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We study numerical methods for inverse problems arising in cancer therapy treatment

under uncertainty. The interest is on efficient and reliable numerical methods that allow

to determine the influence of possible unknown parameters on the treatment plan for
cancer therapy. The Boltzmann transport equation is used to model the evolution of

charged particles in tissue. A mixed variational framework is presented and existence
and uniqueness of a weak solution is established. The optimality system is approximated

using a low–dimensional reduced basis formulation based on a PN -FE discretization.

We derive a posteriori bounds for the error in the reduced basis solution of the optimal
control problem with respect to the solution of the PN -FE discretization. Numerical

results in slab geometry are presented to confirm the validity of our approach.
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1. Introduction

We are interested in the numerical discretization of inverse problems in cancer ther-

apy. In particular, we focus on treatment planing using ionizing radiation. Several

journal issues have been devoted to the topic of modeling and numerical analysis of

cancer therapy and we refer to Refs. 6, 7, 8, 9 for more details. Here, we focus on
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radiation treatment of patients. The aim of radiation treatment is to deposit enough

energy in cancer cells so that they are destroyed while healthy tissue around the

cancer cells should be harmed as little as possible.

The design of the precise treatment plan and the corresponding dose computa-

tion based on the geometry of the cancer as well as healthy cells is still a topic of

active research. We follow here an approach requiring mathematical modeling and

optimization techniques36; for a review on existing technologies we refer to Refs. 11,

21. The mathematical modeling of dose calculation using a Boltzmann transport

has recently gained attention23,29,37,39,19,24. It has been argued that the Boltzman

transport based dose calculations have the same computational complexity and

accuracy as Monte Carlo simulations10. However, as opposed to the Monte Carlo

methods, they allow to exploit structural information for analytical and numerical

purposes38,19. For optimal treatment planing problems governed by the Boltzmann

transport equation a variety of analytical and numerical results could therefore be

established over the past years.

The focus of the present paper is on the numerical analysis of dose computation

problems. In particular, we investigate the dependence of the optimal treatment

plan with respect to uncertain parameters of the problem. The guiding example is

the location of tissue cells with different radiative properties. In practice, those are

obtained through imaging processes and may only be reliable up to a certain error.

A quantification of the effect of this error on the optimal treatment plan and a

fast recomputation of the dose for online adjustment of treatment plans is certainly

desirable. A first attempt using feedback control has been studied in Ref. 17.

Here, we proceed differently and pursue the reduced basis (RB) method, a model

order reduction technique which allows for a low–dimensional approximation of

the parametrized problem. Various model order reduction techniques have been

employed over the past years to speed up the solution of optimal control prob-

lems, e.g., proper orthogonal decomposition (POD)40, reduction based on intertial

manifolds25, and RB methods22,32,27. However, since the solution of the reduced

optimal control problem is generally suboptimal, rigorous and efficiently evaluable

a posteriori error bounds are crucial to assess the quality of the solution22,28,32,40.

To this end, we first introduce a variational formulation of the Boltzmann transport

equation — previously studied in the context of forward simulation in Refs. 14, 15,

16 — and extend the discretization towards the treatment planning problem. We

also note that an RB approach for a Boltzmann model has been previously consid-

ered in Ref. 33 and transport-dominated problems in Ref. 12. Based on the work

in Ref. 28, we then develop efficient and reliable a posteriori error bounds for the

reduced basis solution to the radiation treatment planning problem, i.e., for the

error in the optimal control and the associated cost functional. Finally, we employ

the reduced solution to quantify L∞ and L2−deviations of the treatment plan in

terms of the uncertainty in the geometry parameters.

In the following we present more details on the optimal treatment planning

problem. The starting point is the Boltzmann equation for particle transport in
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a medium: consider a part of the patient’s body which contains the region of the

cancer cells. We will consider the special case of a one-dimensional slab geometry.

In slab geometry, the Boltzmann equation for particle transport reads

µ∂xψ(x, µ) + σt(x)ψ(x, µ) = σs(x)

∫ 1

−1

s(x, µ · µ′)ψ(x, µ′)dµ′ + q(x). (1.1)

Here, ψ can be thought of as being the number of particles at x ∈ [0, 1] and

µ ∈ [−1, 1]. The direction µ is the cosine of the angle between the direction and

the x-axis. Scattering is determined by the total cross-section σt and by the total

scattering cross-section σs. It is clear that the values of σt,s strongly dependent on

the underlying geometry: Scattering and adsorption is by magnitudes different in

water and bone tissue. The geometry of the patient will therefore be encoded into

those functions. The function q(x) is the treatment plan (or control) and acts as an

external source independent of µ. The function s : R2 → R is the scattering kernel

and given in case of radiotherapy for example by the simplified Henvey-Greenstein

kernel

s(x, η) :=
1− g(x)2

4π(1 + g(x)2 − 2g(x)η)3/2
,

where g is the average cosine of the scattering angle. For high energy particles,

small angle and energy changes are very likely, thus the scattering kernel is very

forward-peaked. Boundary conditions for (1.1) are prescribed at the inflow part,

i.e., for µ > 0 at x = 0 and for µ < 0 at x = 1. At those points we prescribe

zero boundary conditions ψ(x, µ) = 0 for simplicity. Note that Equ. (1.1) is also

the basic model for transport of non–interacting particles in astrophysics, neutron

transport and other applications. It is referred to as the monochromatic radiative

transfer equation13,26,18,15.

As in Ref. 36, we assume that the amount of destroyed cells in a small volume,

be they cancer or healthy cells, is directly proportional to the dose

D(x) =

∫ 1

−1

ψ(x, µ)dµ (1.2)

deposited in that volume. The computational domain is divided into tumor tissue,

normal tissue and a region at risk: Ω = [0, 1] = ΩT ∪ ΩN ∪ ΩR. We prescribe

a desired dose distribution D̄(x), which usually has a constant value in ΩT and

is zero elsewhere. The problem of optimal treatment planning is then to find an

external beam distribution q such that

J̄(ψ) =
αT
2

∫
ΩT

(D − D̄)2dx+
αN
2

∫
ΩN

(D − D̄)2dx+
αR
2

∫
ΩR

(D − D̄)2dx

is minimal. Here, αT , αN , and αR are (positive) weights determining the trade-off

between the terms in the cost. Defining α(x) = αTχT (x) + αNχN (x) + αRχR(x),

where χT,N,R(x) are appropriate characteristic functions, we formulate the optimal
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treatment planning problem therefore as

min J(ψ, q) =

∫ 1

0

α(x)

2
(D − D̄)2 dx+

1

2

∫ 1

0

q(x)2 dx subject to (1.1). (1.3)

We are interested in the optimal treatment plan q(x) obtained as the numerical

solution to problem (1.3). Since material properties σt and σs may differ in various

regions of the domain, we investigate the dependence of the optimal plan q(x) on the

geometry parameters. Often, during treatment geometry of materials may change.

Since, re-planning (finding optimal plan q(x) for new values of material parame-

ters) is often expensive in terms of computational time, we apply the reduced basis

method to the optimal control problem (1.3) which allows to efficiently investigate

this parametric dependence.

