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a b s t r a c t

We solve numerically the cessation of axisymmetric Poiseuille flow of a Herschel–Bulkley fluid under the

assumption that slip occurs along the wall. The Papanastasiou regularization of the constitutive equation

is employed. As for the slip equation, a power-law expression is used to relate the wall shear stress to the

slip velocity, assuming that slip occurs only above a critical wall shear stress, known as the slip yield

stress. It is shown that, when the latter is zero, the fluid slips at all times, the velocity becomes and

remains uniform before complete cessation, and the stopping time is finite only when the slip exponent

s < 1. In the case of Navier slip (s = 1), the stopping time is infinite for any non-zero Bingham number and

the volumetric flow rate decays exponentially. When s > 1, the decay is much slower. Analytical expres-

sions of the decay of the flat velocity for any value of s and of the stopping time for s < 1 are also derived.

Using a discontinuous slip equation with slip yield stress poses numerical difficulties even in one dimen-

sional time-dependent flows, since the transition times from slip to no-slip and vice versa are not known

a priori. This difficulty is overcome by regularizing the slip equation. The numerical results showed that

when the slip yield stress is non-zero, slip ceases at a finite critical time, the velocity becomes flat only in

complete cessation, and the stopping times are finite, in agreement with theoretical estimates.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

If the pressure gradient applied in fully-developed Newtonian

Poiseuille flow with no-slip at the wall is suddenly set to zero, the

velocity decays to zero exponentially, i.e. the theoretical stopping

time is infinite (see, e.g., Ref. [1]). This is not the case for viscoplastic

or yield-stress materials [2,3], i.e. materials displaying fluid-like

behavior only above a critical stress value, the yield stress s0, and so-

lid-like one otherwise. Viscoplastic behavior is exhibited by many

structured fluids, such as concentrated suspensions, emulsions, col-

loidal gels, drilling fluids in petroleum industry, nanocomposites,

pastes, cement, granular materials, foodstuffs, and foams [4–6].

The simplest viscoplastic constitutive equation is that of Bing-

ham fluids. In incompressible flow, the stress tensor s is given by

_c ¼ 0; s 6 s0

s ¼ s0
_c þ l

� �

_c sP s0

(

ð1Þ

where l is the plastic viscosity,

_c � ruþ ðruÞT ð2Þ

is the rate of strain tensor, u is the velocity vector, and the super-

script T denotes the transpose. The magnitudes of _c and s, denoted

respectively by _c and s, are defined by

_c �
ffiffiffiffiffiffiffiffiffi

1

2
II _c

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
_c : _c

r

and s �
ffiffiffiffiffiffiffiffiffi

1

2
IIs

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
s : s

r

ð3Þ

where the symbol II stands for the second invariant of a tensor. The

Newtonian fluid is recovered by setting s0 = 0. The Herschel–Bulk-

ley model is the immediate generalization of the Bingham model:

_c ¼ 0; s 6 s0

s ¼ s0
_c þ k _cn�1

� �

_c sP s0

(

ð4Þ

where k is the consistency index and n is the power-law exponent.

The power-law fluid and the Bingham plastic are special cases of the

Herschel–Bulkley fluid, recovered by setting s0 = 0 and n = 1,

respectively.

In any flow of a yield-stress fluid, determination of the yielded

(sP s0) and unyielded (s 6 s0) regions in the flow field is required,

which is not an easy task, especially in two- and three-dimensional

problems. To overcome this difficulty several regularized models

have been proposed. The most popular regularization in the litera-

ture is that proposed by Papanastasiou [7]. The Papanastasiou-reg-

ularized version of the Herschel–Bulkley model is:

s ¼ s0½1� expð�m _cÞ�
_c

þ k _cn�1

� �

_c ð5Þ

wherem is a stress growth exponent. For sufficiently large values of

the regularization parameter m, the Papanastasiou model provides

a satisfactory approximation of the Herschel–Bulkley model, while

at the same time the need of determining the yielded and the
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unyielded regions is eliminated. The model has been used with

great success in solving various steady and time-dependent flows

(see, for example, [8,9] and references therein). Regularization

methods may be convenient for engineering calculations of visco-

plastic flows, but may fail to describe certain viscoplastic effects

and to accurately determine the yield surfaces separating yielded

and unyielded regions [10,11]. A better suited alternative is the aug-

mented Lagrangian method (ALM) with an Uzawa-like iteration

[12,13]. A critical review of numerical simulations of viscoplastic

flow is that of Dean et al. [14].

Theoretical upper bounds of the stopping time of Poiseuille and

Couette flows of Bingham plastics have been derived in the case of

no wall slip [2,3]. These bounds depend on the density, the plastic

viscosity, the yield stress, and the leading eigenvalue of the sec-

ond-order linear differential operator for the interval under consid-

eration. Also, Huilgol [15] obtained upper bounds of the stopping

times in cessation of axisymmetric Poiseuille flows for more gen-

eral viscoplastic models. These asymptotic bounds are sharp as

confirmed by numerical simulations. Chatzimina et al. [10,16] car-

ried out finite element calculations with the regularized Papanas-

tasiou model for Couette and Poiseuille flows of Bingham

plastics. The numerical simulations showed in particular that the

decay of the volumetric flow rate, which is exponential in the New-

tonian case, is accelerated and eventually becomes linear as the

yield stress is increased. Zhu and De Kee [17] solved numerically

the cessation of plane Couette flow of a regularized yield-stress

fluid exhibiting shear thinning and found that the shear thinning

parameter increases the stopping time at low and moderate Bing-

ham numbers and has no effect at high ones. Muravleva et al.

[12,13] used the augmented Lagrangian method to solve cessation

Poiseuille and circular Couette flows. Their results showed that in

certain cases the Lagrangian method gives better results that the

regularization method, i.e. for the location of the yield surface

and the stopping time at low Bingham numbers.

