archive ouverte UNIGE

Cesium and barium as honorary d elements: CsN7Ba as an example

GAGLIARDI, Laura, PYYKKÖ, Pekka

Abstract

Quantum chemical calculations suggest that inverse sandwich compounds with the general formula MN[7]M', where M is an alkali metal (K,Rb,Cs), N[7] is a ten-p-electron ring, and M^{\prime} is an alkaline-earth metal ($\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$), are local $\mathrm{C}[7 \mathrm{v}]$ minima. Among these systems, the CsN7Ba molecule is the stablest of all and presents a barrier of $35 \mathrm{kcal} / \mathrm{mol}$ to dissociation towards CsNBa and three N[2] molecules. Substantial 5d character is found in the bonding. Possible ways of making these high-energy compounds are discussed.

GAGLIARDI, Laura, PYYKKÖ, Pekka. Cesium and barium as honorary d elements: CsN7Ba as an example. Theoretical Chemistry accounts, 2003, vol. 110, no. 3, p. 205-210

DOI : 10.1007/s00214-003-0485-8

Regular article

Cesium and barium as honorary d elements: $\mathrm{CsN}_{7} \mathrm{Ba}$ as an example

Laura Gagliardi ${ }^{1}$, Pekka Pyykkö ${ }^{2}$
${ }^{1}$ Dipartimento di Chimica Fisica F. Accascina, Viale delle Scienze - Parco d'Orleans II, 90128 Palermo, Italy
${ }^{2}$ Department of Chemistry, University of Helsinki, P.O.B. 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland

Received: 7 May 2002 / Accepted: 24 October 2002 / Published online: 6 October 2003
© Springer-Verlag 2003

Abstract

Quantum chemical calculations suggest that inverse sandwich compounds with the general formula $M \mathrm{~N}_{7} M^{\prime}$, where M is an alkali metal ($\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$), N_{7} is a ten- π-electron ring, and M^{\prime} is an alkaline-earth metal ($\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$), are local $C_{7 v}$ minima. Among these systems, the $\mathrm{CsN}_{7} \mathrm{Ba}$ molecule is the stablest of all and presents a barrier of $35 \mathrm{kcal} / \mathrm{mol}$ to dissociation towards CsNBa and three N_{2} molecules. Substantial 5d character is found in the bonding. Possible ways of making these high-energy compounds are discussed.

Keywords: Cesium - Barium - Honorary d elements B3LYP - CASSCF

1 Introduction

The alkali and alkaline-earth metals are usually seen as rather boring counterion elements whose bonding is essentially electrostatic and whose consequent ionic radii are rather well defined [1]. In interalkali molecules, such as Cs_{2}, the bonding obviously is covalent. The relevant ionic and covalent radii are discussed later. We now combine the old observation that the atoms, molecules, and solids containing Ca, Sr, and Ba possess increasing d character in their bonds (a summary from 1979 is given in Ref. [2]) with the striking recent observation [3] that a system like $\mathrm{CsN} \equiv \mathrm{Ba}$ actually contains a well-defined triple bond between the $\mathrm{Ba} 5 d$ and $\mathrm{N} 2 p$ orbitals, with a $\mathrm{Ba}-\mathrm{N}$ bond length far below any normal range. We now give a broader view on the d phenomenon and expand the discussion to recently discussed aromatic nitrogen ring systems. These can be used on one hand as sample η^{n} ligands and they may also have applications as future high-energy compounds.

[^0]The isolation of stable salts of the N_{5}^{+}cation, the first new all-nitrogen bulk species to be made in a century [4, 5] has put the spotlight on the search for other stable polynitrogen species. Here we refer to $\mathrm{N}_{2}, \mathrm{~N}_{3}^{-}$and N_{5}^{+}; actually it should be added that both N_{2}^{2-} and N_{2}^{4-} are thought to exist in solids [6].

Related work using quantum chemical calculations has predicted the possible existence of the ScN_{7} molecule [7], which contains a new structural group, the $\eta^{7}-\mathrm{N}_{7}^{3-}$ ten- π-electron ring, isoelectronic with the experimentally known $\eta^{7}-\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{3-}$ ligand, and has a relatively low energy of formation of $36 \mathrm{kcal} / \mathrm{mol}$ per N_{2} unit, above a Sc atom and N_{2}. $\mathrm{A} \operatorname{Fe}\left(\mathrm{N}_{5}\right)_{2}$ ferrocene analogue has been suggested independently by Lein et al. [8]. Pentazole metal compounds, like $\mathrm{NaN}_{5}, \mathrm{KN}_{5}, \operatorname{Mg}\left(\mathrm{~N}_{5}\right)_{2}, \mathrm{Ca}\left(\mathrm{N}_{5}\right)_{2}$, and $\mathrm{Zn}\left(\mathrm{N}_{5}\right)_{2}$, have also been predicted recently by Burke et al. [9].

We then predicted the possible existence of some sandwich compounds with the general formula $\mathrm{N}_{5} M \mathrm{~N}_{7}$ [10] $(M=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{Th}) . \mathrm{N}_{5} \mathrm{ThN}_{7}$ is the stablest of all and has an energy of formation of $22 \mathrm{kcal} / \mathrm{mol}$ per N_{2} unit above a Th atom and N_{2}. As part of a project to investigate new mixed metal-nitrogen species, compounds with the general formula $M \mathrm{~N}_{7} M^{\prime}$ containing one central $\eta^{7}-\mathrm{N}_{7}^{3-}$ ten- π-electron ring and a group 1 ($\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) and group $2(\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ metal atom are now considered (Fig. 1). They were found to be locally stable with all frequencies real. The formation/dissociation mechanism of such systems was also investigated and it seems that the building blocks to form $M \mathrm{~N}_{7} M^{\prime}$ (or the dissociation products) are a $M \mathrm{~N} M^{\prime}$ moiety and three N_{2} molecules. This is of interest because first of all it has allowed the prediction of the existence of the $M N M^{\prime}$ triatomic molecules never investigated before neither experimentally nor theoretically, [3].