The outline of the paper is as follows. In Section 2 we present a variational

discretization similar to the one proposed in Ref. 14 and establish existence and

uniqueness of the optimal control. In Section 3 we introduce the parametrized ge-

ometry as well as the parametrized optimal control problem. We state the first order

optimality conditions and subsequently derive the P1 -FEM numerical scheme for

the solution of the radiative transfer equation (1.1). The reduced basis method for

the parametrized optimal radiotherapy model is presented in Section 4, where we

briefly explain the construction of the RB spaces. In Section 5 we develop a poste-

riori error bounds for the optimal control and and the associated cost functional

value. The performance of the a posteriori error bounds is shown in Section 6. Here,

we also present numerical examples where we explore uncertainty properties of the

optimal control when input parameters are subject to random variations. We try to

meet the standards of reproducible research in the computation sciences, laid out

e.g. by LeVeque30. The source code, which is designed in MATLAB, along with files

to generate all figures and results of the paper, as well as additional functions and

examples, are available online1.

2. Mixed Variational Formulation

2.1. Boltzmann Equation

We introduce a variational formulation of Eq. (1.1) and problem (1.3) in order to

apply reduced order modeling techniques. The variational formulation of (1.1) has

been studied among others in Ref. 15 and we follow here closely their presentation.

We denote by D := [0, 1]× [−1, 1] the bounded convex domain of the problem and

also define the spatial domain I := [0, 1]. We next introduce the L2−scalar products

(·, ·)D and (·, ·)I and induced norms ‖ · ‖2D = (·, ·)D and ‖ · ‖2I = (·, ·)I on the sets

D and I, respectively. The inflow boundary is denoted by D+ := {(x, µ) : x =

0, µ > 0 or x = 1, µ < 0}, the remaining boundary by D− = ∂D\D+. In view of the

arising operators we define the Lebesgue space of square integrable functions over

D and I as X := L2(D) and Y := L2(I) with scalar products (ψ, φ)X = (ψ, φ)D
and (ψ, φ)Y = (ψ, φ)I ; furthermore, we introduce X := {ψ ∈ X : µ∂xψ ∈ X} and
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Xbc := {ψ ∈ X : ψ = 0 on D+}.
Following Refs. 13, 19, we impose the following assumptions on the coefficients

in Eq. (1.1)

s, σt, σs ≥ 0, σt(x), σs(x) ∈ L∞(I),

∫ 1

−1

s(x, η)dη ≤ c0, ∀x ∈ I, (2.1a)

σt(x)− σs(x)

∫ 1

−1

s(x, η)dη ≥ β̂ > 0, ∀x ∈ I, (2.1b)

and define the transport and source term operator as

A : X→ X, Aψ = µ∂xψ, (2.2)

C : X → X, Cψ = σtψ − σs
∫
s(x, µ · µ′)ψ(x, µ′)dµ′. (2.3)

We can then restate Eq. (1.1) as an operator equation on X and a strong solution

ψ ∈ Xbc fulfills

Aψ + Cψ = q, a.e. (x, µ) ∈ D. (2.4)

The main properties of the operators (2.2) and (2.3) have been analysed for example

in Ref. 13 and are summarized as follows: Under assumption (2.1), A is a linear

and bounded operator, and C is linear, self–adjoint with respect to X, bounded,

coercive and therefore invertible. The estimations on C are as follows:

(Cφ, φ)D ≤ ‖σt‖L∞‖φ‖2D + ‖σs‖L∞

∥∥∥∥∫ √s(x, µµ′)φ(x, µ′)
√
s(x, µ′µ)φ(x, µ)dxdµdµ′

∥∥∥∥
≤ (‖σt‖L∞ + 2‖σs‖L∞c0)‖φ‖2D,

(Cφ, φ)D ≥
∫
D

(
σt − σs

∫ 1

−1

s(x, µµ′)dµ′
)
φ2(x, µ)dxdµ ≥ β̂‖φ‖2D.

Furthermore, for any q ∈ Y , there exists a unique (strong) solution ψ ∈ Xbc to

Eq. (1.1). Define the operator mapping q to ψ, i.e.,

E : Y → Xbc ⊂ X, E(q) = ψ, (2.5)

where ψ is the solution to (1.1). According to Ref. 19 the operator E is a bounded

linear operator on X and we have ‖E(q)‖X ≤ 1
β̂
‖q‖I .

A variational formulation is obtained using an even–odd splitting in the velocity

space given by

ψ±(x, µ) =
1

2
(ψ(x, µ)± ψ(x,−µ)) .

The splitting suggests to search for solutions ψ = ψ+ + ψ− having the regularity

ψ+ ∈ X and ψ− ∈ X. The space of such functions is denoted by X , i.e., X := {ψ =

ψ+ + ψ− : ψ+ ∈ X, ψ ∈ X}. We introduce the following scalar product

(v, w)X = (Av+,Aw+)D + (v, w)D + (v+, w+)T (2.6)
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and associated norm ‖v‖2X = ‖Av+‖2D + ‖v‖2D + ‖v+‖2T on X , where

(v+, w+)T :=
∑

x∈{0,1}

∫ 1

−1

|µ|w+(x, µ) v+(x, µ) dµ.

We derive the variational formulation of (1.1) for zero boundary conditions as fol-

lows. Assume ψ ∈ X is a strong solution. Multiplying (1.1) by a test function φ ∈ X
and integrating over D yields

0 =

∫
D
µ (ψ+

x + ψ−x ) (φ+ + φ−) dx dµ

+

∫
D

(
σt ψ φ− σs

∫
ψ(x, µ′) s(x, µ′ · µ) dµ′ φ(x, µ)

)
dx dµ−

∫
D
q φdxdµ

=

∫
D
µ
(
φ+ ψ−x + φ− ψ+

x

)
dx dµ+ (Cφ,ψ)D − (q, φ)D.

At x = 1 we have ψ+(µ) = 1
2ψ(µ) = ψ−(µ) for µ > 0 and ψ+(µ) = 1

2ψ(−µ) =

−ψ−(µ) for µ < 0 and vice versa at x = 0. Therefore, µψ−(µ) = |µ|ψ+(µ) and

µψ−(µ) = −|µ|ψ+(µ). Hence, integration by parts yields∫
D
µφ+ ψ−x dxdµ = −

∫
D
µφ+

x ψ
− dx dµ+

∑
x∈{0,1}

∫ 1

−1

|µ|φ+(x, µ)ψ+(x, µ) dµ.

We thus define bilinear forms b(·, ·) : Y ×X → R and a(·, ·) : X × X → R by

b(q, φ) = (q, φ)D (2.7)

a(ψ, φ) = (φ−,Aψ+)D − (ψ−,Aφ+)D + (Cφ,ψ)D+ (2.8)∑
x∈{0,1}

∫ 1

−1

|µ|φ+(x, µ)ψ+(x, µ)dµ,

respectively; we refer to Ref. 15 for the case D = R2 × S2. Note that since C is

self-adjoint, a is symmetric. Furthermore, b is bounded on X since

b(q, φ) ≤ 2‖q‖I‖φ‖D ≤ 2‖q‖I‖φ‖X .