Viscoplastic materials, such as polymeric solutions, suspen-

sions, and gels, are known to exhibit wall slip [18–20]. Denn [21]

also noted that wall slip in pasty materials appears within a range

of small strains in contrast to the case of polymer melts where slip

is observed at large rates of strains. Kalyon [22] analyzed the

apparent slip flows of Herschel–Bulkley fluids in various geome-

tries assuming that the apparent slip layer consists solely of the

binder and its thickness is independent of the flow rate and the

nature of the flow mechanism. He also concluded that the slip

(or sliding) velocity, uw, defined as the relative velocity of the fluid

with respect to that of the wall, is related to the wall shear stress,

sw, by a slip equation of the form

sw ¼ bus
w ð6Þ

where b is the slip coefficient and s is the power-law index of the

binder [22]. In the case of Newtonian binders, s = 1 and the classical

Navier slip condition [23] is recovered. In the case of binders exhib-

iting a power-law type shear viscosity, s– 1. It should also be noted

that Eq. (6) is a static slip model. Both static and dynamic slip mod-

els are discussed by Hatzikiriakos [24]. The slip coefficient depends

on the temperature, the normal stress, molecular parameters and

on the properties of the fluid/wall interface [21,24]. In the case of

fluids with zero yield-stress, the no-slip and plug-flow limiting

cases are recovered when b?1 and b = 0, respectively. As demon-

strated in [25], in the case of yield-stress fluids there is a lower non-

zero bound for b at which plug flow is achieved.

In the past thirty years, the power-law slip Eq. (6) has been

widely employed by several investigators working on various fluid

systems, e.g. by Cohen and Metzner [26], who studied experimen-

tally the occurrence of slip in aqueous and organic polymer

solutions, and by Jiang et al. [27] to describe the slip exhibited

by gels used in hydraulic fracturing. A power-law relationship

between the slip velocity and the wall shear stress was also pre-

dicted at constant temperature by the theoretical model of Lau

and Schowalter [28], which was based on the concept of junctions

at the wall/polymer interface and in the bulk of the polymer fluid.

Eq. (6) has also been used for highly filled suspensions [18] and for

polyethylene melts [29–31]. A discussion on the validity of Eq. (7)

as well as values of b and s for certain systems are provided by

Yilmazer and Kalyon [18]. More recently, Pérez-González et al.

[32] carried out two-dimensional particle image velocimetry

experiments on a model yield-stress fluid, i.e. a Carbopol gel, which

showed that the slip velocity increases in a power-law way with

the wall shear stress.

The onset of slip is very often associated with a critical shear

stress, called slip yield stress, not only in the case of complex fluids

but also in the case of Newtonian liquids under certain conditions.

For example, Spikes and Granick [33] reported that for water and

tetradecane (which are Newtonian) the slip yield stress may be-

come high for lyophilic wall surfaces. Much earlier, it had been

well established that complex fluids, such as polymer melts,

pastes, and colloidal suspensions, exhibit macroscopic slip above

a critical shear stress [21,34–37]. Nevertheless, according to the

slip theory of Brochard-Wyart and de Gennes [38] polymer melts

slip no matter how small are the applied shear stresses.

In the present work, a generalized slip model is employed of the

form

uw ¼ 0; sw 6 sc
sw ¼ sc þ bus

w; sw > sc

�

ð7Þ

where sc is the slip yield stress, which is also called sliding or inter-

facial or apparent yield stress or friction stress [39]. The above

equation, which looks very much like the Herschel–Bulkley plastic

constitutive equation, can be viewed as a restricted Coulomb-type

friction condition. The term slip ‘‘yield stress’’ was introduced by

Durbin [40] in order to alleviate the singularity at a moving contact

line. He applied this boundary condition to the flow of a slender

Newtonian drop rolling down an incline, concluding that the length

of the slip region is a property of the fluid flow. Nevertheless, it

should also be noted that the proposed slip model was not discon-

tinuous but smooth (regularized) [40]. Le Roux and Tani [41] refer

to slip equations involving slip yield stress as ‘‘threshold’’ slip equa-

tions while Piau [42] calls them ‘‘friction relations’’. Roquet and

Saramito [43] also used the term ‘‘yield-force’’ for this critical value.

The linear version of Eq. (7), obtained by setting s = 1, was first

used by Fortin et al. [44] to describe the experimental data of

Ramamurthy [34] on a LLDPE in a capillary tube. They calculated

sc to be 0.0719 MPa. In their sliding-plate experiments on high

density polyethylenes, Hatzikiriakos and Dealy [36] used the fol-

lowing simplified (but discontinuous) variant of Eq. (7)

uw ¼ 0; sw 6 sc
sw ¼ bus

w; sw > sc

�

ð8Þ

The critical wall shear stress for the onset of slip was found to be

0.09 MPa in both steady and transient experiments. This critical va-

lue was reduced to 0.025 MPa when the wall was treated with a

certain fluorocarbon but remained unchanged when another fluoro-

carbon was used. In capillary flow experiments with metallocene

polyethylenes, Hatzikiriakos and Kazatchkov [45] found that slip

appears for wall shear stresses in the range 0.05–0.1 MPa while Kal-

yon and Gevgilili [37] measured the slip yield stresses of PDMS and

a HDPE to be 0.073 MPa and 0.22 MPa, respectively, and indepen-

dent of temperature.

The yield stress values reported for other materials, such as

Carbopol gels, microgel pastes and some Newtonian fluids are

much smaller than those of polymer melts. Piau [42] used Eq. (7)

to fit experimental data on Carbopol dispersions at various
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concentrations for different wall materials. The values of sc for

these viscoplastic fluids ranged from 0.2 to 33 Pa while s ranged

from about 0.3 to unity. Piau [42] noted that increasing surface

roughness tends to increase the slip yield stress at very low slip

velocities and the exponent s at high slip velocities. Moreover, s

is close to unity for the smoothest surfaces and in the range

0.37–0.5 for some rougher surfaces. From their experimental data

on microgel pastes, Seth et al. [46] calculated sc in the range

1.25–5.5 Pa and s in the range 0.5–0.65. The linear version of Eq.

