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T
he brain of a sperm whale is 
about 60% larger in absolute 
mass than that of an elephant. 

Furthermore, the brains of toothed 
whales and dolphins are signifi cantly 
larger than those of any nonhuman 
primates and are second only to human 
brains when measured with respect to 
body size [1]. How and why did such 
large brains evolve in these modern 
cetaceans? One current view of the 
evolution of dolphin brains is that their 
large size was primarily a response 
to social forces—the requirements 
for effective functioning within a 
complex society characterized by 
communication and collaboration 
as well as competition among group 
members [2–4]. In such a society, 
individuals can benefi t from the 
recognition of others and knowledge of 
their relationships and from fl exibility 
in adapting to or implementing new 
behaviors as social or ecological 
context shifts. Other views focus on the 
cognitive demands associated with the 
use of echolocation [5–7].

Recently, Manger [8] made the 
controversial claim that cetacean 
brains are large because they contain 
an unusually large number of 
thermogenic glial cells whose numbers 
increased greatly to counteract 
heat loss during a decrease in 
ocean temperatures in the Eocene-
Oligocene transition. Therefore, he 
argues, cetacean brain size could 
have evolved independently of any 
cognitive demands and, further, that 
there is neither neuronal evidence 
nor behavioral evidence of complex 
cognition in cetaceans. These claims 
have garnered considerable attention 
in the popular press, because they 
challenge prevailing knowledge and 
understanding of cetacean brain 
evolution, cognition, and behavior.

We believe that the time is ripe to 
present an integrated view of cetacean 
brains, behavior, and evolution based 
on the wealth of accumulated and 
recent data on these topics. Our 
conclusions support the more generally 
accepted view that the large brain of 
cetaceans evolved to support complex 
cognitive abilities.

The Origins and Evolution of Large 

Brains in Odontocetes

The cetaceans arose from artiodactyls 
(even-toed ungulates) early in the 
Eocene approximately 55 million years 
ago (Figure 1) [9,10]. The earliest 
cetaceans, archaeocetes, were not 
highly encephalized; rather there was 
a signifi cant increase in relative brain 
size in odontocetes (toothed whales, 
including dolphins) during their initial 
radiation in the late Eocene–early 
Oligocene transition [11]. This 
dramatic increase in relative brain size 
involved a substantial decrease in body 
size with a concurrent, more moderate, 
increase in brain size.

As Manger correctly points out, 
there is evidence for oceanic cooling 
during late Eocene-Oligocene times 
(Figure 1) [12]. Odontocete bodies 
actually got smaller during that time, 
whereas, generally, cooler climates 
induce increases in body size [e.g., 13], 
because larger animals lose relatively 
less heat to the environment. Moreover, 
cetaceans were already well above 
the threshold for body size to deal 
with oceanic cooling [14]. Therefore, 
there was no need for odontocetes to 
respond to these temperature decreases 
with either change in body size or brain 
size. Thus, such changes in brain size 
(and body size) in odontocetes were 
likely due to factors other than oceanic 
temperature change.

Concurrent with changes in 
relative size, the brain reorganized 
into a form with relatively larger 
cerebral hemispheres and overall 
greater similarity to that of modern 

cetaceans [11]. Tentative evidence 
also suggests concomitant changes 
in cranial architecture and ear 
structure to support echolocation 
[15]. Although the selection pressure 
that drove the decrease in body size is 
unknown, smaller animals would have 
experienced changes in their ecology 
(e.g., predation risk) that may have 
driven further behavioral changes. This 
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may indicate that the large brains of 
early odontocetes were used, at least 
partly, for processing this entirely 
new sensory mode that evolved at the 
same time as these anatomical changes 
and perhaps for integrating this new 
mode into an increasingly complex 
behavioral ecological system.

Contemporary Cetacean 

Neuroanatomy

The common ancestor of cetaceans 
and primates lived over 95 million years 
ago [16], and cetacean brains have 
been on an independent evolutionary 
trajectory from other mammals for 
close to 55 million years [17]. During 
that time, cetacean brains evolved a 
unique combination of features that 
are different in many respects from 
primate brains.