2 The hybridization of $\mathbf{C a}-\mathrm{Ba}$

The alkaline earths are basically $n s$ elements. The $n p$ orbitals come in as their polarization functions. The

Fig. 1. The calculated structure of the local minimum of $\mathrm{CsN}_{7} \mathrm{Ba}$. The other $M \mathrm{~N}_{7} M^{\prime}\left(M=\mathrm{K}, \mathrm{Rb} ; M^{\prime}=\mathrm{Ca}, \mathrm{Sr}\right)$ systems have similar structures
evidence for increasing ($n-1$)d- character in $\mathrm{Ca}-\mathrm{Ba}$ was summarized in Ref. [2] and comprises both atomic, molecular, and solid-state data. The atomic ground states at multiconfiguration level are a mixture of s^{2}, p^{2}, and d^{2} configurations. In molecules, the classical example is the bent shapes of the heavier alkaline-earth dihalides $\left(\mathrm{SrF}_{2}\right.$ and $\left.\mathrm{BaX}_{2} ; X=\mathrm{F}-\mathrm{Br}\right)$. They are partially due to a transition from metal $s p$ hybridization to metal $s d$ hybridization; the situation has just been summarized by Kaupp [11]. In the $M \mathrm{H}^{+}$or $M \mathrm{H}_{2}$ hydrides, the calculated d character increased along $M=\mathrm{Ca}-\mathrm{Ba}$. Nonrelativistically it would increase further to $M=\mathrm{Ra}$, while relativistically a decrease was found (Fig. 1 in Ref. [2]). Later calculations on CsH and BaH^{+}using large Slater basis sets [12] indicated that the $5 d$ character of the latter was larger than the $6 s$ character.

As a particular example of d character, consider the diatomic oxides $M \mathrm{O} ; M=\mathrm{Ca}-\mathrm{Ba}$. The experimental R_{e} are 182,192 , and 194 pm , and the D_{e} are $4.76,4.88$, and 6.91 eV , respectively [13]. Note the unusual rising trend of the latter. Ab initio calculations including d functions reproduce this trend $[14,15]$. The increasing d character along the series $M=\mathrm{Ca}-\mathrm{Ba}$ was explicitly discussed by Fuentealba and Savin [15].

Note the two differences between the $\sigma^{2} \pi^{4}$ triple bonds of $\mathrm{Ba} \equiv \mathrm{O}$ and $\mathrm{C} \equiv \mathrm{O}$ in groups 2 and 14 , respectively: Ba uses for the σ bonds its valence $n s$, while C uses its (hybridized) $2 p$. Secondly, Ba uses for the π bond its $5 d$, while C uses its $2 p$.

Finally, the crystal structures of the elements (facecentered cubic for Ca, Sr; body-centered cubic for Ba ; not hexagonal close packed for any of them) suggest the importance of the d orbitals [2]. A recent summary is given in Ref. [16]. In the three-dimensional solid MO, $M=\mathrm{Ca}-\mathrm{Ba}$, most of the d character remains in empty conduction bands [17]. In the nearest neighbor of Ba, metallic cesium, the high-pressure isostructural phase transformation at about 4.3 GPa is attributed to a transition from a predominant s bonding orbital to a
predominant d bonding orbital; for the latest summary, see Ref. [18]. For the analogous phenomenon in metallic Sr and Ba , see Ref. [19]. Strong hybridization of the Cs $5 d$ shells in solid CsAu was found by Hasegawa and Watabe [20].

The known binary solid nitrogen compounds of the group 1 and 2 elements comprise the nitrides of Li , and possibly $\mathrm{Na}[21]$, the nitrides of Be, Mg, and Ca , the subnitrides $M_{2} \mathrm{~N}, M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ [22], and the binary azides of $\mathrm{Li}-\mathrm{Cs}$ and $\mathrm{Be}-\mathrm{Ra}$. In addition there are ternary nitrides such as $\mathrm{Li} M \mathrm{~N} ; M=\mathrm{Be}-\mathrm{Sr}$.

Effectively a $\sigma^{2} \pi^{4}$ triple bond between Ba and N was found in both CsNBa and the diatomic BaN^{-}, isoelectronic to BaO [3]. The $\mathrm{Ba}-\mathrm{N}$ equilibrium bond distance was calculated to be $2.05 \AA$ in $\mathrm{CsNBa}, 2.17 \AA$ in BaN^{-}, and $2.00 \AA$ in BaO .

A further simple way to obtain insight into the bonding character of the present elements is to compare their observed or calculated bond lengths with those resulting from a system of additive covalent radii. We use the particular system based on Pauling's halogen radii and it is summarized in Table 1.

As seen from this table, the isoelectronic diatomics BaN^{-}and BaO have bond lengths far inside the sum of the single-bond radii. Numerous η^{5} complexes of cyclopentadienyl $\left(\mathrm{Cp}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ or its derivatives are experimentally known [23, 24]. The typical distances are compared with predictions in the table. We are tacitly assuming the five carbons of Cp occupy one coordination site. The predicted $M-\mathrm{C}(\mathrm{Cp})$ distances are on the high side, again suggesting more multiple bonding character than in the average reference case for obtaining the $r_{\mathrm{cov}}[\mathrm{C}(\mathrm{Cp})]$. Finally it is seen that the calculated $\mathrm{Ba}-\mathrm{N}$ distance in $\mathrm{Cs}\left(\mathrm{N}_{7}\right) \mathrm{Ba}$ is over 30 pm shorter than the typical $\mathrm{Ba}-\mathrm{C}(\mathrm{Cp})$ distances, again suggesting strong multiple bonding.

