109) (see Fig. 6.2). Again, once the database has been loaded, the Online calculation

of (ukN (µ), pkN (µ)), k ∈ K, and ∆
sym,k
N (µ), k ∈ K, for any new value of µ ∈ D takes on average

4.41 (resp., 7.62) and 24.47 (resp., 33.75) milliseconds, respectively, which is in total roughly
1,000 times (resp., 700 times) faster than direct computation of the truth approximation.

6.8.2 ε > 0

Again, the SCM (see §2.6.2) enables the (Online-)efficient estimation of the coercivity con-
stants αa(µ) and αc(µ); as we here use the same configurations, we refer to §3.3.4 and §5.3.3
for details in this context.

To build our low-dimensional reduced basis approximation spaces XN , YN , N ∈ Nmax, we
apply the POD greedy procedure described in Algorithm 6 (see §6.6). The sampling process
is based on an exhaustive random sample Σ ⊂ D of size |Σ| = 4,900, ∆N = 2, δκtol = 103, and

the relative reduced basis a posteriori error bound ∆N (µ) = ∆
ε,K
N (µ)/�(uε,jN (µ))j∈K��2(0,K;Z)

(see (6.21), (6.22)). Figure 6.4 now shows the maximum error �eεN (µ)��2(0,K;Z) (see (6.9))
in the reduced basis velocity and pressure approximations together with the associated
error bound ∆

ε,K
N (µ) as functions of the dimension NZ for different values of ε. Figure 6.5

then presents the maximum error �eεN (µ)��2(0,k;Z) and associated error bound ∆
ε,k
N (µ) as

functions of k ∈ K for several values of N ; note that the latter are chosen as the values
for which the error bounds ∆

ε,K
N (µ) guarantee a prescribed accuracy of at least 1% and
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ε = 10−4 ε = 10−5
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Figure 6.4.: Maximum error �eεN (µ)��2(0,K;Z) (see (6.9), (6.21)) and maximum error bound

∆
ε,K
N (µ) (see (6.22)) normalized with respect to �(uε,j(µ), pε,j(µ))j∈K��2(0,K;Z)

shown as functions of NZ for different values of ε; the maximum is taken over
25 parameter values.
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(a) ε = 10−2

N = 17 (NZ = 68)
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N = 28 (NZ = 112)

0 10 20 30 40 50 60 70 80 90 100
10

6

10
5

10
4

10
3

10
2

10
1

10
0

k

 

 

||e ||
,k

(b) ε = 10−3

N = 13 (NZ = 70)
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N = 20 (NZ = 107)
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(c) ε = 10−4

N = 14 (NZ = 79)
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N = 25 (NZ = 150)
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(d) ε = 10−5

N = 21 (NZ = 121)
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N = 31 (NZ = 174)
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Figure 6.5.: Maximum error �eεN (µ)��2(0,k;Z) (see (6.9), (6.21)) and maximum error bound

∆
ε,k
N (µ) (see (6.22)) normalized with respect to �(uε,j(µ), pε,j(µ))j∈K��2(0,k;Z)

shown as functions of k ∈ K for several values of N for (a) ε = 10−2, (b) ε =
10−3, (c) ε = 10−4, and (d) ε = 10−5; the maximum is taken over 25 parameter
values.
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(a) ε = 10−2