(7) was also proposed by Spikes and Granick [33] for Newtonian

flow. In their model, slip was assumed to occur only if the wall

shear stress exceeds sc and once slip occurs it takes place at a con-

stant slip length. Their work showed that sc is quite small, in the

0.1–2 Pa range for the lyophobic surfaces examined and about

6 Pa for a lyophilic surface. Choo et al. [47] demonstrated that this

model can explain data from different experiments on Newtonian

fluids. The same expression (with s = 1) was employed by Ballesta

et al. [20,48] in their experimental study of hard-sphere colloidal

suspensions. The latter authors noted that the term buw is a hydro-

dynamic term reflecting the lubrication between the first layer of

colloids at the wall.

Hatzikiriakos [49] also adapted Eyring’s theory of liquid viscos-

ity to polymer molecules at a solid interface and derived a model

which gives the slip velocity as a function of the wall shear stress,

the temperature, and molecular parameters. This can be written in

the following simplified form

uw ¼
0; sw 6 sc

uðTÞ sinh E
RT

sw
sc
� 1

� �h i

; sw > sc

(

ð9Þ

where T is temperature, R is the molar gas constant, and E repre-

sents the minimum amount of energy that the shear stress at the

interface has to overcome for slip to occur. The non-monotonic slip

equations proposed by Piau and El Kissi [50] for highly entangled

polymers and by Leonov [51] for elastomers also include a critical

stress threshold below which no slip occurs. Tang and Kalyon

[52,53] used a sophisticated slip equation with slip yield stress for

their analysis of flow instabilities of polymeric fluids and suspen-

sions. In the present notation this can be written as follows:

uw ¼ 1

2b
s1=sw ½1þ tanhðaðsw � scÞÞ� ð10Þ

where b and s are the slip coefficient and the slip exponent of the

polymeric binder and a is a positive constant (typically 1-20)

describing the sharpness of the weak-to-strong slip transition at

sw = sc. It should be noted that Eq. (10) yields a (practically) zero

slip velocity for sw < sc, i.e. there is no need to specify the no-slip

boundary condition for sw < sc.’’
In a pioneering paper, Pearson and Petrie [54] proposed the lin-

ear version of Eq. (7) for a Bingham fluid, assuming that sc = s0. In
general, however, the slip yield stress sc may be smaller or greater

than the bulk yield stress s0 depending on the material (affecting

both sc and s0) and the fluid/wall interface (affecting only sc). Kal-
yon [22] pointed out that wall slip is inevitable during the flow of

viscoplastic fluids under stress magnitudes that are smaller than

their yield stress values, i.e. sc < s0. This was also the case with

the experiments of Pérez-González et al. [32] on a Carbopol gel.

According to Métivier and Magnin [55], experiments on certain

concentrated dispersions show that sc is smaller than s0. However,

this is not true with other systems, e.g. for hard-sphere colloidal

suspensions in which scP s0 [20,48]. It should also be mentioned

here that certain classes of materials exhibit slip only at low shear

stresses, i.e. the slip they exhibit is negligible beyond a critical

shear stress. In their review paper, Nguyen and Boger [4] reported

that slip is reduced or disappears after yielding. This was also the

case with a foam and a model concentrated emulsion used by

Bertola et al. [5] in a series of rheometrical tests. Meeker et al.

[56] reported experimental results on microgel pastes and concen-

trated suspensions showing that slip is negligible compared to the

bulk flow, well above the yield stress. These authors noted that slip

prevails at and below the yield stress with the bulk flow being neg-

ligible; at and just above the yield stress both slip and bulk flows

are important. In the experiments of Piau [42] on Carbopol disper-

sions at different concentrations and wall materials, the calculated

values of sc were always much (and very often one or two magni-

tudes) smaller than those of s0.
Seth et al. [46] also reported that the slip yield stress is much

lower (about an order of magnitude) than s0 in the case of concen-

trated suspensions of soft deformable particles, e.g. polymer

microgel pastes and compressed emulsions. They also noted that,

when the fluid/wall interactions are attractive, slip yield stress is

comparable to the bulk yield stress and the slip velocity increases

with the square of the stress (i.e. s � 0.5) according to data ob-

tained mostly in the plug flow region (sw < s0). In the repulsive

case, however, the slip yield stress is very low (compared to the

bulk yield stress) and the slip velocity is proportional to the applied

stress (i.e., s � 1).

Le Roux and Tani [41] established the wellposedness of steady-

state Navier–Stokes equations in bounded domains for the case of

boundary conditions with slip yield stress. They also proved the

uniqueness of the solution and its continuous dependence on the

data. Huilgol [57] extended the variational principles for the

Poiseuille flow of a yield stress fluid to include wall slip described

by Eq. (7). Analytical solutions of steady both Newtonian and non-

Newtonian flows with wall slip following Eq. (7) have also been re-

ported. Fortin et al. [44] considered briefly the steady-state Poiseu-

ille flow of a Bingham plastic and obtained analytical as well as

numerical solutions with the augmented Lagrangian method.

Métivier and Magnin [55] investigated the effect of wall slip on

the stability of the Rayleigh-Bénard plane Poiseuille flow of Bing-

ham plastics (with non-zero slip yield stress). Ballesta et al. [20]

derived steady-state solutions for the flow of concentrated colloi-

dal suspensions obeying the Herschel–Bulkley model in a cone-

plate geometry. Spikes [58] and, more recently, Tauviqirrahman

et al. [59] employed a slip model with slip yield stress to modify

the (Newtonian) Reynolds equation in their studies of lubricated

parallel sliding contacts.

Analytical steady-state solutions of various Newtonian Poiseu-

ille flows in one- and two-dimensions, including tubes of rectangu-

lar [60] and triangular [61] cross-sections have also been reported

recently. In one-dimensional flows slip occurs only if the imposed

pressure gradient exceeds a critical value. In two-dimensional

flows, it is easily seen that slip is triggered in the middle of bound-

ary segments at a critical value of the imposed pressure gradient

and may spread everywhere in that segment above a second criti-

cal value of the pressure gradient. More recently, Kaoullas and

Georgiou [62] derived solutions for various start-up Newtonian

Poiseuille flows noting that the classical start-up, no-slip solution

holds if the imposed pressure gradient is below the critical value.

Otherwise, flow starts without slip up to a critical time at which

sw = sc and slip does occur following the second branch of Eq. (7).

