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We consider the problem of testing the dimension of uncharacterized classical and quantum systems in a

prepare-and-measure setup. Here we assume the preparation and measurement devices to be independent,

thereby making the problem nonconvex. We present a simple method for generating nonlinear dimension

witnesses for systems of arbitrary dimension. The simplest of our witnesses is highly robust to technical

imperfections, and can certify the use of qubits in the presence of arbitrary noise and arbitrarily low

detection efficiency. Finally, we show that this witness can be used to certify the presence of randomness,

suggesting applications in quantum information processing.
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The problem of estimating the dimension of uncharac-

terized physical systems has recently attracted attention.

From a fundamental point of view, this problem is well

motivated, as it shows that dimension—the number of

(relevant) degrees of freedom—of an unknown system can

be determined in a device-independent way. That is,

dimension can be tested from measurement data alone,

in a scenario in which all devices used in the experiment,

including the measurement device, are uncharacterized;

i.e., no assumption about the internal working of the

devices is needed. Beyond the fundamental interest, this

problem is also relevant in the context of quantum

information, where the dimension of quantum systems—

i.e., the Hilbert space dimension—represents a resource

for performing information-theoretic tasks. Specifically,

higher dimensional quantum systems can increase the

performance of certain protocols, and/or simplify their

implementation.

First approaches to this problem considered Bell inequal-

ity tests [1–6], random access codes [7], and monitoring of

an observable of a dynamic system [8]. More recently, a

general formalism was developed to estimate the dimension

of classical and quantum systems in a prepare-and-measure

setup [9], the simplest but also the most general scenario.

Consider two uncharacterized devices, hence described as

black boxes (see Fig. 1). The first device prepares upon

request a physical system in an unknown state ρx. A second

device then performs a measurement on the system. The

observer tests the devices, by choosing a preparation x and

a measurement y, then receiving measurement outcome b.
Repeating the experiment many times, the observer obtains

the probability distribution pðbjx; yÞ, called here the data.

The goal for the observer is then to give a lower bound

on the dimension of the unknown set of states fρxg from

the data alone. This can be achieved using “dimension

witnesses” [9–11] (see also Refs. [12,13] for different

approaches). These ideas were shown to be relevant

experimentally [14,15], and for quantum information

processing [16,17].

Herewe discuss this problem assuming the preparation and

measurement devices to be independent. This assumption is

rather natural in a device-independent estimation scenario,

where devices are uncharacterized but do not conspire

maliciously against the observer. The main difficulty of this

problem is that it is nonconvex, a feature that makes generic

problemswith independent variables hard to tackle. Note that

previousworksondimensionwitnesses allowed thedevices to

be correlated via shared randomness (hence relaxing the

independence assumption), making the problem convex.

Although these techniques can in principle be applied in

our case, they are far from optimal, as we shall see below.

It is therefore desirable to develop novel methods, which

is the goal of this work. Specifically, we present a simple

technique for deriving nonlinear dimension witnesses,

tailored for device-independent tests of dimension assum-

ing independent devices. We derive witnesses for systems

of arbitrary dimension, obtaining a quadratic gap between

classical and quantum dimensions. The simplest witness is

discussed in detail. We show that it is extremely robust to

technical imperfections, and can be used to certify the

presence of randomness.

Scenario.—We consider the setup of Fig. 1. The experi-

ment is characterized by the set of conditional probabilities

FIG. 1. Prepare-and-measure setup.
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pðbjx; yÞ (i.e., the data) which gives the probability of

obtaining outcome b when performing measurement y on

preparation x.
Consider first the case of quantum systems. We say that

the experiment admits a d-dimensional quantum represen-

tation when there exist states ρx and measurement operators

Mbjy both acting on C
d, such that

pðbjx; yÞ ¼ TrðρxMbjyÞ: (1)

Next consider the situation of classical systems of dimen-

sion d. Given the choice of preparation x, the first device

sends a classical message m ¼ 0;…; d − 1. Note that the

device may have an internal source of randomness (rep-

resented by a random variable λ1). Hence, which message

m is sent depends on both x and λ1. The measurement

device, upon receiving message m, and input y from the

observer, delivers an outcome b. As it also features a source
of randomness (random variable λ2), the output b depends

onm, y, and λ2. The behavior observed in the experiment is

then given by

pðbjx;yÞ¼
Z

dλ1dλ2ρðλ1;λ2Þ
X

d−1

m¼0

pðmjx;λ1Þpðbjm;y;λ2Þ:

The main point now is to consider the joint distribution of

random variables λ1;2. If ρðλ1; λ2Þ ≠ ρ1ðλ1Þρ2ðλ2Þ, the

variables are correlated; hence, the devices may follow a

(preestablished) correlated strategy. Previous works

focused on this situation. As the set of behaviors of the

above form is convex, it can be fully characterized with

linear dimension witnesses [9].