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

5 20 1.145 · 101 1.282 · 101 1.297 · 101 1.296 · 101 1.295 · 101 1.293 · 101

10 40 1.154 · 101 1.373 · 101 1.480 · 101 1.479 · 101 1.476 · 101 1.466 · 101

15 60 1.202 · 101 1.251 · 101 1.292 · 101 1.284 · 101 1.281 · 101 1.289 · 101

20 80 1.119 · 101 1.129 · 101 1.281 · 101 1.314 · 101 1.268 · 101 1.268 · 101

25 100 1.154 · 101 1.154 · 101 1.235 · 101 1.248 · 101 1.239 · 101 1.227 · 101

30 120 1.256 · 101 1.272 · 101 1.256 · 101 1.269 · 101 1.268 · 101 1.254 · 101

35 140 1.132 · 101 1.126 · 101 1.163 · 101 1.171 · 101 1.159 · 101 1.159 · 101

40 160 1.252 · 101 1.240 · 101 1.223 · 101 1.222 · 101 1.202 · 101 1.212 · 101

45 180 1.241 · 101 1.235 · 101 1.226 · 101 1.206 · 101 1.201 · 101 1.194 · 101

(b) ε = 10−3

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

4 22 2.691 · 101 3.139 · 101 3.273 · 101 3.293 · 101 3.275 · 101 3.227 · 101

8 39 2.326 · 101 2.499 · 101 2.545 · 101 2.560 · 101 2.535 · 101 2.486 · 101

12 66 2.725 · 101 2.969 · 101 3.071 · 101 3.166 · 101 3.155 · 101 3.101 · 101

16 83 2.176 · 101 2.759 · 101 2.949 · 101 3.005 · 101 3.007 · 101 2.991 · 101

19 103 2.358 · 101 2.367 · 101 2.593 · 101 2.641 · 101 2.645 · 101 2.710 · 101

23 121 2.499 · 101 2.530 · 101 2.746 · 101 2.814 · 101 2.833 · 101 2.947 · 101

26 145 2.965 · 101 2.933 · 101 2.945 · 101 2.973 · 101 2.960 · 101 2.983 · 101

30 162 2.663 · 101 2.648 · 101 2.654 · 101 2.759 · 101 2.790 · 101 2.792 · 101

34 183 2.983 · 101 2.902 · 101 2.903 · 101 2.900 · 101 2.850 · 101 2.826 · 101

(c) ε = 10−4

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

3 18 8.804 · 101 8.882 · 101 8.986 · 101 9.150 · 101 9.159 · 101 9.113 · 101

7 37 7.081 · 101 7.651 · 101 7.921 · 101 8.026 · 101 8.014 · 101 7.921 · 101

10 60 6.726 · 101 8.104 · 101 9.668 · 101 9.737 · 101 9.639 · 101 9.608 · 101

14 79 7.970 · 101 9.903 · 101 1.165 · 102 1.166 · 102 1.142 · 102 1.145 · 102

17 101 9.326 · 101 1.010 · 102 1.074 · 102 1.055 · 102 1.053 · 102 1.072 · 102

21 121 1.123 · 102 1.117 · 102 1.106 · 102 1.107 · 102 1.071 · 102 1.076 · 102

24 141 1.058 · 102 1.055 · 102 1.043 · 102 1.033 · 102 9.825 · 101 9.822 · 101

28 160 9.951 · 101 9.855 · 101 9.974 · 101 9.988 · 101 9.868 · 101 9.903 · 101

33 181 8.304 · 101 8.290 · 101 8.592 · 101 8.635 · 101 8.573 · 101 8.706 · 101

(d) ε = 10−5

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

3 18 2.706 · 102 2.919 · 102 3.311 · 102 3.365 · 102 3.199 · 102 3.198 · 102

7 41 2.736 · 102 2.899 · 102 2.965 · 102 2.984 · 102 2.984 · 102 2.952 · 102

10 55 2.240 · 102 2.510 · 102 2.684 · 102 2.699 · 102 2.698 · 102 2.701 · 102

13 81 3.073 · 102 3.524 · 102 3.603 · 102 3.615 · 102 3.609 · 102 3.617 · 102

17 99 2.696 · 102 2.860 · 102 3.103 · 102 3.115 · 102 3.107 · 102 3.129 · 102

21 121 3.355 · 102 3.347 · 102 3.391 · 102 3.415 · 102 3.396 · 102 3.371 · 102

24 138 2.563 · 102 2.950 · 102 3.214 · 102 3.206 · 102 3.147 · 102 3.210 · 102

28 159 2.690 · 102 2.698 · 102 2.935 · 102 2.993 · 102 2.893 · 102 3.020 · 102

32 183 2.786 · 102 2.765 · 102 3.206 · 102 3.324 · 102 3.306 · 102 3.368 · 102

Table 6.2.: Maximum effectivities η
ε,k
N (µ) ≡ ∆

ε,k
N (µ)/�eεN (µ)��2(0,k;Z) (see (6.23)) for several

values of k ∈ K and N for (a) ε = 10−2, (b) ε = 10−3, (c) ε = 10−4, and
(d) ε = 10−5; the maximum is taken over 25 parameter values.
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ε NZ N (uε,k
N (µ), pε,kN (µ)), k ∈ K ∆

ε,k
N (µ), k ∈ K Total

10−2 68 (112) 17 (28) 3.71 (7.65) 14.53 (26.95) 18.25 (34.60)

10−3 70 (107) 13 (20) 3.99 (7.43) 17.19 (28.25) 21.18 (35.67)

10−4 79 (150) 14 (25) 4.73 (13.59) 20.28 (44.70) 25.01 (58.29)

10−5 121 (174) 21 (31) 9.19 (17.47) 33.81 (54.08) 43.01 (71.55)

Table 6.3.: Average computation times in milliseconds for the Online evaluation of
(uε,kN (µ), pε,kN (µ)), k ∈ K, (assembly and solution of (6.7)) and the error bounds

∆
ε,k
N (µ), k ∈ K, (see (6.22)) for different values of ε with a prescribed ac-

curacy of at least 1% (resp., 0.1%) for the reduced basis approximations

(uε,kN (µ), pε,kN (µ)), k ∈ K.

0.1% in the reduced basis approximations. First, we again observe that the reduced basis
error and error bounds are roughly uniform in time (see Fig. 6.5) and decrease rapidly as
NZ increases (see Fig. 6.4). We obtain stable reduced basis approximations whose rapid
convergence is not affected by the penalty parameter, and a posteriori error bounds that
are meaningful and rigorous. Second, using the condition numbers κεN (µ) as an indicator
for an ill-conditioned system, Algorithm 6 guarantees stability by properly accounting for
the effects of the penalty term: For ε = 10−2, the sampling process recognizes that the
reduced basis approximation spaces XN , YN do not have to be stabilized to provide accurate
approximations; taking smaller values of ε and thus approaching the nonpenalized problem,
an additional enrichment of the reduced basis approximation space for the velocity then
becomes more and more necessary. Third, we see that the error bounds are tight for ε = 10−2

but become less sharp as we decrease ε and our perturbed truth approximation becomes
more accurate. However, effectivities exhibit a similar O

�

1√
ε

�

-dependence on the penalty

parameter as observed in the stationary case (see §5.3.3) and remain reasonably small for
relatively small values of ε. To further quantify this statement, we present in Table 6.2 the
effectivities associated with ∆

ε,k
N (µ) for different values of k, N , and ε. We note that their

values are fairly constant with k and N and confirm the O
�

1√
ε

�

-dependence indicated by

Fig. 6.4 and Fig. 6.5. As before, the effects of the penalty parameter on the effectivities are
thus relatively benign and we obtain useful bounds for reasonably small values of ε.