Obviously, in the case of cessation, the opposite phenomenon is

observed: slip occurs only initially up to a critical time such that

sw = sc and then flow ceases without wall slip.

The objectives of the present work are to study the cessation of

the axisymmetric Poiseuille flow of Herschel–Bulkley fluids with

wall slip and to investigate the evolution of yielded/unyielded re-

gions. As already mentioned, solving viscoplastic flows in tubes is

of great importance in food and petroleum industries, in ceramics

and semi-solid materials processing and in concrete pumping. The

regularized version of the constitutive equation is employed in the

numerical calculations. A particular feature of such a flow when

26 Y. Damianou et al. / Journal of Non-Newtonian Fluid Mechanics 203 (2014) 24–37



slip Eq. (7) is used is the transition of the time-dependent flow

from slip to no-slip at a critical time at which sw becomes equal

to sc. Using the discontinuous slip model of Eq. (7) poses

difficulties similar to those resulting from the use of the ideal

Herschel–Bulkley model, given that the time for the above

transition is unknown. To overcome this difficulty we also regular-

ize the slip equation. Hence, in the numerical time-dependent

simulations we use the following regularized version of Eq. (7):

sw ¼ sc½1� expð�mcuwÞ� þ bus
w ð11Þ

where mc is a growth parameter similar to the stress growth expo-

nent of the Papanastasiou equation. For sufficiently large values of

mc, Eq. (11) is a satisfactory approximation of Eq. (7).

Thegoverningequationsarepresentedandnon-dimensionalized

in Section 2. The steady-state solutions corresponding to the slip Eq.

(7) arederived in Section3. Thedifferentflowregimes, dependingon

the value of the imposed gradient and the relative values of s0 and sc,
are identified. It is also shown that in the case of non-uniform flow

with wall slip there is a lower bound for the admissible value of

the slip coefficient which is proportional to (s0 � sc). In Section 4,

the analytical time-dependent solutions in the case of a Newtonian

fluid (s0 = 0, n = 1) and a linear slip equation (s = 1) are derived.

The equation satisfied by the critical time for the slip/no-slip transi-

tion is also derived. An approximate explicit formula is also obtained

for this critical time. In Section 5, numerical time-dependent solu-

tions are presented for a Bingham fluid and various values of the

exponent s. It is shown that if the slip yield stress is zero, the fluid

slips at all times and the velocity becomes flat, i.e. the fluid becomes

fully unyielded, at a finite time bounded by the estimates of Glowin-

ski [2] and Huilgol et al. [3] and remains so thereafter decaying to

zero. Ananalytical expression for thevelocity in this regimehasbeen

obtained. It turns out thatwhen the slip yield stress is zero, the stop-

ping time is infinite for sP 1 and finite for s < 1. The applicability of

the regularized slip Eq. (11) when the slip yield stress is non-zero is

checked and the effect of the growth parameter is investigated. In

this case, the flow stops in a finite time for any value of the power-

law exponent s and the velocity becomes flat only at complete

cessation.

2. Governing equations

We consider the laminar pressure-driven flow of a Herschel–

Bulkley fluid in a tube of radius R, as shown in Fig. 1. Under the

assumptions of unidirectionality and zero gravity, the velocity

uz(r, t) satisfies the continuity equation automatically and the z-

momentum equation for any fluid becomes

q
@uz

@t
¼ � @p

@z
þ 1

r

@

@r
ðrsrzÞ ð12Þ

where q is the density. The constitutive equation of the material is

simplified as follows:

@uz
@r

¼ 0; jsrzj 6 s0

srz ¼ �s0 � k � @uz
@r

� �n
; jsrzjP s0

(

ð13Þ

where srz is the shear stress and uz is the axial velocity.

To non-dimensionalize the governing equations we scale

lengths by the tube radius, R, the velocity by the mean steady-state

velocity, V, the pressure and the stress components by kVn/Rn, and

time by qRn+1/(kVn�1). With these scalings the dimensionless forms

of Eqs. (12) and (13) are as follows:

@uz

@t
¼ Gþ 1

r

@

@r
ðrsrzÞ ð14Þ

and

@uz
@r

¼ 0; jsrzj 6 Bn

srz ¼ �Bn� � @uz
@r

� �n
; jsrzjP Bn

(

ð15Þ

where all variables are now dimensionless (denoted by the same

symbols for simplicity),

Bn � s0R
n

kV
n ð16Þ

is the Bingham number, and G is the dimensionless pressure

gradient.

The dimensionless form of the slip Eq. (7) is

uw ¼ 0; sw 6 Bc

sw ¼ Bc þ Bus
w; sw > Bc

�

ð17Þ

where

B � bRnV s�n

k
ð18Þ

is the usual slip number and

Bc �
scR

n

kV
n ð19Þ

is the slip yield stress number. The no-slip condition corresponds to

B?1. The full-slip limiting case is recovered when B = 0 for a

Newtonian fluid and at a finite value of B for a yield stress fluid,

as discussed below. In the special case sc = s0, the slip yield stress

and the Bingham numbers are identical.

3. Steady-state Herschel–Bulkley flows with slip

The solution of the steady, incompressible Poiseuille flow of a

Herschel–Bulkley fluid in the special case of Navier slip (Bc = 0,

s = 1) has been provided under different forms by Kalyon et al.

[63]. Taking into account the slip yield stress and noting that in

steady-state the dimensionless wall shear stress for any general-

ized Newtonian fluid is sw = G/2, we can identify four different pos-

sibilities depending on the value of the applied pressure gradient,

G, and the relative values of Bc and Bn. These possibilities, also illus-

trated in Fig. 2, are the following:

(i) If G 6min{2Bc, 2Bn}, then no flow occurs. (In this case, the

velocity scale V used for the non-dimensionalization is an

arbitrary, non-zero velocity.)

(ii) If GPmax{2Bc, 2Bn}, then we have non-uniform flow with

wall slip and yielded/unyielded regions in the flow domain.

