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ABSTRACT

An understanding of fuel atomization and va-
porization behavior at superheat conditions is identi-
fied to be a topic of importance in the design of mod-
ern supersonic engines. As a part of the NASA aero-
nautics initiative, we have undertaken an assessment
study to establish baseline accuracy of existing CFD
models used in the evaluation of a flashing jet. In a
first attempt towards attaining this goal, we have in-
corporated an existing superheat vaporization model
into our spray solution procedure but made some
improvements to combine the existing models valid
at superheated conditions with the models valid at
stable (non-superheat) evaporating conditions. Also,
the paper reports some validation results based on
the experimental data obtained from the literature
for a superheated spray generated by the sudden re-
lease of pressurized R134A from a cylindrical nozzle.
The predicted profiles for both gas and droplet ve-
locities show a reasonable agreement with the mea-
sured data and exhibit a self-similar pattern similar
to the correlation reported in the literature. Because
of the uncertainty involved in the specification of the
initial conditions, we have investigated the effect of
initial droplet size distribution on the validation re-
sults. The predicted results were found to be sensitive
to the initial conditions used for the droplet size spec-
ification. However, it was shown that decent droplet
size comparisons could be achieved with properly se-
lected initial conditions, For the case considered, it
is reasonable to assume that the present vaporization
models are capable of providing a reasonable qualita-
tive description for the two-phase jet characteristics
generated by a flashing jet. However, there remains
some uncertainty with regard to the specification of
certain initial spray conditions and there is a need for
experimental data on separate gas and liquid temper-
atures in order to validate the vaporization models
based on the Adachi correlation for a liquid involving

R134A.

NOMENCLATURE

Bk Spalding mass transfer number
Bt Spalding heat transfer number
Cp specific heat, J/(kg K)
d droplet diameter, m
dt time increment, s
h specific enthalpy, J/kg
k thermal conductivity, J/(ms K)
lk mixture latent heat of evaporation, J/kg
lk,eff effective latent heat of evaporation,

J/kg (defined in Eq. (6))
ṁ liquid mass flow rate, kg/s
ṁk,flash droplet vaporization rate under

flash evaporating conditions, kg/s
ṁk,t droplet vaporization rate due

to heat transfer, kg/s
nk number of droplets in kth group
Nu Nusselt number
P pressure, N/m2

Pr Prandtl number
Psat saturation pressure, N/m2

rk droplet radius, m
Ru gas constant, J/(kg K)
Re Reynolds number
Sh Sherwood number
sk droplet radius-squared ( = r2

k), m2

Sc Schmidt number
SMD Sauter mean diameter, m
t time, s
T temperature, K
Tb boiling temperature, K
Tk kth droplet temperature, K
U gas or liquid velocity, m/s
x axial distance, m
y radial distance, m
∆p pressure drop in the injector, N/m2

µ dynamic viscosity, kg/ms
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ν kinematic viscosity, m2/s
ρ density, kg/m3

θ spray cone angle, deg.

Subscripts

f fuel
g gas
inj injector
l liquid
r radial coordinate
s droplet surface
t time
x axial or x-coordinate
y y-coordinate
z z-coordinate

Superscripts

¯ mean, or average
˙ flow rate

INTRODUCTION

Flashing phenomena refers to a process that
is in thermodynamic non-equilibrium when a liquid
is superheated [1-2]. The main reasons for its oc-
currence are two-fold [1-2]: (1) a liquid fuel can be
heated to a temperature above its saturation temper-
ature while its pressure is maintained, and (2) rapid
depressurization across a fuel injection system may
lead to flash injection because thermal inertia ini-
tially tends to maintain its internal liquid temper-
ature above the saturation temperature associated
with the lower back pressure. Although flash evapo-
ration is considered to be detrimental to engine per-
formance under normal circumstances, it can have
some potential benefits as it is known to produce a
fine spray with enhanced atomization, increase effec-
tive spray cone angle, and decrease spray penetration
[3].