We close this section by discussing the Online computation times. For comparison, once
the µ-independent parts in (2.7) have been formed, direct computation of the truth approx-
imation (uε,k(µ), pε,k(µ)), k ∈ K, (i.e., assembly and solution of (6.6)) requires roughly 23
seconds on a 2.66 GHz Intel Core 2 Duo processor. Again, our rigorous and inexpensive
reduced basis a posteriori error bounds enable us to choose the reduced basis dimension just
large enough to obtain a desired accuracy. Choosing ε = 10−2, the error bounds ∆

ε,k
N (µ)

are sharp with effectivities of approximately 12 (see Table 6.2(a)) and prescribe a dimen-
sion of NZ = 68 to achieve an accuracy of at least 1% in the reduced basis approximations
(uε,kN (µ), pε,kN (µ)), k ∈ K (see Fig. 6.4). Once the database has been loaded, the Online calcu-

lation of (uε,kN (µ), pε,kN (µ)), k ∈ K, (i.e., assembly and solution of (6.7)) and ∆
ε,k
N (µ), k ∈ K,

for any new value of µ ∈ D then takes on average 3.71 and 14.53 milliseconds, respectively,
which is in total roughly 1,200 times faster than direct computation of the truth approxi-
mation. Choosing smaller values for ε, the error bounds become more pessimistic and thus
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dictate a larger system dimension at which they guarantee the same order of accuracy. For
ε = 10−5, we need NZ = 121 to achieve a prescribed accuracy of at least 1% in the reduced
basis approximations (see Fig. 6.4); the Online calculation of (uε,kN (µ), pε,kN (µ)), k ∈ K, and

∆
ε,k
N (µ), k ∈ K, then takes on average 9.19 and 33.81 milliseconds, respectively, which is in

total roughly 500 times faster than direct computation of the truth approximation. Thus,
even for small penalty parameters ε, accurate approximations are guaranteed at significant
Online savings. Detailed computation times for different values of ε are given in Table 6.3.

6.9 Concluding Remarks

In this chapter, we present new reduced basis methods for the instationary Stokes equations.
Combining techniques developed in Chapter 2 with current reduced basis approaches

for parabolic problems, we derive new rigorous a posteriori bounds for the errors in the
reduced basis velocity approximations and a POD greedy procedure that properly accounts
for temporal and parametric causality as well as stability. The method provides rapidly
convergent reduced basis approximations that are highly efficient and whose accuracy is
certified by sharp and inexpensive a posteriori error bounds.

An approximation by penalty or regularization again allows for significant Offline savings
at the expense of a less accurate truth approximation. Due to the introduced penalty
term, an additional enrichment of the reduced basis velocity approximation space is not
always necessary to obtain stable approximations; moreover, we obtain a posteriori error
bounds that do not involve the expensive computation of inf-sup stability constants. As in
the stationary case (see Chapter 5), the method provides reduced basis approximations and
meaningful a posteriori error bounds that are computed very easily; nevertheless, drawbacks
such as the disadvantageous dependence of the error bounds on the penalty parameter
remain.

Time integration is achieved through a backward Euler method. Clearly, also other time
integration schemes may be used. Using a Crank–Nicolson method, often preferred in prac-
tice due to its second-order accuracy, we may develop a penalty approach that is very similar
to the one presented in this chapter and which is therefore included in Appendix C; in case
of ε = 0, useful reduced basis a posteriori error bounds could not yet been derived and
may therefore be — as well as a posteriori error bounds for the reduced basis pressure
approximations — part of future work.
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Appendix A

Notations

In this section, we collect some basic notation that is used throughout this work.

Vectors and Matrices

The standard sets of numbers are denoted by N, N0 ≡ N∪ {0}, and R. Let n,m ∈ N. For a
vector x ∈ R

n, |x| =
√
x · x denotes the Euclidean norm. For a matrix A = (Aij) ∈ R

m×n,
det(A) refers to the determinant and σmax(A), σmin(A) to the maximum and minimum
singular values, respectively. The matrix norms � · �2, � · �1, and � · �∞ are defined as

�A�2 ≡ sup
x∈Rn

|Ax|

|x|
= σmax(A), �A�1 ≡ max

j=1,...,n

m
�

i=1

|Aij |, �A�∞ ≡ max
i=1,...,m

n
�

j=1

Aij ;

here and throughout this thesis, we suppress the obvious requirement of nonzero elements
in the denominators for clarity of exposition. Note that in particular �A�2 ≤

�

�A�1�A�∞
holds true. For a nonsingular matrix, we also consider the condition number κ(A),

κ(A) ≡ �A�2�A−1�2 =
σmax(A)

σmin(A)
.

Functions

Let Ω ⊆ R
d, d ∈ N, be a bounded domain. Then, its boundary is denoted by Γ ≡ ∂Ω and

Ω ≡ Ω∪Γ refers to the closure of Ω. For a scalar function p : Ω → R, ∂p
∂xi

denotes the partial
derivative with respect to the variable xi, i = 1, . . . , d. The gradient, normal derivative, and
Laplacian are then given by

∇p ≡
�

∂p

∂xi

�d

i=1

,
∂p

∂n
≡ ∇p · n, ∆p ≡ ∂2p

∂xi∂xi
,

respectively, where n denotes the unit outward normal to Γ; here and throughout this thesis,
repeated indices imply summation. For a vector function u = (u1, . . . , ud) : Ω → R

d, partial
derivatives are defined componentwise, i.e.,

∂u

∂xi
≡

�

∂uj
∂xi

�d

j=1

, i = 1, . . . , d,
∂u

∂n
≡

�

∂uj
∂n

�d

j=1

, ∆u ≡ (∆uj)
d
j=1,
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and we further consider the divergence operator

div(u) ≡ ∇ · u ≡ ∂ui
∂xi

.