The dimensionless velocity profile is given by

uzðrÞ ¼ uw þ n

21=nðnþ 1Þ
G1=n ð1� r0Þ1=nþ1; 0 6 r 6 r0

½ð1� r0Þ1=nþ1 � ðr � r0Þ1=nþ1�; r0 6 r 6 1

(

ð20Þ

where

uw ¼ G� 2Bc

2B

	 
1=s

ð21Þ

( )
w w w

uτ τ=

Fig. 1. Axisymmetric Poiseuille flow of a Herschel–Bulkley fluid.
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and

r0 ¼ 2Bn

G
6 1 ð22Þ

is the yield point. The dimensionless pressure-gradient is a solution

of the following equation:

21=n 3nþ 1

n
ð1� uwÞG3 ¼ ðG� 2BnÞ1=nþ1

� G2 þ 4nBn

2nþ 1
Gþ 8n2Bn2

ðnþ 1Þð2nþ 1Þ

" #

ð23Þ

(iii) If 2Bn < G < 2Bc, then the fluid flows without slip (uw = 0)

with distinct yielded and unyielded regions. Eqs. (20) and

(23) still apply.

(iv) Finally, if 2Bc < G < 2Bn, the fluid is unyielded everywhere in

the flow domain, translating with unit velocity as a rigid

body (the motion is entirely due to wall slip).

It is clear that the sequence of the flow regimes as the pressure

gradient is increased is (i)? (iv)? (ii) if Bn > Bc, (i)? (iii)? (ii) if

Bc < Bn, and (i)? (ii) if Bc = Bn. As already mentioned, the existence

of regime (iv) where the flow results solely fromwall slip while the

bulk material remains undeformed is characterized as inevitable

by Kalyon [22]. This regime has been observed directly by means

of nuclear magnetic resonance on different yield-stress materials,

such as tomato sauce, egg white, and concentrated suspensions

(see [5] and references therein). It is also clear how slip may ob-

scure the viscoplastic nature of the material, since the apparent

flow due to slip hides the yield stress behavior [39]. Lindner

et al. [64] noted that the yield stress of a foam they investigated

was revealed only when the boundaries were modified to inhibit

slip. According to Sochi [39], because the local stress in this regime

is below the yield stress except possibly at the boundary region, no

yielding occurs except at a very thin layer adjacent to the surface,

which serves as a lubricating thin film. Other explanations include

the formation of a depleted inhomogeneous layer from the contin-

uum phase where sliding occurs, or through a film which exists on

the wall prior to the experiment or generated from the bulk phase

[4,39]. Purely plug flow profiles in regime (iv) (i.e. before yielding)

have also been observed in the experiments of Seth et al. [46] on

microgel pastes and, more recently, in those of Pérez-González

et al. [32] on a Carbopol gel. These authors also reported that the

slip velocity increases even further after yielding (i.e. in regime

(ii)). These observations, however, disagree with previous works

mostly on concentrated suspensions where the reduction and

almost the disappearance of the slip velocity had been observed

after yielding [4]. Slip in such systems was attributed to the forma-

tion of a liquid film adjacent to the wall acting as a lubricant, the

effect of which is reduced at higher shear stresses or by using tubes

with rough walls [4].

When no-slip is applied, r0 tends to unity asymptotically as Bn

goes to infinity. Otherwise, it is deduced from Eq. (23) that a flat

velocity profile (ux = uw = 1) is attained when G = 2Bn > 2Bc. In the

Newtonian case (Bn = 0), the velocity tends to a plug profile

(ux = uw = 1) in the limit of zero B (perfect slip). Interestingly, with

viscoplastic fluids, the yield distance r0 tends to unity and thus the

velocity tends to become plug as B approaches a finite non-zero

value, Bcrit. From Eqs. (21) and (22) one finds:

Bcrit ¼ Bn� Bc ð24Þ

Hence, for given Bn and Bc, solutions for slip numbers below or

equal to Bcrit are not admissible. Similarly, when B and Bc are

given, there exists a critical upper bound for the Bingham number,

Bncrit = B + Bc, which cannot be exceeded. At Bncrit both the yield

distance and the slip velocity become 1. This implies that the

flow becomes plug at a critical wall shear stress, which is

consistent with experimental observations on highly filled

suspensions [18].

The pressure gradient corresponding to the no-slip case sets an

upper bound Gmax for G. This can be determined from Eq. (23) after

setting uw to zero. From Eq. (21) it is deduced that the upper bound

for the admissible values of Bc is

Bc;max ¼
1

2
Gmax ð25Þ

In the case of a power-law fluid one finds that

uzðrÞ ¼ uw þ 3nþ 1

nþ 1
ð1� uwÞð1� r1=nþ1Þ ð26Þ

and

G ¼ 2 3þ 1

n

	 
n

ð1� uwÞn ð27Þ

where the slip velocity is the solution of

uw ¼ 1

B
3þ 1

n

	 
n

ð1� uwÞn � Bc

� �� �1=s

ð28Þ

Therefore, Bc,max is independent of the slip exponent s:

Bc;max ¼ 3þ 1

n

	 
n

ð29Þ

In the general case, Eq. (28) for uw is solved numerically. In the case

of Newtonian flow with s = 1, one finds that

uw ¼ 4� Bc

Bþ 4
ð30Þ

and

uzðrÞ ¼
4� Bc

Bþ 4
þ 2

Bþ Bc

Bþ 4
ð1� r2Þ ð31Þ

It is clear that Bc,max = 4. Other solutions of (28) for selected val-

ues of n and s are provided in Table 1.

The case of Herschel–Bulkley flow with Navier slip (Bc = 0 and

s = 1) has been discussed in detail by Damianou et al. [25], where,

however, a different definition of the slip number was employed

(A1 in their paper corresponds to 1/(2B)). Here we first consider

Bingham flow (n = 1) with zero slip yield stress (Bc = 0). In such a

case, the pressure gradient G is a root of

24
G

2B

	 
1=s

G3 þ 3G4 � 8ðBnþ 3ÞG3 þ 16Bn4 ¼ 0 ð32Þ

{ }min 2 ,2
c

G B Bn≤

{ }max 2 ,2
c

G B Bn≥

2 2
c

Bn G B< <

2 2
c

B G Bn< <

w
u

w
u

Fig. 2. Different possibilities in Poiseuille flow of a Herschel–Bulkley fluid

depending on the imposed dimensionless pressure gradient, G, and the values of

the slip yield stress number, Bc, and the Bingham number, Bn.
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The effect of the exponent s when Bc is still zero is illustrated in

Figs. 3 and 4, which show velocity profiles for s = 1/2, 1 and 2, n = 1,

various slip numbers, and Bn=0 and 1, respectively. In the latter

case (Bingham flow), the velocity becomes flat at the critical slip

number Bcrit = Bn.