Next, we prove that the bilinear form a is continuous and inf–sup stable. We first

note that a is bounded since

a(ψ, φ) ≤ ‖φ−‖D‖Aψ+‖D + ‖ψ−‖D‖Aφ+‖D + ‖Cφ‖D‖ψ‖D + ‖φ+‖T ‖ψ+‖T
≤ γa‖φ‖X ‖ψ‖X ,

where γa = 4(‖σt‖L∞ + 2‖σs‖L∞c0) and we used the Cauchy-Schwarz inequality

and ‖φ−‖D ≤ ‖φ‖D. It remains to show the inf–sup stability which requires to prove

the following two estimates

sup
‖w‖X =1

|a(v, w)| ≥ β‖v‖X and sup
‖v‖X =1

|a(v, w)| ≥ β‖w‖X .
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Since a is symmetric it suffices to prove one of the above. In the case w = 0 there

is nothing to prove. We obtain for v ∈ X, v 6= 0 For w = v and w = Av+ we obtain

a(v, v) = (Cv, v) + ‖v+‖2T ≥ β̂‖v‖2D + ‖v+‖2T ≥ min{β̂, 1}(‖v‖2D + ‖v+‖2T ).

A simple computation shows that we have (Av+)+ = 0, (Av+)− = Av+, and

therefore

a(v,Av+) = ((Av+)−,Av+)D − (v−,A(Av+)+)D + (CAv+, v)D + ((Av+)+, v+)T =

‖Av+‖2D + (Av+, Cv)D ≥ ‖Av+‖2D − ‖Av+‖D‖Cv‖D ≥
1

2
‖Av+‖2D −

γa
8
‖v‖2D.

Hence, for w = v −Av+ we obtain

a(v, w) ≥ min

{
1

2
,min{β̂, 1} − γa

8

}
‖v‖2X .

Since ‖w‖X ≤ 2‖v‖X we obtain – provided that min{β̂, 1}− γa
8 > 0 – the inequality

a(v, w) ≥ βLB‖v‖X ‖w‖X

where

βLB :=
1

2
min

{
1

2
,min{β̂, 1} − γa

8

}
. (2.9)

We summarize the findings as follows using the generalized Lax–Milgram Lemma,

resp. Babuzka–Aziz Lemma3,4.

Lemma 2.1. Assume that the hypothesis (2.1) holds true. Assume further that

‖σt‖L∞ + 2‖σs‖L∞c0 < 2 min{β̂, 1}. (2.10)

Then the bilinear form a : X × X → R defined in (2.8) is linear, bounded and

inf–sup stable with respect to the norm on X . Furthermore, the bilinear form b(·, ·) :

Y ×X → R is bounded on X . The variational problem

a(ψ, φ) = b(q, φ), ∀φ ∈ X , (2.11)

thus has a unique solution ψ ∈ X which depends continuously on the data

‖ψ‖X ≤
2

βLB
‖q‖I .

In the simplest case of constant s, σt and σs with s such that c0 = 1 we have

β̂ = σt − σs =: σa. We thus obtain the equivalent condition σs <
7
3σa, indicating a

ratio of absorption σa to scattering σs of roughly one–half.
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2.2. Optimal Control Problem

From Lemma 2.1 we obtain the well–posedness of the control to state operator for

the variational problem. We call this operator also E and it is defined by

E : Y → X , E(q) = ψ, (2.12)

where ψ solves (2.11). According to the previous lemma E is well–defined, E is a

linear and bounded operator since we have ‖E(q)‖X ≤ 2
βLB
‖q‖I . For notational

convenience, we define the linear operator L : X → Y given by Lφ =
∫ 1

−1
φ(x, µ)dµ.

The related optimization problem (1.3) using the variational formulation now reads

min
ψ∈X ,q∈Y

J(ψ, q) =
1

2

∫
I
α(x)

(
Lψ − D̄

)2
dx+

1

2

∫
I
q(x)2dx (2.13)

subject to (ψ, q) ∈ X × Y solves E(q) = ψ. (2.14)

It follows from our assumptions that there exists a unique optimal solution

(ψ∗, q∗) ∈ X × Y to (2.13)31; also see Ref. 19 for the specific case considered

here. We summarize the result in the following proposition.

Proposition 2.1. Assume that the hypothesis (2.1) and (2.10) hold true. Let D̄ =∫
ψ̄dµ with ψ̄ ∈ X be given and assume α > 0 with α ∈ L∞(I).

The control problem (2.13) then admits a unique solution q∗ ∈ Y. The functions

ψ∗ ∈ X , λ∗ ∈ X , and q∗ ∈ Y are a local minimum provided that the following

first–order optimality conditions are fulfilled

a(ψ∗, φ) = b(q∗, φ), ∀φ ∈ X , (2.15)

a(φ, λ∗) =
(
α(D̄ − Lψ∗),Lφ

)
Y
, ∀φ ∈ X , (2.16)

(q∗, ϕ)Y − b(ϕ, λ∗) = 0, ∀ϕ ∈ Y. (2.17)

3. Parametrized Optimal Control Problem

3.1. Problem Statement

In radiotherapy treatment plan computations the spatial variation of the functions

σt and σs depend on the geometry obtained from a CT scan of the patient’s body.

This geometry can only be determined up to a certain accuracy for reasons of

movement of the patient during scanning. We are interested in a quantification of

the optimal control q∗ in terms of possible variations in σs and σt. We therefore

consider a parametrized geometry and the associated parametrized optimal control

problem. For simplicity we assume that the scattering kernel s = s(x, µ · µ′) is

independent of x. However, the approach presented can also be extended to x-

dependent scattering kernels.

We consider the parametrized one-dimensional slab geometry sketched in Fig-

ure 1 on the top. We assume that the parametrized domain Ω0(p) is divided

into 5 subdomains Ωi0(p), i = 1, . . . , 5, which are described by four parameters
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Fig. 1: Parametrized geometry Ω0(p) and reference geometry Ω.

pi, i = 1, . . . , 4: the parameters p1 and p2 (resp. p3 and p4) denote the cen-

ter and half-width of the domain Ω2
0(p) (resp. Ω4

0(p)). More precisely, we have

Ω0(p) = ∪5
i=1Ωi0(p), where Ω1

0(p) = χ[0,p1−p2](x), Ω2
0(p) = χ[p1−p2,p1+p2](x),

Ω3
0(p) = χ[p1+p2,p3−p4](x), Ω4

0(p) = χ[p3−p4,p3+p4](x), and Ω5
0(p) = χ[p3+p4,1](x).

We furthermore assume that the absorption and scattering coefficients σs and σt
are known but possibly differ in the five subdomains so that we can write

σt(x) =

5∑
i=1

σit χ
i(x) and σs(x) =

5∑
i=1

σis χ
i(x), (3.1)

where σit and σis, i = 1, . . . , 5, are given and the χi(x) are the characteristic functions

corresponding to subdomain i. We denote the admissible parameter domain for our

4-tuple (input) geometry parameter by P, i.e., p = (p1, p2, p3, p4) ∈ P ⊂ R4.