In this work, Ω̃ ≡ Ω(µ) typically refers to a domain whose exact geometric configuration is
specified by a parameter µ ∈ R

n, n ∈ N; its boundary is then denoted by Γ̃ ≡ ∂Ω̃ with unit
outward normal ñ. According to the above notations, ∇̃, ∂

∂ñ , and ∆̃ refer to the gradient,

normal derivative, and Laplace operator over Ω̃,

∇̃p̃ ≡
�

∂p̃

∂x̃i

�d

i=1

,
∂p̃

∂ñ
= ∇̃p̃ · ñ, ∆̃p̃ ≡ ∂2p̃

∂x̃i∂x̃i
,

∂ũ

∂ñ
≡

�

∂ũj
∂ñ

�d

j=1

, ∆̃ũ = (∆̃ũj)
d
j=1, ∇̃ · ũ ≡ ∂ũi

∂x̃i
,

for scalar and vector functions p̃ : Ω̃ → R and ũ = (ũ1, . . . , ũd) : Ω̃ → R
d.

Function Spaces

The space of continuous functions on Ω is given by C(Ω); for j ∈ N, Cj(Ω) consists of
all functions that are j-times continuously differentiable on Ω. We denote by L2(Ω) the
standard Lebesgue spaces of square integrable functions over Ω, and H1(Ω) ≡ {v ∈ L2(Ω) |
∇v ∈ (L2(Ω))2} defines the associated Sobolev space of first order; for details on Sobolev
spaces, we refer the reader to [1].

For a Hilbert space V , the associated inner product and norm are denoted by (·, ·)V and
� ·�V ≡

�

(·, ·)V , respectively. A second norm � ·� on V is called equivalent to � ·�V if there
exist constants c, C > 0 such that

c � · �V ≤ � · � ≤ C � · �V .

The dual space of V is given by V � and �·, ·� ≡ �·, ·�V �×V denotes by default the associated
dual pairing. For an element f ∈ V �, we consider the dual norm

�f�V � ≡ sup
v∈V

f(v)

�v�V
.

For a bounded linear operator B : V → V �, ker(B) and im(B) refer to its kernel and range,
respectively,

ker(B) ≡ { v ∈ V | Bv = 0 }, im(B) ≡ { f ∈ V � | ∃ v ∈ V : Bv = f };

moreover, ker(B)⊥ ≡ { v ∈ V | (v, v0)V = 0, ∀ v0 ∈ ker(B) } denotes the orthogonal
complement with respect to the inner product (·, ·)V .



Appendix B

Supplementary Comments

In this section, we provide some additional comments on arguments from functional analysis
used in this thesis.

On the Reduced Basis System (2.14)

We here comment on the steps outlined in §2.3.2 in a little more detail. To this end, let µ
be any parameter in D.

We first show that the system (2.15), (2.16) is solvable if and only if gN (µ) belongs to the
range of the operator BN (µ). It clearly follows from (2.16) that gN (µ) ∈ im(BN (µ)) is a
necessary condition for (2.15), (2.16) to be solvable. Furthermore, if we assume that gN (µ) ∈
im(BN (µ)), we can without loss of generality find an element u⊥N (µ) ∈ ker(BN (µ))⊥ such
that BN (µ)u⊥N (µ) = gN (µ) in Y �

N . Due to (2.8) and (2.10), it then follows from the classical
Lax–Milgram lemma (see, e.g., [89]) that there exists a unique solution u0N (µ) ∈ ker(BN (µ))
such that

a(u0N (µ), vN ;µ) = f(vN ;µ)− a(u⊥N (µ), vN ;µ), ∀ vN ∈ ker(BN (µ)). (B.1)

We now define uN (µ) ≡ u0N (µ)+u⊥N (µ) ∈ XN . Then, uN (µ) satisfies (2.16) by construction,
and it follows from (B.1) that fN (µ)−AN (µ)uN (µ) belongs to the annihilator

ker(BN (µ))0 ≡ { f ∈ X �
N | f(vN ) = 0, ∀ vN ∈ ker(BN (µ)) }.

As XN is a discrete space, ker(BN (µ))0 corresponds to the range of the operator BN (µ)t

(see, e.g., [13, §II.1, Proposition 1.2]); thus, we have fN (µ) − AN (µ)uN (µ) ∈ im(BN (µ)t)
and there exists pN (µ) ∈ YN such that (2.15) is satisfied.

It remains to show that the solution uN (µ) ∈ XN is unique. For this purpose, let
(ūN (µ), p̄N (µ)) ∈ XN × YN denote a second solution to (2.15), (2.16). It then follows
from (2.15) that

a(uN (µ)− ūN (µ), vN ;µ) = 0, ∀ vN ∈ ker(BN (µ)).