An understanding of flash injection is of im-
portance in some applications involving scramjet and
ramjet afterburners because the same liquid fuel is of-
ten used as a coolant coupled with engine conditions
where nozzles operate at low back pressures and su-
personic outflow [3]. Under some gas-turbine condi-
tions, it is estimated that a small fraction of the liquid
fuel may be released by flash boiling, and there are
some reported incidences of flash-related engine prob-
lems in gasoline direct-injection internal combustion
engines [4]. The objective of our work is to establish a

baseline accuracy for existing atomization and vapor-
ization models valid under superheat conditions by
undertaking a critical review of existing experimen-
tal data for validation. This work is funded through
the NASA’s fundamental aeronautics/supersonic ini-
tiative: high altitude emissions.

We have started our work with the implemen-
tation of a modeling approach based on existing su-
perheat vaporization models into our spray solution
procedure [5]. Our previous work on spray calcula-
tions can be found in Refs. [5-13] where we have
advanced the state of the art in multi-dimensional
spray/gaseous combustion calculations in several im-
portant ways by combining the novelty of the cou-
pled CFD/spray/scalar Monte Carlo PDF (Probabil-
ity Density Function) computations with the ability
to run on massively parallel computers and unstruc-
tured grids.

The modeling approach adopted from the pa-
pers of Zuo, Gomes, and Rutland [4] and Schmehl and
Steelant [14-15] is based on an extension of the clas-
sical D2-theory. In the classical evaporation model,
the thermal energy needed for evaporation is mostly
furnished by the external heat transfer from the sur-
rounding gas. Under superheat conditions, the char-
acteristic vaporization time resulting from the exter-
nal heat transfer from the surrounding gas is of the
same order of magnitude as that resulting from the
flash evaporation. The energy needed for vaporiza-
tion at the droplet surface is partly provided by the
superheat energy stored within the droplet but it is
controlled by the droplet internal heat transfer. This
modeling approach differs from the classical droplet
vaporization models in three important ways: (1) the
droplet surface mass fraction, Yfs, approaches unity
as the temperature at the droplet surface remains at
the corresponding liquid boiling temperature under
superheat conditions; (2) under superheat conditions,
all the external heat transfer from the surrounding
gas is made available to the vaporization process with
no apparent increase in the droplet surface tempera-
ture; and (3) the flow of fuel vapor imparted by flash
vaporization partly counterbalances the flow gener-
ated by external heat transfer which in turn may lead
to a decrease in the energy transferred from the sur-
rounding gas.

VAPORIZATION MODEL VALID UNDER
SUPERHEAT CONDITIONS

Based on the governing equations of conserva-
tion for an isolated spherically symmetric droplet,
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Zuo et al [4] and Schmehl and Steelant [14-15] showed
that the total evaporation rate, ṁk, can be calculated
as

ṁk = ṁk,flash + ṁk,t (1)

where the flash boiled vaporization rate, ṁk,flash, is
given by

ṁk,flash = 4πr2
kαs

(Tk − Tb)
lk

(2)

where Tk is the internal droplet temperature and the
overall heat transfer coefficient, αs (= kJ/s m2 oK)
is given by the Adachi correlation [16]:

= 0.76(Tk − Tb)0.26 (0 ≤ Tks − Tb ≤ 5)

αs = 0.027(Tk − Tb)2.33 (5 ≤ Tks − Tb ≤ 25) (3)

= 13.8(Tk − Tb)0.39 (Tks − Tb ≥ 25)

which is valid over a wide range of superheat con-
ditions. The vaporization rate due to external heat
transfer, ṁk,t, in Eq. (1) is given by

ṁk,t = 2πrk
k

Cp

Nu

1 +
ṁk,flash
ṁk,t

ln[1 + (1 +
ṁk,flash

ṁk,t
)Bt] (4)

where the Spalding heat transfer number, Bt, is

Bt =
Cp(Tg − Tks)

lk,eff
(5)

and the effective latent heat of vaporization, lk,eff , is
given by

lk,eff = lk + 4π
λlr

2
k

ṁk

(
∂Tk
∂r

)
s

(6)

which is an useful parameter as it represents the total
energy loss associated with the latent heat of vapor-
ization in addition to the the heat loss to the droplet
interior. Finally, the Nusselt number, Nu, and the
corresponding droplet regression rate, dsk

dt , are given
by

Nu = 2(1 + 0.3Re1/2Pr1/3
g ) (7)

dsk
dt

= − ṁk

2πrkρl
(8)

This model is valid over an entire range of su-
perheat conditions as long as there is some amount of
superheat energy available within the droplet (Tk >
Tb).

