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Abstract

Complete formal verification of a non-trivial concurrent

OS kernel is widely considered a grand challenge. We

present a novel compositional approach for building cer-

tified concurrent OS kernels. Concurrency allows inter-

leaved execution of kernel/user modules across different

layers of abstraction. Each such layer can have a different

set of observable events. We insist on formally specifying

these layers and their observable events, and then verify-

ing each kernel module at its proper abstraction level. To

support certified linking with other CPUs or threads, we

prove a strong contextual refinement property for every

kernel function, which states that the implementation of

each such function will behave like its specification under

any kernel/user context with any valid interleaving. We

have successfully developed a practical concurrent OS

kernel and verified its (contextual) functional correctness

in Coq. Our certified kernel is written in 6500 lines of

C and x86 assembly and runs on stock x86 multicore

machines. To our knowledge, this is the first proof of

functional correctness of a complete, general-purpose

concurrent OS kernel with fine-grained locking.

1 Introduction

Operating System (OS) kernels and hypervisors form

the backbone of safety-critical software systems in the

world. Hence it is highly desirable to formally verify the

correctness of these programs [53]. Recent efforts [33,

58, 34, 25, 23, 13, 5, 14] have shown that it is feasible

to formally prove the functional correctness of simple

general-purpose kernels, file systems, and device drivers,

but none of these systems have addressed the important

issues of concurrency [31, 7], which include not just user

and I/O concurrency on a single CPU, but also multicore

parallelism with fine-grained locking. This severely limits

the applicability and power of today’s formally verified

system software.

What makes the verification of concurrent OS kernels

so challenging? First, concurrent kernels allow inter-

leaved execution of kernel/user modules across differ-

ent abstraction layers; they contain many interdependent

components that are difficult to untangle. Several re-

searchers [55, 51] believe that the combination of con-

currency and the kernels’ functional complexity makes

formal verification of functional correctness intractable,

and even if it is possible, its cost would far exceed that of

verifying a single-core sequential kernel.

Second, concurrent kernels need to support all three

types of concurrency (user, I/O, or multicore) and make

them work coherently with each other. User and I/O con-

currency rely on thread yield/sleep/wakeup primitives or

interrupts to switch control and support synchronization;

these constructs are difficult to reason about since they

transfer control from one thread to another. Multicore

concurrency with fine-grained locking requires sophisti-

cated spinlock implementations such as MCS locks [46],

which are also hard to verify.

Third, concurrent kernels should also guarantee that

each of their system calls eventually returns, but this de-

pends on the progress of the concurrent primitives used

in the kernels. Proving starvation-freedom [28] for con-

current objects only became possible recently [40]. Stan-

dard Mesa-style condition variables [35] do not guarantee

starvation-freedom; this can be fixed by using a FIFO

queue of condition variables, but the solution is not trivial

and even the popular, most up-to-date OS textbook [7,

Fig. 5.14] has gotten it wrong [6].

Fourth, given the high cost of building concurrent ker-

nels, it is important that they can be quickly adapted to

support new hardware platforms and applications [8, 45,

20]. One advantage of a certified kernel is the formal

specification for all of its components. In theory, this al-

lows us to add certified kernel plug-ins as long as they do

not violate any existing invariants. In practice, however,

if we are unable to encapsulate interference, even a small

edit could incur huge verification overhead.
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In this paper, we present a novel compositional ap-

proach that tackles all these challenges. We believe that,

to control the complexity of concurrent kernels and to

provide strong support for extensibility, we must first

have a compositional specification that can untangle all

the kernel interdependencies and encapsulate interference

among different kernel objects. Because the very purpose

of an OS kernel is to build layers of abstraction over bare

machines, we insist on meticulously uncovering and spec-

ifying these layers, and then verifying each kernel module

at its proper abstraction level.

The functional correctness of an OS kernel is often

stated as a refinement. This is shown by building forward

simulation [44] from the C/assembly implementation of a

kernel (K) to its abstract functional specification (S). Of

course, the ultimate goal of having a certified kernel is to

reason about programs running on top of (or along with)

the kernel. It is thus important to ensure that given any

kernel extension or user program P, the combined code

K⋈P also refines S⋈P. If this fails to hold, the kernel is

simply still incorrect since P can observe some difference

between K and S. Gu et al. [23] advocated proving such a

contextual refinement property, but they only considered

the sequential contexts (i.e., P is sequential).

For concurrent kernels, proving the contextual refine-

ment property becomes essential. In the sequential setting,

the only way that the context code P can interfere with the

kernel K is when K fails to encapsulate its private state;

that is, P can modify some internal state of K without K’s

permission. In the concurrent setting, the environment

context (ε) of a running kernel K could be other kernel

threads or a copy of K running on another CPU. With

shared-memory concurrency, the interference between ε

and K are both necessary and often common; the sequen-

tial atomic specification S is now replaced by the notion

of linearizability [29] plus a progress property such as

starvation-freedom [28].

In fact, linearizability proofs often require event re-

ordering that preserves the happens-before relation, so

K⋈ε may not even refine S⋈ε . Contextual refinement in

the concurrent setting requires that for any ε , we can find a

semantically related ε
′ such that K⋈ε refines S⋈ε

′. Sev-

eral researchers [22, 42, 40] have shown that contextual

refinement is precisely equivalent to the linearizability and

progress requirements for implementing compositional

concurrent objects [28, 29].

Our paper makes the following contributions:

• We present CertiKOS—a new extensible architecture

for building certified concurrent OS kernels. CertiKOS

uses contextual refinement over the “concurrent” envi-

ronment contexts (ε) as the unifying formalism for com-

posing different concurrent kernel/user objects at differ-

ent abstraction levels. Each ε defines a specific instance

on how other threads/CPUs/devices respond toward the

events generated by the current running threads. Each

abstraction layer, parameterized over a specific ε , is

an assembly-level machine extended with a particular

set of abstract objects (i.e., abstract states plus atomic

primitives). CertiKOS successfully decomposes an oth-

erwise prohibitive verification task into many simple

and easily automatable ones.

• We show how the use of an environment context at

each layer allows us to apply standard techniques for

verifying sequential programs to verify concurrent pro-

grams. Indeed, most of our kernel programs are writ-

ten in a variant of C (called ClightX) [23], verified

at the source level, and compiled and linked together

using CompCertX [23, 24]—a thread-safe version of

the CompCert compiler [37, 38]. As far as we know,

CertiKOS is the first architecture that can truly build

certified concurrent kernels and transfer global prop-

erties proved for programs (at the kernel specification

level) down to the concrete assembly machine level.

• We show how to impose temporal invariants over these

environment contexts so we can verify the progress of

various concurrent primitives. For example, to verify

the starvation-freedom of ticket locks or MCS locks,

we must assume that the multicore hardware (or the

OS scheduler) always generates a fair interleaving, and

those threads/CPUs which requested locks before the

current running thread will eventually acquire and then

release the lock. In a separate paper [24], we present the

formal theory of environment contexts and show how

these assumptions can be discharged when we compose

different threads/CPUs to form a complete system.

• Using CertiKOS, we have successfully developed a

fully certified concurrent OS kernel (called mC2) in the

Coq proof assistant [2]. Our kernel supports both fine-

grained locking and thread yield/sleep/wakeup prim-

itives, and can run on stock x86 multicore machines.