Moreover, (2.16) provides that uN (µ) − ūN (µ) ∈ ker(BN (µ)); inserting this above yields
�uN (µ)− ūN (µ)�X,µ = 0 and we obtain the desired result.
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On the Residual Dual Norm (2.34)

We here comment on the dual norm of the combined residual rN (·;µ) given in (2.34). Let
µ be any parameter in D. As also used in §2.6, the Riesz representation theorem provides
unique elements ê1N (µ) ∈ X and ê2N (µ) ∈ Y such that

(ê1N (µ), v)X = r1N (v;µ), ∀ v ∈ X, (ê2N (µ), q)Y = r2N (q;µ), ∀ q ∈ Y, (B.2)

for the residuals defined in (2.32) and (2.33); in particular, the respective dual norms can
then be represented as

�r1N (·;µ)�X� = �ê1N (µ)�X , �r2N (·;µ)�Y � = �ê2N (µ)�Y . (B.3)

Choosing now êN (µ) ≡ (ê1N (µ), ê2N (µ)) ∈ Z, we obtain from (B.2) that

(êN (µ), (v, q))Z = (ê1N (µ), v)X + (ê2N (µ), q)Y

= r1N (v;µ) + r2N (q;µ) = rN ((v, q);µ), ∀ (v, q) ∈ Z,

and thus êN (µ) ∈ Z defines the Riesz representer associated with the combined residual
rN (·;µ) ∈ Z �. Consequently,

�rN (·;µ)�Z� = �êN (µ)�Z =
�

�ê1N (µ)�2X + �ê2N (µ)�2Y ,

and (2.34) follows from (B.3).
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Re: Chapter 6 — A Crank–Nicolson Method

For time-integration, we may also employ a Crank–Nicolson method that is often used in
practice due to its second-order accuracy (see, e.g., [27, 42, 89, 102]). We here present the
corresponding reduced basis methodology for the perturbed problem.

General Problem Statement

Problem Formulation

We assume the setting introduced in §6.2.1. In addition, for a given θ ∈ [0, 1], we now
denote fk

θ (·;µ) ≡ θfk(·;µ) + (1− θ)fk−1(·;µ) and gkθ (·;µ) ≡ θgk(·;µ) + (1− θ)gk−1(·;µ) for
all k ∈ K; accordingly, we also set vkθ ≡ θvk + (1 − θ)vk−1 and qkθ ≡ θqk + (1 − θ)qk−1 for
finite sequences (vk)k∈K ⊆ Xe and (qk)k∈K ⊆ Ye.

Using a Crank–Nicolson method, our “exact” problem now reads as follows: For ε > 0 and
any given µ ∈ D, we find uε,ke (µ) ∈ Xe and pε,ke (µ) ∈ Ye, k ∈ K0, such that uε,0e (µ) = 0 and

1
∆t m(uε,ke (µ)− uε,k−1

e (µ), v;µ)

+ a(uε,ke,θ (µ), v;µ) + b(v, pε,ke,θ (µ);µ) = fk
θ (v;µ), ∀ v ∈ Xe, k ∈ K,

b(uε,ke (µ), q;µ)− ε c(pε,ke (µ), q;µ) = gk(q;µ), ∀ q ∈ Ye, k ∈ K0,
(C.1)

where θ = 1
2 . Again, as the bilinear form 1

∆tm(·, ·;µ) + θa(·, ·;µ) is coercive on Xe for any

µ ∈ D from (6.2) and (2.3), the problem (C.1) is uniquely solvable for (uε,ke (µ), pε,ke (µ)),
k ∈ K0, as a saddle point problem according to §4.2.1.

Truth Approximation

Assuming the setting introduced in §6.2.2, our high-fidelity “truth” discretization for (C.1)
now reads as follows: For ε > 0 and any given µ ∈ D, we find uε,k(µ) ∈ X and pε,k(µ) ∈ Y ,
k ∈ K0, such that uε,0(µ) = 0 and

1
∆t m(uε,k(µ)− uε,k−1(µ), v;µ)

+ a(uε,kθ (µ), v;µ) + b(v, pε,kθ (µ);µ) = fk
θ (v;µ), ∀ v ∈ X, k ∈ K,

b(uε,k(µ), q;µ)− ε c(pε,k(µ), q;µ) = gk(q;µ), ∀ q ∈ Y, k ∈ K0,
(C.2)
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where θ = 1
2 . Analogous to the exact problem, the problem (C.2) is uniquely solvable for

(uε,k(µ), pε,k(µ)), k ∈ K0, according to §4.2.2. The system can again be equivalently written
in operator notation,

M(µ)
uε,k(µ)− uε,k−1(µ)

∆t
+A(µ)uε,kθ (µ) +B(µ)t pε,kθ (µ) = fk

θ (µ) in X �, k ∈ K,

B(µ)uε,k(µ)− εC(µ) pε,k(µ) = gk(µ) in Y �, k ∈ K0,

where fk
θ (µ) ≡ fk

θ (·;µ)|X ∈ X � for all k ∈ K.