The cetacean neocortex was once 
viewed as relatively homogeneous 
in cellular architecture, regionally 

unspecialized, and lacking 
organizational complexity. It was 
thought to have poorly differentiated 
neuronal morphology, low numbers 
of neurons and cortical areas, and 
an indistinct prefrontal cortex. This 
view of cetacean neocortex harks 
back to an earlier era when a few 
authors who considered dolphins 
rather unintelligent saw little in the 
neuroanatomy, not surprisingly, 
to refute that view [18,19]. This 
perspective infl uenced later thinking 
about cetacean brains and led to the 
“initial brain” hypothesis of cetacean 
neocortical evolution [20] that asserted 
cetacean neocortex was primitive. 
However, modern neuroanatomical 
techniques convincingly demonstrate 
that the cetacean neocortex has 
a degree of regional parcellation 
comparable to that of many terrestrial 
mammals (see Box 1) [21,22]. There 
is certainly no evidence that the 

“cetacean scheme” is incapable of 
supporting complex processing similar 
to that in primates and other mammals.

Likewise, there is no reason to 
expect that cetacean and primate 
prefrontal cortical analogs would be, 
in fact, located in the same region of 
the brain. However, the expansion of 
the insular and cingulate cortices in 
cetaceans is consistent with high-level 
cognitive functions—such as attention, 
judgment, intuition, and social 
awareness—known to be associated 
with these regions in primates [23]. 
This view is further supported by the 
observation that the anterior insular 
and anterior cingulate cortex in 
cetacean species having the largest 
brains exhibit a large number of large 
layer V spindle neurons [22] (Figure 
2), similar to those originally reported 
to be unique to humans and great apes 
[24.25]. These particular neurons are 
considered to be responsible for neural 

doi:10.1371/journal.pbio.0050139.g001

Figure 1. Relationships among Odontoceti and Mysticeti, between Neoceti and Archaeoceti, and higher level taxa of Whippomorpha (Cetacea 
+ Hippopotamidae)
Note that within Cetacea, the only ghost lineage (any length of time missing fossils as inferred from the phylogeny) is a short gap at the origin of 
Odontoceti. There is a large ghost lineage between Hippopotamidae and the base of Cetacea. The temperature curve shows a smoothed record for the 
deep sea, in turn a proxy for global climate.
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networks subserving aspects of social 
cognition [23].

The cetacean neocortex is also 
characterized by a high ratio of glial cells 
to neurons, consistent with the general 
pattern found in other mammals, where 
neuron density decreases with absolute 
brain size, probably to maintain certain 
properties of neural transmission. “Glia” 
include several distinct cell populations, 
including: (1) oligodendrocytes, which 
provide myelin for axons or “white 
matter;” (2) astrocytes, which have 
several roles and predominate in the 
gray matter; and (3) microglia, immune 
cells which are not embryologically 
related to other glia or neurons. Given 
their vastly different roles, it is important 
to know which is being counted to 
interpret the functional signifi cance 
of a high glial cell/neuron ratio in 
cetaceans. If, for instance, a high glial 
cell/neuron ratio is due to an increase 
in oligodendrocytes, this would be 
consistent with previous observations 
that as brains get larger, the white 
matter increases proportionally more 
than the gray matter [26]. In fact, recent 
imaging studies show that it is precisely 
by a greater proportion of white matter 
that humans can be distinguished from 
apes and monkeys [27,28]. Moreover, 
growing evidence demonstrates that 
astrocytes contribute to the modulation 
and coordination of neural activity in 
the brain [29–31]. Therefore, despite 
Manger’s argument, a high glia cell/
neuron ratio is consistent with the 
increased needs of complex brains for 
rapid communication and synaptic 
effi ciency.

Cetacean Cognition and Behavior 

in the Laboratory

The preceding description of 
cetacean brains reveals not only 
their large absolute and relative size 
but also underscores a structural 
complexity that could support complex 
information processing, allowing for 
intelligent, rational behavior. There is 
considerable behavioral data to support 
that assumption.

Laboratory studies of bottlenose 
dolphins have documented 
various dimensions of their 
intellectual abilities. These include 
an understanding of symbolic 
representations of things and 
events (declarative knowledge); an 
understanding of how things work or 
how to manipulate them (procedural 

knowledge); an understanding of the 
activities, identities, and behaviors 
of others, (social knowledge); and 
an understanding of one’s own 
image, behavior, and body parts (self 
knowledge) [reviewed in 32]. All these 
capabilities rest on a strong foundation 
of memory; investigations have 
demonstrated that bottlenose dolphin 
auditory, visual, and spatial memory are 
accurate and robust [33–36]. 

