
TRANSACfIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 329, Number I, January 1992 

CESARO SUMMABILITY OF DOUBLE WALSH-FOURIER SERIES 

F. MORICZ, F. SCHIPP AND W. R. WADE 

ABSTRACT. We introduce Quasi-local operators (these include operators of 
Calderon-Zygmund type), a hybrid Hardy space H# of functions of two vari-
ables, and we obtain sufficient conditions for a Quasi-local maximal operator 
to be of weak type (", I). As an application, we show that Cesaro means of 
the double Walsh-Fourier series of a function f converge a.e. when f belongs 
to H#. We also obtain the dyadic analogue of a summability result of Mar-
cienkiewicz and Zygmund valid for all fELl provided summability takes 
place in some positive cone. 

1. INTRODUCTION 

The problem of a.e. Cesaro summability is "quite delicate" in any local field 
setting (Taibleson [8, p. 114]). The dyadic case is no exception (see Fine [3]). 

For double trigonometric Fourier series, Marcinkiewicz and Zygmund [4] 
proved that am, n (f) ---> f a.e. as m, n ---> 00 provided the integral lattice points 
(m, n) remain in some positive cone, i.e., provided min:::; P and nlm :::; P 
for some fixed parameter P ~ 1. 

During the last decade several attempts have been made to obtain a Walsh 
analogue of this result. Apart from growth estimates in [9] and the almost trivial 
fact that double Walsh-Fourier series of LP functions are Cesaro summable in 
LP norm for 1 :::; p < 00, little is yet known. Part of the problem is that the 
classical Fejer kernels are dominated by decreasing functions whose integrals 
are bounded but this property fails to hold for the one-dimensional Walsh-Fejer 
kernels. This growth difference is exacerbated in higher dimensions so that the 
trigonometric techniques are not powerful enough for the Walsh case. 

We obtain positive results concerning a.e. Cesaro summability of double 
Walsh-Fourier series. For f E Llog+ L we show that Cesaro summability 
holds with no restriction on the order (m, n) other than min{m, n} ---> 00. 

For fELl we obtain an analogue of the Marcinkiewicz result for Cesaro 
means of order (2m, 2n). Precise statements appear in §3. 

In §2 we introduce quasi-local operators and show that a large class of quasi-
local maximal operators are of type (LI, H) and of weak-type (1, 1). Here 
H represents a dyadic Hardy space on [0, 1). These estimates are iterated 
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to obtain similar inequalities for a class of two-dimensional operators which 
includes Cesaro means of double Walsh-Fourier series. The iteration is effected 
by introducing hybrid Hardy spaces of two-variables ("dyadic Hardy" in one 
variable and integrable in the other). For nonnegative functions, these hybrid 
Hardy spaces reduce to L log + L . 

2. HARDY SPACES AND QUASI-LOCAL OPERATORS 

Let P denote the positive integers, N = P U {O} , and Q = [0, 1). For any 
set E, let E2 denote the cartesian product E x E . Thus N2 is the collection 
of integral lattice points in the first quadrant and Q2 is the unit square. 

Let QI = Q and fix j = 1 or 2. Denote the j-dimensional Lebesgue 
measure of any subset E of Qj by lEI. If F is measurable on Qj and A> 0 
let 

{IFI > A} == {x E Qj : IF(x)1 > A}. 
Denote the V(Qj) norm of any function F by IlFlip. 

By a dyadic interval we mean one of the form [P/2m, (p + 1)/2m) for some 
p, mEN, 0 ::; p < 2m . Given mEN and x E [0,1) let Im(x) denote 
the dyadic interval of length 2-m which contains x. Denote the collection of 
dyadic intervals by J I . 

Let J2 denote the collection of dyadic squares, i.e., sets of the form 

I=hxh 
where II, h E JI and 1I11 = Ihl. Clearly, given x = (XI, X2) E Q2 and 
mEN the dyadic square of 2rea 2-2m containing (XI, X2) is given by 

Im(xd x 1m (X2) . 

We will also denote this set by 1m (X) . 
The dyadic maximal function of an IE LI(Qj) is defined by 

f*(X) = sup 1 11 II mEN Ilm(x)1 1m (x) 

Recall that the dyadic Hardy space H(Qj) is the collection of IE LI(Qj) such 
that 

1I/IIH(Qj) == 11/*lh < 00. 

In the classical proof that Calderon-Zygmund integral operators T are of 
type (p, p) for 1 < p < 00 (see [7, p. 44], for example), a key step involves 
showing there is an absolute constant C and an expansion factor r such that 
if I is a function of mean zero supported on a cube I, and if [* is a cube 
centered where I is but expanded by the factor r, then 

r T I ::; Cll/ih . 
JQ3~1. 