The efficiency of the RB method relies on an offline–online computational de-

composition which requires that all bilinear and linear forms satisfy an affine pa-

rameter dependence34. To this end, we transform the parametrized geometry Ω0(p)

to a parameter-independent reference geometry Ω sketched in Figure 1 on the bot-

tom. We then derive the weak formulation (2.11) for the reference geometry. The
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parameter dependent forms can be written as

a(ψ, φ; p) =

Qa∑
m=1

Θm
a (p) am(ψ, φ), ∀ψ, φ ∈ X , (3.2)

b(q, φ; p) =

Qm∑
m=1

Θm
b (p) bm(q, φ), ∀q ∈ Y, φ ∈ X , (3.3)

where the parameter-dependent coefficient functions Θm
a,b : P → R are continuous

and depend on p, but the bilinear forms am(·, ·) : X ×X → R and bm(·, ·) : Y ×X →
R do not depend on p. We note that the bilinear form a satisfies the inf-sup condition

β(p) = inf
ψ∈X

sup
φ∈X

a(ψ, φ; p)

‖ψ‖X ‖φ‖X
> 0, (3.4)

where β(p) is now parameter-dependent; similarly for the continuity of a and b. We

summarize the expressions in Appendix A and refer to Ref. 2 for more details on

the derivation.

We now state the parametrized optimal control problem as

min
ψ∈X ,q∈Y

J(ψ, q; p) =
1

2

∫
I(p)

α
(
Lψ − D̄

)2
dx+

1

2

∫
I(p)

q(x)2dx (3.5)

s.t. (ψ, q) ∈ X × Y solves a(ψ, φ; p) = b(q, φ; p), ∀φ ∈ X .

Note that the domain of integration, I(p), now also depends on the parameter p. It

follows from Proposition 2.1 that there exists a unique optimal solution (ψ∗, q∗) to

(3.5). Employing a Lagrangian approach, we again obtain the first-order optimality

system consisting of the state equation, the adjoint equation, and the optimality

equation: Given a parameter p ∈ P, the optimal solution (ψ∗, λ∗, q∗) ∈ X ×X × Y
satisfies

a(ψ∗, φ; p) = b(q∗, φ; p), ∀φ ∈ X , (3.6a)

a(φ, λ∗; p) =
(
α(D̄ − Lψ∗),Lφ

)
Y (p)

, ∀φ ∈ X , (3.6b)

(q∗, ϕ)Y (p) − b(ϕ, λ∗; p) = 0, ∀φ ∈ Y. (3.6c)

3.2. PN - Expansion

In general, we of course cannot expect to find an analytic solution to (3.6). We thus

consider a tensor product approximation of (3.6): We employ a spectral PN method

for the angular domain and a finite element approach for the spatial domain. Since

the state and the adjoint equations of the system (3.6) are structurally similar, we

only present the numerical scheme for the state equation

a(ψ, φ, p) = b(q, φ; p), ∀φ ∈ X and q ∈ Y. (3.7)
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We express the angular dependence of the distribution function in terms of a Fourier

series, i.e.,

ψ(x, µ) =

∞∑
`=0

ψ`(x) 2`+1
2 P`(µ) and φ(x, µ) = φk(x)Pk(µ), (3.8)

where P` are the Legendre polynomials of order ` and ψ`(x) ∈ Y for ` ∈ Z. Using

properties of Legendre polynomials, we derive the even and odd components of ψ

as

ψ+ =
∑
`

ψ2`(x) 4`+1
2 P2`(µ) and ψ− =

∑
`

ψ2`+1(x) 4`+3
2 P2`+1(µ) (3.9)

By substituting the expansion into (3.7) we obtain (by suppressing the argu-

ments and using properties of Legendre polynomials) the parameter dependent

PN equation

Qa∑
m=1

Θm
a (p)am(ψ, φ) =

Qq∑
m=1

Θm
q (p)bm(q, φ) (3.10)

where am(ψ, φ) and bm(ψ, φ) are defined as follows: for m = 1,...,6

bm(q, φ) =

∫
Ωm

qk(x)φk(x)dx, for k = 0, ...,

for m = 1,...,5

am(ψ, φ) = σmtk

∫
Ωm

ψk(x)φk(x)dx,

for m = 6 and k odd

a6(ψ, φ) =

∫
Ω

φk(x)
[
k+1
2k+1∂xψk+1(x) + k

2k+1∂xψk−1(x)
]

dx,

for m = 6 and k even

a6(ψ, φ) = −
∫

Ω

∂xφk(x)
[
k+1
2k+1ψk+1(x) + k

2k+1ψk−1(x)
]

dx+

∞∑
`=0

∫ 1

−1

|µ|φk(0)ψ`(0) 2`+1
2 P`Pkdµ+

∞∑
`=0

∫ 1

−1

|µ|φk(1)ψl(1) 2`+1
2 P`Pkdµ,

where

σmtk = σmt + σmsk, and σmsk = 2πσs

∫ 1

−1

Pk(µ)s(µ)dµ.
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3.3. Full discretization

To approximate the solution of the PN equations in the spatial domain we introduce

a continuous and piecewise linear finite element approximation space of dimension

Nh for the coefficient functions ψl(x) and ql(x) in the expansion. These spaces are

closed finite subspaces of X and Y , and defined as Xh := X+
h,N ⊕X

−
h,N and Yh ∈ Y

respectively, where

X+
h,N := {ψ`,i : ψ(x, µ) =

N∑
`=0

Nh∑
i=0

ψi2`
4`+1

2 P2`(µ)Hi(x)},

X−h,N := {ψ`,i : ψ(x, µ) =

N∑
`=0

Nh∑
i=0

ψi2`+1
4`+3

2 P2`+1(µ)Hi(x)}.

Here, Hi(x) are the usual one-dimensional hat functions. Note that we employ the

same finite element space for both even ψ2`(x) and odd ψ2`+1(x) components. The fi-

nite element approximation of the PN equation serves as our “truth” approximation,

i.e., we build the reduced basis approximation upon this PN -FE approximation and

shall measure the error with respect to the solution of the PN -FE approximation.

Using this discretization, we obtain fully discrete optimality conditions. Given

a parameter p ∈ P, the truth optimal solution (ψ∗h, λ
∗
h, q
∗
h) ∈ Xh×Xh×Yh satisfies

a(ψ∗h, φh; p) = b(q∗h, φh; p), ∀φh ∈ Xh, (3.11a)

a(φh, λ
∗
h; p) =

(
α(D̄ − Lψ∗h),Lφh

)
Y (p)

, ∀φh ∈ Xh, (3.11b)

(q∗h, ϕh)Y (p) − b(ϕh, λ∗h; p) = 0 ∀ϕh ∈ Yh, (3.11c)

The optimality system is dimension of (2N + 1)Nh + Nh, where Nh is the FE

dimension, and N is number of terms in PN expansion.

Remark 3.1. We note that the fully discrete problem inherits the stability from

the continuous setting since we have Aψ+
h ∈ X

−
h for every ψ+

h ∈ X
+
h . The discrete

inf-sup condition

βh(p) = inf
ψh∈Xh

sup
φh∈Xh

a(ψh, φh; p)

‖ψh‖X ‖φh‖X
> 0 (3.12)

thus holds for the FE-P1 approximation with the same constant as for the contin-

uous problem; see Ref. 15 for details.