Let us now focus on the special case when Bn = Bc, in which only

the flow regimes (i) and (ii) are possible. In other words, slip and

deformation occur simultaneously and there are no bounds for

the slip and Bingham numbers. For simplicity, we restrict ourselves

to the Bingham-plastic case (n = 1), in which the dimensionless

pressure gradient G is a root of

24
G� 2Bn

2B

	 
1=s

G3 þ 3G4 � 8ðBnþ 3ÞG3 þ 16Bn4 ¼ 0 ð33Þ

Table 1

Dimensionless pressure gradient and slip velocity for a power-law fluid for different

values of the exponents n and s.

n s Pressure gradient Slip velocity

1 1 G ¼ 8ðBþBc Þ
Bþ4

uw ¼ 4�Bc
Bþ4

2 G = 8(1 � uw) uw ¼ 2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B
4 ð4� BcÞ

q

� 1
� �

1/2
uw ¼ 1

64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ 16ð4� BcÞ
q

� B

	 
2

1/2 1 G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20ð1� uwÞ
p

uw ¼ �ð2BBcþ5Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2BBcþ5Þ2þ4B2ð5�B2
c Þ

p
2B2

1/2
uw ¼ �2BBcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4B2B2cþ4ðB2þ5Þð5�B2
c Þ

p
 �2

4ðB2þ5Þ2

2 1 G ¼ 49
2 ð1� uwÞ2 uw ¼ 1þ 2B

49

� �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1�4Bc
49

1þ2B
49ð Þ2

r
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Fig. 3. Steady velocity profiles in axisymmetric Poiseuille flow of a Newtonian fluid

(Bn = 0) with zero slip yield stress (Bc = 0) and different values of the slip number:

(a) s = 0.5; (b) s = 1; and (c) s = 2.
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Fig. 4. Steady velocity profiles in axisymmetric Poiseuille flow of a Bingham plastic

(Bn = 1) with zero slip yield stress (Bc = 0) and different values of the slip number:

(a) s = 0.5; (b) s = 1; and (c) s = 2.
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The results for Bn = Bc = 0 are those shown in Fig. 3 (Newtonian

flow with zero slip yield stress). The effect of the exponent s for

Bn = Bc = 1 is illustrated in Fig. 5. Comparing these results to those

of Fig. 4 (zero Bc) we observe that similar changes in the velocity

profile are observed at lower values of B and the critical value of

the slip number for the velocity to become flat is Bcrit = 0.

4. Cessation of Newtonian flow with non-zero slip yield stress

Consider the cessation of Newtonian flow with non-zero slip

yield stress in the special case that s = 1, so that the problem is

amenable to analytical solution. The dimensionless z-momentum

equation takes the form

@uz

@t
¼ Gþ @2uz

@r2
þ 1

r

@uz

@r
ð34Þ

The wall boundary condition may be written as follows:

uw ¼
0; sw 6 Bc

1
B
ðsw � BcÞ; sw > Bc

(

ð35Þ

where

sw ¼ �@uz

@r

�

�

�

�

r¼1

ð36Þ

The steady-state velocity is thus given by

uzðrÞ ¼
2ð1� r2Þ; G 6 2Bc

4�Bc
Bþ4

þ 2 BþBc
Bþ4

ð1� r2Þ; G > 2Bc

(

ð37Þ

For the time-dependent calculations, we assume that at t = 0 the

velocity uz(r, t) is given by the steady-state solution (37) and that

at t = 0+ the steady-state pressure gradient G is set to zero. If
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Fig. 5. Steady velocity profiles in axisymmetric Poiseuille flow of a Bingham plastic

with Bn = Bc = 1 and different values of the slip number: (a) s = 0.5; (b) s = 1; and (c)

s = 2.
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Fig. 6. Evolution of the velocity in cessation of axisymmetric Poiseuille flow of a

Newtonian fluid with Bc = 2 and s = 1: (a) B = 10; (b) B = 1; and (c) B = 0.1.
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G 6 2Bc, then the fluid sticks at the wall at all times and the stan-

dard no-slip solution holds:

uzðr; tÞ ¼ 16
X

1

k¼1

1

k3k J1ðkkÞ
J0ðkkrÞe�k2

k
t ð38Þ

where kk are the roots of J0. The volumetric flow rate is

QðtÞ ¼ 32
X

1

k¼1

1

k4k
e�k2

k
t ð39Þ

If now G > 2Bc, slip occurs only initially and the velocity is given by

uzðr; tÞ ¼
16ðBþ BcÞ

Bþ 4

X

1

k¼1

1

a3
k J1ðakÞ 1þ a2

k=B
2

� � J0ðakrÞe�a
2
k
t � Bc

B
ð40Þ

where ak are the roots of

J0ðakÞ �
ak

B
J1ðakÞ ¼ 0 ð41Þ

It is easily deduced that at the critical time tc such that

swðtcÞ ¼
16ðBþ BcÞ

Bþ 4

X

1

k¼1

1

a2
k 1þ a2

k=B
2

� � e�a
2
k
tc ¼ Bc ð42Þ

slip ceases and the no-slip condition is applied (Eq. (42) is equiva-

lent to uz(1, tc) = 0). For t > tc, the velocity is given by

uzðr; tÞ ¼ 2
X

1

n¼1

1

knBJ1ðknÞ
16k2nðBþ BcÞ

ðBþ 4Þ

"