It can also double as a hypervisor and boot multiple

instances of Linux in guest VMs running on different

CPUs. Our certified hypervisor kernel consists of 6500

lines of C and x86 assembly. The entire proof effort for

supporting concurrency took less than 2 person years.

To our knowledge, this is the first proof of functional

correctness of a complete, general-purpose concurrent

OS kernel with fine-grained locking.

The rest of this paper is organized as follows. Section 2

gives an overview of our new CertiKOS architecture. Sec-

tion 3 shows how we use environment contexts to turn

concurrent layers into sequential ones. Section 4 presents

the design and development of the mC2 kernel and how

we verify various concurrent kernel objects. Section 5

presents an evaluation of CertiKOS. Sections 6-7 discuss

related work and then conclude.
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Figure 1: Certified OS kernels: what to prove?

2 Overview of Our Approach

The ultimate goal of research on building certified OS

kernels is not just to verify the functional correctness of

a particular kernel, but rather to find the best OS design

and development methodologies that can be used to build

provably reliable, secure, and efficient computer systems

in a cost-effective way. We enumerate a few important

dimensions of concerns and evaluation metrics which we

have used so far to guide our work toward this goal:

• Support for new kernel design. Traditional OS ker-

nels use the hardware-enforced “red line” to define a

single system call API. A certified OS kernel opens up

the design space significantly as it can support multiple

certified kernel APIs at different abstraction levels. It is

important to support kernel extensions [9, 20, 45] and

novel ring-0 or guest-domain processes [30, 8] so we

can experiment and find the best trade-offs.

• Kernel performance. Verification should not impose

significant overhead on kernel performance. Of course,

different kernel designs may imply different perfor-

mance priorities. An L4-like microkernel [43] focuses

on fast inter-process communication (IPC), while a

Singularity-like kernel [30] emphasizes efficient sup-

port for type-safe ring-0 processes.

• Verification of global properties. A certified kernel

is much less interesting if it cannot be used to prove

global properties of the complete system built on top

of the kernel. Such global properties include not only

safety, liveness, and security properties of user-level

processes and virtual machines, but also resource usage

and availability properties (e.g., to counter denial-of-

service attacks).

• Quality of kernel specification. A good kernel specifi-

cation should capture precisely the contextually observ-

able behaviors of the implementation [23]. It must sup-

port transferring global properties proved at a high ab-

straction level down to any lower abstraction level [16].

• Cost of development and maintenance. Composi-

tionality is the key to minimize such cost. If the ma-

chine model is stable, verification of each kernel module

Figure 2: Contextual refinement between concurrent layers

should only need to be done once (to show that it im-

plements its deep functional specification [23]). Global

properties (e.g., information flow security) should be

derived from the kernel deep specification alone [16].

• Quality of formal proofs. We use the term cer-

tified kernels rather than verified kernels to empha-

size the importance of third-party machine-checkable

proof certificates [53]. Hand-written paper proofs are

error-prone [32]. Program verification without explicit

machine-checkable proof objects has been subject to

significant controversy [17].

Overview of CertiKOS Our new CertiKOS architec-

ture aims to address all these concerns and also tackle the

challenges described in Section 1. The CertiKOS archi-

tecture leverages the new certified programming method-

ologies developed by Gu et al. [23, 24] and applies them

to support building certified concurrent OS kernels.

A certified abstraction layer consists of a language con-

struct (L1,M,L2) and a mechanized proof object showing

that the layer implementation M, built on top of the in-

terface L1 (the underlay), is a contextual refinement of

the desirable interface L2 above (the overlay). A deep

specification (L2) of a module (M) captures everything

contextually observable about running the module over

its underlay (L1). Once we have certified M with a deep

specification L2, there is no need to ever look at M again,

and any property about M can be proved using L2 alone.

In Figure 1, we use x86mc to denote an assembly-level

multicore machine. Suppose we load such a machine with

the mC2 kernel K (in assembly) and user-level assembly

code P, and we use [[⋅]]x86mc to denote the whole-machine

semantics for x86mc, then proving any global property of

such a complete system amounts to reasoning about the

semantic object [[K⋈P]]x86mc, i.e., the set of observable

behaviors from running K⋈P on x86mc.

Reasoning at such a low level is difficult, so we formal-

ize a new mC2 machine that extends the x86mc machine

with the (deep) high-level specification of all system calls

implemented by K. We use [[⋅]]mC2 to denote its whole-
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Figure 3: System architecture for the mC2 kernel

machine semantics. The contextual refinement property

about the mC2 kernel can be stated as:

∀P, [[K⋈P]]x86mc ⊑ [[P]]mC2

Hence any global property proved about [[P]]mC2 can be

transferred to [[K⋈P]]x86mc.

To support concurrency, for each layer interface L, we

parameterize it with an active thread set A and then care-

fully define its set of valid environment contexts, denoted

as EC(L,A). Each environment context ε captures a spe-

cific instance—from a particular run—of the list of events

that other threads or CPUs (i.e., those not in A) return

when responding to the events generated by those in

A. We can then define a new thread-modular machine

ΠL(A)(P,ε) that will operate like the usual assembly ma-

chine when P switches control to those threads in A, but

will only obtain the list of events from the environment

context ε when P switches control to those outside A. The

semantics for a concurrent layer machine L is then:

[[P]]L(A) = { ΠL(A)(P,ε) ∣ ε ∈ EC(L,A) }

To support parallel layer composition, we carefully design

EC(L,A) so that the following property holds:

[[P]]L(A∪B) = [[P]]L(A) ∩ [[P]]L(B) if A∩B =∅

The formal details for EC(L,A) and [[⋅]]L(A) are pre-

sented in a separate paper [24]. Note that if A is a single-

ton, for each ε , ΠL(A) behaves like a sequential machine.

With our new compositional layer semantics, we can

take a multicore machine like x86mc and zoom into a

specific active CPU i by creating a logical “single-core”

machine layer for CPU i, and then apply techniques from

Gu et al. [23] to build a collection of certified “sequen-

tial” (per-CPU) layers (see Figure 2). When we want

to introduce kernel- or user-level threads, we can fur-

ther zoom into a particular thread (e.g., i0) and create

a corresponding logical machine layer. We can impose

specific invariants over the environment contexts (i.e., the

“rely” conditions) and use them to ensure that per-CPU

or per-thread reasoning can be soundly composed (when

their “rely” conditions are compatible with each other).

After we have added all the kernel components and im-

plemented all the system calls, we can combine these

per-thread machines into a single concurrent machine.

Under CertiKOS, building a new certified concurrent

kernel (or experimenting with a new design) is just a

matter of composing a collection of certified concurrent

layers, developed in a variant of C (called ClightX) or as-

sembly. Gu et al. [23] have developed a certified compiler

(CompCertX) that can compile certified ClightX layers

into certified assembly layers. Since all concurrent primi-

tives in CertiKOS are treated as CompCert-style external

calls or built-ins, they cannot be reordered or optimized

away by the compiler. Memory accesses over these ex-

ternal calls cannot be reordered either. Therefore, each

concurrent ClightX module (running over a particular per-

thread or per-CPU layer) is compiled by CompCertX as

if it were a sequential program performing many external-

call events. The correctness of CompCertX guarantees

that the generated x86 assembly behaves the same as the

source ClightX module. CompCertX can therefore serve

as a thread-safe version of CompCert.