Here we consider the situation in which the devices

are independent, i.e., ρðλ1; λ2Þ ¼ ρ1ðλ1Þρ2ðλ2Þ. That is,

although each device features an internal source of random-

ness, the devices have no shared randomness. In this case,

the observed statistics can be written as

pðbjx; yÞ ¼
X

d−1

m¼0

sðmjxÞtðbjm; yÞ (2)

where sðmjxÞ ¼
R

dλ1ρ1ðλ1Þpðmjx; λ1Þ is the distribution

of possible messages m for each preparation x, and

tðbjm; yÞ ¼
R

dλ2ρ2ðλ2Þpðbjm; y; λ2Þ is the distribution

of outcomes b for measurement y when receiving message

m. Below we will see how to characterize the set of

behaviors of the form Eq. (2). This will require nonlinear

dimension witnesses as the set is nonconvex.

Determinant witness.—In this work we focus on experi-

ments with binary outcomes, denoted b ¼ 0, 1. We will

construct nonlinear witnesses based on the determinant of a

matrix. We first discuss the simplest case, with four

preparations x ¼ 0;…; 3 and two measurements y ¼ 0,

1. Consider the following matrix

W2 ¼
�

pð0; 0Þ − pð1; 0Þ pð2; 0Þ − pð3; 0Þ
pð0; 1Þ − pð1; 1Þ pð2; 1Þ − pð3; 1Þ

�

(3)

where we write pðx; yÞ ¼ pðb ¼ 0jx; yÞ for simplicity. For

any strategy involving a classical bit [i.e., its statistics

admits a decomposition of the form Eq. (2) with d ¼ 2],

one has that

W2 ¼ detðW2Þ ¼ 0: (4)

The proof is straightforward. Note that for any statistics of

the form Eq. (2) with d ¼ 2, we have that pðx; yÞ ¼
sð0jxÞ½tð0j0; yÞ − tð0j1; yÞ� þ tð0j1; yÞ. Hence we write

pðx; yÞ − pðx0; yÞ ¼ ½sð0jxÞ − sð0jx0Þ�½tð0j0; yÞ − tð0j1; yÞ�
¼ Sxx0Ty (5)

from which it follows that

W2 ¼
�

�

�

�

S01T0 S23T0

S01T1 S23T1

�

�

�

�

¼ 0: (6)

An interesting feature of the above witness is that it is given

by an equality, whereas linear witnesses are given by

inequalities [9]. Moreover, our witness turns out to char-

acterize fully the set of experiments involving a classical

bit. Specifically, for any experiment achievingW2 ¼ 0 (for

all relabelings of the preparation x), there exists a decom-

position of the form Eq. (2) with d ¼ 2 (see Supplemental

Material [18]). Note that if the preparation and measure-

ment devices are correlated, then classical bit strategies can

reach W2 ¼ 1. Consider for instance the equal mixture of

the two following deterministic strategies: (i) sð0jxÞ ¼ 1 iff

x ¼ 0; 3 and tð0jm; yÞ ¼ mþ y mod 2, (ii) sð0jxÞ ¼ 1 iff

x ¼ 0, 2 and tð0jm; yÞ ¼ m. Hence we get W2 ¼ I2 and

W2 ¼ 1. This shows that our witness is tailored for the case

in which the devices are independent.

Next we investigate the performance of qubit strategies,

i.e., statistics of the form Eq. (1) with d ¼ 2. States are

given by density matrices ρx ¼ ðI2 þ ~sx · ~σÞ=2 and meas-

urement operators byM0jy ¼ cyI2 þ ~Ty · ~σ=2, where ~sx and
~Ty are Bloch vectors and jcyj ≤ 1 [19]. Similarly to above,

we write

pðx; yÞ − pðx0; yÞ ¼ Tr½ðρx − ρx0ÞM0jy� ¼ ~Sxx0 · ~Ty (7)

where ~Sxx0 ¼ ð~sx − ~sx0Þ=2. Finally, we get

W2 ¼
�

�

�

�

~S01 · ~T0
~S23 · ~T0

~S01 · ~T1
~S23 · ~T1

�

�

�

�

¼ ð~S01 × ~S23Þ · ð~T0 × ~T1Þ ≤ 1

(8)

since j~S01 × ~S23j ≤ 1 and j~T0 × ~T1j ≤ 1. This bound for

qubit strategies is tight, and can be reached as follows:
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choose the preparations to be the pure qubit states given by

~s0 ¼ −~s1 ¼ ẑ, ~s2 ¼ −~s3 ¼ x̂, and the measurements by the

vectors ~T0 ¼ cos θẑþ sin θx̂ and ~T1 ¼ sin θẑ − cos θx̂.
Notice that we are free to choose any angle θ here, due

to the rotational invariance of the cross product in the plane.