Remark 3.2. From the definition of the Legendre polynomials it directly follows

that ∫ 1

−1

ψ(x, µ)dµ =

∫ 1

−1

ψ(x)P0(µ)dµ = ψ0(x). (3.13)

Therefore, Lψ(x, µ) = ψ0(x).
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4. Reduced Basis Approximation

We now turn to the RB method. We consider the RB approximation of the truth

optimality system (3.11) in this section and develop associated rigorous a posteriori

error bounds in the next section.

To this end, we assume that we are given the integrated reduced basis spaces

XN = span{ηn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (4.1)

where the ηn, 1 ≤ n ≤ N , are mutually (·, ·)X -orthogonal basis functions. Further-

more, we assume that the reduced basis control spaces are given by

YM = span{ξM, 1 ≤ m ≤M}, 1 ≤M ≤Mmax, (4.2)

where the ξm, 1 ≤ m ≤ M, are mutually (·, ·)Y -orthogonal basis functions. In this

work, we consider the proper orthogonal decomposition (POD) to generate these

spaces: Let PODX ({vk ∈ X : 1 ≤ k ≤ ntrain},N ) return the N largest POD modes

with respect to the (·, ·)X inner product (and normalized with respect to the X -

norm) and PODY ({vk ∈ Y : 1 ≤ k ≤ ntrain},M) return theM largest POD modes

with respect to the (·, ·)Y inner product (and normalized with respect to the Y -

norm). We then define a finite but suitably large parameter train set Ξtrain ⊂ P of

size ntrain and define

XNmax
= PODX ({ψ∗(p) ∈ Xh, λ∗(p) ∈ Xh : p ∈ Ξtrain},Nmax) (4.3)

and

YMmax
= PODY ({q∗(p) ∈ Yh : p ∈ Ξtrain},Mmax), (4.4)

where Nmax = 2(N + 1)Mmax; in particular, Nmax = 4Mmax for the P1 expansion.

We note that the generation of the POD basis requires ntrain solutions of the truth

optimality system (3.11) and that the primal and dual solutions are integrated in

the space XN . Also note, however, that one could also employ the Greedy sampling

procedure discussed in Ref. 28 to generate XN and YM.

4.1. Galerkin Projection

We next replace the truth approximation of the PDE constraint in (3.5) by its

reduced basis approximation. The reduced basis optimal control problem is thus

given by

min
ψN∈XN ,qM∈YM

J(ψN , qM; p) =
1

2

∫
I(p)

α
(
LψN − D̄

)2
dx+

1

2

∫
I(p)

q2
Mdx (4.5)

s.t. (ψN , qM) ∈ XN × YM solves a(ψN , φ; p) = b(qM, φ; p),∀φ ∈ XN .

We can also directly state the associated first-order optimality system: For a given

parameter p ∈ P, the optimal solution (ψ∗N , λ
∗
N , q

∗
M) ∈ XN ×XN ×YM satisfies the



June 3, 2015 9:47 WSPC/INSTRUCTION FILE ocp˙radiation˙main

14 B. Ahmedov, M.A. Grepl, M. Herty

system of equations

a(ψ∗N , φ; p) = b(q∗M, φ; p), ∀φ ∈ XN , (4.6a)

a(φ, λ∗N ; p) =
(
α(D̄ − Lψ∗N ),Lφ

)
Y (p)

, ∀φ ∈ XN , (4.6b)

(q∗M, ϕ)Y (p) − b(ϕ, λ∗N ; p) = 0, ∀ϕ ∈ YM. (4.6c)

The reduced basis optimality system is only of dimension 2N +M and can be

evaluated efficiently using an offline–online computational decomposition. We refer

to Ref. 28 for details, where the computational procedure including computational

costs are discussed.

Remark 4.1. We note that the standard Galerkin projection considered for the

state and adjoint equations in (4.6) does not guarantee the stability of the reduced

basis approximation, i.e., βh(p) > 0 in (3.12) does not generally imply that βN (p) >

0, where

βN (p) = inf
ψ∈XN

sup
φ∈XN

a(ψN , φN ; p)

‖ψN ‖X ‖φN ‖X
(4.7)

is the inf-sup constant associated with the reduced basis approximation. More so-

phisticated approaches, e.g. enriching the test space with supremizer functions and

employing a Petrov-Galerkin approximation, do restore guaranteed stability at some

additional complexity and cost41,35. In this paper, however, we will consider only

the standard Galerkin approach and verify the stability numerically. To this end,

we compute the inf-sup constant (4.7) for 100 randomly choosen parameter values

p ∈ Ξtest (see Table 2) and different RB dimensions N . We present the minimum

value for different N in Table 1, showing that βN (p) > 0 is indeed satisfied. Note

that the minimum inf-sup constant of the P1 - FE approximation is βh(p) = 3.3323,

and thus βN (p) is very close to βh(p) for N ≥ 25. Finally, we recall that using in-

tegrated spaces for the state and adjoint preserves the stability of the optimality

system20.

N 5 10 15 25 35

min
p∈Pex

βN (p) 3.0183 3.258 3.321 3.3323 3.3323

Table 1: Minimum inf-sup constants βN (p) over Ξtest for various values of N .

5. A Posteriori Error Estimation

We turn to the a posteriori error estimation procedure. We follow the ideas pre-

sented in Ref. 28 and extend the bound introduced there to the radiation treatment

planning problem.
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To begin, we assume that we are given a positive lower bound βLB(p) : P → R
for the inf-sup constant βh(p) > 0 defined in (3.12). Furthermore, we assume that

we have upper bounds available for the (parameter-dependent) constant

γUB
L (p) ≥ ‖L‖X→Y (p) := sup

φ∈X

‖Lφ‖Y (p)

‖φ‖X
, (5.1)

and the continuity constant of the bilinear form b(·, ·; p)

γUB
b (p) ≥ γb(p) := sup

ψ∈Yh

sup
φ∈Xh

b(ψ, φ; p)

‖ψ‖Y (p)‖φ‖X
> 0, ∀p ∈ P. (5.2)

We also define the state, adjoint, and control optimality errors as eψ(p) = ψ∗h(p)−
ψ∗N (p), eλ(p) = λ∗h(p) − λ∗N (p), and eq(p) = q∗h(p) − q∗M(p), respectively. In the

following we often drop the dependence on p to simplify notation.

5.1. Error Bound for Optimal Control

We obtain the following result for the error in the optimal control.