CertiKOS can thus enjoy the full programming power

of both an ANSI C variant and an assembly language to

certify any efficient routines required by low-level kernel

programming. The layer mechanism allows us to certify

most kernel components at higher abstraction levels, even

though they all eventually get mapped (or compiled) down

to an assembly machine.

Overview of the mC2 kernel Figure 3 shows the sys-

tem architecture of mC2. The mC2 system was initially

developed in the context of a large DARPA-funded re-
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search project. It is a concurrent OS kernel that can also

double as a hypervisor. It runs on an Unmanned Ground

Vehicle (UGV) with a multicore Intel Core i7 machine.

On top of mC2, we run three Ubuntu Linux systems as

guests (one each on the first three cores). Each virtual

machine runs several RADL (The Robot Architecture

Definition Language [39]) nodes that have fixed hardware

capabilities such as access to GPS, radar, etc. The kernel

also contains a few simple device drivers (e.g., interrupt

controllers, serial and keyboard devices). More complex

devices are either supported at the user level, or passed

through (via IOMMU) to various guest Linux VMs. By

running different RADL nodes in different VMs, mC2

provides strong isolation support so that even if attackers

take control of one VM, they still cannot break into other

VMs to compromise the overall mission of the UGV.

Within mC2, we have various shared objects such as

spinlock modules (Ticket, MCS), sleep queues (SleepQ)

for implementing queueing locks and condition variables,

pending queues (PendQ) for waking up a thread on an-

other CPU, container-based physical and virtual mem-

ory management modules (Container, PMM, VMM), a

Lib Mem module for implementing shared-memory IPC,

synchronization modules (FIFOBBQ, CV), and an IPC

module. Within each core (the purple box), we have

the per-CPU scheduler, the kernel-thread management

module, the process management module, and the virtual-

ization module (VM Monitor). Each kernel thread has its

own thread-control block (TCB), context, and stack.

What have we proved? Using CertiKOS, we have suc-

cessfully built a fully certified version of the mC2 kernel

and proved its contextual refinement property with re-

spect to a high-level deep specification for mC2. This

important functional correctness property implies that all

system calls and traps will strictly follow the high-level

specification and always run safely and terminate even-

tually; and there will be no data race, no code injection

attacks, no buffer overflows, no null pointer access, no

integer overflow, etc.

More importantly, because for any program P, we have

[[K⋈P]]x86mc refines [[P]]mC2, we can also derive the

important behavior equivalence property for P, that is,

whatever behavior a user can deduce about P based on the

high-level specification for the mC2 kernel K, the actual

linked system K⋈P running on the concrete x86mc ma-

chine would indeed behave exactly the same. All global

properties proved at the system-call specification level

can be transferred down to the lowest assembly machine.

Assumptions and limitations The mC2 kernel is obvi-

ously not as comprehensive as real-world kernels such

as Linux. The main goal of this paper is to show that

it is feasible to build certified concurrent kernels with

fine-grained locking. We did not try to incorporate all the
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Figure 4: Defining concurrent abstraction layers

latest advances for multicore kernels into mC2.

Our assembly machine assumes strong sequential con-

sistency for all atomic instructions. We believe our proof

should remain valid for the x86 TSO model because (1) all

our concurrent layers guarantee that non-atomic memory

accesses are properly synchronized; and (2) the TSO order

guarantees that all atomic synchronization operations are

properly ordered. Nevertheless, more formalization work

is needed to turn our proofs over sequential-consistent

machines into those over the TSO machines [55].

Since our machine does not model TLB, any code for

addressing TLB shootdown cannot be verified.

The mC2 kernel currently lacks a certified storage sys-

tem. We plan to incorporate recent advances in building

certified file systems [13, 5] into mC2 in the near future.

Our assembly machine only covers a small part of the

full x86 instruction set, so our contextual correctness re-

sults only apply to programs in this subset. Additional

instructions can be easily added if they have simple or

no interaction with our kernel. Costanzo et al. [16, Sec.

6] shows how the fidelity of the CompCert-style x86 ma-

chine model would impact the formal correctness or secu-

rity claims, and how such gap can be closed.

The CompCertX assembler for converting assembly

into machine code is unverified. We assume correctness of

the Coq proof checker and its code extraction mechanism.

The mC2 kernel also relies on a bootloader, a PreInit

module (which initializes the CPUs and the devices), and

an ELF loader. Their verification is left for future work.

3 Layer Design with Environment Context

In this section, we explain the general layer design princi-

ples and show how we use environment context to convert

a concurrent layer into CPU-local layers.

Multicore hardware allows all the CPUs to access

the same piece of memory simultaneously. In CertiKOS,

we logically distinguish the private memory (i.e., pri-

vate to a CPU or a thread) from the shared memory (i.e.,

shared by multiple CPUs or threads). The private memory

does not need to be synchronized, whereas non-atomic

shared memory accesses need to be protected by some

synchronization mechanisms (e.g., locks), which are nor-

mally implemented using atomic hardware instructions

(e.g., fetch-and-add). With proper protection, each shared

memory operation can be viewed as if it were atomic.
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Atomic object is an abstraction of well-synchronized

shared memory, combined with operations that can be

performed over that shared memory. It consists of a set

of primitives, an initial state, and a logical log containing

the entire history of the operations that were performed

on the object during an execution. Each primitive invoca-

tion records a single corresponding event in the log. We

require that these events contain enough information so

we can derive the current state of each atomic object by

replaying the entire log over the object’s initial state.

Concurrent layer interface contains both private ob-

jects (e.g., i in Fig. 4) and atomic objects (e.g., j in Fig. 4),

along with some invariants imposed on these objects. The

verification of a concurrent kernel requires repeatedly

building certified abstraction layers. The overlay inter-

face L2 is a new and more abstract interface, built on top

of the underlay interface L1, and implemented by module

Mi or M j (cf. Fig. 4). Private objects only access pri-

vate memory and are built following techniques similar

to those presented by Gu et al. [23]. Atomic objects are

implemented by shared modules (e.g., M j in Fig. 4) that

may access existing atomic objects, private objects, and

non-atomic shared memory.

Every atomic primitive in the overlay generates exactly

one event (this is why it is really atomic), while its imple-

mentation may trigger multiple events (by calling multiple

atomic primitives in the underlay).

It is difficult to build certified abstraction layers di-

rectly on a multicore, nondeterministic hardware model.

To construct an atomic object, we must reason about its

implementation under all possible interleavings and prove

that every access to shared memory is well synchronized.

In the rest of this section, we first present our x86 mul-

ticore machine model (Πx86mc), and then show how we

gradually refine this low-level model into a more abstract

machine model (Πloc) that is suitable for reasoning about

concurrent code in a CPU-local fashion.

3.1 Multicore hardware model

Our fine-grained multicore hardware model (Πx86mc)

allows arbitrary interleavings at the level of assem-

bly instructions. At each step, the hardware non-

deterministically chooses one CPU and executes the next

assembly instruction on that CPU. Each assembly instruc-

tion is classified as atomic, shared, or private, depending

on whether the instruction involves an atomic object call,

a non-atomic shared memory access, or only a private

object/memory access. One interleaving of an example

program running on two CPUs is as follows:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1 

local 

block 1

shared1 

invalid

x
shared 

block 1
invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1 

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch

event

returned

events

Since only atomic operations generate events, this inter-

leaving produces the logical log [0.atom1,1.atom2].