Using this as motivation, we make the following definitions. For each I E J j 

and each r E N let I' E J j be defined by I ~ I' and 

11'1 = 2j 'l/l· 
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Let LO(Qi) represent the collection of functions measurable and a.e. finite on 
Qi. An operator T: L1(Qi) ~ LO(Qi) will be called quasi-local if there exist 
constants C > 0 and r E N that 

(1) 

for all f E L1(Qi) and IE Ji which satisfy 

(2) {f i= O} ~ I 
and 

(3) 

The following gives sufficient conditions for a maximal operator to be of type 
(H(Qi) , L1(Qi)) and of weak-type (1, 1). 

Theorem 1. Let (Ty, )' E r) be a collection of bounded sublinear operators on 
L1 (Qi) and set 

If T is quasi-local and bounded as an operator on Loo(Qi) then there is a 
constant B > 0 (depending only on the operator norm IITlloo and the constants 
of quasi-locality C and r) such that 

(4) 

and 

(5) I{Tf> A}I ~ ~ IIflh 
for all fEL1(Qi) and A>O. 
Proof. A function a E Loo(Qi) is called a dyadic atom if either a = 1 or if 
there is an I E Qi such that 

(6) 

and 

(7) 

where XI represents the characteristic function of I. Recall (see Coifman 
and Weiss [1]) that an f E L1(Qi) belongs to H(Qi) if and only if there is 
a sequence of dyadic atoms (an, n E N) and a sequence of numbers A == 
(An, n E N) such that 

00 

(8) 

and 
00 

(9) IIAlll! = L IAnl < 00. 
n=O 
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Also recall that A can be chosen so that 

IIAII/' ~ IIIIIH(Qj) . 

Suppose a satisfies (6) and (7) for some IE Ji . By quasi-locality and L'X) 
boundedness of T we have 

r Ta = 1 Ta + r Ta 
JQj I' JQj~I' 

:5 IITllooliallooWI + Cllalh 

:5 2ir llTII00 + C == A. 
Consequently, if I has atomic decomposition (8) then 

00 
IITIlh :5 L IAn111Tan1l1 :5 AIIAII/' 

n=O 
for A = (An, n EN). Thus (4) holds for all IE H(Qi). 

To prove (5) fix IE LI(Qi) and A> IIIlh. Apply the Calderon-Zygmund 
decomposition (see [7], for example) to choose nonoverlapping sets In E Ji 
(n EN) and functions g, h E LI(Qi) such that 

(10) 
(11 ) 
( 12) 

I=g+h, 
II glloo :5 4..1., 
Inl:5 IIIlh/A 

for n == U:o In , such that 

(13) 

and 

( 14) 

for hn = X1nh and n EN. 
Set 00 

nr = U I~ 
n=O 

where r E N is the parameter given by the quasi-locality of T. Notice by 
construction and (12) that 

( 15) 

Notice also by (13) and quasi-locality that 

r. Th:5:f= r. Thn :5 c:f= Ilhnll l . 
JQJ~n' n=O JQJ~I~ n=O 

Therefore, it follows from (10), (11), (15), and (14) that 

I{T I> (1 + A)A}I :5 I{Th > A}I 

:5 2ir IIIlh +! r Th :5 111111 (2ir + 8C) 
A A.~~~ A. 
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for A = 411 Tlloo. Since this inequality also holds for A ~ IIflll we conclude by 
a change of variables that (5) holds and the proof of Theorem 1 is complete. 

Define a hybrid dyadic maximal function for each f E LI(Q2) by 

p(x, y) = sup -II 1( )111 f(x, t) dtl 
mEN mY Im(Y) 

for (X, Y) E Q2. A function f E LI(Q2) is said to belong to HU(Q2) if 

Ilfllu:= IIPII! < 00. 

Notice that H(Q2) C HU(Q2) C LI(Q2). Also notice that if Llog+ L(Q2) rep-
resents the collection of f ELI (Q2) which satisfy 

I lfllog+ If I < 00 
Q2 

then f E Llog+ L(Q2) if and only if If I E HU(Q2). 
Given functions Yo, l'1 defined on Q define the Kronecker product of Yo 

and l'1 on QI by 
(Yo x l'1)(x, Y) = Yo(x) l'1 (Y). 

Let * denote the dyadic convolution"on £i(Qj) , for example, 

(g * h)(t) = k g(t + s)h(s) ds 

for g, h E LI(Q) and t E Q (see Fine [2]). The following result shows that 
a Kronecker product of a maximal convolution operator of weak-type (1, 1) 
with one of type (H( Q) , L I (Q)) is an operator of weak type (L 1) on Q2 
provided one of the kernels is nonnegative. 