Proposition 5.1. Let q∗h and q∗M be the optimal solutions to the truth and reduced

basis optimal control problem, respectively. The error in the optimal control satisfies

for all parameters p ∈ P

‖q∗h − q∗M‖Y (p) ≤ ∆q
M(p) ≡ 1

2

(
‖rq(·; p)‖Y (p)′ +

γUB
b (p)

βLB(p)
‖rλ(·; p)‖X ′

)
+

1

2

[(
8

βLB(p)
‖rψ(·; p)‖X ′‖rλ(·; p)‖X ′ +

‖
√
α‖2L∞(I)γ

UB
L (p)2

βLB(p)2
‖rψ(·; p)‖2X ′

)

+

(
‖rq(·; p)‖Y (p)′ +

γUB
b (p)

βLB(p)
‖rλ(·; p)‖X ′

)2
] 1

2

(5.3)

Proof. We first note that the state error satisfies the error residual equation

a(eψ, φ; p) = rψ(φ; p) + b(eq, φ; p), ∀φ ∈ Xh, (5.4)

where the residual of the state equation is given by rψ(φ, p) = b(q∗M, φ, p) −
a(ψ∗N , φ, p), ∀φ ∈ Xh. Choosing φ = Tpe

ψ as test function in (5.4), where the

supremizer Tp : Xh → Xh is given by (Tpw, φ)X = a(w, φ; p), ∀φ ∈ Xh, we obtain

βLB(p)‖Tpeψ‖X ‖eψ‖X ≤ a(eψ, Tpe
ψ; p) = rψ(Tpe

ψ; p) + b(eq, Tpe
ψ; p).

Invoking (5.2) it follows that

‖eψ‖X ≤
1

βLB(p)
(‖rψ(·; p)‖X ′ + γUB

b (p)‖eq‖Y (p)). (5.5)

Similarly, we note that the adjoint error satisfies the error residual equation

a(φ, eλ; p) = rλ(φ; p)−
(
αLeψ,Lφ

)
Y (p)

, ∀φ ∈ Xh, (5.6)
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where the adjoint residual is given by rλ(φ, p) =
(
α(D̄ − Lψ∗N ),Lφ

)
Y (p)

−
a(φ, λ∗N ; p), ∀φ ∈ Xh. Choosing as test function φ = Tpe

λ in (5.6) and noting

from (5.1) and the Cauchy-Schwarz Inequality that(
αLeψ,LTpeλ

)
Y (p)

≤ ‖
√
α‖L∞(I) γ

UB
L (p) ‖

√
αLeψ‖Y (p) ‖Tpeλ‖X (5.7)

we arrive at

‖eλ‖X ≤
1

βLB(p)
(‖rλ(·; p)‖X ′ + ‖

√
α‖L∞(I)γ

UB
L (p)‖

√
αLeψ‖Y (p)). (5.8)

We next note that the error in the optimal control satisfies

(eq, ϕ)Y (p) − b(ϕ, eλ; p) = rq(ϕ; p), ∀ϕ ∈ Yh, (5.9)

where the residual is given by rq(ϕ, p) = b(ϕ, λ∗N ; p) − (q∗M, ϕ)Y (p), ∀ϕ ∈ Yh. We

choose as test functions φ = eλ in (5.4), φ = eψ in (5.6), and ϕ = eq in (5.9) and

obtain

a(eψ, eλ; p)− b(eq, eλ; p) = rψ(eλ; p), (5.10)

a(eψ, eλ; p) +
(
αLeψ,Leψ

)
Y (p)

= rλ(eψ; p), (5.11)

(eq, eq)Y (p) − b(eq, eλ; p) = rq(e
q; p). (5.12)

Adding (5.12) and (5.11) and subtracting (5.10) yields

(eq, eq)Y (p) +
(
αLeψ,Leψ

)
Y (p)

= −rψ(eλ; p) + rλ(eψ; p) + rq(e
q; p) (5.13)

and hence

‖eq‖2Y (p) + ‖
√
αLeψ‖2Y (p) ≤ ‖rψ(·; p)‖X ′‖eλ‖X + ‖rλ(·; p)‖X ′‖eψ‖X+

+ ‖rq(·; p)‖Y (p)′‖eq‖Y (p). (5.14)

By substituting (5.5) and (5.8) into(5.14) we obtain

‖eq‖2Y (p) + ‖
√
αLeψ‖2Y (p) ≤ ‖rq(·; p)‖Y (p)′‖eq‖Y (p)

+ ‖rψ(·; p)‖X ′
1

βLB(p)
(‖rλ‖X ′ + ‖

√
α‖L∞(I)γ

UB
L (p)‖

√
αLeψ‖Y (p))

+ ‖rλ(·; p)‖X ′
1

βLB(p)
(‖rψ‖X ′ + γUB

b (p)‖eq‖Y (p)).

Furthermore, it follows from Young’s inequality that

‖
√
α‖L∞(I)γ

UB
L (p)

βLB(p)
‖rψ(·; p)‖X ′‖

√
αLeψ‖Y (p) ≤

‖
√
α‖2L∞(I)γ

UB
L (p)2

4βLB(p)2
‖rψ(·; p)‖2X ′ + ‖

√
αLeψ‖2Y (p).
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By combining the last two equations we obtain

‖eq‖2Y (p) ≤‖rq(·; p)‖Y (p)′‖eq‖Y (p) +
2

βLB(p)
‖rψ(·; p)‖X ′‖rλ(·; p)‖X ′+

+
γUB
b (p)

βLB(p)
‖rλ(·; p)‖X ′‖eq‖Y (p) +

‖
√
α‖2L∞(I)γ

UB
L (p)2

4βLB(p)2
‖rψ(·; p)‖2X ′

This can be written in the form of a quadratic inequality for ‖eq‖Y (p) by

A‖eq‖2Y (p) +B‖eq‖Y (p) + C ≤ 0 (5.15)

where

A = 1

B = −
(
‖rq(·; p)‖Y (p)′ +

γUB
b (p)

βLB
‖rλ(·; p)‖X ′

)
C = −

(
2

βLB(p)
‖rψ(·; p)‖X ′‖rλ(·; p)‖X ′ +

‖
√
α‖2L∞(I)γ

UB
L (p)2

4βLB(p)2
‖rψ(·; p)‖2X ′

)
which is satisfied iff

∆−N ≤ ‖e
q‖Y (p) ≤ ∆+ with ∆± =

−B ±
√
B2 − 4AC

2A
.

The result follows by setting ∆q
N (p) = ∆+

N .

5.2. Error Bound for Cost Functional

Given the error bound for the optimal control we may readily derive a bound for

the error in the cost functional. To this end, we follow the approach described in

Ref. 28 and first derive a bound for the optimality error in the state and adjoint

solution.

Lemma 5.1. The state optimality error, eψ = ψ∗ − ψ∗N , is bounded by

‖eψ‖X ≤ ∆ψ
N (p) =

1

βLB(p)
(‖rψ(·; p)‖X ′ + γUB

b (p)∆q
M(p)), ∀p ∈ P (5.16)

Proof. The proof follows from the inequality (5.5) and Proposition 5.1.

Lemma 5.2. The adjoint optimality error, eλ = λ∗ − λ∗N , is bounded by

‖eλ‖X ≤ ∆λ
N (p) =

1

βLB(p)
(‖rλ(·; p)‖X ′ + ‖α‖L∞(I) γ

UB
L (p)2 ∆ψ

N (p)), ∀p ∈ P

(5.17)

Proof. We follow the same steps leading to inequality (5.8), but note that(
αLeψ,LTpeλ

)
Y (p)

≤ ‖α‖L∞(I) γ
UB
L (p)2 ‖eψ‖X ‖Tpeλ‖X . (5.18)

The result then follows by invoking Lemma 5.1 to bound ‖eψ‖X .
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The error in the cost functional can thus be estimated as follows.