Learning, remembering, and 
innovation can be life-saving cognitive 
tools in a challenging environment. The 
fl exible and diverse learning capabilities 
of dolphins are well documented, 
including, for example, the learning of a 
variety of types of abstract rules [37,38] 
and the spontaneous understanding 
and execution of instructions from 
televised trainers [39]. Learning of 
an imposed language is perhaps the 
most challenging cognitive task that 
dolphins have faced in the laboratory. 
Dolphins learned to understand not 
only the semantic features of artifi cial 
gestural and acoustic languages, but also 
the syntactic features [40]. Learning 
of complex syntactic structures or 
decoding of anomalous structures was 
often achieved through inference, 
rather than through explicit instruction 
[41].

Dolphins spontaneously learn 
associations between sounds and 
temporally paired events [42] and 
demonstrate extensive imitative abilities 
for sounds and for behaviors (see Box 
2) [42, 43–45]. Dolphins can develop 
a concept of mimicry—copying an 
observed behavior or sound if given a 
symbolic instruction to do so. Dolphins 
are the only mammal, other than 
humans, shown capable of extensive 

doi:10.1371/journal.pbio.0050139.g002

Figure 2. Spindle Cells in the Humpback Whale Anterior Cingulate Cortex
A large number of spindle cells (arrowheads) are found in the anterior cingulate and insular and 
frontopolar cortices. They exhibit an elongate morphology with clearly visible apical and basal 
dendrites, and frequent grouping in clusters. Scale bar = 100 µm.

doi:10.1371/journal.pbio.0050139.g003

Figure 3. One of Two Bottlenose 
Dolphins That Passed the Mark Test, Thus 
Demonstrating Mirror Self-Recognition 
(Photo credit: Diana Reiss, Wildlife 
Conservation Society)
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and rich vocal and behavioral mimicry. 
Indeed the evidence that bottlenose 
dolphins are capable of imitation, one 
of the highest forms of social learning, 
is so strong that a leading primatologist 
has concluded that they “ape better 
than apes” [46].

Social knowledge includes awareness 
of the indications of another. 
Dolphins readily learn to understand 
the signifi cance of human pointing 
gestures and head gaze [47–49]. They 
attend not only to the direction in 

which the human points or gazes, 
but also to the object of regard [50]. 
Dolphins can also attend to a target 
being echoically interrogated by 
another dolphin by “eavesdropping” 
on the returning echoes [51]. Dolphins 
echolocate by orienting both their body 
and their narrow-beam echolocation 
signal in a particular direction, which 
may be a rough analog to arm and 
hand directional pointing by humans 
[47]. Additionally, dolphins can use 
their rostrums and body alignment to 

point and direct a human swimmer to 
an object or place of interest [52] and 
monitor whether the human receiver is 
attending to them [52,53].

Self-knowledge, including self-
awareness, enables one to develop a 
self-image and monitor and evaluate 
one’s own behaviors. Dolphins 
recognize themselves in a mirror [54] 
(Figure 3), a rare ability previously 
demonstrated in the great apes and 
humans ([54] for a review) and, 
recently, in elephants [55]. Mirror self-

Box 1. Complexity in the Cetacean Neocortex

The cetacean neocortex surpasses in 
gyrifi cation all other mammals, including 
humans [61,62], as seen on panels A and 
B showing parasagittal sections through 
the brains of a bottlenose dolphin (A) and 
a humpback whale (B, anterior is to the 
left). The cetacean neocortex comprises 
limbic, paralimbic, and supralimbic 
regions [63]. The cetacean neocortex 
is thin, and it has a prominent thick 
layer I, which is far more cellular than in 
terrestrial species. It also displays large 
inverted neurons in the cell-dense layer 
II, and very large pyramidal neurons 
arranged in clusters of variable size 
at the border between layers III and 
V. Layers III and VI vary considerably 
in thickness and cellular density 
across regions [21,22]. The cetacean 
neocortex appears agranular due to a 
lack of layer IV. Studies of neocortical 
cytoarchitecture in several cetacean 
species reveal clearly identifi able cortical 
domains and regional complexity 
as seen in primates and carnivores 
[21,22,64–66]. The photomontages in 
(C) show examples of the region likely to 
correspond to the primary visual cortex 
in the humpback whale, the Cuvier’s 
beaked whale, the beluga whale, the 
dwarf sperm whale, and the striped 
dolphin. Note the alternating neuronal 
modules, characteristic of this region, 
forming columns and patches of neuropil 
in layers V and VI. The absence of layer 
IV, the thickness of layers I and layer VI 
patterns may mean that thalamocortical 
projections of cetaceans rely on a 
very different wiring scheme than in 
terrestrial species. In fact, mysticetes 
exhibit striking cortical modules in 
layer II of vast expanses of the occipital 
cortex ([D], arrowheads), that are not observed in odontocetes (or other mammals) in this location, but are reminiscent of those seen 
in the entorhinal cortex of mammals and in the insula of toothed whales. These neuron clusters may represent a strategy to optimize 
intrahemispheric connectivity in the very large brains of mysticetes [22]. In the box fi gure, cortical layers are indicated by Roman 
numerals; wm, white matter (C, D). Scale bars: (D), 400 µm; (C), except for S. coeruleoalba, 250 µm; (A), 1.2 cm; (B), 3.5 cm.