For θ ¼ 0 we get the usual BB84 states and measurements.

It is relevant to note that essentially any qubit strategy

achieves jW2j > 0. Only very specific alignments of the

qubit preparations and measurements (a set of measure

zero) achieve W2 ¼ 0. Therefore, a generic qubit strategy

always outperforms the most general strategy involving

a bit.

This suggests that our witness is well suited for dis-

tinguishing data involving classical bits and qubits. To

illustrate the robustness of our witness, we investigate the

effect of technical imperfections, such as background noise

and limited detection efficiency (of the detector inside the

measurement device), on a generic qubit strategy given by

the data pQðx; yÞ achieving jW2j ¼ Q > 0. Say that an

error occurs with probability 1 − η, for instance the emitted

particle is lost. Hence the observed statistics is given by

pðx; yÞ ¼ ηpQðx; yÞ þ ð1 − ηÞpNðyÞ; (9)

where we consider a noise model of the form

pNðx; yÞ ¼ pNðyÞ; i.e., the noise is independent of the

choice of preparation x. The difference in probabilities

entering the witness is then independent of the noise term:

pðx; yÞ − pðx0; yÞ ¼ η½pQðx; yÞ − pQðx0; yÞ�, and thus the

observed value of the witness is W2 ¼ η2Q, which is

strictly positive whenever Q > 0. Hence, for an arbitrary

amount of background noise and/or an arbitrarily low

efficiency, a generic qubit strategy will outperform any

classical bit strategy; see Ref. [20] for a related result. This

is indeed in stark contrast with previous witnesses, which

can only tolerate a finite amount of noise and require a high

efficiency [11].

Finally, we comment on strategies involving higher

dimensional systems. Using a classical trit one achieves

jW2j ≤ 1 [21], while numerical analysis shows that jW2j ≤
1.299 for qutrit strategies. This shows that the value of W2

is useful to assess dimension. To reach the algebraic

maximum of W2 ¼ 2, systems of dimension (at least)

d ¼ 4 (either classical or quantum) are required.

Determinant witness for all dimensions.—We now gen-

eralize the above witness for testing classical and quantum

systems of arbitrary dimension. Consider a scenario with

2k preparations and k binary measurements. Construct the

k × k matrix

Wkði; jÞ ¼ pð2j; iÞ − pð2jþ 1; iÞ (10)

with 0 ≤ i; j ≤ k − 1. As above, the witness is given by

Wk ¼ j detðWkÞj. We will see that, for classical systems of

dimension d, one has that

Wk ¼ 0 for d ≤ k; (11)

while one can haveWk ≥ 1 for d > k. For quantum systems

of dimension d, we get

Wk ¼ 0 for d ≤
ffiffiffi

k
p

; (12)

while Wk > 0 is possible whenever d >
ffiffiffi

k
p

. Hence we

obtain a quadratic separation between classical and quan-

tum dimensions, using a number of preparations and

measurements that grows only linearly.

To prove the above claims, it is enough to focus on

quantum strategies. Consider matrices of the form

ρx ¼
1

d
ðId þ ϕd~sx · ~λÞ; (13)

with ~sx ∈ R
d2−1, j~sxj ≤ 1, ~λ the vector of the d2 − 1 Gell-

Mann matrices (generalized Pauli matrices, satisfying

trðλiÞ ¼ 0 and trðλiλjÞ ¼ 2δij) and ϕd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½dðd − 1Þ�=2
p

.

While all matrices of the above form are valid quantum

density matrices for j~sxj ≤ 2=d [22], this is not the case in

general (although this will not affect our argument).

Similarly we write measurement operators as M0jy ¼
cyId þ ϕd

~Ty · ~λ=d with ~Ty ∈ R
d2−1, j~Tyj,jcyj ≤ 1[19], and

get that

Wkði; jÞ ¼ Tr½ðρ2j − ρ2jþ1ÞM0ji� ¼ ~Sj · ~Ti (14)

with ~Sj ¼ ð1 − ð1=dÞÞð~s2j − ~s2jþ1Þ. Thus, as before, the

entries of the matrix Wk are given by scalar products of

vectors. Similarly to the qubit construction of Eq. (8), the

witness Wk can be expressed using cross products, gener-

alized here to arbitrary dimensions.