Proposition 5.2. Let J∗ = J(ψ∗, q∗; p) and J∗N = J(ψ∗N , q
∗
N ; p) be the optimal cost

functional value for the truth and RB solutions. The error then satisfies

|J∗ − J∗N | ≤ ∆J
N (p) =

1

2

(
‖rψ(·; p)‖X ′∆λ

N (p) + ‖rλ(·; p)‖X ′∆ψ
N (p)

+ ‖rq(·; p)‖Y (p)′∆
q
M(p)

)
, ∀p ∈ P (5.19)

Proof. We use the standard result from Ref. 5 to bound the cost functional error

by

|J∗ − J∗N | =
1

2

(
rψ(eλ; p) + rλ(eψ; p) + rq(e

q; p)
)

≤ 1

2

(
‖rψ(·; p)‖X ′‖eλ‖X + ‖rλ(·; p)‖X ′‖eψ‖X

+ ‖rq(·; p)‖Y (p)′‖eq‖Y (p)

)
, ∀p ∈ P.

The result follow from Lemma 5.1 and 5.2 and Proposition 5.1.

5.3. Computational Procedure

The evaluation of the control and cost functional error bound requires computation

of

(1) the dual norms of the state, adjoint, and optimality equation residuals

‖rψ(·; p)‖X ′ , ‖rλ(·; p)‖X ′ , and ‖rq(·; p)‖Y (p)′ ; respectively; and

(2) the constants βLB(p), γUB
L (p), and γUB

b (p).

All of these quantities can be computed using an offline-online decomposition. Since

the approach is more or less standard, we do not present the details here but refer to

Ref. 34 for details concerning the dual norms of the state and adjoint residuals and

to Ref. 28 for the remaining quantities. We note, however, that the online computa-

tional complexity to evaluate all involved quantities depends only on the dimension

of the reduced spaces and is independent of the dimension of the underlying truth

approximation.

6. Numerical Results

We present a numerical example to confirm the validity of the proposed approach.

The numerical schemes have been implemented in MATLABr and are available

online1. The source package is designed such that different examples do not re-

quire changes in the solvers (solver.m, RB solver.m). For each example a sepa-

rate file is created (e.g. ex forw constMat.m) which defines the problem and ex-

ecutes the solver. Example files and solvers (and also various functions) employ a

MATLABr struct par where the problem parameters are stored, e.g., the problem
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name (par.name), definition of functions for material parameters (par.sigma a,

par.sigma sm), profile of a dose distribution (par.dose) and so on; we refer to

Ref. 1 for more details.

6.1. Model Problem

For our model problem we consider the parametrized geometry introduced in Sec-

tion 3.1 and sketched in Figure 1. The admissible range P1 to P4 of the four

geometry parameters p1 to p4 are summarized in Table 2, with the full parame-

ter domain given by P = P1 × P2 × P3 × P4. We choose as reference parameter

p̄ = [0.2; 0.07; 0.8; 0.07]. The absorption coefficient σa, scattering cross-section σs,

and total cross-section σt = σa + σs are assumed piece-wise constant in the five

subdomains introduced in Section 3.1 and are also given in Table 2.

We assume that the tumor is located in the subdomain ΩT = [0.38, 0.62] of

the reference domain, i.e., we also allow the tumor to be changing in size with the

paramters. The desired dose should be maximal in the tumor region and negligibly

small in the other areas. We therefore set the desired dose as sketched in Fig. 2. We

set the regularization parameter α = 10 over the whole domain.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

Fig. 2: Profile of parametrized desired dose ψ̄(x) in reference geometry Ω.

For the truth discretization we employ a piece-wise linear finite element approx-

imation space for the state, adjoint, and control variables. The number of degrees

of freedom is dim(Xh) = dim(Yh) = Nh = 200. The total dimension of the truth

optimality system is thus 5Nh = 1000. In Fig. 3 we present sample solutions for the

optimal state and control for two parameter values.

We construct the reduced basis spaces YM and XN according to the POD

procedure described in Section 4. For this purpose, we employ the train sample

Ξtrain = Ptrain
1 × Ptrain

2 × Ptrain
3 × Ptrain

4 consisting of ntrain = 324 equidistant pa-

rameter points over P. We also introduce a parameter test sample Ξtest of size

ntest = 100 with a uniform-random distribution in P. The model problem for these

parameters is implemented in the example file ex optim pDose constMat.m.
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Nh 200

ΩT [0.38, 0.62]

ΩN (0.1, 0.38)×(0.62, 0.9)

ΩR [0, 0.1]× [0.9, 1]

α 10

σ1,...,5
a [4; 7; 4; 7; 4]

σ1,...,5
s [1; 2; 1; 2; 1]

p̄ [0.2; 0.07; 0.8; 0.07]

Ξtest 100 random parameters

P1 [0.15 ; 0.25]

P2 [0.04 ; 0.1]

P3 [0.15 ; 0.25]

P4 [0.04 ; 0.1]

Ptrain
1 [0.15; 0.17; 0.19; 0.21; 0.23; 0.25]

Ptrain
2 [0.04; 0.07; 0.10]

Ptrain
3 [0.75; 0.77; 0.79; 0.81; 0.83; 0.85]

Ptrain
4 [0.04; 0.07; 0.10]

Ξtrain Ptrain
1 × Ptrain

2 × Ptrain
3 × Ptrain

4

Table 2: Parameters for the numerical example.
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Fig. 3: Zero-th moments of optimal state ψ∗0(x) and optimal control q∗0(x) for various
parameter values with constant regularization parameter α = 10 in the original geometry
Ω0(p).

6.2. Error Estimators

We first consider the performance of the a posteriori error bounds. We use a global

upper bound for the (parameter-dependent) constants γUB
L (p) defined in (5.1) and

γUB
b (p) defined in (5.2). To this end, we compute the values for ‖L‖X→Y (p) and

γb(p) over the training set Ξtest to find that ‖L‖X→Y (p) varies in the range 1.02
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to 1.271 and γb(p) varies from 1.04 to 1.615; we therefore set γUB
L (p) = 1.271 and

γUB
b (p) = 1.615. For the inf-sup lower bound βLB(p) we also use the global lower

bound βLB(p) = 3.3323 given by the minimum value of βh(p) over Ξtest; also see

Remark 4.1. We are aware that these upper and lower bounds are not guaranteed

to hold for all p ∈ P. However, since the performance of the error bounds is tested

on Ξtest, we deem this approach to be sufficient for our study.

In Figure 4 we present, as a function of M, the maximum absolute errors and

error bounds for the optimal state and adjoint variable, the optimal control, and the

associated cost functional. The errors and bounds are averaged over the test sample

Ξtest. We note that our a posteriori error bounds considerably overestimate the

actual errors. We also note, however, the bound for the control and the cost become

sharper as M increases, with the effectivity for the control bound reaching O(10)

for M = 50. Given the exponential convergence of the reduced basis solution and

the fact that for larger values ofM the error bounds are well below the acceptable

tolerance, we consider the proposed bounds to be a useful tool to certify the reduced

basis solution.