3 Computational details

The calculations were carried out at the density functional theory (DFT) level, using the B3LYP exchangecorrelation functional. In all cases the $6-31 \mathrm{~g}^{*}$ basis sets [10s 4 p 2 d$] /(3 \mathrm{~s} 2 \mathrm{p} 1 \mathrm{~d})$ was used for the nitrogen atom. The various basis sets for the metal atoms are summarized in Table 2.

Table 1. Predicted $M-L$ distances for single-bond radii and observed or ab initio calculated $M-L$ bond lengths in picometers for group 1 and 2 metals (Metal radii K 166, Rb 179, Cs 191; Ca 152, Sr 169 , Ba 185. Single-bond ligand radii $\mathrm{C}\left(\eta^{5} \mathrm{C} p\right) 125, \mathrm{~N} 73$, O 73.) Radii from Table VI Ref. [33]. Experimental distances for organometallic compounds from Refs. [23, 24]

$M-L$	System	Predicted	Exp./Calc.
$\mathrm{Ca}-\mathrm{C}$	$\mathrm{Ca}(\mathrm{Cp})_{2}$	277	$261-264$
$\mathrm{Sr}-\mathrm{C}$	$\mathrm{Sr}(\mathrm{Cp})_{2}$	294	275
$\mathrm{Ba}-\mathrm{C}$	$\mathrm{Ba}(\mathrm{Cp})_{2}$	310	$294-303$
$\mathrm{Ba}-\mathrm{N}$	$\mathrm{Cs}\left(\mathrm{N}_{7}\right) \mathrm{Ba}$		265
$\mathrm{Ba}-\mathrm{N}$	BaN		
$\mathrm{Ba}-\mathrm{O}$	BaO	258	217^{a}

[^1]Table 2. Contracted basis sets

$\mathrm{KNN}_{7} \mathrm{Ca}^{\mathrm{a}}$	$\mathrm{RbN}_{7} \mathrm{Sr}^{\mathrm{b}}$	$\mathrm{CsN}_{7} \mathrm{Ba}^{\mathrm{c}}$
BS1 3s2p1d	BS1 5s4p; 4s4p2d	BS1 5s4p; 4s4p2d1f
BS2 5s3p2d	BS2 5s4p2d; 4s4p2d	BS2 5s4p2d1f; 4s4p2d1f
BS3 8s7p3d1f	BS3 5s4p5d; 4s4p5d	BS3 5s4p5d1f; 4s4p5d1f
BS4 8s7pd1f	BS4 5s4p5dlf; 4s4p5d1f	BS4 5s4p5d3f; 4s4p5d3f
BS5 8s7p7d1f		

${ }^{\text {a }} 6-31 \mathrm{~g}^{*}$ type both on K and Ca
${ }^{\mathrm{b}}$ Valence basis accompanying the Stuttgart effective care potentials for Rb and Sr , respectively
${ }^{c}$ Valence basis accompanying the Stuttgart effective care potentials for Cs and Ba , respectively

In the $\mathrm{KN}_{7} \mathrm{Ca}$ case, a series of basis sets for K and Ca were used, from the 3 s 2 p 1 d basis of $6-31 \mathrm{~g}^{*}$ type, up to the 8 s 7 p 7 d 1 f basis. In the $\mathrm{RbN}_{7} \mathrm{Sr}$ and $\mathrm{CsN}_{7} \mathrm{Ba}$ cases, effective core potentials (ECPs) were used. The energyadjusted Stuttgart ECPs were used for this purpose [25]. The number of valence electrons is 9 for M and 10 for M^{\prime}. The basis sets accompanying the ECPs were used to describe them [26], Rb [7s6p]/(5s4p), Sr [6s6p5d]/ (4s4p2d), Cs $[7 \mathrm{~s} 6 \mathrm{p}] /(5 \mathrm{~s} 4 \mathrm{p})$, Ba $[6 \mathrm{~s} 6 \mathrm{p} 5 \mathrm{~d} 1 \mathrm{f}] /(4 \mathrm{~s} 4 \mathrm{p} 2 \mathrm{~d} 1 \mathrm{f})$, BS1. Comparative calculations were also performed by adding two d functions and one f function to the Cs valence basis (d exponents 0.133 and 0.404 from Ref. [27], and the f exponent 0.6970 was taken from the Ba valence basis set) and two d functions to the Rb valence basis (with exponents 0.226 and 0.695 [27]), BS2. The valence basis sets were also extended up to 5 s 4 p 5 d 1 f for $\mathrm{Rb}, 4 \mathrm{~s} 4 \mathrm{p} 5 \mathrm{~d} 1 \mathrm{f}$ for $\mathrm{Sr}, 5 \mathrm{~s} 4 \mathrm{p} 5 \mathrm{~d} 3 \mathrm{f}$ for Cs , and 4 s 4 p 5 d 3 f for Ba , respectively. (We do not report all the exponents but they are available upon requests.) The program Gaussian98 was employed.

Equilibrium geometries and harmonic frequencies were computed for all species. The calculations were performed using the ultrafine $(99,590)$ grid having 99 radial shells and 590 angular points per shell. At the same time the weighting scheme of Becke was used for numerical integrations.