Specifically, the cross product ~S0 × ~S1 × � � � × ~Sk−1 of k
vectors in R

kþ1 is defined as the unique vector ~u ∈ R
kþ1

such that ~V · ~u ¼ detð~S0; ~S1; � � � ; ~Sk−1Þ for all ~V ∈ R
kþ1

(see, e.g., Ref. [23]). It follows that ~S0 × � � � × ~Sk−1 ¼ 0 iff

~S0; � � � ; ~Sk−1 are linearly dependent. Furthermore, similarly

to Eq. (8), we have that

Wk ¼ j detðWkÞj

¼ jð~S0 × � � � × ~Sk−1Þ · ð~T0 × � � � × ~Tk−1Þj:

To conclude, we relate the dimension of the quantum

systems to the linear (in)dependence of the set of vectors ~Sj

and ~Ti. Note that we must ensure here that the vectors ~Sj, ~Ti

are in R
kþ1, via an embedding or by using only a restricted

set of parameters. As d-dimensional quantum systems have

d2 − 1 parameters, we see that the vectors ~Sj (and similarly

for ~Ti) can span a subspace of dimension at most d2 − 1.

PRL 112, 140407 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

140407-3



Hence, if d ≤
ffiffiffi

k
p

, the vectors ~Sj cannot be linearly

independent, and we get Wk ¼ 0. On the contrary if

d >
ffiffiffi

k
p

, the vectors ~Sj and ~Ti can be chosen to be linearly

independent, and we have Wk > 0. Take for instance ~Sj to

be parallel to ~Ti, and j~sjj, j~Tij ≤ 2=d ensuring that all

preparations and measurements are represented by valid

operators. Note, however, that this construction is sub-

optimal in general, as one can obtainWk ¼ 1 with quantum

states of dimension d >
ffiffiffi

k
p

(with d an integer prime

power), using a mutually unbiased basis (see

Supplemental Material [18]).

The proof for classical systems can be derived by noting

that any classical strategy using d-dimensional states can be

recast as a quantum strategy using diagonal density

matrices acting onCd. Since we have only d − 1 parameters

in this case, it follows from the above that Wk ¼ 0 when

d ≤ k. For d > k, one can get Wk ≥ 1. The lower bound is

obtained by considering the following strategy: if x is even,
then send m ¼ x=2, else send m ¼ d; for the measurement

device, output b ¼ 0 iff y ¼ m. Note that for this strategy,

we getWk ¼ Ik, hence Wk ¼ 1. An interesting question is

to find the algebraic maximum of Wk, and the minimal

dimension for classical and quantum systems required to

attain it. Note that this problem is related to that of finding

the determinant of a Hadamard matrix. Hence we get the

boundWk ≤ kk=2, which is tight iff there exists a Hadamard

matrix of size k × k.
Certifying randomness.—The fact that the determinant

witness can distinguish between classical and quantum

systems (given a bound on the dimension) suggests

applications in randomness certification. Here we inves-

tigate the connection between the amount of violation of

the witness W2 and the intrinsic randomness of the of the

underlying statistics, assuming that the preparation device

emits qubit states.

Consider the quantity

p̄ ¼ 1

4

X

x;y¼0;1

max
b

pðbjx; yÞ; (15)

i.e., the average guessing probability of the outcome b for

preparations x ¼ 0, 1. Randomness can be quantified by

the min-entropy of p̄, i.e., Hminðp̄Þ ¼ − log2ðp̄Þ, which
gives the number of random bits extractable from the

experiment (per run). Now for a given amount of violation

of the witness W2 ¼ Q > 0, we want to find out the

maximal value of p̄ over all qubit strategies which are

compatible with the value W2 ¼ Q > 0. In other words,

what is the minimal amount of randomness compatible with

a certain violation of the witness? To answer this question,

we solve numerically the following problem. We maximize

p̄ subject to the constraints: W2 ¼ Q, pðbjx; yÞ ¼
TrðρxMbjyÞ where ρx, Mbjy are arbitrary qubit states and

measurement operators.

In Figure 2, we plot the amount of randomness Hminðp̄Þ
as a function of the value Q of the witness W2. We see that

for any amount of violation, randomness can be certified. In

other words, from the sole knowledge of the value of W2,

one can upper bound the probability of correctly guessing

the output b, for any observer knowing the detailed qubit

strategy that is being used. Importantly, the quantity

Hminðp̄Þ captures here the intrinsic quantum randomness

of the experiment, but is independent of any randomness

generated locally in the devices (used, e.g., to create mixed

state preparations). These issues will be discussed in detail

in a forthcoming work [24], where a protocol for random-

ness certification will be presented.

Discussion.—We have presented a method for testing the

dimension of classical and quantum systems of arbitrary

dimension. Moreover, the simplest of our witnesses is

highly robust to noise and can be used to certify random-

ness without the need of high visibilities and efficiencies.

Hence we believe these ideas are relevant in practice. In this

perspective, it will be necessary to make a statistical

analysis in the spirit of Refs. [25] for taking finite size

effects into account [24]. Finally, from a more abstract

point of view, the ideas presented here could be useful in

other nonconvex problems involving independent varia-

bles, such as Bell tests with independent sources [26,27],

and more general marginal problems [28].
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