COMBINED SUPERHEAT-CLASSICAL
VAPORIZATION MODEL

Under moderate initial superheat conditions,
only a fraction of the vaporization takes place under
superheat conditions (Tk > Tb) and the remainder
takes place under more stable (non-superheat) evap-
orating conditions (Tk ≤ Tb). So there is a need to
revert back to a vaporization model valid under sta-
ble evaporating conditions when the internal droplet
temperature approaches the boiling temperature. In
the present calculations, the vaporization rate under
normal evaporating conditions is evaluated by means
of a simplified classical D2-theory:

ṁk = 2πrkρg Dfgs Sh ln(1 +Bk) (9)

where the Spalding mass transfer number, Bk, and
the Sherwood number, Sh, are given by

Bk =
(yfs − yf )
(1− yfs)

(10)

Sh = 2(1 + 0.3Re1/2Sc1/3g ) (11)

where yfs is the mass fraction of the fuel species at
the the droplet interface and yf is the mass fraction
of the fuel species in the surrounding gas.

INTERNAL DROPLET TEMPERATURE
CALCULATION

Our experience with the validation studies
showed us that there is a definite need to include
a calculation involving the internal droplet tempera-
ture valid under both superheat and normal evapo-
rating conditions. In our present calculations, it was
evaluated by means of a simple infinite conductivity
model.

dTk
dt

= −3[lk,eff − lk]
2Cplr2

k

dsk
dt

(12)

if Tk ≤ Tb, and

dTk
dt

= − 3αs
rkρlCpl

(Tk − Tb) (13)

if Tk > Tb
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We have spent considerable time on the litera-
ture survey in trying to identify some relevant exper-
imental data for validation purposes. Of the limited
data available, the recent experimental investigation
by Yildiz et al [1-2,19] seems to be more promising as
it contained data for two-phase jet flows associated
with the near-field flashing phenomena generated by
the sudden release of pressurized R134A from nozzles
of different sizes with orifice-exit diameters ranging
from 1, 2, and 4 mm. The experiments were per-
formed mainly to simulate the effects of flashing phe-
nomena generated by either of pressurized propane
or butane. The reported data contained the par-
ticle image velocimetry (PIV) measurements of gas
and droplet velocities, the phase doppler anemome-
try (PDA) measurements of droplet sizes, the thermo-
couple measurements of temperatures, and the high
speed images of flow visualization. While the data
appeared to be worth pursuing, the reported exper-
imental data contained a great deal of uncertainty
with respect to the specification of the initial condi-
tions. It is also noteworthy that the data had not
gone through a rigorous review in terms of its appli-
cability for validation purposes.

In the VKI experiments [1-2,19], the overall su-
perheat conditions ranged between 40 to 50o C and
the tank pressure ranged between 700 to 942 KPa
[17]. For the conditions considered, the onset of jet
breakup was observed to occur outside of the nozzle-
exit between 2-27 mm for the 1mm nozzle, and 4-20
mm for the 2mm nozzle. But for the 4mm nozzle, a
cloudy behavior was observed starting at 12mm with
no discernable point of jet disintegration [17]. Our
CFD calculations are focused primarily on predict-
ing the flow characteristics further downstream be-
ginning with the onset of jet breakup. At the start of
jet dispersion, the pressurized liquid would undergo
some expansion due to vaporization of the pressur-
ized liquid depending on the degree of superheat and
the entrainment of surrounding air [17]. Because of
this expansion, the effective size of the expanded jet
would be larger than the orifice exit [17]. Therefore,
there is a need for estimating both the size and expan-
sion angle of the jet from the observed experimental
data [17].