Comparative geometry optimizations were performed at the multiconfigurational self-consistent-field level, CASSCF [28], for $\mathrm{KN}_{7} \mathrm{Ca}$ and $\mathrm{CsN}_{7} \mathrm{Ba}$, using atomic natural orbital type basis sets [29] on N [10s6p3d]/ (3s2p1d), K, and Ca atoms [17s12p4d]/(4s3p2d), and the same ECPs as previously mentioned for Cs and Ba. The program MOLCAS-5.2 [30] was employed. In the CASSCF calculations an active space formed by ten electrons in seven orbitals was used. These molecular orbitals (MOs) are one σ, two, two δ, and two ϕ linear combinations of the nitrogen p_{z} atomic orbitals. The σ, π, and δ MOs are bonding to barium, while the ϕ MOs are nonbonding and essentially localized on the N_{7} ring. Extra CASSCF calculations were performed, in which five antibonding orbitals were added, with the same symmetry as the bonding MOs, one σ, two π, and two δ. The two active spaces give equivalent results.

While performing these calculations it was found that the valence basis set of the barium atom present in the library of the programs Gaussian98 and MOLCAS-5.2 had the wrong contraction. For the correct valence basis

Table 3. B3LYP bond lengths (angstroms) and angles (degrees) in the $\mathrm{KN}_{7} \mathrm{Ca}$ and $\mathrm{RbN}_{7} \mathrm{Sr}$ molecules with various basis sets. The CASSCF bond distances for $\mathrm{KN}_{7} \mathrm{Ca}$ (basis sets of atomic natural orbital, $A N O$, type) are given in parentheses

$M \mathrm{~N}_{7} M^{\prime}$	$R_{M-\mathrm{N}}$	$R_{\mathrm{N}-M^{\prime}}$	$R_{\mathrm{N}-\mathrm{N}}^{\mathrm{a}}$
$\mathrm{KN}_{7} \mathrm{Ca}$ BS1	2.805	2.440	1.382
BS1	(2.913)	(2.475)	(1.339)
BS2	2.780	2.356	1.376
BS3	2.803	2.352	1.368
BS4	2.813	2.358	1.377
BS5	2.814	2.359	1.376
RbN ${ }_{7}$ Sr BS1	3.038	2.502	1.374
BS2	2.967	2.508	1.374
BS3	2.974	2.512	1.376
BS4	2.978	2.520	1.372

${ }^{\text {a }}$ In N_{7}^{3-} B3LYP $R_{\mathrm{N}-\mathrm{N}}=1.374 \AA$

Table 4. B3LYP bond lengths (angstroms) and angles (degrees) in $\mathrm{CsN}_{7} \mathrm{Ba}, \mathrm{BaN}_{7} \mathrm{Ba}^{+}, \mathrm{BaN}_{7}^{-}$, and $\mathrm{Cs}(\mathrm{CH})_{7} \mathrm{Ba}$, with various basis sets. The CASSCF bond distances for $\mathrm{CsN}_{7} \mathrm{Ba}$ (basis sets of atomic natural orbital type) are given in parentheses

$M \mathrm{~N}_{7} M^{\prime}$	$R_{M-\mathrm{N}}$	$R_{\text {N-M }}$	$R_{\mathrm{N}-\mathrm{N}}^{\mathrm{a}}$
$\mathrm{CsN}_{7} \mathrm{Ba} \mathrm{BS}$	3.208	2.651	1.371
BS1	(3.249)	(2.685)	(1.333)
BS2	3.104	2.663	1.371
BS2	(3.201)	(2.690)	(1.333)
BS3	3.103	2.666	1.3713
BS4	3.095	2.657	1.370
$\mathrm{BaN}_{7} \mathrm{Ba}^{+} \mathrm{BS} 1$	2.766	2.766	1.375
$\mathrm{BaN}_{7}^{-} \mathrm{BS} 1$		2.618	1.369
BS1 (ANO)		(2.638)	(1.332)
$\mathrm{Cs}(\mathrm{CH})_{7} \mathrm{Ba} \mathrm{BS1}$	3.242	2.767	1.441
$\mathrm{Cs}(\mathrm{CH})_{7} \mathrm{Ba} \mathrm{BS} 2$	3.132	2.773	1.441

${ }^{\text {a }}$ In N_{7}^{3-} B3LYP $R_{\mathrm{N}-\mathrm{N}}=1.374 \AA$
set we recommend downloading it directly from http:// www.theochem.uni-stuttgart.de/.

4 Results

The structures of the $\mathrm{KN}_{7} \mathrm{Ca}, \mathrm{RbN}_{7} \mathrm{Sr}$, and $\mathrm{CsN}_{7} \mathrm{Ba}$ molecules obtained with the various basis sets are reported in Tables 3 and 4. In all cases they were found to be local minima in $\mathrm{C}_{7 v}$ symmetry, in their singlet ground state. The calculations were also carried out with lowered C_{s} symmetry and the same $C_{7 v}$ structures were obtained. We checked the stability of the triplet for $\mathrm{CsN}_{7} \mathrm{Ba}$ and it was found to lie $40 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the singlet with BS1.

As seen from Tables 3 and 4, the larger basis sets give closely similar results, which we interpret as a sign for basis-set saturation. It is seen that the effect of adding more than one d function on the alkali atom has a negligible effect for K but shortens the $\mathrm{Cs}-\mathrm{N}$ distance by about $0.1 \AA$. A larger basis on the alkaline-earth atom has a similar effect on Ca. Surprisingly this effect on $R_{\mathrm{N}-M^{\prime}}$ decreases for Sr and Ba , for which the other evidence for d participation becomes greater (Fig. 2).

The alkali atom is at a greater distance from the N_{7} ring than the alkaline-earth atom. In $\mathrm{KN}_{7} \mathrm{Ca}$, the $\mathrm{K}-\mathrm{N}$ distance is $0.37 \AA$ longer than the $\mathrm{Ca}-\mathrm{N}$ distance with BS 1 , and is $0.42 \AA$ longer with BS 5 . In $\mathrm{RbN}_{7} \mathrm{Sr}$ the $\mathrm{Rb}-$ N distance is $0.54 \AA$ longer than the $\mathrm{Sr}-\mathrm{N}$ distance with BS1 and 0.46 A longer with BS4. In $\mathrm{CsN}_{7} \mathrm{Ba}$ (Table 4) the $\mathrm{Cs}-\mathrm{N}$ distance is $0.56 \AA$ longer than the $\mathrm{Ba}-\mathrm{N}$ distance with BS1 and 0.44 A longer with BS4.