3.2 Machine model with hardware scheduler

As a first step toward abstracting away the low-level de-

tails of the concurrent CPUs, we introduce a new machine

model (Πhs) configured with a hardware scheduler (εhs)

that specifies a particular interleaving for an execution.

This results in a deterministic machine model. To take

a program from Πx86mc and run it on top of Πhs, we in-

sert a logical switch point (denoted as “▶”) before each

assembly instruction. At each switch point, the machine

first queries the hardware scheduler and gets the CPU ID

that will execute next. All the switch decisions made by

εhs are stored in the log as switch events. The previous

example on Πx86mc can be simulated by the following εhs:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1 

local 

block 1

shared1 

invalid

x
shared 

block 1
invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1 

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch

event

returned

events

The log recorded by this execution is as follows (a switch

from CPU i to j is denoted as i↪ j):

[0↪ 0,0.atom1,0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0,0↪ 0,0↪ 1]

The behavior of running a program P over this model

with a hardware scheduler εhs is denoted as Πhs(P,εhs),
indicating that it is parametrized over all possible εhs. Let

EChs represent the set of all possible hardware schedulers.

Then we define the whole-machine semantics:

[[P]]hs = { Πhs(P,εhs) ∣ εhs ∈ EChs }

Note this is a special case of the definition in Section 2

for the whole-machine semantics of a concurrent layer

machine, where the active set is the set of all CPUs. To

ensure correctness of this machine model with respect

to the hardware machine model, we prove that Πx86mc

contextually refines the new model. Before we state the

property, we first define contextual refinement formally.

Definition 1 (Contextual Refinement). We say that layer

L0 contextually refines layer L1 (written as ∀P,[[P]]L0
⊑

[[P]]L1
), if and only if for any P that does not go wrong

on ΠL1
under any configuration, we also have that (1) P

does not go wrong on ΠL0
under any configuration; and

(2) any observable behavior of P on ΠL0
under some con-

figuration is also observed on ΠL1
under some (possibly

different) configuration.

Lemma 1 (Correctness of the hardware scheduler model).

∀P,[[P]]x86mc ⊑ [[P]]hs
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Figure 5: The contextual refinement chain from multicore hardware model Πx86mc to CPU-local model Πloc

3.3 Machine with local copy of shared memory

The above machine model does not restrict any access to

the shared memory. We therefore abstract the machine

model with hardware scheduler into a new model that

enforces well-synchronized accesses to shared memory.

In addition to the global shared memory concurrently

manipulated by all CPUs, each CPU on this new machine

model (Πlcm) also maintains a local copy of shared mem-

ory blocks along with a valid bit. The relation between a

CPU’s local copy and the global shared memory is main-

tained through two new logical primitives pull and push.

The pull operation over a particular CompCert-style

memory block [37] updates a CPU’s local copy of that

block to be equal to the one in the shared memory, mark-

ing the local block as valid and the shared version as

invalid. Conversely, the push operation updates the

shared version to be equal to the local block, marking the

shared version as valid and the local block as invalid.

If a program tries to pull an invalid shared memory

block, push an invalid local block, or access an invalid

local block, the program goes wrong. We make sure

that every shared memory access is always performed

on its valid local copy, thus systematically enforcing

valid accesses to the shared memory. Note that all of

these constructions are completely logical, and do not

correspond to any physical protection mechanisms; thus

they do not introduce any performance overhead.

The shared memory updates of the previous example

can be simulated on Πlcm as follows:
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atom1 shared1 CPU0 pull1 push1shared1

shuffle
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CPU0

switch

switch

event

returned

events

Data-race freedom Among each shared memory block

and all of its local copies, only one can be valid at any

single moment of machine execution. Therefore, for any

program P with a potential data race, there exists a hard-

ware scheduler such that P goes wrong on Πlcm. By

showing that a program P is safe (never goes wrong) on

Πlcm for all possible hardware schedulers, we guarantee

that P is data-race free.

We have shown (in Coq) that Πlcm is correct with re-

spect to the previous machine model Πhs with the EChs.

Lemma 2 (Correctness of the local copy model).

∀P,[[P]]hs ⊑ [[P]]lcm

3.4 Partial machine with environment context

Although Πlcm provides a way to reason about shared

memory operations, it still does not have much support

for CPU-local reasoning. To achieve modular verification,

the machine model should provide a way to reason about

programs on each CPU locally by specifying expected

behaviors of the context programs on other CPUs. The

model should then provide a systematic way to link the

proofs of different local components together to form a

global claim about the whole system. To this purpose,

we introduce a partial machine model Πpt that can be

used to reason about the programs running on a subset of

CPUs, by parametrizing the model over the behaviors of

an environment context (i.e., the rest of the CPUs).

We call a given local subset of CPUs the active CPU set

(denoted as A). The partial machine model is configured

with an active CPU set and it queries the environment

context whenever it reaches a switch point that attempts

to switch to a CPU outside the active set.

The set of environment contexts for A in this machine

model is denoted as EC(pt,A). Each environment context

εpt(A) ∈ EC(pt,A) is a response function, which takes the

current log and returns a list of events from the context

programs (i.e., those outside of A). The response function

simulates the observable behavior of the context CPUs

and imposes some invariants over the context. The hard-

ware scheduler is also a part of the environment context,

i.e., the events returned by the response function include

switch events. The execution of CPU 0 in the previous

example can be simulated with a εpt({0}) function:
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shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1
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atom1 shared1CPU0 pull1 push1 
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switch

event

returned

events

For example, at the 3rd switch point, εpt({0}) returns the

event list [0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0].

Composition of partial machine models Suppose we

have verified that two programs, separately running with

two disjoint active CPU sets A and B, produce event lists

satisfying invariants INVA and INVB, respectively. If INVA

is consistent with the environment-context invariant of
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B, and INVB is consistent with the environment-context

invariant of A, then we can compose the two separate

programs into a single program with active set A∪B. This

combined program is guaranteed to produce event lists

satisfying the combined invariant INVA∧INVB. Using the

whole-machine semantics from Section 2, we express this

composition as a contextual refinement.

Lemma 3 (Composition of partial machine models).

∀P,[[P]]pt(A∪B) ⊑ [[P]]pt(A)∩ [[P]]pt(B) if A∩B =∅

After composing the programs on all CPUs, the context

CPU set becomes empty and the composed invariant holds

on the whole machine. Since there is no context CPU, the

environment context is reduced to the hardware scheduler,

which only generates the switch events. In other words,

letting C be the entire CPU set, we have that EC(pt,C) =
EChs. By showing that this composed machine with the

entire CPU set C is refined by Πlcm, the proofs can be

propagated down to the multicore hardware model.

Lemma 4 (Correctness of the composed total machine).

∀P,[[P]]lcm ⊑ [[P]]pt(C)

3.5 CPU-local machine model

If we focus on a single active CPU i, the partial machine

model is like a local machine with an environment con-

text representing all other CPUs. However, in this model

there is a switch point before each instruction, so pro-

gram verification still needs to handle many unnecessary

interleavings (e.g., those between private operations). In

this subsection, we introduce a CPU-local machine model

(denoted as Πloc) for a CPU i, in which switch points

only appear before atomic or push/pull operations. The

switch points before shared or private operations are re-

moved via two steps: shuffling and merging.