Reduced Basis Approximation

Suppose that we are given a set of nested, low-dimensional reduced basis approximation
subspaces XN ⊂ XN+1 ⊂ X and YN ⊂ YN+1 ⊂ Y , N ∈ Nmax ≡ {1, . . . , Nmax}, then the
reduced basis approximation is defined as the Galerkin projection with respect to the truth
problem (C.2) onto these low-dimensional subspaces: For ε > 0 and any given µ ∈ D, we

find uε,kN (µ) ∈ XN and pε,kN (µ) ∈ YN , k ∈ K0, such that uε,0N (µ) = 0 and

1
∆t m(uε,kN (µ)− uε,k−1

N (µ), vN ;µ)

+ a(uε,kN,θ(µ), vN ;µ) + b(vN , pε,kN,θ(µ);µ) = fk
θ (vN ;µ), ∀ vN ∈ XN , k ∈ K,

b(uε,kN (µ), qN ;µ)− ε c(pε,kN (µ), qN ;µ) = gk(qN ;µ), ∀ qN ∈ YN , k ∈ K0,
(C.3)

where θ = 1
2 . The problem is uniquely solvable for (uε,kN (µ), pε,kN (µ)), k ∈ K0, for any choice

of XN , YN (see §4.3.2). Written in operator notation, it also reads

1

∆t
MN (µ)

�

uε,kN (µ)− uε,k−1
N (µ)

�

+ AN (µ)uε,kN,θ(µ) +BN (µ)t pε,kN,θ(µ) = fk
N,θ(µ) in X �

N , k ∈ K,

BN (µ)uε,kN (µ)− εCN (µ) pε,kN (µ) = gkN (µ) in Y �
N , k ∈ K0,

(C.4)

where AN (µ), BN (µ), BN (µ)t, CN (µ), MN (µ), and gkN (µ) are defined as in §6.3 and
fk
N,θ(µ) ≡ fk

θ (·;µ)|XN
∈ X �

N for all k ∈ K.

A Posteriori Error Estimation

We now develop upper bounds for the errors in our reduced basis approximations that
are rigorous, sharp, and computationally efficient. As before, the errors shall be measured
relative to the respective truth approximations.

For µ ∈ D, we consider the errors

euN (µ) ≡ (eu,kN (µ))k∈K, where eu,kN (µ) ≡ uε,k(µ)− uε,kN (µ) ∈ X, k ∈ K0,

epN (µ) ≡ (ep,kN (µ))k∈K, where ep,kN (µ) ≡ pε,k(µ)− pε,kN (µ) ∈ Y, k ∈ K0, (C.5)

eεN (µ) ≡ (eε,kN (µ))k∈K, where eε,kN (µ) ≡ (eu,kN (µ), ep,kN (µ)) ∈ Z, k ∈ K0,
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in the reduced basis approximations (uε,kN (µ), pε,kN (µ)), k ∈ K0, with respect to the truth

solution (uε,k(µ), pε,k(µ)), k ∈ K0; we note that in particular eu,0N (µ) = 0 from our initial
conditions. The error in the reduced basis approximation shall then be measured in the
“spatio-temporal” energy norm

�(vj , qj)j∈K��2(0,k;Z) ≡
�

�vk�2µ +∆t

k
�

j=1

�vjθ�2X,µ + ε �qjθ�2Y,µ

�1/2

, (C.6)

where (vj , qj)j∈K ⊆ Z, k ∈ K.

To formulate our reduced basis a posteriori error bounds, we again need several ingredi-
ents: We rely on (Online-)efficient lower (and upper) bounds (4.29) to the truth coercivity
constants (2.10) and (4.12) as well as on the residuals associated with the reduced basis

approximation (uε,kN (µ), pε,kN (µ)), k ∈ K0,

r1,kN,θ(·;µ) ≡ fk
θ (µ)−M(µ)

uε,kN (µ)− uε,k−1
N (µ)

∆t
−A(µ)uε,kN,θ(µ)−B(µ)t pε,kN,θ(µ) ∈ X �, (C.7)

r2,kN,θ(·;µ) ≡ gkθ (µ)−B(µ)uε,kN,θ(µ) + εC(µ) pε,kN,θ(µ) ∈ Y �, (C.8)

where gkθ (µ) ≡ gkθ (·;µ)|X ∈ X � for all k ∈ K and µ ∈ D.

We can now state the following result.

Proposition C.0.1. For any given µ ∈ D, N ∈ Nmax, k ∈ K, and αLB
a (µ), αLB

c (µ) satisfying
(4.29), we define

∆
ε,k
N (µ) ≡

�

∆t

k
�

j=1

�r1,jN,θ(·;µ)�2X�

αLB
a (µ)

+
�r2,jN,θ(·;µ)�2Y �

εαLB
c (µ)

�1/2

. (C.9)

Then, ∆
ε,k
N (µ) represents an upper bound for the error eεN (µ) measured in the “spatio-

temporal” energy norm (C.6),

�eεN (µ)��2(0,k;Z) ≤ ∆
ε,k
N (µ), ∀ k ∈ K, µ ∈ D, N ∈ Nmax. (C.10)

Proof. Let µ be any parameter in D, N ∈ Nmax, and k ∈ K. For clarity of exposition, we
suppress the argument µ in this proof.

Take any 1 ≤ j ≤ k. From (C.7), (C.8), and (C.2), the errors satisfy the equations

1
∆t m(eu,jN − eu,j−1

N , v) + a(eu,jN,θ, v) + b(v, ep,jN,θ) = r1,jN,θ(v), ∀ v ∈ X,

b(eu,jN,θ, q)− ε c(ep,jN,θ, q) = r2,jN,θ(q), ∀ q ∈ Y.