Theorem 2. Let (vj, n EN), i = 0,1, be sequences of LI(Q) functions. 
Define one-dimensional operators 

Tih:= sup Ih * V~I 
mEN 

for h E LI(Q), i = 0, 1, and suppose there exist absolute constants Ao, Al 
such that 

( 16) 

and 

( 17) 

for all hELl (Q) and A > O. If V~ ~ 0 for all mEN and 

Tf:= sup If*(Vn~x~~)1 
(n" n2)EN2 

then 

(18) I{T f > A}I ~ A~Alllfllu 
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Proof. Fix f E HU(Q2) and A> O. Consider the function 

(19) Fy(u) = F(u, y) == sup I r f(u, v)Vn~(Y + v) dvl 
n2EN lQ 

defined for all u, Y E Q. Since Lebesgue measure is translation invariant with 
respect to dyadic addition + (see Fine [2)) and Vn~ is nonnegative it is easy to 
check that 

l(f * (~~ x ~~))(x, y)1 ::; sup r ~~ (x + u)Fy(u) du 
n1EN lQ 

for n2 EN. Consequently, 

(20) (T f)(x , y) ::; (rO Fy )(x) 

for (x, y) E Q2 . 
Let m (y) be the (one-dimensional) Lebesgue measure of {x E Q : (T f) (x , y) 

> A}. Notice by (16) and (20) that 

m(y)::; I{TOFy > A}I::; ~OllFylh. 
Also notice by (17) and (19) that 

~ F(u, y)dy::; Al ~P(U, v)dv 

for all u E Q. Therefore, 

I{T f> A}I = ~ m(y) dy ::; ~O ~ ~ F(u, y) du dy ::; A~AIIIPlh 

and the proof of Theorem 2 is complete. 

3. CESARO SUMMABILITY OF DOUBLE WALSH-FoURIER SERIES 

Let (Wn, n E N) represent the one-dimensional Walsh-Paley system, recall 
that 

Wn(t)Wn(S) = Wn(t + s) 

and that the Walsh-Dirichlet kernels 
n-I 

(s, t E Q, n E N) 

Dn == LWk "(n E P) 
k=O 

satisfy 

(21 ) { 2m 
D2m(t) = 0,' 

t E [0, 2-m ), 

tE[2-m , 1), 

for mEN (see Fine [2]). Also recall that the Walsh-Fejer kernels 

(m E P) 
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satisfy 
n-I n-I 

(22) IKm(t)1 ::; L 2j- n L(D2i(t) + D2i(t + 2-j- I )) 

j=O i=j 
for t E Q, n, m E P, 2n- 1 ::; m < 2n and 

(23) K2n(t) = ~ (2- nD2n(t) + t 2j- nD2n(t + 2-j- I )) 

}=o 
for t E Q, n EN (see [6]). Notice by changing the order of summation in (22) 
that (23) implies 

n-I i 

IKm(t))1 ::; 2-n L L 2j(D2i(t + 2-j- l ) + D2i(t)) 
i=O j=O 
n-I 

= 2-n L(2 i+1 K2i(t) + (2 i+1 - 2)D2i(t)) 
i=O 
n-I 

::; 2-n L 2i+I (K2i(t) + D2i(t)) 
i=O 

for t E Q, n, m E P, and 2n- 1 ::; m < 2n. Since D2i ::; 2K2i for i E N it 
follows that 

(24) 

for n, m E P, 2n- 1 ::; m < 2n. 
For m = (ml' m2) E N2 and IE LI(Q2) the Cesaro mean of order m of 

the double Walsh-Paley-Fourier series of I is given by 

(25) ami = 1* (Kml x Km2 )· 
We shall examine the maximal functions 

and 

for a ~ o. 

a* I = sup lamll, a I = sup la(2n1,2n2)/1 
mEp2 (nl , n2)EN2 

aal = sup la(2n1,2n2)/1 
In l-n21:-::;a 

In the next section we prove 
Theorem 3. There is an absolute constant A > 0 such that 

A 
(26) I{al> A}I ::; Ill/lIu 
and 

(27) I{ a* I> A}I ::; 3~A II III Ilu 
lor every IE HU(Q2) and A> o. 
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It is easy to see that the two-dimensional Walsh polynomials are dense in 
H~( Q2) , for by (21) the dyadic square partial sums of the double Walsh-Paley-
Fourier series of an f EL I (Q2) satisfy 

(S(2m,2m)f)(U, v) == (f* (D2m X D2m))(U, v) 

- 1 1 f 
- IIm(u, v)1 Im(u,v) 

for any mEN and (u, v) E Q2. Consequently, Theorem 3 and the usual 
density argument (see Marcinkiewicz and Zygmund [4]) imply 

Corollary 1. If If I E HU(Q2) (in particular, if f E Llog+ L(Q2)) then 

as min{ nl , n2} ---- 00 . 