doi:10.1371/journal.pbio.0050139.g004
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recognition not only indicates an ability 
to correctly interpret information in a 
mirror as oneself but also demonstrates 
an individual’s motivation to use the 
mirror as a tool to view one’s own body. 
Dolphins are also aware of their own 
behaviors, able to understand and 
act on gestural instructions to repeat 
or not repeat a previously performed 
behavior, or to monitor self-produced 
bubble rings [56–58], Dolphins 
also reveal conscious awareness and 
conscious control of their own body 
parts, using them in specifi c and often 
novel ways as directed by gestural 
instructions [59]. Finally, dolphins 
demonstrate awareness of their own 
knowledge states, i.e., metacognition, 
by indicating their certainty or 
uncertainty about which of two sounds 
is of higher pitch [60].

Cetacean Cognition and Behavior 

in the Wild

Beyond knowing what cetaceans can 
do with their large complex brains, 
it’s equally important to ask what 
they do naturally. Long-term fi eld 
research has shown that dolphins live 
in large complex groups with highly 
differentiated relationships that 
include long-term bonds, higher-order 
alliances, and cooperative networks 
[61–62] that rely on learning and 
memory. Some of the complexities 
typical of within-group primate 
alliances, such as individuals switching 
sides in different social contexts, are 
also seen among bottlenose dolphins. 
Moreover, “alliances of alliances,” 
observed in bottlenose dolphins, 
are rare outside of our own species, 
even among old world monkeys and 
apes [3]. There is also evidence that 
individual role taking has emerged 
in dolphin societies to facilitate 
cooperative relationships [63] and 
decision-making processes [64,65].

Field studies have documented 
impressive cultural learning of dialects, 
foraging sites, and foraging and 
feeding strategies in cetaceans. Culture, 
the transmission of learned behavior, is 
one of the attributes of cetaceans that 
most sets them apart from the majority 
of other nonhuman species [66] and is 
likely underpinned by advanced social 
learning abilities. Cultural attributes 
have been identifi ed in many species 
of cetaceans but principally in those 
best studied: the bottlenose dolphin, 
the killer whale, the sperm whale, and 

the humpback whale [66]. One of the 
most distinctive elements of cetacean 
culture is multiculturalism—groups 
with different cultures using the 
same habitat—which is known in 
bottlenose dolphins, humpback whales, 
killer whales, and sperm whales. For 
example, killer whale populations of 
the eastern North Pacifi c are structured 
into several social tiers, which possess 

distinctive cultural attributes in vocal, 
social, feeding, and play behavior 
[67,68]. 

Social complexity and culture in 
cetaceans are arguably dependent on a 
complex and fl exible communication 
system, encompassing vocal, visual, 
tactual, and possibly chemical 
signals [69]. There are differences 
across cetaceans in their sound 

Box 2. Imitation in Dolphins

Imitation is an important type of 
social learning that can readily lead 
to stable cultures. While it is clear 
that many cetaceans are natural 
mimics, executing synchronous motor 
behaviors, such as “porpoising” in 
unison, and spontaneously imitating 
sounds, including the whistles of others, 
imitation is a complex multidimensional 
ability that is most intimately studied 
in the laboratory. Bottlenose dolphin 
abilities for both arbitrary vocal and 
motor imitation were demonstrated 
at the Kewalo Basin Marine Mammal 
Laboratory in Honolulu. Vocal imitation 
was investigated by broadcasting 
electronically generated “model” sounds 
underwater into a dolphin’s habitat [43]. 
In response, the dolphin vocalized into a 
hydrophone. Figure A in this box shows 
spectrograms of each of nine model 
sounds and the resulting imitation. The 
arrow points to the beginning of the 
dolphin’s imitation. A variety of different 
waveforms were imitated accurately; 
the imitations of sounds G and H show 
spontaneous octave generalization, the 
imitation occurring precisely an octave 
above (G) or an octave below (H) the 
model sound. Octave generalization is 
a rare ability that, for example, has not 
been elicited from songbirds.