In our present calculations, we have focused
mainly on the case involving the 1mm nozzle for
which the most extensive data were reported. For
this case, the initial liquid temperature is 293 deg.
K which corresponds to a superheat temperature of
46 deg. C. The initial liquid stagnation velocity is

estimated to be about 34 m/s based on the given up-
stream and back pressures. Based on the data and
the assumptions discussed in Ref. [17], the initial size
at the flashing point is estimated to be about 9mm
based on an initial expansion angle of 55-60 from X=1
to 3D.

Our computations were performed by making
use of a single-point droplet injection with a solid
cone angle of 6.0 deg. The spray injection is simulated
by making use of five droplet streams. The droplets
for each stream were injected randomly within a pre-
defined angular segment (interval spacing = 1.25 deg)
of the solid cone angle (=6.0 deg) at different droplet
injection time steps. Within each droplet stream, the
droplet size distribution is calculated by means of a
known droplet correlation but it is represented by
making use of five droplet size groups. Further de-
tails of the spray injection can be found in Ref. [5].
From the reported data on droplet count it is diffi-
cult to estimate the precise nature of the droplet size
distribution at x/D = 14 (the point of jet breakup)
[1-2,19]. But based on the D32 (SMD) measurements
taken at the next nearest location (x/D = 110), most
of the droplet count ranges between 40 to 220 microns
[17]. In light of this uncertainty, we have performed
three different calculations to assess the effect of the
initial droplet size distribution on the ensuing flow-
field:

1. In our first calculation (Case 1), we assumed that
the initial droplet distribution could be repre-
sented by the widely-used droplet size correlation
of Whitelaw and Banhawy [18]. For an initial
SMD of 93 microns. the droplet size distribu-
tion yields the following sizes (D32) for the five
droplet groups: 38.31, 80.73, 134.89, 190.45, and
246.32 microns. It is noteworthy that the mass
flow rate associated with each group is the same,
and the droplet size distribution is assumed to be
the same amongst all the five droplet streams.
This distribution yields slightly larger droplet
sizes than those present at x/D = 110.

2. In the second calculation (Case 2) the initial
droplet size-range was chosen to be similar to
that reported at x/D = 110. This was achieved
by decreasing the initial SMD from 93 to 80
microns and the corresponding size distribution
yields the following sizes (D32): 32.95, 69.43,
116.02, 163.82, & 211.87 microns. This calcu-
lation was performed mainly to determine the
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effect of the initial SMD on the calculated re-
sults.

3. In the third calculation (Case 3), the initial
droplet conditions are prescribed based on a
more realistic approach as it takes into account
the need to have more larger droplets in the
middle of a cylindrical jet near the point of jet
breakup. In constructing the droplet size distri-
bution for this calculation, we made use of the
sizes derived from Case 2. In the inner region
of 4.5 deg., the size distribution is assumed to
be made up of 116.02, 163.82, & 211.87 micron-
droplets with the corresponding mass flow rates
given by 13, 40, & 47%. In the outer half-cone
angle between 4.5 to 6 deg., the size distribu-
tion is assumed to be the same as in Case 2.
This was done mainly to adjust the size distri-
bution with the observed experimental behavior
which seemed to show droplets of 100 microns
and above representing a significant percentage
of the total mass flow rate.

All the calculations were performed on a 2D ax-
isymmetric grid with 79101 triangular elements. The
calculations were advanced until a steady state so-
lution was reached by making use of the following
time steps: ∆tg (= local time step used in the flow
solver, s) was determined based on a CFL number
of 1, ∆tinjection (time-step at which a new group
of droplets is introduced) = 2.0 ms, and ∆tk (time
step used in the spray solver) = 0.0075 ms. The ini-
tial gas conditions were prescribed based on the non-
dimensional velocity profile reported in Ref. [5]. The
initial droplet injection velocity and the initial liquid
temperature are taken to be 34 m/s and 293 deg. K,
respectively.

First, we would like to show the observed and
predicted spray patterns. Fig. 1 shows an exper-
imental photograph obtained by means of a high-
speed photography for the two-phase flashing jet gen-
erated by a 1mm nozzle (taken from Yildiz et al
[19]). The corresponding axisymmetric spray pattern
as predicted by our CFD computations for Case 3 is
shown in Fig. 2. It is also noteworthy that there is
no direct correspondence in the scales used between
the experiments and predictions. The results from
the other two calculations are similar to Case 3.