Shuffling switch points In Πloc, we introduce a log

cache — for the switch points before shared and private

operations, the query results from the environment context

are stored in a temporary log cache. The cached events

are applied to the logical log just before the next atomic

or push/pull operation. Thus, when we perform shared

or private operations, the observations of the environment

context are delayed until the next atomic or push/pull

operation. This is possible because a shared operation can

only be performed when the current local copy of shared

memory is valid, meaning that no other context program

can interfere with the operation.

Merging switch points Once the switch points are

shuffled properly, we merge all the adjacent switch points

together. When we merge switch points, we also need to

merge the switch events generated by the environment

context. For example, the change of switch points for the

previous example on CPU-local machine is as follows:
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Lemma 5 (Correctness of CPU-local machine model).

∀P,[[P]]pt({i}) ⊑ [[P]]loc({i})

Finally, we obtain the refinement relation from the mul-

ticore hardware model to the CPU-local machine model

by composing all of the refinement relations together (cf.

Fig. 5). We introduce and verify the mC2 kernel on top of

the CPU-local machine model Πloc. The refinement proof

guarantees that the proved properties can be propagated

down to the multicore hardware model Πx86mc.

All our proofs (including every step in Fig. 5 and Fig. 2)

are implemented, composed, and machine-checked in

Coq. Each refinement step is implemented as a CompCert-

style upward-forward simulation from one layer machine

to another. Each machine contains the usual (CPU-local)

abstract state, a logical global log (for shared state), and

an environment context. The simulation relation is de-

fined over these two machine states, and matches well the

informal intuitions given in this and next sections.

4 Certifying the mC2 Kernel

Contextual refinement provides an elegant formalism for

decomposing the verification of a complex kernel into a

large number of small tractable tasks: we define a series

of logical abstraction layers, which serve as increasingly

higher-level specifications for an increasing portion of

the kernel code. We design these abstraction layers in a

way such that complex interdependent kernel components

are untangled and converted into a well-organized kernel-

object stack with clean specification (cf. Fig. 2).

In the mC2 kernel, the pre-initialization module is the

bottom layer that connects to the CPU-local machine

model Πloc, instantiated with a particular active CPU (cf.

Sec. 3.5). The trap handler contains the top layer that pro-

vides system call interfaces and serves as a specification

of the whole kernel, instantiated with a particular active

thread running on that active CPU. Our main theorem

states that any global properties proved at the topmost

abstraction layer can be transferred down to the lowest

hardware machine. In this section, we explain selected

components in more details.
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Each CPU-local pre-initialization machine defines the

x86 hardware behaviors including page table walk upon

memory load (when paging is turned on), saving and

restoring the trap frame in the case of interrupts and ex-

ceptions (e.g., page fault), and the data exchange between

devices and memory. The hardware memory manage-

ment unit (MMU) is modeled in a way that mirrors the

paging hardware (cf. Fig. 6a). When paging is enabled,

memory accesses made by both the kernel and the user

programs are translated using the page map pointed to by

CR3. When a page fault occurs, the fault information is

stored in CR2, the CPU mode is switched from user mode

to kernel mode, and the page fault handler is triggered.

The spinlock module provides fine-grained lock ob-

jects as the base of synchronization mechanisms.

Ticket Lock depends on an atomic ticket object, which

consists of two fields: ticket and now. Figure 7 shows

one implementation of a ticket lock. Here, L is declared

as an array of ticket locks; each shared data object can be

protected with one lock in the array, identified using a spe-

cific lock index (i). The atomic increment to the ticket is

achieved through the atomic fetch-and-increment (FAI)

operation (implemented using the xaddl instruction with

the lock prefix in x86). As described in Section 3.5,

the switch points at this abstraction level have been shuf-

fled and merged so that there is exactly one switch point

before each atomic operation. Thus, the lock implementa-

tions generate a list of events; for example, when CPU t

acquires the lock i (stored in L[i]), it continuously gen-

erates the event “t.get now i” (line 10) until the latest

now is increased to the ticket value returned by the event

“t.inc ticket i” (line 9), and then followed by the event

“t.pull i” (line 11):

wait_lock LHOLD

get_now iget_now iget_now iinc_ticket iCPUt

(9,5) (9,6) (9,8) (9,9)

enQ i 2CPU0

Queue i

observed

by CPU0

[3,2]

deQ i

[2,5][ ]

(myt, i.now)

returned

events

pull i

(9,9)

wait_lockCPUt wait_lock

LockOwnCPUt

CPUt acq_lock i

contextual refinement

The event list is as below:

[▶,t.inc ticket i,▶,t.get now i,⋯,▶,t.get now i]

Verifying the linearizability and starvation-freedom of

the ticket lock object is equivalent to proving that under a

fair hardware scheduler εhs, the ticket lock implementa-

tion is a termination-sensitive contextual refinement of its

atomic specification [42, 40]. There are two main proof

1 typedef struct {

2 volatile uint ticket;

3 volatile uint now;

4 } ticket_lock;

5 ticket_lock L[NUM_LOCK];

6

7 void acq_lock (uint i) {

8 uint t;

9 t=▶FAI(&L[i].ticket);

10 while(▶L[i].now!=t){}

11 ▶pull (i);

12 }

13 void rel_lock (uint i) {

14 ▶push (i);

15 ▶L[i].now ++;

16 }

Figure 7: Pseudocode of the ticket lock implementation

obligations: (1) the lock guarantees mutual exclusion, and

(2) the acq lock operation eventually succeeds.

Mutual exclusion is straightforward for a ticket lock.

At any time, only the thread whose ticket is equal

to the current serving ticket (i.e., now) can hold the

lock. Furthermore, each thread’s ticket is unique as

the fetch-and-increment operation is atomic (line 9).

Thanks to this mutual exclusion property, it is safe to pull

the shared memory associated with the lock i to the local

copy at line 11. Before releasing the lock, the local copy

is pushed back to the shared memory at line 14.

To prove that acq lock eventually succeeds, from the

fairness of εhs, we assume that between any two consec-

utive events from the same thread, there are at most m

events generated by other threads (for some m). We also

impose the following invariants on the environment:

Invariant 1 (Invariants for ticket lock). An environment

context that holds the lock i (1) never acquires lock i again

before releasing it; and (2) always releases lock i within

k steps (for some k).

Lemma 6 (Starvation-freedom of ticket lock). Acquiring

ticket-lock in the mC2 kernel eventually succeeds.

Proof. The full proofs are mechanized in Coq; here we

highlight the main ideas. Let n be the maximum number

of the total threads. Then (1) there are at most n threads

waiting before the current one; (2) the thread holding the

lock releases the lock within k steps, which generates at

most k events; and (3) the environment context generates

at most m events between each step of the lock holder.

Hence there are at most n×m× k events generated by

the context of the threads waiting before the current one.

Since the current thread belongs to this “context” and

each read to the now field generates one get now event,

there are at most n×m× k loop iterations at line 10 in

Fig. 7. Thus, acquiring lock always succeeds.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    661



After we abstract the lock implementation into an

atomic specification, each acquire-lock call in the higher

layers only generates a single event “t.acq lock i.” We

can compose such per-CPU specification with those of its

environment CPUs as long as they all follow Invariant 1.

MCS Lock is known to have better scalability than

ticket lock over machines with a larger number of CPUs.