Setting here v = eu,jN,θ, q = ep,jN,θ and subtracting the second from the first equation, we obtain

1
∆t m(eu,jN − eu,j−1

N , eu,jN,θ) + �eu,jN,θ�2X,µ + ε �ep,jN,θ�2Y,µ = r1,jN,θ(e
u,j
N,θ)− r2,jN,θ(e

p,j
N,θ)

≤ �r1,jN,θ�X��eu,jN,θ�X + �r2,jN,θ�Y ��ep,jN,θ�Y . (C.11)
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On the right-hand side, we may now apply (2.10), (4.12), and Young’s inequality such that

1
∆t m(eu,jN − eu,j−1

N , eu,jN,θ) + �eu,jN,θ�2X,µ + ε �ep,jN,θ�2Y,µ

≤
�r1,jN,θ�X�

√
αa

�eu,jN,θ�X,µ +
�r2,jN,θ�Y �

√
αc

�ep,jN,θ�Y,µ

≤ 1

2

�

�r1,jN,θ�2X�

αa
+ �eu,jN,θ�2X,µ +

�r2,jN,θ�2Y �

εαc
+ ε �ep,jN,θ�2Y,µ

�

;

rearranging terms then yields

2
∆t m(eu,jN − eu,j−1

N , eu,jN,θ) + �eu,jN,θ�2X,µ + ε �ep,jN,θ�2Y,µ ≤
�r1,jN,θ�2X�

αa
+

�r2,jN,θ�2Y �

εαc
.

As in particular θ = 1
2 , the mass term on the left-hand side directly reads

1

∆t

�

�eu,jN �2µ − �eu,j−1
N �2µ

�

+ �eu,jN,θ�2X,µ + ε �ep,jN,θ�2Y,µ ≤
�r1,jN,θ�2X�

αa
+

�r2,jN,θ�2Y �

εαc
, (C.12)

and the statement follows from applying the sum
�k

j=1, e
u,0
N = 0, and (4.29).

Numerical Results

We now apply the developed reduced basis methodology to the model problem described in
§6.7. We set T = 1 and consider a constant time step size ∆t corresponding to K = 100 time
levels. The truth discretization is based on a fine mesh with a total of N = 72,076 velocity
and pressure degrees of freedom. In this section, all numerical results are attained using
the open source software rbOOmit [65], an implementation of the reduced basis framework
within the C++ parallel finite element library libMesh [62].

To build our low-dimensional reduced basis approximation spaces XN , YN , N ∈ Nmax,
we again apply the POD greedy procedure described in Algorithm 6 (see §6.6). The
sampling process is based on an exhaustive random sample Σ ⊂ D of size |Σ| = 4,900,
∆N = 2, δκtol = 103, and the relative reduced basis a posteriori error bound ∆N (µ) =

∆
ε,K
N (µ)/�(uε,jN (µ))j∈K��2(0,K;Z) (see (C.6), (C.9)).
Using a Crank–Nicolson method, numerical results illustrate the same effects as observed

from a backward Euler method; we therefore present the following data without further
comments at this point and refer the reader to §6.8 and §6.9 for their evaluation.

Computation times for the reduced basis approximations (uε,kN (µ), pε,kN (µ)), k ∈ K, and

associated a posteriori error bounds ∆
ε,k
N (µ), k ∈ K, are given in Table C.1; for comparison,

once the µ-independent parts in (2.7) have been formed, direct computation of the truth ap-
proximation (uε,k(µ), pε,k(µ)), k ∈ K, (i.e., assembly and solution of (C.2)) requires roughly
23 seconds on a 2.66 GHz Intel Core 2 Duo processor.
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ε = 10−4 ε = 10−5
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Figure C.1.: Maximum error �eεN (µ)��2(0,K;Z) (see (C.5), (C.6)) and maximum error bound

∆
ε,K
N (µ) (see (C.9)) normalized with respect to �(uε,j(µ), pε,j(µ))j∈K��2(0,K;Z)

shown as functions of NZ for different values of ε; the maximum is taken over
25 parameter values.

ε NZ N (uε,k
N (µ), pε,kN (µ)), k ∈ K ∆

ε,k
N (µ), k ∈ K Total

10−2 68 (116) 17 (29) 3.71 (8.11) 14.55 (28.39) 18.26 (36.50)

10−3 65 (124) 12 (22) 3.60 (9.46) 15.64 (34.74) 19.24 (44.20)

10−4 94 (146) 15 (25) 6.30 (13.03) 25.06 (43.07) 31.37 (56.10)

10−5 121 (202) 21 (33) 9.19 (26.62) 33.94 (69.19) 43.13 (95.81)

Table C.1.: Average computation times in milliseconds for the Online evaluation of
(uε,kN (µ), pε,kN (µ)), k ∈ K, (assembly and solution of (C.3)) and the error bounds

∆
ε,k
N (µ), k ∈ K, (see (C.9)) for different values of ε with a prescribed ac-

curacy of at least 1% (resp., 0.1%) for the reduced basis approximations

(uε,kN (µ), pε,kN (µ)), k ∈ K.
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(a) ε = 10−2
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N = 29 (NZ = 116)
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(b) ε = 10−3

N = 12 (NZ = 65)
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N = 22 (NZ = 124)
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(c) ε = 10−4

N = 15 (NZ = 94)
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N = 25 (NZ = 146)
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(d) ε = 10−5

N = 21 (NZ = 121)
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N = 33 (NZ = 202)
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Figure C.2.: Maximum error �eεN (µ)��2(0,k;Z) (see (C.5), (C.6)) and maximum error bound