�
X

1

k¼1

1

a2
k 1þ a2

k=B
2

� �

k2n � a2
k

� �

e�a
2
k
tc � Bc

3

5J0ðknrÞe�k2nðt�tc Þ ð43Þ

It should be noted that the eigenvalues kn and ak do not coincide,

given that J0 and J1 do not have common roots. For the volumetric

flow rate one finds that

QðtÞ ¼

32ðBþBc Þ
Bþ4

X

1

k¼1

1
a4
k

1þa2
k
=B2ð Þ e

�a2
k
t � Bc

B
; t 6 tc

4
X

1

n¼1

1
k2nB

16k2nðBþBc Þ
ðBþ4Þ

X

1

k¼1

1
a2
k

1þa2
k
=B2ð Þ k2n�a2kð Þ e

�a2
k
tc � Bc

" #

e�k2nðt�tc Þ; t > tc

8

>

>

>

>

<

>

>

>

>

:

ð44Þ

In Fig. 6, we show the evolution of the velocity for different slip

numbers (B = 10, 1, and 0.1) and Bc = 2 (recall that in Newtonian

flow, Bc, max = 4). The profiles at the critical time tc at which the slip

velocity vanishes are also provided in all cases. It should be noted

that cessation is slower when slip is stronger, and thus tc increases

as the slip number B is reduced. This is also illustrated in Fig. 7,

where the critical times for Bc = 1, 2, and 3 are plotted versus B. A

simple lower estimate for tc can be obtained by considering only

the leading term of expansion (42). It turns out that

tc �
1

a2
1

ln
16ðBþ BcÞ

a2
1 1þ a2

1=B
2

� �

ðBþ 4ÞBc

ð45Þ

It can be seen in Fig. 7 that this estimate is quite satisfactory for

small values of Bc and improves as B is reduced (i.e., as slip becomes

stronger). The evolution of the volumetric flow rate for Bc = 1, 2, and

3 and various slip numbers is shown in Fig. 8. Similarly, in Fig. 9 the

evolution of the slip velocity and its sudden cessation at tc is dem-

onstrated for Bc = 1, 2, and 3 and various values of B. As already

noted, the stronger the slip the slower the cessation is. Our
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Fig. 7. The critical time for the cessation of wall slip tc in cessation of axisymmetric

Newtonain Poiseuille flow for various values of the slip yield stress (s = 1). The

dotted lines are the estimates obtained using only the leading term in the

expression used to calculate tc.
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numerical experiments also showed that cessation becomes faster

as the slip exponent s is reduced, especially in the initial stages of

the flow. The influence of s becomes weaker when slip is strong

(i.e. as B is reduced).

5. Numerical results

The time-dependent viscoplastic flow is solved numerically,

since it is not amenable to analytical solution. The non-dimension-

alized version of the regularized Herschel–Bulkley Eq. (5) is

srz ¼
Bn½1� expð�M _cÞ�

_c
þ _cn�1

� �

@uz

@r
ð46Þ

where _c ¼ j@uz=@rj, while the stress growth exponent M is given by

M � mV

H
ð47Þ

We used 100 quadratic finite elements in space and finite differ-

ences in time. For the time discretization, we used the standard

fully implicit Euler backward-difference scheme with a dimension-

less time step D t 6 10�4. The criteria for convergence of the system

of equations were that the norm of the error for the velocities and

the norm of the residuals were both less than 10�4. The effect of

M in cessation of plane Couette and Poiseuille flows with no-slip

at the wall was studied and discussed by Chatzimina and co-work-

ers [10,16]. They noted in particular that when the imposed pres-

sure is non-zero but below the critical value for the occurrence of

steady Poiseuille flow, regularized flow reaches a steady-state cor-

responding to a small volumetric flow rate (the value of which de-

creases with M) while ideal Bingham flow ceases at a finite time. In

the present work the imposed pressure gradient is zero in all cases.
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Fig. 9. Evolution of the slip velocity in cessation of axisymmetric Newtonian

Poiseuille flow for s = 1 and various values of the slip number: (a) Bc = 1; (b) Bc = 2;

and (c) Bc = 3.
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Fig. 10. Evolution of the velocity in cessation flow of a Bingham plastic with Bn = 1,

s = 1 and zero slip yield stress (Bc = 0): (a) B =1 (no slip); (b) B = 5; and (c) B = 1

(plug flow).
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Unless otherwise indicated, the results of this section have been ob-

tained with M = 1000.

5.1. Results for zero slip yield stress

The numerical simulations of the cessation flow show that the

velocity becomes and remains uniform before complete cessation.

The evolution of the velocity for s = 1, Bn = 1, and various slip num-

bers, i.e., B =1 (no slip), B = 5 (strong slip), and B = 1 (full slip, since

the critical slip number for attaining a uniform steady-state veloc-

ity profile in axisymmetric Poiseuille flow is Bcrit = Bn � Bc), is illus-

trated in Fig. 10. Obviously, as the slip number is increased, the

initial velocity profile becomes more flat and a uniform profile is

attained earlier during cessation. Fig. 11 shows the evolution of

the volumetric flow rate Q for Bn = 1 and different slip numbers

for three representative values of the slip exponent s: 0.5, 1, and

2. One observes that the stopping time is finite only in the case

of no slip (B?1) when s < 1. When s is fixed, the stopping time
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Fig. 11. Evolution of the volumetric flow rate in cessation flow of a Bingham plastic

with Bn = 1, zero slip yield stress (Bc = 0) and various slip numbers: (a) s = 0.5; (b)

s = 1; and (c) s = 2.
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The predictions of Eq. (49) for s = 1 and (50) for s = 0.5 and 2, with uw0 = 1 and t0 = 0

essentially coincide with the numerical solution.
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Fig. 13. Effect of the regularization parameter on the calculated solution: (a) slip

velocity as a function of the imposed pressure gradient; (b) slip velocity at the

critical pressure gradient G/(2Bc); Newtonian flow with B = Bc = s = 1.
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increases with the slip coefficient. In the case of Navier slip (s = 1),

the stopping time is infinite for any non-zero Bingham number and

the volumetric flow rate decays exponentially. When s > 1, the de-

cay is much slower.