The structure of the $\mathrm{BaN}_{7} \mathrm{Ba}^{+}$cation, isoelectronic to $\mathrm{CsN}_{7} \mathrm{Ba}$, is also reported in Table 4. The $\mathrm{Ba}-\mathrm{N}$ bond distance of $2.76 \AA$ is $0.1 \AA$ longer than in $\mathrm{CsN}_{7} \mathrm{Ba}$.

For comparison the CASSCF bond distances of $\mathrm{KN}_{7} \mathrm{Ca}$ and $\mathrm{CsN}_{7} \mathrm{Ba}$ are also reported. The CASSCF calculations were performed in order to understand the MOs involved in the bonding. The bonding σ, π, and δ

Fig. 2. The Mulliken d character along group 1 and group 2 metals

Fig. 3. The bonding σ molecular orbital in $\mathrm{CsN}_{7} \mathrm{Ba}$ at the CASSCF level

0
Fig. 4. One component of the two bonding π molecular orbitals in $\mathrm{CsN}_{7} \mathrm{Ba}$ at the CASSCF level

0
Fig. 5. One component of the two bonding δ molecular orbitals in $\mathrm{CsN}_{7} \mathrm{Ba}$ at the CASSCF level

CASSCF MOs of $\mathrm{CsN}_{7} \mathrm{Ba}$ are reported in Figs. 3, 4, and 5. Ba forms five bonds with the N_{7} ring, while Cs is a separated entity. The $\mathrm{Ba}-\mathrm{N}_{7}$ bonds should not only be interpreted as ionic interactions; it is striking to see how Ba in its formal valence of +2 can interact so strongly with the N_{7} ring, by forming σ, π, and δ bonds, similarly to what is observed for transition metals such as Sc [7] and $\mathrm{Ti}-\mathrm{Hf}[10]$. The $5 d$ orbitals of Ba take an active role in the formation of this multiple bond, intervening especially in the δ bond. The MOs of $\mathrm{KN}_{7} \mathrm{Ca}$ look rather similar to those of $\mathrm{CsN}_{7} \mathrm{Ba}$, with a preferential $\mathrm{Ca}-\mathrm{N}_{7}$ interaction; however, the bonding σ and π MOs have small potassium character. The analogous cesium participation is completely absent in $\mathrm{CsN}_{7} \mathrm{Ba}$. In the lighter homologue $\mathrm{KN}_{7} \mathrm{Ca}$, the character of the $\delta \mathrm{MOs}$ is also small on the alkaline-earth metal (Ca) and rests mainly on the N_{7} ring.

In order to investigate the peculiar $\mathrm{Ba}-\mathrm{N}_{7}$ interactions, B3LYP and CASSCF calculations were also performed on the BaN_{7}^{-}anion. The $\mathrm{Ba}-\mathrm{N}$ bond distance is 0.03 (0.05) A shorter in BaN_{7}^{-}than in $\mathrm{CsN}_{7} \mathrm{Ba}$ at the B3LYP (CASSCF) level, respectively, and the N-N distance is virtually unaffected (about $0.002 \AA$ shorter in the anion). The bonding MOs are again one σ, two π, and two δ, as in the neutral species. The $\mathrm{Ba}-\mathrm{N}$ interaction is slightly stronger in the anion than in the neutral molecule, but overall this suggests the hypothesis that $\mathrm{CsN}_{7} \mathrm{Ba}$ is essentially formed by Cs^{+}and BaN_{7}^{-}entities. Given the preferential interaction between Ba , formally in the +2 oxidation state, and N_{7}, we wondered if BaN_{8} could also be stable. This would correspond to Ba^{2+} and the $10 \pi \mathrm{~N}_{8}^{2-}$ ring. This system however is unstable as a local minimum, and presents two imaginary frequencies corresponding to the N_{8} ring bending. BaN_{7}^{-}is isoelectronic with the previously studied LaN_{7} species [7], which has a $\mathrm{La}-\mathrm{N}$ bond of 2.486 A.

Comparative B3LYP calculations were also performed on $\mathrm{Cs}(\mathrm{CH})_{7} \mathrm{Ba}$, isoelectronic to $\mathrm{CsN}_{7} \mathrm{Ba}$, with both the BS1 and BS2 basis sets. The Cs-C and $\mathrm{Ba}-\mathrm{C}$ bond distances are 0.03 and $0.12 \AA$ longer than the $\mathrm{Cs}-\mathrm{N}$ and $\mathrm{Ba}-\mathrm{N}$ bond distances in $\mathrm{CsN}_{7} \mathrm{Ba}$ respectively.