Concerning the operators ao. we will prove 

Theorem 4. For each a ~ 0 there is an absolute constant Eo. > 0 such that 

(28) 

and 

(29) 

Hence we get 

Corollary 2. If f EL I (Q2) and a ~ 0 then 

a(2"1 ,2"2)f ---- f a.e. 

as min{nl' n2} ---- 00 and Inl - n21 :::; a. 

In particular, the Walsh analogue of the Marcinkiewicz-Zygmund result holds 
for Cesaro means of dyadic orders. The original problem (see [9]) of whether 

a(nl ,n2)f ---- f a.e. 

as min{nl' n2} ---- 00 and 2-0. :::; ndn2 :::; 20. is still open. 

4. PROOFS OF THEOREM 3 AND 4 
By (24) 

a* f :::; 36a(lfl) . 

By Theorem 1 for j = and Theorem 2, the proof of Theorem 3 will be 
complete if we show 

TOh == sup Ih * K2ml 
mEN 

is bounded on LOO(Q) and quasi-local. 
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Boundedness is easy, since IIK2mlii = 1 (see (21) and (23)). To show TO is 
quasi-local (with r = 0) fix hELl (Q) with 

(30) ~ h = 0 

and 

(31 ) {h :f O} ~ I 

for some IE JTI . Choose lEN such that III = 2-1. Fix 0 ~ j ~ n and for 
each x E Q define 

rU, x)D2n(t) = D2n(t + X + 2- j - l ) (t E Q). 
By (21) the function rU, X )D2n is supported on a dyadic interval of length 

2- n . Consequently, for any x E Q if n ~ I then we have by (30) and (31) that 

~ h . rU, X)D2n = O. 

Also, if n > I but I ~ j and x ct- I then we have by (31) that 

h . rU, X)D2n = O. 
Therefore, it follows from (23) that 

I-I 

I(h * K2n)(X)1 ~ L 2j - n ! IhlrU, X)D2n 
j=O Q 

I-I 

~ L 2 j - 1 ! IhlrU, X)D21 
j=O Q 

for all x E Q rv I. Since this last sum is independent of n we conclude that 
/-1 

~~/TOh)(X) dx ~ ~ 2j - I llhll l ~ Ilhlll 

i.e., TO is quasi-local. 
To prove Theorem 4 we apply Theorem 1 to (Ju for j = 2. Since (Jeri ~ (J I 

it is clear that (Ju is bounded on Loo(Q2). To show (Ju is quasi-local choose 
r E N such that r - 1 < a ~ r. Let IE L I(Q2) satisfy 

(32) 

and 

(33) {/:f O} ~ I 
from some IE JT2. Choose lEN such that III = 2-21 and proceed as we did 
for j = 1. 

Namely, fix n = (nl , n2) E N2, 0 ~ jl ~ nl, 0 ~ h ~ n2, and notice by 
(21), (32) and (33) that 

~ I . rUI , XI )D2n, • r(h , x2)D2n2 = 0 
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for (XI, X2) E Q2, n! :::; I and n2 :::; I, On the other hand, if nl > I or n2 > I 
then the condition In! - n21 :::; 0: implies 
(34) nl, n2 ~ 1-0: ~ 1- r. 

Let jl ~ 1- r or h ~ 1- r. If (34) holds and if X = (XI, X2) E Q2 '" [r then 
by (21) and (33) we have 

I· rUI , x2)D2nl • r(h , x2)D2nz = O. 
Hence it follows from (23) that 

1(1 * (K2nl x K 2nz))(x)1 
/-r-l :::; L 2il +h -(nl+nz) 11/1 . rUI' xdD2nl • r(h, x2)D2n2 

il,h=O Q2 

for X = (X2, X2) E Q2 '" l' and (nl' n2) E N2 satisfying In! - n21 < 0:. 

Therefore, 
(35) 
where 

(a,J)(x) :::; G(x) 

/-r-l 
G(x) == L 2il +h - 2(/-r) 12 1/1 . rUl , Xd D2f-, • r(h, x2)D2f-,. 

il,h=O Q 

But 
IIGII!:::; IIIIII 

by (21). Consequently, (35) implies 

r aal:::; 1I/11! 
JQ2~1' 

and we conclude that aa is quasi-local. 
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