Social motor imitation was 
demonstrated fi rst by having two 
dolphins side by side with a partition 
between them that allowed the 
dolphins to see each other but not their 
respective trainers. The “demonstrator” 
dolphin was instructed gesturally by 
its trainer to perform one of many 
possible behaviors, including its own 
self-chosen behavior. Then, the “imitator” dolphin was instructed by its trainer to either 
“mimic” the demonstrated behavior or to perform another behavior. Both dolphins 
successfully imitated familiar and novel modeled behaviors. This ability generalized 
easily to imitating human behaviors demonstrated either at poolside (Figure B) or on a 
television monitor placed behind an underwater window. Motor mimicry also extended 
to self-imitation, the imitation of one’s own previous behavior. No nonhuman animal 
has shown the levels of diversity, fl exibility, and cognitive control of imitative skill 
demonstrated in bottlenose dolphins [44].

doi:10.1371/journal.pbio.0050139.g005

Figure A. Spectrograms of each of nine 
model sounds and the resulting imitation. 
The arrow points to the beginning of the 
dolphin’s imitation.

doi:10.1371/journal.pbio.0050139.g006

Figure B. Dolphin imitates the behavior of 
a human by using its tail as an analogy for 
a leg.
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production mechanisms. Odontocetes 
(primarily high-frequency producers, 
echolocating) and mysticetes 
(primarily low-frequency producers, 
non-echolocating) exhibit radically 
divergent nasal, laryngeal, and hyoid 
anatomy [70–74]. Cetaceans also 
supplement their repertoire of vocal 
signals with visual cues (e.g., changes 
in body posture), tactile behaviors 
(e.g., fl ipper touching, teeth raking), 
and nonvocal auditory behaviors (e.g., 
breaching, lob tailing). The temporal 
sequencing of these latter nonvocal 
communicative events can be highly 
structured, demonstrating a complex 
and diverse nonvocal communication 
system [64,75].

Dolphins produce several different 
whistle types and sounds. Evidence 
also shows that the sequential order 
of whistle production is an important 
feature of their communication system 
[76,77]. Extensive fi eldwork has 
shown that cetacean call types exhibit 
enormous variation [78,79], evolve 
over time [80], and are used differently 
across social groups [81]. In some 
cases, the variation is so pronounced 
that other species have learned to use 
it in judging predation risk [82]. In 
bottlenose dolphins, there is evidence 
that this variation is the basis for a 
referential identity-labeling system 
[83].

Cultural learning of behaviors may 
proceed through motor imitation or 
perhaps even through direct teaching 
(pedagogy), as may be the case for 
killer whale calves “instructed” in beach 
capture of pinnipeds by their mothers 
[66,84]. Vocal imitation also occurs, 
such as the development of dialects 
among killer whale family groups 
[78–80, 85]. The close synchrony 
seen among wild dolphins is a form 
of imitative behavior that may serve 
in part to express their affi liation 
[86]. Tool use, which is a measure of 
intelligence that correlates with relative 
brain size in primates [87] and birds 
[88], is also documented in dolphins, 
who use sponges to probe into crevices 
for prey and appear to transmit the 
technique culturally [89].

Conclusion

Evidence from various domains of 
research demonstrates that cetacean 
brains underwent elaboration and 
reorganization during their evolution 
with resulting expansion of the 

neocortex. Cortical evolution, however, 
proceeded along very different lines 
than in primates and other large 
mammals. Despite this divergence, 
many cetaceans evince some of the 
most sophisticated cognitive abilities 
among all mammals and exhibit 
striking cognitive convergences with 
primates, including humans. In many 
ways, it is because of the evolution of 
similar levels of cognitive complexity 
via an alternative neuroanatomical 
path that comparative studies of 
cetacean brains and primate brains 
are so interesting. They are examples 
of convergent evolution of function 
largely in response, it appears, to 
similar societal demands.

Returning to Manger, his 
controversial claim is reminiscent of 
the conclusion reached about bees by 
physicists and mathematicians in the 
1930s—that the anatomical structure of 
bees and the known principles of fl ight 
indicate that bee fl ight is impossible 
[90]. Rightfully oblivious to Manger’s 
contentions, cetaceans continue to 
provide an enormous body of empirical 
evidence for complex behavior, 
learning, sociality, and culture. �
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