The harmonic frequencies of the $M \mathrm{~N}_{7} M^{\prime}$ species, obtained with the largest basis sets of each series, are reported together with their IR intensities in Table 5. For comparison the frequencies of BaN_{7}^{-}and N_{7}^{3-} are also reported. The isolated N_{7}^{3-} anion is however unlikely to exist (the calculated electron affinity of N_{7}^{2-} has a negative value of -10.31 eV). All frequencies are

Table 5. B3LYP harmonic frequencies $\left(\mathrm{cm}^{-1}\right)$ and their IR intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$ in parentheses for $\mathrm{KN}_{7} \mathrm{Ca}, \mathrm{SrN}_{7} \mathrm{Rb}, \mathrm{CsN} \mathrm{Na}_{7} \mathrm{Ba}, \mathrm{BaN}{ }_{7}^{-}$, and N_{7}^{3-} obtained with the largest basis sets in each case

Normal mode	$\mathrm{KN}_{7} \mathrm{Ca} \mathrm{BS} 5$	$\mathrm{RbN}_{7} \mathrm{Sr} \mathrm{BS} 4$	$\mathrm{CsN}_{7} \mathrm{Ba} \mathrm{BS} 4$	$\mathrm{BaN}_{7}^{-} \mathrm{BSI}$	$\mathrm{N}_{7}^{3-} 6-31 \mathrm{~g}^{*}$
$v_{1}(e) M-\mathrm{N}_{7}$	104.5 (25)	90.1 (28)	76.6 (26)		
$v_{2}(a) M-\mathrm{N}_{7}$ stretch	196.7 (39)	138.9 (15)	114.8 (13)		
$v_{3}(e) M^{\prime}-\mathrm{N}_{7}$ bend	263.5 (6)	225.9 (5)	205.2 (4)	211.9 (9)	
$v_{4}(e) \mathrm{N}_{7}$ out of plane bend	385.0 (0)	312.0 (134)	406.8 (0)	390.8 (0)	324.2 (0)
$v_{5}\left(\right.$ a) $M^{\prime}-\mathrm{N}_{7}$ stretch	390.0 (148)	394.0 (0)	287.7 (148)	289.7 (51)	
$v_{6}(e) \mathrm{N}_{7}$ out of plane bend	426.9 (0)	429.7 (0)	432.2 (0)	428.8 (0)	475.0 (0)
$v_{7}(e) \mathrm{N}_{7}$ out of plane bend	459.7 (0)	479.5 (0)	474.0 (0)	484.7 (0)	504.7 (0)
$v_{8}($ a $) \mathrm{N}_{7}$ in plane breathing	763.2 (5)	767.7 (3)	771.5 (3)	778.3 (4)	769.6 (0)
$v_{9}(e) \mathrm{N}_{7}$ in plane asymmetric stretch	894.4 (0)	913.3 (0)	925.9 (0)	937.3 (0)	934.2 (0)
$v_{10}(e) \mathrm{N}_{7}$ in plane deformation	887.8 (89)	898.9 (79)	901.7 (74)	909.5 (88)	892.2 (134)
$v_{11}(e) \mathrm{N}_{7}$ in plane asymmetric deformation	973.2 (0)	986.4 (0)	984.7 (0)	987.8 (0)	1063.4 (0)
$v_{12}(e) \mathrm{N}_{7}$ in plane asymmetric deformation	1178.2 (0)	1204.7 (0)	1206.4 (0)	1200.2 (0)	1316.9 (0)

real. The same also holds when smaller basis sets are used. The lowest three modes, v_{1}, v_{2}, v_{3}, together with v_{5}, corresponding to some $M-\mathrm{N}_{7}$ and $M^{\prime}-\mathrm{N}_{7}$ motions have nonzero IR intensity. The N_{7} ring modes v_{4} and $v_{6}-v_{12}$ all have zero intensity, with the exception of v_{10}. The correspondence between the N_{7} ring modes in the bare ring and in the metal-ring complexes is rather straightforward. The modes of BaN_{7}^{-}are virtually unaffected by the presence of Cs^{+}in $\mathrm{CsN}_{7} \mathrm{Ba}$.

The partial charges on the $M, \mathrm{~N}_{7}$, and M^{\prime} moieties, obtained by a Mulliken population analysis, are reported in Table 6. Formally they correspond to M^{+}, N_{7}^{3-}, and M^{12+}. With BS1 K and Rb have a partial charge of about +0.85 , while Cs has a partial charge of +0.90 , which is closer to the formal value of +1 . With BS 2 the partial charges on Rb and Cs become +0.80 and +0.77 , respectively. Among the group 2 metal, Ba has the smallest partial charge of all, +1.12 , instead of the formal value of +2 . This combination of the Cs and Ba charges confirms that in $\mathrm{CsN}_{7} \mathrm{Ba}$, preferential interaction occurs between N_{7} and Ba , while Cs is an isolated moiety with more pronounced ionic character, as suggested by the MOs analysis. The partial positive charge on Ba decreases by about 0.2 in the BaN_{7}^{-}anion. The total dipole moments for the neutral species are also reported. $\mathrm{KN}_{7} \mathrm{Ca}$ has the largest dipole moment of all, with a value of 2.77 D .

The d character of the heavier $M \mathrm{~N}_{7} M^{\prime}$ systems at the Mulliken level is summarized in Fig. 2. An increase of the d character occurs along the group 1 and group 2

Table 6. Partial charges on $M, \mathrm{~N}_{7}$, and M^{\prime} and total dipole moment (debye)

$M \mathrm{~N}_{7} M^{\prime}$	δ_{M}	$\delta_{\mathrm{N}_{7}}$	$\delta_{M^{\prime}}$	Dipole
$\mathrm{KN}_{7} \mathrm{Ca}$ BS1	+0.85	-2.10	+1.25	2.77
$\mathrm{KN}_{7} \mathrm{Ca}$ BS5	+0.59	-1.64	+1.05	0.28
$\mathrm{RbN}_{7} \mathrm{Sr}$ BS1	+0.86	-2.02	+1.16	1.00
$\mathrm{RbN}_{7} \mathrm{Sr}$ BS2	+0.80	-1.96	+1.16	0.47
$\mathrm{RbN}_{7} \mathrm{Sr}$ BS4	+0.62	-1.56	+0.93	1.06
$\mathrm{CsN}_{7} \mathrm{Ba}$ BS1	+0.90	-2.02	+1.12	1.49
$\mathrm{CsN}_{7} \mathrm{Ba}$ BS2	+0.77	-1.90	+1.13	1.33
$\mathrm{CsN}_{7} \mathrm{Ba}$ BS4	+0.71	-1.62	+0.91	1.72
$\mathrm{BaN}_{7} \mathrm{Ba}+\mathrm{BS} 1$	+1.40	-2.80	+1.40	
$\mathrm{BaN}_{7}^{-} \mathrm{BS} 1$		-1.81	+0.81	

series. For the heaviest species, $\mathrm{CsN}_{7} \mathrm{Ba}$, the alkali-metal d character rises to about half of that of the alkalineearth metal. If the Cs d functions were omitted, the Cs-N bond length would increase from 3.104 to 3.208 A at the DFT level.