In mC2, we have also implemented a version of MCS

locks [46]. The starvation-freedom proof is similar to that

of the ticket lock. The difference is that the MCS lock-

release operation waits in a loop until the next waiting

thread (if it exists) has added itself to a linked list, so we

need similar proofs for both acquire and release.

Physical memory management introduces the page

allocation table AT (with nps denoting the maximum phys-

ical page number). Since AT is shared among different

CPUs, we associate it with a lock lock AT. The page allo-

cator is then refined into an atomic object where the imple-

mentation for each of its methods (e.g., palloc in Fig. 8)

is proved to satisfy an atomic interface, with the proof

that lock utilization for lock AT satisfies Inv. 1. Once the

atomic allocator is introduced, lock acquire and release

for lock AT are not allowed to be invoked at higher lay-

ers. Thus, in this layered approach, it is not possible that

a thread holding a lock defined at a lower layer tries to

acquire another lock introduced at a higher layer, i.e., the

order that a thread acquires different locks is guided by

the layer order that the locks are introduced. This implicit

order of lock acquisitions prevents deadlocks in mC2.

Another function of the physical memory management

is to dynamically track and bound the memory usage of

each thread. A container object is used to record infor-

mation for each thread (array cn in Fig. 8); one piece of

information tracked is the thread’s quota. Inspired by the

notions of containers and quotas in HiStar [59], a thread

in mC2 is spawned with some quota specifying the maxi-

mum number of pages that the thread will ever be allowed

to allocate. As can be seen in Fig. 8, palloc returns an

error code if the requesting thread has no remaining quota

(lines 2 and 3), and the quota is decremented when a page

is successfully allocated (line 13). Quota enforcement

allows the kernel to prevent a denial-of-service attack,

where one thread repeatedly allocates pages and uses up

all available memory (thus denying other threads from

allocating pages). From a security standpoint [16], it also

prevents the undesirable information channel between

different threads that occurs due to such an attack.

Virtual memory management provides consecutive

virtual address spaces on top of physical memory man-

agement (see Fig. 6b), We prove that the primitives ma-

nipulating page maps are correct, and the initialization

procedure sets up the two-level page maps properly in

terms of the hardware address translation.

1 int palloc (uint tid) {

2 if (cn[tid].quota < 1)

3 return ERROR;

4 ▶acq_lock (lock_AT);

5 uint i=0,fp=nps;

6 while(fp==nps&&i<nps){

7 if (!AT[i].free)

8 fp = i;

9 i++; }

10 if (fp != nps) {

11 AT[i].free = 0;

12 AT[i].ref = 1;

13 cn[tid].quota --;

14 }

15 else fp = ERROR;

16 ▶rel_lock (lock_AT);

17 return fp;

18 }

Figure 8: Pseudocode of palloc

Invariant 2. (1) paging is enabled only after all the page

maps are initialized; (2) pages that store kernel-specific

data must have the kernel-only permission in all page

maps; (3) the kernel page map is an identity map; and (4)

non-shared parts of user processes’ memory are isolated.

By Inv. 2, we show that it is safe to run both the kernel

and user programs in the virtual address space when pag-

ing is enabled. In this way, memory accesses at higher

layers operate on the basis of the high-level, abstract de-

scriptions of address spaces rather than concrete page

directories and page tables stored in the memory itself.

Shared memory management provides a protocol to

share physical pages among different user processes. A

physical page can be mapped into multiple processes’

page maps. For each page, we maintain a logical owner

set. For example, a user process k1 can share its private

physical page i to another process k2 and the logical owner

set of page i is changed from {k1} to {k1,k2}. A shared

page can only be freed when its owner set is a singleton.

The shared queue library abstracts the queues imple-

mented as doubly-linked lists into abstract queue states

(i.e., Coq lists). The local enqueue and dequeue opera-

tions are specified over the abstract lists. As usual, we

associate each shared queue with a lock. The atomic

interfaces for shared queue operations are represented

by queue events “t.enQ i e” and “t.deQ i”, which can

be replayed to construct the shared queue. For instance,

starting from an empty initial queue, if the current log

of the i-th shared queue is [▶,t0.enQ i 2,▶,t0.deQ i],
and the event lists generated by the environment context

at two switch points are [t1.enQ i 3] and [t1.enQ i 5],
respectively, then the complete log for the queue i is:

[t1.enQ i 3,t0.enQ i 2,t1.enQ i 5,t0.deQ i]

By replaying the log, the shared queue state becomes

[2,5], and the last atomic dequeue operation returns 3.

Thread management introduces the thread control

block and manages the resources of dynamically spawned

threads (e.g., quotas) and their meta-data (e.g., children,

thread state). For each thread, one page (4KB) is allocated

for its kernel stack. We use an external tool [12] to show
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Figure 9: Scheduling routines yield, sleep, and wakeup

that the stack usage of our compiled kernel is less than

4KB, so stack overflows cannot occur inside the kernel.

One interesting aspect of the thread module is the con-

text switch function. This assembly function saves the

register set of the current thread and restores the register

set from the kernel context of another thread on the same

CPU. Since the instruction pointer register (EIP) and stack

pointer register (ESP) are saved and restored in this proce-

dure, this kernel context switch function is verified at the

assembly level, and linked with other code that is verified

at the C level and then compiled by CompCertX.

The thread scheduling is done by three primitives:

yield, sleep, and wakeup. They are implemented us-

ing the shared queue library (cf. Fig. 9). Each CPU has a

private ready queue ReadyQ and a shared pending queue

PendQ. The context CPUs can insert threads to the current

CPU’s pending queue. The mC2 kernel also provides a set

of shared sleeping queues SleepQs. As shown in Fig. 9,

yield moves a thread from the pending queue to the ready

queue and then switches to the next ready thread. The

sleep primitive simply adds the running thread to a sleep-

ing queue and runs the next ready thread. The wakeup

primitive contains two cases. If the thread to be woken

up belongs to the current CPU, then the primitive adds

the thread to its ready queue. Otherwise, wakeup adds

the thread to the pending queue of the CPU it belongs

to. Except for the ready queue, all the other thread queue

operations are protected by fine-grained locks.

Thread-local machine models can be built based on

the thread management layers. The first step is to extend

the environment context with a software scheduler (i.e.,

abstracting the concrete scheduling procedure), result-

ing in a new environment context εss. The scheduling

primitives generate the yield and sleep events and εss

responds with the next thread ID to execute. One invariant

we impose on εss is that a sleeping thread can be resched-

uled only after a wakeup event is generated. The second

step is to introduce the active thread set to represent the

active threads on the active CPU, and extend the εss with

the context threads, i.e., the rest of the threads running

on the active CPU. The composition structure is similar

to the one of Lemma 3. In this way, higher layers can

be built upon a thread-local machine model with a single

active thread on the active CPU (cf. Fig. 2).