One reason for the overestimation of the state and adjoint error presumably

lies in the transport character of the Boltzmann transport equation, where the

pure Galerkin approximation does not yield a sufficiently tight relation between

the error and the residual. In this context we also refer to Ref. 33, where similarly

pessimistic reduced basis a posteriori bounds have been observed for a Boltzmann

model problem. An attempt to improve the efficiency of the bounds based on ideas

presented in Ref. 12 is a topic of future research.

The example file for the computation of the errors and error bounds is im-

plemented in ex RBoptim constMat mRBspace.m. The results and figures can be

reproduced by running this file.

6.3. Uncertainty Quantification of Treatment Plans

We now turn to the efficient computation of the uncertainty in the treatment plan

under geometric variations obtained from the patient’s CT scan. We assume that

the geometry parameters are not known precisely, but instead are random variables

distributed by a normal distribution with a fixed mean and variance, i.e., pi ∼
N (p̄i, σ

2
i ), i = 1, . . . , 4, where p̄i denotes the mean and σ2

i the variance.

We employ the reduced basis approximation in combination with a Monte Carlo

simulation to quantify the uncertainty of the optimal treatment plan under para-

metric variations. More precisely, we compute the expected value of the optimal

control, E(q∗(p)), where p is drawn from N (p̄i, σ
2
i ) using the MC simulation and

compare the result with the optimal control for the mean parameter value, i.e.,

q∗(p̄). We also compute the difference |E(q∗(p))− q∗(p̄)| for different variances and

plot the L∞− and L2−norm of the difference as a function of the variance. This

allows to asses up to which noise level in the geometry data the optimal treatment

plan is still reliable.
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Fig. 4: Maximum errors and error bounds for state, adjoint, control and cost functional
as a function of M.

We first keep p2 = p4 = 0.07 fixed and only consider variations in p1 and p3. In

Figure 5 on the left we plot the mean optimal control, i.e., the optimal control for the

mean parameter values p̄1 = 0.2 and p̄3 = 0.8, and the expected value of the optimal

control for the variances σ = 0.04 and 0.05. In Figure 5 on the right we plot the

difference between the mean and expected value in the L∞− and L2−norm over the

variance. In Figure 6 we show analogous results for fixed p1 = 0.2 and p3 = 0.8 and

varying in p2 and p4 and in Figure 7 for the case where all parameters are varying.

In all cases we observe a close to linear dependence of the difference between the

mean and expected value on the variance. We also observe that the uncertainty

in p2 and p4 has a slightly larger effect on the optimal treatment plan than the

uncertainty in p1 and p3. The difference from the mean control (resp. treatment

plan) of course occurs if all four parameter are uncertain.

In this study, we employed the reduced basis approximation only within the MC

simulation to efficiently propagate and assess the uncertainty in the parameters.

Future work will address the use of the a posteriori error bounds in the uncertainty
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quantification, i.e., to also provide certified error bounds for the expected value of

the optimal treatment plan.
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Fig. 5: Mean and expected value of optimal control over Ω (left) and the difference as a
function of the variance (right) given uncertainty in p1 and p3; mean values p̄1 = 0.2 and
p̄3 = 0.8; number of MC samples nMC = 105.
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Fig. 6: Mean and expected value of optimal control over Ω (left) and the difference as a
function of the variance (right) given uncertainty in p2 and p4; mean values p̄2 = 0.07 and
p̄4 = 0.07; number of MC samples nMC = 105.
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Fig. 7: Mean and expected value of optimal control over Ω (left) and the difference as
a function of the variance (right) given uncertainty in p1, p2, p3, and p4; mean values
p̄1 = 0.2, p̄2 = 0.07, p̄3 = 0.8, and p̄4 = 0.07; number of MC samples nMC = 105.

Appendix A. Geometric transformation and affine decomposition

We consider a one-dimensional parametrized slab geometry denoted by Ω0(p). The

parameters describe the center and halfwidth of the subdomain Ω2
0(p) and Ω4

0(p),

we thus have four parameters p = (p1, p2, p3, p4) ∈ P ⊂ R4. A sketch of the domain

is shown in Figure 1. In order to derive an efficient offline-online computational

decomposition, we require that the bilinear forms satisfy the affine parameter de-

pendence (3.2) and (3.3), where θma,b : P → R are parameter dependent functions

and am and bm are parameter independent bilinear and linear forms, respectively.

We thus perform an affine mapping from the parameter dependent geometry Ω0(p)

to a parameter independent reference geometry Ω, see Ref. 34, 2 for details. Note

that Ω = Ω0(p̄) for some fixed reference parameter p̄. We recall the bilinear forms

b(q, φ; p) = (q, φ)I(p) =

∫
Ω0(p)

∫ 1

−1

q φdx0 dµ, (A.1)

and

a(ψ, φ; p) =

∫
Ω0(p)

∫ 1

−1

µ
(
φ− ∂x0ψ

+ − ψ− ∂x0φ
+
)

dx0 dµ+

∫
Ω0(p)

∫ 1

−1

σt φψ dx0 dµ

−
∫

Ω0(p)

∫ 1

−1

σs

{∫
s(µ, µ′)φ(µ′)dµ′

}
ψ dx0 dµ+

∑
x∈{0,1}

∫ 1

−1

|µ|φ+(x, µ)ψ+(x, µ)dµ.

(A.2)

where the integrals in space are performed over Ω0(p). The affine mapping for

x ∈ Ωk is given by x0 = Gk(p)x + ck(µ) and the inverse mapping is thus x =

(Gk(µ))−1(x0 − ck(µ)) for k = 1, . . . , 5. We have ∂x
∂x0

= (Gk(µ))−1 and dΩ0(µ) =

|detG(µ)|dΩ = |G(µ)dΩ. After mapping to the reference geometry we thus obtain
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Qb = 5 with

θ1
b (p) =

p1 − p2

p̄1 − p̄2
, θ2

b (p) =
p2

p̄2
, θ3

b (p) =
p3 − p4 − p1 − p2

p̄3 − p̄4 − p̄1 − p̄2
,

θ4
b (p) =

p4

p̄4
, θ5

b (p) =
1− p3 − p4

1− p̄3 − p̄4
,

and

bm(φ) =

∫
Ωm

∫ 1

−1

q φdxdµ, m = 1, . . . , 5.

Similarly, we obtain the affine decomposition (3.2) for Qa = 6 with

θ1
a(p) =

p1 − p2

p̄1 − p̄2
, θ2

a(p) =
p2

p̄2
, θ3

a(p) =
p3 − p4 − p1 − p2

p̄3 − p̄4 − p̄1 − p̄2
,

θ4
a(p) =

p4

p̄4
, θ5

a(p) =
1− p3 − p4

1− p̄3 − p̄4
, θ6

a(p) = 1,

and

am(ψ, φ) =

∫
Ωm

∫ 1

−1

σt φψ dxdµ−
∫

Ωm

∫ 1

−1

σs

{∫
s(µ, µ′)φ(µ′)dµ′

}
ψ dxdµ, m = 1, . . . , 5;

a6(ψ, φ) =

∫
Ω

∫ 1

−1

µ
(
φ− ∂xψ

+ − ψ− ∂xφ+
)

dxdµ+
∑

x∈{0,1}

∫ 1

−1

|µ|φ+(x, µ)ψ+(x, µ)dµ.
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