∆
ε,k
N (µ) (see (C.9)) normalized with respect to �(uε,j(µ), pε,j(µ))j∈K��2(0,k;Z)

shown as functions of k ∈ K for several values of N for (a) ε = 10−2, (b) ε =
10−3, (c) ε = 10−4, and (d) ε = 10−5; the maximum is taken over 25 parameter
values.
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(a) ε = 10−2

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

5 20 1.131 · 101 1.211 · 101 1.259 · 101 1.268 · 101 1.267 · 101 1.252 · 101

10 40 1.115 · 101 1.111 · 101 1.133 · 101 1.131 · 101 1.126 · 101 1.128 · 101

15 60 1.123 · 101 1.168 · 101 1.247 · 101 1.253 · 101 1.250 · 101 1.248 · 101

20 80 1.025 · 101 1.056 · 101 1.152 · 101 1.193 · 101 1.186 · 101 1.180 · 101

25 100 1.260 · 101 1.224 · 101 1.154 · 101 1.160 · 101 1.162 · 101 1.149 · 101

30 120 1.135 · 101 1.175 · 101 1.193 · 101 1.260 · 101 1.232 · 101 1.215 · 101

35 140 1.139 · 101 1.193 · 101 1.248 · 101 1.274 · 101 1.283 · 101 1.294 · 101

40 160 1.135 · 101 1.133 · 101 1.210 · 101 1.261 · 101 1.259 · 101 1.244 · 101

45 180 1.137 · 101 1.145 · 101 1.150 · 101 1.190 · 101 1.203 · 101 1.224 · 101

(b) ε = 10−3

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

3 16 2.432 · 101 3.144 · 101 3.393 · 101 3.479 · 101 3.442 · 101 3.365 · 101

7 41 3.403 · 101 3.606 · 101 3.809 · 101 4.015 · 101 3.835 · 101 3.970 · 101

11 57 2.316 · 101 2.354 · 101 2.715 · 101 2.868 · 101 2.881 · 101 2.810 · 101

15 80 2.243 · 101 2.583 · 101 3.045 · 101 3.177 · 101 3.209 · 101 3.186 · 101

18 104 2.484 · 101 2.543 · 101 2.758 · 101 2.794 · 101 2.741 · 101 2.816 · 101

22 124 2.409 · 101 2.414 · 101 2.538 · 101 2.791 · 101 2.730 · 101 2.703 · 101

26 140 2.526 · 101 2.538 · 101 2.589 · 101 2.587 · 101 2.542 · 101 2.591 · 101

29 161 2.392 · 101 2.412 · 101 2.530 · 101 2.562 · 101 2.548 · 101 2.614 · 101

33 184 2.574 · 101 2.580 · 101 2.696 · 101 2.790 · 101 2.741 · 101 2.727 · 101

(c) ε = 10−4

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

2 19 1.112 · 102 1.250 · 102 1.226 · 102 1.280 · 102 1.300 · 102 1.273 · 102

7 40 9.345 · 101 9.363 · 101 1.176 · 102 1.191 · 102 1.167 · 102 1.123 · 102

11 63 7.780 · 101 7.809 · 101 8.898 · 101 8.997 · 101 9.095 · 101 9.200 · 101

13 84 9.159 · 101 9.247 · 101 9.431 · 101 9.236 · 101 9.097 · 101 9.132 · 101

16 98 7.357 · 101 7.571 · 101 1.034 · 102 1.074 · 102 1.067 · 102 1.044 · 102

21 120 6.504 · 101 7.179 · 101 8.352 · 101 8.453 · 101 8.345 · 101 8.272 · 101

24 138 6.587 · 101 6.658 · 101 7.325 · 101 7.924 · 101 8.110 · 101 8.037 · 101

28 161 6.715 · 101 6.829 · 101 7.325 · 101 8.367 · 101 8.448 · 101 8.577 · 101

32 181 7.303 · 101 7.364 · 101 7.573 · 101 8.103 · 101 8.291 · 101 8.372 · 101

(d) ε = 10−5

N NZ k = 10 k = 20 k = 40 k = 60 k = 80 k = 100

2 19 3.584 · 102 4.002 · 102 3.782 · 102 3.938 · 102 4.090 · 102 4.029 · 102

7 37 2.557 · 102 3.281 · 102 3.393 · 102 3.369 · 102 3.348 · 102 3.335 · 102

10 62 2.730 · 102 2.891 · 102 3.212 · 102 3.096 · 102 3.087 · 102 3.165 · 102

13 81 2.729 · 102 3.452 · 102 3.700 · 102 3.714 · 102 3.709 · 102 3.730 · 102

16 102 2.616 · 102 3.130 · 102 3.189 · 102 3.135 · 102 3.124 · 102 3.202 · 102

21 121 2.092 · 102 2.249 · 102 2.791 · 102 2.969 · 102 2.976 · 102 3.033 · 102

23 141 2.572 · 102 2.785 · 102 3.404 · 102 3.487 · 102 3.485 · 102 3.466 · 102

26 158 2.168 · 102 2.240 · 102 2.477 · 102 2.531 · 102 2.594 · 102 2.657 · 102

31 181 2.479 · 102 2.476 · 102 2.641 · 102 2.757 · 102 2.739 · 102 2.951 · 102

Table C.2.: Maximum effectivities ηε,kN (µ) ≡ ∆
ε,k
N (µ)/�eεN (µ)��2(0,k;Z) (see (C.10)) for several

values of k ∈ K and N for (a) ε = 10−2, (b) ε = 10−3, (c) ε = 10−4, and
(d) ε = 10−5; the maximum is taken over 25 parameter values.
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