1 struct fifobbq {

2 Queue insrtQ, rmvQ;

3 int n_rmv, n_insrt;

4 int front, next;

5 int T[MAX]; lock l;

6 } q;

7

8 void remove(){

9 uint cv, pos, t;

10 ▶acq_lock (q.l);

11 pos = q.n_rmv ++;

12 cv = my_cv ();

13 ▶enQ (q.rmvQ, cv);

14 while(q.front < pos ||

15 q.front == q.next)

16 ▶wait (cv, q.l);

17

18 t = q.T[q.front % MAX]

19 q.front ++;

20

21 cv=▶peekQ (q.insrtQ);

22 if (cv != NULL)

23 ▶signal (cv);

24 ▶deQ (q.rmvQ);

25 cv = ▶peekQ (q.rmvQ);

26 if (cv != NULL)

27 ▶signal (cv);

28 ▶rel_lock (q.l);

29 return t;

30 }

Figure 10: Pseudocode of the remove method for FIFOBBQ

Starvation-free condition variable A condition vari-

able (CV) is a synchronization object that enables a thread

to wait for a change to be made to a shared state (protected

by a lock). Standard Mesa-style CVs [35] do not guar-

antee starvation-freedom: a thread waiting on a CV may

not be signaled within a bounded number of execution

steps. We have implemented a starvation-free version of

CV using condition queues as shown by Anderson and

Dahlin [7, Fig. 5.14]. However, we have found a bug in

the FIFOBBQ implementation shown in that textbook: in

some cases, their system can get stuck by allowing all the

signaling and waiting threads to be asleep simultaneously,

or the system can arrive at a dead end where the threads

on the remove queue (rmvQ) can no longer be woken

up. We fixed this issue by postponing the removal of the

CV of a waiting thread from the queue, until the waiting

thread finishes its work (cf. Fig. 10); the remover is now

responsible for removing itself from the rmvQ (line 24)

and waking up the next element in the rmvQ (line 27).

Here, peekQ reads the head item of a queue; and my cv

returns the CV assigned to the current running thread.

5 Evaluation

Proof effort and the cost of change We take the certi-

fied sequential mCertiKOS kernel [23], and extend the ker-

nel with various features such as dynamic memory man-

agement, container support for controlling resource con-

sumption, Intel hardware virtualization support, shared

memory IPC, single-copy synchronous IPC, ticket and

MCS locks, new schedulers, condition variables, etc.

Some of these features were initially added in the se-

quential setting but later ported to the concurrent setting.

During this development process, many of our certified

layers (including their implementation, their functional

specification, and the layer refinement proofs) have un-

dergone many rounds of modifications and extensions.
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CertiKOS makes such evolution process much easier. For

example, all certified layers in the sequential kernel can

be directly ported to the concurrent setting if they do not

use any synchronization. We have also merged the work

by Chen et al. [14] on the interruptible kernel with device

drivers using our multicore model.

Overall, our certified mC2 kernel consists of 6500 lines

of C and x86 assembly. We have also developed a general

linking theorem for composing multiple threads running

on the same CPU, and another theorem for combining

programs running on different CPUs. Our team completed

the verification of the new concurrency framework and

features in about 2 person years.

Regarding specification, there are 943 lines of code

used to specify the lowest layer axiomatizing the hard-

ware machine model, and 450 lines of code for the speci-

fication of the abstract system call interfaces. These are in

our trusted computing base. We keep these specifications

small to limit the room for errors and ease the review

process. Outside the trusted computing base, there are

5249 lines of additional specifications for the various ker-

nel functions, and about 40K lines of code used to define

auxiliary definitions, lemmas, theorems, and invariants.

Additionally, there are 50K lines of Coq proof scripts for

proving the newly-added concurrency features. At least

one third of these auxiliary definitions and proof scripts

are redundant and semi-automatically generated, which

makes our proof a little verbose. For example, many in-

variant proofs get duplicated across the layers whenever

there is a minor change to the entire set of invariants. We

are currently working on a new layer calculus to minimize

redundant definitions and proofs.

Bugs found Other than the FIFOBBQ bug, we have

also found a few other bugs during verification. Our

initial ticket-lock implementation contains a particularly

subtle bug: the spinning loop body (line 10 in Fig. 7) was

implemented as while(▶L[i].now<t){}. This passed all

our tests, but during the verification, we found that it did

not satisfy the atomic specification since the ticket field

might overflow. For example, if L[i].ticket is (232
−1),

acq lock will cause an overflow (line 9 in Fig. 7) and

the returned ticket t equals 0. In this case, L[i].now is

not less than t and acq lock returns immediately, which

violates the order implied by the ticket. We fixed this bug

by changing the loop body to “while(▶L[i].now!=t){}”;

we completed the proof by showing that the maximum

number of concurrent threads is far below 232.

Performance evaluation Although the performance is

not the main emphasis of this paper, we have run a number

of micro and macro benchmarks to measure the speedup

and overhead of mC2 and to compare mC2 to existing sys-

tems such as KVM and seL4. All experiments have been

performed on an Intel Core i7-2600S (2.8GHz, 4 cores)
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Figure 11: The comparison between actual efficiency of ticket

lock and MCS lock implementations in mC2

with 8 MB L3 cache, 16 GB memory, and a 120 GB Intel

520 SSD. Since the power control code has not been veri-

fied, we disabled the turbo boost and power management

features of the hardware during experiments.

Concurrency overhead The run-time overhead intro-

duced by concurrency in mC2 mainly comes from the

latency of spinlocks and the contention of the shared data.

The mC2 kernel provides two kinds of spinlocks: ticket

lock and MCS lock. They have the same interface and

thus are interchangeable. In order to measure their perfor-

mance, we put an empty critical section (payload) under

the protection of a single lock. The latency is measured

by taking a sample of 10,000 consecutive lock acquires

and releases (transactions) on each round.

Figure 11 shows the results of our latency measure-

ment. In the single core case, ticket locks impose 34

cycles of overhead, while MCS locks impose 74 cycles

(line chart). As the number of cores grows, the latency

increases rapidly. However, note that all transactions are

protected by the same lock. Thus, it is expected that the

slowdown should be proportional to the number of cores.

In order to show the actual efficiency of the lock imple-

mentations, we normalize the latency against the baseline

(single core) multiplied by the number of cores (
n∗t1

tn
). As

can be seen from the bar chart, efficiency remains about

the same for MCS lock, but decreases for ticket lock.

Now that we have compared MCS lock with ticket lock,

we present the remaining evaluations in this section using

only the ticket lock implementation of mC2.

To reduce contention, all shared objects in mC2 are

carefully designed and pre-allocated with a fine-grained

lock. We design a benchmark with server/client pairs

to evaluate the speedup of the system as more cores are

introduced. We run a pair of server/client processes on

each core, and we measure the total throughput (i.e., the

number of transactions that servers make in each millisec-

ond) across all available cores. A server’s transaction

consists of first performing an IPC receive from a channel

i, then executing a payload (certain number of ‘nop’ in-

structions), and finally sending a message to channel i+1.

Correspondingly, a client executes a constant payload of

500 cycles, sends an IPC message to channel i, and then
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Figure 12: Speedup of throughput of mC2 vs. mC2-bl in a

client/server benchmark under various server payloads (0-2,000)

receives its server’s message through channel i+1. When

the client has to wait for a reply from the server, the con-

trol is switched to a special system process which then

immediately yields back to the server process.

Figure 12 shows this server/client benchmark, com-

paring mC2 against a big-kernel-lock version of mC2

(mC2-bl). We insert a pair of lock acquire and release at

the top-most layer by hand, and replace all fine-grained

locks with an empty function. This does not introduce

bias because the speedup is normalized against its own

baseline (single core throughput) for each kernel version

separately. From the figure, we can see that the speedup

rate for big-kernel-lock is about 1.45x ∼ 1.66x with 2

cores and 1.64x ∼ 2.07x with 3 cores. On the other hand,

the fine-grained locks of mC2 yield better speedup as the

number of cores increases (roughly 1.77x ∼ 1.84x and

2.62x ∼ 2.71x with 2 and 3 cores, respectively). Note

that the server/client pairs are distributed into different

CPUs, and there is no cross core communication; there-

fore, one might expect perfect scaling as the number of

cores increases. We did not quite achieve this because

each core must execute some system processes which run

at constant rates and consume CPU resources, and we did

not align kernel data structures against cache-line size.