An (approximate) analytical solution can be obtained in the lim-

iting case the velocity becomes uniform everywhere, except in a

very thin zone adjacent to the wall, so that the wall shear stress

is non-zero and the slip equation is satisfied. This situation also ap-

pears in steady flow, in regime (iv) of Fig. 2. The flow is entirely due

to wall slip and there is no shear flow within the bulk where the

velocity is flat except for a sharp discontinuity very close to the

wall. Let t0 denote the critical time at which the velocity becomes

uniform, i.e. uz = uw(t0) = uw0. Integrating the momentum equation

over the tube cross-section leads to the following ODE:

duw

dt
¼ �2sw ¼ �2Bus

w ð48Þ

Therefore, when s = 1, the velocity decays exponentially:

uz ¼ uw0 exp½�2Bðt � t0Þ�; t P tc ð49Þ

where uw0 = uw(t0). Otherwise,

uz ¼ u1�s
w0 � 2ð1� sÞBðt � t0Þ


 �1=ð1�sÞ
; t P t0 ð50Þ

Hence the stopping time is finite only if s < 1, in which case

ts ¼ t0 þ
u1�s
w0

2ð1� sÞB ð51Þ

In Fig. 12, the slip velocities predicted using Eqs. (49) and (50) are

compared to the numerical solutions taking Bn = 1 and B = 1.2, con-

sidering three different values for s (0.5, 1, and 2), and assuming

that uwc = 1 and tc = 0. Given that B is close to Bn, the numerical re-

sults practically coincide with the theoretical estimates.

5.2. Results for non-zero slip yield stress

In order to avoid the difficulties posed by the discontinuity of

slip Eq. (17), we regularize it as follows:

sw ¼ Bc½1� expð�McuwÞ� þ Bus
w ð52Þ
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where Mc �mcV is a dimensionless growth parameter similar to the

stress growth exponent of the Papanastasiou equation. For suffi-

ciently large values of Mc, Eq. (52) provides a good approximation

of Eq. (17). To illustrate this, let us first consider the steady-state

Newtonian flow with B = Bc = s = 1. From Eq. (21), we observe that

uwB

Bc

¼
0; G 6 2Bc

G
2Bc

� 1; G > 2Bc

(

ð53Þ

In Fig. 13a, we compare the numerical solutions obtained for vari-

ous values of Mc against Eq. (53). It should be noted that this partic-

ular plot has been constructed by specifying the pressure gradient G

(and not the volumetric flow rate). We observe that for very high

values of Mc, the numerical solution approaches theory very well.

This is also illustrated in Fig. 13b, where the numerical steady-state

slip velocity for G/(2Bc) = 1 is plotted as a function of Mc. For

Mc � 50,000, this velocity is smaller than the tolerance used for

the finite element calculations.

The calculated steady-state slip velocities for various slip yield

stress numbers Bc are compared to the theoretical solution in

Fig. 14. In all cases, the numerical predictions for Mc = 10, 100,

and 1000 are plotted with dotted lines. We observe that small val-

ues ofMc may be used only for moderate values of Bc. Higher values

are required at higher values of Bc and/or B, i.e. when slip is weak.

The validity of the regularized slip equation has also been tested

for different values of the exponents n and s and in time-dependent

calculations. In Fig. 15, the numerical predictions of the slip veloc-

ity for B = 10, obtained with Mc = 1000 and 10,000 are compared

against analytical solutions provided in Table 1. The agreement is

very close when slip is strong. As Bc approaches Bc, max, i.e. when

slip is weak, higher values ofMc are needed in order to obtain accu-

rate results.
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Fig. 17. Evolution of the volumetric flow rate in cessation of axisymmetric

Poiseuille flow of a Bingham fluid for Bn = Bc = 1 and various slip numbers: (a)

s = 0.5; (b) s = 1; and (c) s = 2. Mc = 100000.
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The effect of the regularization parameter Mc becomes more

important in time-dependent calculations. Fig. 16 shows the evolu-

tion of the slip velocity for Bc = 1, 2, and 3 and different values of B

and Mc. One observes that if Mc is not sufficiently large, the slip

velocity does not vanish abruptly but it goes to zero asymptoti-

cally, after an initial quick decrease. The choiceMc = 10,000 ensures

that the error in the numerical slip velocity is less than the toler-

ance used for the convergence of the Newton method and leads

to stopping times of acceptable accuracy.

To investigate the effect of slip yield stress, we assumed that

Bn = Bc, so that the initial velocity profile corresponds to case (ii)

of Fig. 2. The evolution of the volumetric flow rate for Bn = Bc = 1

is illustrated in Fig. 17 for different values of s and B. The evolution

of the velocity profile for the above choice of Bn and Bc, s = 1, and

different values of the slip number is illustrated in Fig. 18. As

expected, with non-zero slip yield stress the flow of a Bingham

fluid stops at a finite time. A lower bound for the stopping time

is obviously the bound derived by Glowinski [2] for the no-slip

flow. The stopping time increases with slip (i.e., as B is reduced)

and the value of the exponent s. Our calculations showed that as

the value of the slip yield stress increases towards the limiting

value Bc, max = 4, the effect of the slip number becomes less

pronounced and the solution approaches that corresponding to

no slip, as expected.

6. Conclusions

We studied the cessation of axisymmetric Poiseuille flow of a

Herschel–Bulkley fluid with wall slip following a static slip law

with slip yield stress. For the numerical simulations both the con-

stitutive and slip equations have been regularized. The numerical

calculations showed that when slip yield stress is zero, the fluid

slips at the wall at all times, the velocity becomes and remains uni-

form before complete cessation, and the stopping time is finite

only when the slip exponent is less than unity. When the slip yield

stress is non-zero, slip ceases at a finite critical time, the velocity

becomes flat only at complete cessation, and the stopping time is

finite in all cases. As noted by Hatzikiriakos [24] static slip models

are not valid in transient flows, since slip relaxation effects might

become important, leading to delayed slip and other phenomena.

We are currently investigating the use of dynamic slip models in

transient Newtonian and non-Newtonian flows. The performance

of the regularized slip equation in two-dimensional flow problems,

in which the parts of the boundary along which slip occurs or not

are unknown, is also a subject of our current research.
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