A possible dissociation mechanism was investigated for the three molecules, in analogy with what was previously done for ScN_{7} [7], by considering the opening of the N_{7} ring and finding a transition state (TS) (Fig. 6). The TS for $\mathrm{KN}_{7} \mathrm{Ca}$ occurs when the $\mathrm{N}-\mathrm{N}$ bond opens to $2.51 \AA$, and lies $14.8 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the local minimum. The TS for $\mathrm{RbN} \mathrm{N}_{7} \mathrm{Sr}$ has an open $\mathrm{N}-\mathrm{N}$ bond of $2.30 \AA$ and it lies $28.4 \mathrm{kcal} / \mathrm{mol}$ above the local minimum. The TS for $\mathrm{CsN}_{7} \mathrm{Ba}$ has an open $\mathrm{N}-\mathrm{N}$ bond of $2.45 \AA$ and it lies $34.5 \mathrm{kcal} / \mathrm{mol}$ above the local minimum. For ScN_{7} the analogous energy barrier is $20 \mathrm{kcal} / \mathrm{mol}$, and the TS occurs when the $\mathrm{N}-\mathrm{N}$ bond opens to 2.10 A. With BS2 the TS for $\mathrm{CsN}_{7} \mathrm{Ba}$ has an open $\mathrm{N}-\mathrm{N}$ bond of $2.40 \AA$ and lies $33.3 \mathrm{kcal} / \mathrm{mol}$ above the local minimum. All these values for the barriers are zero-point-energy corrected.

The formation/dissociation of these $M \mathrm{~N}_{7} M^{\prime}$ molecules is likely to occur stepwise. By following the opening

Fig. 6. The calculated structure of the transition state of $\mathrm{CsN}_{7} \mathrm{Ba}$. The other $M \mathrm{~N}_{7} M^{\prime}$ transition states have similar structures
of the $\mathrm{N}-\mathrm{N}$ bond in $\mathrm{CsN}_{7} \mathrm{Ba}$ with the BS 1 basis set, it seems that $\mathrm{CsN}_{7} \mathrm{Ba}$ can either dissociate to $\mathrm{CsNBa}+3 \mathrm{~N}_{2}$ (reaction A), or to $\mathrm{BaN}_{2}+\mathrm{CsN}_{3}+\mathrm{N}_{2}$ (reaction B). The products of reaction A lie $66.9 \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathrm{CsN}_{7} \mathrm{Ba}$, or $22.3 \mathrm{kcal} / \mathrm{mol}$ per N_{2} molecule. The products of reaction B lie $22.7 \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathrm{CsN}_{7} \mathrm{Ba}$, which, per N_{2} molecule, is the same amount of energy as reaction A. The existence of CsNBa has just been predicted by us [3] with a $\mathrm{Cs}-\mathrm{N}$ and $\mathrm{Ba}-\mathrm{N}$ bond distance of 2.827 and $2.051 \AA$ respectively, at the B3LYP level, while BaN_{2} has been prepared in a crystal by Vajenine et al. [31]. We performed B3LYP calculations on BaN_{2} which turned out to be stable as a linear molecule (BaNN), with all real frequencies (lowest mode of $=158 \mathrm{~cm}^{-1}$) and $\mathrm{a}_{\circ} \mathrm{N}-\mathrm{N}$ and $\mathrm{Ba}-\mathrm{N}$ bond distances of 1.147 and $2.545 \AA$ respectively.

The analogous products of reaction A for $\mathrm{KN}_{7} \mathrm{Ca}$ lie $63.5 \mathrm{kcal} / \mathrm{mol}$ lower in energy ($21.2 \mathrm{kcal} / \mathrm{mol}$ per N_{2} molecule) than $\mathrm{KN}_{7} \mathrm{Ca}$, and those for $\mathrm{SrN}_{7} \mathrm{Rb}$ are $64.5 \mathrm{kcal} / \mathrm{mol}$ lower ($21.5 \mathrm{kcal} / \mathrm{mol}$ per N_{2} molecule). It thus seems that the three molecules have similar reactivity, even if the dissociation reaction presumably starts with more difficulties in $\mathrm{CsN}_{7} \mathrm{Ba}$ than in the other species, because of the much higher activation barrier.