Gas Velocity Comparisons

In this section, we show the gas velocity compar-
isons between the experimental data and predictions

in the form of non-dimensional velocity profiles. The
velocity is non-dimensionalized by means of U/Umax
and the radial distance by r/D/(r/D)Umax/2.

The experimental data represents the combined
data taken from all the experiments performed at var-
ious axial locations. It is noteworthy that the re-
ported gas velocities are actually based on the mea-
sured velocities of the smallest droplets (of sizes < 10
µm) with the assumption they represent the gas flow.
The non-dimensional velocity profiles from the exper-
imental data tend to show a remarkably self-similar
behavior with the following correlation [2]:

U

Umax
= exp[−0.693(

r

r̄
)2] (14)

where r̄ = r(Umax/2). This behavior is noted to be
similar to the correlations reported in the literature
for single-phase turbulent jets and two-phase jets [20-
22].

The comparisons for Case 1 to 3 are shown in
Figs. 3a to 3c, respectively. Shown here are the com-
parisons between the experimental data, the experi-
mental correlation from Eq. (14), and the CFD pre-
dictions for each one of the three axial locations at
x/D = 110, 220 , and 440. For all the cases the pre-
dictions fall entirely within the scatter range of the
experimental data. However, outside of the experi-
mental range the CFD results overpredict the gas ve-
locity given by Eq. (14). Also, the predicted results
exhibit a general trend where the radial spreading of
gas velocity mostly increases with an increase in the
axial distance.

Droplet Size Comparisons

Here, we provide the comparisons for the radial
profiles of droplet sizes as given by local SMD (D32)
versus non-dimensional radial distance, r/D. Figs.
4a-c provide the comparisons for Case 1 at three ax-
ial locations, x/D = 110, 220 , and 440. Similar com-
parisons for the other two cases are provided in Figs.
5a-c and 6a-c.

As can be seen from the experimental data in
Figs. 4-6, the droplet sizes are larger at the center
(axis) and they decrease in size in the radial direction
[2]. From the comparisons of the profiles at x/D =
220 and x/D = 440, the experimental data exhibit a
general trend where the overall droplet size distribu-
tion seemed to increase with an increase in the axial
distance. This effect was attributed for reasons as-
sociated with faster evaporation of smaller droplets
[2].
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The predictions from Figs. 4a-c for Case 1 show
a trend that is clearly opposite to the experimental
data. The CFD results show for the larger droplets
to be located farther away from the center. To un-
derstand the reasons for this behavior, it helps to
recall that the initial size distribution in Case 1 is
assumed to be uniform in all directions and made up
of five droplet classes with sizes (D32) ranging from
38.31, 80.73, 134.89, 190.45, and 246.32 µm. This
distribution seemed to contain a lot more smaller
droplets than in the experiments. As a result, some
of the smaller droplets, especially those located near
the center, are swept downstream towards the mid-
dle where the gas velocity is higher (Figs. 3a-c).
While smaller droplets move near the cnter, the larger
droplets with higher momentum seem to move radi-
ally outwards. The combined effect of which is to
produce a trend that is in odds with the experimen-
tal data. The overall trends in Figs. 5a-c for Case
2 are similar to Figs. 4a-c for Case 1. The main
difference between the two cases is due the changes
made to the size distribution where the initial SMD
was reduced from 93 microns in Case 1 to 80 microns
in Case 2.

Unlike the first two calculations, the predicted
trends in Figs. 6a-c for Case 3 are more in line
with the experimental data. It is because the ini-
tial droplet size distribution takes into account the
need to have more larger droplets in the middle of
a cylindrical jet. It is noteworthy of the remarkable
shift in the overall predicted trends with the changes
made to the initial size distribution from Cases 1 and
2 to Case 3.