IPC Performance We measure the latency of IPC

send/recv in mC2 against various message sizes, and com-

pare the result with seL4’s IPC implementation.

A comparison of the performance of seL4 and mC2 is

not straightforward since the verified mC2 kernel runs on

a multicore x86 platform, while the verified seL4 kernel

runs on ARMv6 and ARMv7 hardware and only sup-

ports single-core. Thus, we use an unverified, single-

core version of seL4 for comparison. Moreover, the

synchronized IPC API in seL4 (Call/ReplyWait) has

a different semantics from mC2’s send/recv: it uses a

round-trip message passing protocol (with a one-off re-

ply channel created on the fly) while trapping into the

kernel twice, and it does not use any standard sleep

or wakeup procedures. To have a meaningful compar-

ison with respect to the efficiency of implementing sys-
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Figure 13: Normalized performance for macro benchmarks

running over Linux on KVM vs. Linux on mC2; the baseline is

Linux on bare metal; a smaller ratio is better

tem calls, we compare (send + recv)× 2 of mC2 with

(Call+ReplyWait)+Null×2 of seL4, where Null is the

latency of a null system call in seL4.

We measure seL4’s performance using seL4’s IPC

benchmark sel4bench-manifest [3] with processes in dif-

ferent address spaces and with identical scheduler prior-

ities, both in slowpath and fastpath configurations. We

consulted the seL4 team [27] and used 158 cycles as the

cost of each null system call (Null) in seL4. To measure

mC2’s performance, we simply replace seL4’s Call and

ReplyWait system calls with mC2’s synchronous send and

receive calls. We found that, when the buffer size is zero,

mC2 takes about 3800 cycles to perform a round trip

IPC, while seL4’s fastpath IPC takes roughly 1200 cycles,

and seL4’s slowpath IPC takes 1800 cycles. When the

message size is larger than 2 words, the fastpath IPC of

seL4 falls back to the slowpath; in the 10-words IPC case,

mC2’s round trip IPC takes 3820 cycles, while seL4 takes

1830 cycles. Note that seL4 follows the microkernel de-

sign philosophy, and thus its IPC performance is critical.

IPC implementations in seL4 are highly optimized and

heavily tailored to specific hardware platforms.

Hypervisor Performance To evaluate mC2 as a hy-

pervisor, we measured the performance of some macro

benchmarks on Ubuntu 12.04.2 LTS running as a guest.

We ran the benchmarks on Linux as guest in both KVM

and mC2, as well as on the bare metal. The guest Ubuntu

is installed on an internal SSD drive. KVM and mC2 are

installed on a USB stick. We use the standard 4KB pages

in every setting — huge pages are not used.

Figure 13 contains a compilation of standard macro

benchmarks: unpacking of the Linux 4.0-rc4 kernel, com-

pilation of the Linux 4.0-rc4 kernel, Apache HTTPerf [47]

(running on loopback), and DaCaPo Benchmark 9.12 [11].

We normalize the running times of the benchmarks using

the bare metal performance as a baseline (100%). The

overhead of mC2 is moderate and comparable to KVM.

In some cases, mC2 performs better than KVM; we sus-

pect this is because KVM has a Linux host and thus has a
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larger cache footprint. For benchmarks with a large num-

ber of file operations, such as Uncompress Linux source

and Tomcat, mC2 performs worse. This is because mC2

expose the raw disk interface to the guest via VirtIO [52]

(instead of doing the pass-through), and its disk driver

does not provide good buffering support.

6 Related Work

Dijkstra [18, 19] proposed to “realize” a complex pro-

gram by decomposing it into a hierarchy of linearly or-

dered abstract machines. Based on this idea, the PSOS

team at SRI [48] developed the Hierarchical Develop-

ment Methodology (HDM) and applied it to design and

specify an OS using 20 hierarchically organized modules.

HDM was later also used for the KSOS system [50]. Gu

et al. [23] developed new languages and tools for build-

ing certified abstraction layers with deep specifications,

and showed how to apply the layered methodology to

construct fully certified (sequential) OS kernels in Coq.

Costanzo et al. [16] showed how to prove sophisticated

global properties (e.g., information-flow security) over

a deep specification of a certified OS kernel and then

transfer these properties from the specification level to

its correct assembly-level implementation. Chen et al.

[14] extended the layer methodology to build certified

kernels and device drivers running on multiple logical

CPUs. They treat the driver stack for each device as

if it were running on a logical CPU dedicated to that

device. Logical CPUs do not share any memory, and are

all eventually mapped onto a single physical CPU. None

of these systems, however, can support shared-memory

concurrency with fine-grained locking.

The seL4 team [33, 34] was the first to verify the

functional correctness and security properties of a high-

performance L4-family microkernel. The seL4 micro-

kernel, however, does not support multicore concurrency

with fine-grained locking. Peters et al. [51] and von Tessin

[55] argued that for an seL4-like microkernel, concurrent

data accesses across multiple CPUs can be reduced to

a minimum, so a single big kernel lock (BKL) might be

good enough for achieving good performance on mul-

ticore machines. von Tessin [55] further showed how

to convert the single-core seL4 proofs into proofs for a

BKL-based clustered multikernel.

The Verisoft team [49, 36, 4] applied the VCC frame-

work [15] to formally verify Hyper-V, which is a widely

deployed multiprocessor hypervisor by Microsoft consist-

ing of 100 kLOC of concurrent C code and 5 kLOC of as-

sembly. However, only 20% of the code is verified [15]; it

is also only verified for function contracts and type invari-

ants, not the full functional correctness property. There is

a large body of other work [10, 58, 25, 13, 26, 56, 5, 54]

showing how to build verified OS kernels, hypervisors,

file systems, device drivers, and distributed systems, but

they do not address the issues on concurrency.

Xu et al. [57] developed a new verification framework

by combining rely-guarantee-based simulation [41] with

Feng et al.’s program logic for reasoning about inter-

rupts [21]. They have successfully verified key modules

in the µC/OS-II kernel [1]. Their work supports preemp-

tion but only on a single-core machine. They have not

verified any assembly code nor connected their verified C-

like source programs to any certified compiler so there is

no end-to-end theorem about the entire kernel. They have

not proved any progress properties so even their verified

kernel modules or interrupt handlers could still diverge.

7 Conclusion

We have presented a novel extensible architecture for

building certified concurrent OS kernels that have not only

an efficient assembly implementation but also machine-

checkable contextual correctness proofs. OS kernels de-

veloped using our layered methodology also come with

a clean, rigorous, and layered specification of all kernel

components. We show that building certified concurrent

kernels is not only feasible but also quite practical. Our

layered approach to certified concurrent kernels replaces

the hardware-enforced “red line” with a large number of

abstraction layers enforced via formal specification and

proofs. We believe this will open up a whole new di-

mension of research efforts toward building truly reliable,

secure, and extensible system software.
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