5 Conclusions ${ }^{1}$

We presented the results of a study on some complexes with general formula $M \mathrm{~N}_{7} M^{\prime}$, where M is an alkaline metal ($\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) and M^{\prime} is an alkaline-earth metal ($\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$). These compounds are $C_{7 v}$ local minima, and are characterized by preferential $\mathrm{N}_{7}-M^{\prime}$ interactions. This is mainly enhanced in the system containing Cs and Ba in which a quintuple bond occurs between Ba and N_{7}. One σ, two π, and two δ) bonding MOs are identifiable, with a substantial $5 d$ Ba character in the δ bonds. Along the group 1 and group 2 series an increase of d character is identifiable.
$\mathrm{CsN}_{7} \mathrm{Ba}$ is also the most stable of all. It presents a barrier to dissociation of $35 \mathrm{kcal} / \mathrm{mol}$, corresponding to the breaking of a $\mathrm{N}-\mathrm{N}$ bond in the N_{7} ring, and lies only $67 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{CsNBa}+3 \mathrm{~N}_{2}$, or $22 \mathrm{kcal} /(\mathrm{mol} \mathrm{N} 2)$. $\mathrm{CsN}_{7} \mathrm{Ba}$ also lies $23 \mathrm{kcal} /\left(\mathrm{mol} \mathrm{N}_{2}\right)$ above $\mathrm{BaN}_{2}+$ $\mathrm{CsN}_{3}+\mathrm{N}_{2}$. This study suggests possible ways of forming mixed metal-polynitrogen compounds, by reacting new species such as CsNBa and BaN_{2} with N_{2}. These compounds will, however, be highly endothermic and it may be difficult to prepare them experimentally. An extension of $\mathrm{CsN}_{7} \mathrm{Ba}$ chemistry from a single molecule to the solid state could be considered and the question could be raised whether in molecular or solid $\mathrm{CsN}_{7} \mathrm{Ba}$ separate Cs and BaN_{7} can still be distinguished.

[^2]Acknowledgements. This contribution was written in honor of B.O. Roos. The authors thank him for a long and lasting friendship and for inspiring so deeply the scientific career of L. G. This work was partially supported by Ministero dell'Universitáe della Ricerca Scientifica and The Academy of Finland.

References

1. Shannon RD, Prewitt CT (1969) Acta Crystallogr Sect B 25: 925
2. Pyykkö P (1979) J Chem Soc Faraday Trans II 75: 1256
3. Gagliardi L (2002) J Am Chem Soc 124: 8757
4. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed Engl 38: 2004
5. Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123: 6308
6. Kroke E (2002) Angew Chem Int Ed Engl 41: 77
7. Gagliardi L, Pyykkö P (2001) J Am Chem Soc 123: 9700
8. Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Chem Eur J 7: 4155
9. Burke LA, Butler RN, Stephens JC (2001) J Chem Soc Perkin Trans 29: 1679
10. Gagliardi L, Pyykkö P (2002) J Phys Chem A 106: 4690
11. Kaupp M (2001) Angew Chem Int Ed Engl 40: 3535
12. Pyykkö P, Snijders JG, Baerends EJ (1981) Chem Phys Lett 83: 432
13. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand, New York
14. Langhoff SR, Bauschlicher CW, Partridge H (1986) J Chem Phys 84: 4474
15. Fuentealba P, Savin A (2000) J Chem Phys A 104: 10882
16. Hüssermann S, Simak SI (2001) Phys Rev B 64: 245114
17. Konigstein M, Sokol AA, Catlow CRA (1999) Phys Rev B 60: 4594
18. McMahon MI, Nelmes RJ, Rekhi S (2001) Phys Rev Lett 87: 255502
19. McMahon MI, Bovornratanaraks T, Allan DR, Belmonte SA, Nelmes RJ (2000) Phys Rev B 61: 3135
20. Hasegawa A, Watabe M (1977) J Phys F Met Phys 7: 75
21. Schön JC, Wevers MAC, Jansen M (2001) J Mater Chem 11: 69
22. Gregory DH (2001) Coord Chem Rev 215: 301
23. Sockwell SC, Hanusa TP (1990) Inorg Chem 29: 76
24. Lindsay VE (1995) In Abel EW, Stone FGA, Wilkinson G (eds) Comprehensive organometallic chemistry II, vol 1. Pergamon, Oxford
25. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77: 123
26. Institut für Theoretische Chemie, Universität Stuttgart ECPs and corresponding valence basis sets. http://www.theo-chem.uni-stuttgart.de/
27. Huzinaga S (ed) (1995) Gaussian basis sets for molecular calculations physical sciences data 16. Elsevier, Amsterdam
28. Roos BO (1987) In: Lawley KP (ed) Advances in chemical physics; ab initio methods in quantum chemistry - II Wiley, Chichester, UK, p 399
29. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chim Acta 90: 87
30. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Cossi M, Fleig T, Fülscher MP, Gagliardi L, de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist P A, Neogrády P, Olsen J, Roos BO, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thorsteinsson T, Veryazov V, Wierzbowska M, Widmark PO (2001) MOLCAS version 5.2. Department of Theoretical Chemistry, University of Lund, Lund, Sweden
31. Vajenine GV, Auffermann G, Prots Y, Schnelle W, Kremer RK, Simon A, Kniep R (2001) Inorg Chem 40: 4866
32. Sitzmann H, Walter MD, Wolmershäuser G (2002) Angew Chem Int Ed Engl 41: 2315
33. Pyykkö P (1988) Chem Rev 88: 563

[^0]: Contribution to the Björn Honorary Issue
 Correspondence to: Laura Gagliardi
 e-mail: laurag@ciam.unibo.it

[^1]: ${ }^{\text {a }}$ From Ref. [3]
 ${ }^{\text {b }}$ From Ref. [13]

[^2]: ${ }^{1}$ After the original submission of this paper, Sitzmann et al. [32] reported the new compound ${ }^{4} \mathrm{CpBaCotBa}{ }^{4} \mathrm{Cp}\left({ }^{4} \mathrm{Cp}=\mathrm{CH}\right.$ $(\mathrm{CHMe})_{4}, \mathrm{Cot}=$ cyclooctatetraene $)$ with a very short $\mathrm{Ba}-\mathrm{C}$ bond of 240 pm between a barium atom and the centroid of Cot. That independent experimental observation may be due to very similar bonding mechanisms as the present short bonds between Ba and the N_{7}^{3-} ring, and thereby provides indirect experimental support for our predictions