Droplet Velocity Comparisons

Shown in Figs. 7a-c to 9a-c are the non-
dimensional droplet velocity profiles for Cases 1 to
3, respectively. Once again the velocity is non-
dimensionalized by U/Umax, and the radial distance
by r/D/(r/D)Umax/2. It is noteworthy that the ex-
perimental velocity data of Yildiz et al [2] also exhibit
a self-similar behavior as in the gas velocity compar-
isons given by Eq. (14). The normalized experimen-
tal data represents the combined data taken from all
the axial locations by the PDA mesuarements for all
droplets with sizes greater than 10 µm. It is not en-
tirely evident as to why the velocities for both gas
phase and the droplets follow the same correlation as
given by Eq. (14).

Some noteworthy aspects of the comparisons
from Figs. 7a-c to 9a-c are as follows: (1) The CFD

results show a general trend similar to the experi-
mental data but exhibit a wider scatter than the ex-
periments. (2) The results from Case 3 are in better
agreement than Cases 1 and 2 as more of its predicted
velocities (Case 3) fall within the experimental range.
(3) In all the cases at x/D = 110, most of the pre-
dicted velocities are found to be located in the upper
range of the experimental data because of the way we
specified the initial conditions where the injection ve-
locity for all droplets was assumed to be uniform and
given by 34 m/s. But the predicted velocity range
improves considerably at the the last two axial lo-
cations. (5) The scatter in the predicted velocities
seems to be slightly more pronounced at x/D =440.

Temperature Comparisons

As for the temperature comparisons, it is not
possible in making any direct comparisons between
the predicted gas and liquid temperatures and the ex-
perimental data. To understand the reasons behind
it, we provide some details on the nature of the tem-
perature measurements provided by Ref. [19]. The
steady-state temperature measurements as measured
by a thermocouple made up of Chrome/Alumel wire
of 0.2mm diameter represents an aggregate (liquid-
gas) temperature. Therefore, its usefulness in making
direct comparisons with either gas or liquid temper-
atures obtained from the CFD calculations becomes
difficult. This consideration becomes more evident
when we look at Fig. 10 showing the single-point
thermocouple temperature signal in time taken from
Ref. [19]. Initially, the thermocouple registers a tem-
perature of 293 deg. K (= ambient gas tempera-
ture) before it reaches a steady-state temperature of
248.7 deg. K (≈ the boiling temperature of R134A).
Also, because of the intrusive nature of the technique
(taken by a thermocouple rack), the reported tem-
peratures represent an aggregate temperature in the
neighborhood of the centerline. For the reasons given,
no effort was made in making any direct comparisons
with the experimental data.

Fig. 11 shows the axial (centerline) variation of
the measured thermocouple temperatures as well as
the predicted gas and liquid temperatures for Case 3.
The liquid temperatures are shown in terms of both
individual as well as average droplet temperatures.
The predicted gas temperatures follow the measure-
ments after falling from an initial ambient temper-
ature of about 296o K to about 235o K at x/D =
10. On the other hand, the average droplet tempera-
tures overpredict the measured temperatures initially
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before falling below the experimental data further
downstream. The comparisons between the gas and
average droplet temperatures show that some of the
droplets located near the centerline vaporize under
conditions where the surrounding gas temperature is
below the average droplet surface temperature. The
results from the other two calculations are similar to
Case 3.

CONCLUDING REMARKS

For the case considered, it is reasonable to con-
clude that the present CFD vaporization models are
capable of providing a reasonable qualitative descrip-
tion for the two-phase jet characteristics generated by
the sudden initial release of a superheated fuel. How-
ever, there exists a definite uncertainty with regard to
the specification of the initial conditions used in our
spray computations. Because of the uncertainty asso-
ciated with the specification of the initial conditions,
there is a definite need to assess and establish the
accuracy of the existing atomization models in the
calculation of superheated sprays. The predictions
show that some droplets vaporize under superheated
conditions but others vaporize after transitioning to
a stable vaporization regime. But there is a need for
experimental data on separate gas and liquid temper-
atures in order to validate the vaporization models
based on the Adachi correlation for a liquid involving
R134A.
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Fig. 1. R134−A Jet under 700 kPa at 23 deg. C for the 1mm nozzle 
(taken from Yildiz et al [19]).

Fig. 2. An axisymmetric view of the predicted spray pattern for the 
1mm nozzle (Case 3).
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    Fig. 10 Temperature signal in time from the thermocouple    
measurement (taken from Yildiz et al [19]).
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