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ABSTRACT

We present the first direct measurement of the galaxy-matter bispectrum as a
function of galaxy luminosity, stellar mass and SED type. Our analysis uses a galaxy-
galaxy-galaxy lensing technique (G3L), on angular scales between 9 arcsec to 50 ar-
cmin, to quantify (i) the excess surface mass density around galaxy pairs (excess mass
hereafter) and (ii) the excess shear-shear correlations around single galaxies, both of
which yield a measure of two types of galaxy-matter bispectra. We apply our method
to the state-of-the-art Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS),
spanning 154 square degrees. This survey allows us to detect a significant change of the
bispectra with lens properties (stellar mass, luminosity and SED type). Measurements
for lens populations with distinct redshift distributions become comparable by a newly
devised normalisation technique. That will also aid future comparisons to other surveys
or simulations. A significant dependence of the normalised G3L statistics on luminos-
ity within —23 < M, < —18 and stellar mass within 5 x 109M@ <M, <2x 1011M@
is found (h = 0.73). Both bispectra exhibit a stronger signal for more luminous lenses
or those with higher stellar mass (up to a factor 2-3). This is accompanied by a steeper
equilateral bispectrum for more luminous or higher stellar mass lenses for the excess
mass. Importantly, we find the excess mass to be very sensitive to galaxy type as
recently predicted with semi-analytic galaxy models: luminous (M, < —21) late-type
galaxies show no detectable signal, while all excess mass detected for luminous galaxies
seems to be associated with early-type galaxies. We also present the first observational
constraints on third-order stochastic galaxy biasing parameters.

Key words: dark matter - large-scale structure of Universe - gravitational lensing


http://arxiv.org/abs/1301.1863v1

2 Simon et al.

1 INTRODUCTION

Over the course of the last two decades, the gravitational
lensing effect has allowed us to establish a new branch of sci-
ence that exploits the distortion of light bundles from distant
galaxies (“sources”) in order to probe the large-scale gravi-
tational field produced by intervening matter. Strong tidal
gravitational fields cause an obvious distortion of individ-
ual galaxy images (“strong lensing”; cf. Meylan et al. 2006),
whereas weak deflections can only be inferred by statisti-
cal methods utilising many galaxy images (“weak lensing”;
cf. Schneider 2006). For the latter, usually shear image dis-
tortions are harnessed, although the study of higher-order
flexion distortions may also be feasible in the near future
(cf. Goldberg & Natarajan 2002; Goldberg & Bacon 2005;
Velander et al. 2011). Recently, the lensing magnification ef-
fect has also moved into the focus of research as new source
of information on cosmological large-scale structure (Hilde-
brandt et al. 2009). As the gravitational field is solely de-
termined by the mass density of the objects under exami-
nation, no further assumptions on their properties need to
be made when studying lensing. This makes it a unique tool
for cosmologists to examine the large-scale structure of the
Universe, in particular the relation between luminous com-
ponents, such as galaxies, and the dark component. Within
the current ACDM standard model of cosmology (Peacock
1999; Dodelson 2003), the major fraction of matter is so-
called dark matter, whereas ordinary baryonic matter is sub-
dominant (Komatsu et al. 2011). Therefore, lensing plays a
key role in scrutinising the dominant matter component or
in testing the standard model.

Statistical methods have been developed that quan-
tify the average mass distribution around galaxies by cross-
correlating tangential shear, as observed from background
sources, with foreground lens galaxy positions. Galaxy-
galaxy lensing (GGL), as the first highly successful applica-
tion, in effect measures the stacked projected surface mass
density profiles around galaxies (Brainerd et al. 1996; Hud-
son et al. 1998; Fischer et al. 1999; McKay et al. 2001; Hoek-
stra et al. 2003; Sheldon et al. 2004; Seljak & Warren 2004;
Hoekstra et al. 2004; Kleinheinrich et al. 2006; Mandelbaum
et al. 2006; Parker et al. 2007; van Uitert et al. 2011; Man-
delbaum et al. 2012; Leauthaud et al. 2012). The GGL signal
is thus a function of lens-source separation (and their red-
shifts) only, i.e., a two-point statistic that is based on a lens
and the image ellipticity of a source galaxy. For a review see
Schneider (2006) or Hoekstra & Jain (2008). GGL studies
revealed, e.g., a mass distribution far exceeding the exten-
sion of visible light: lenses are embedded in a dark matter
halo of a size with at least ~ 1002~ "kpc (Hoekstra et al.
2004) and a mean density profile consistent with those found
in ACDM simulations (Navarro et al. 1996; Springel et al.
2005). As extension of GGL, the light distribution within
the lens can be utilised to align the stacked mass fields,
which allows the measurement of the mean ellipticity of the
halo mass distribution in a coordinate frame aligned with
the stellar light distribution of a lens (Hoekstra et al. 2004;
Mandelbaum et al. 2006; van Uitert et al. 2012; Schrabback
& CFHTLenS team 2012). More generally, on larger spatial
scales the technique has been exploited to infer the spatial
distribution of lenses with respect to the matter distribu-
tion, the second-order galaxy biasing (Hoekstra et al. 2001;

Hoekstra et al. 2002; Pen et al. 2003; Sheldon et al. 2004;
Seljak et al. 2005; Simon et al. 2007; Jullo et al. 2012). More
recently, GGL in combination with galaxy clustering in red-
shift surveys has been employed to test general relativity
(Reyes et al. 2010), or to successfully constrain cosmological
parameters (Mandelbaum et al. 2012).

[SWO05] Schneider & Watts (2005, SWO05 hereafter) in-
troduced two new GGL correlation functions that involve
three instead of two galaxies, either two lenses and one
source (“lens-lens-shear”) or two sources and one lens ( “lens-
shear-shear”). Therefore, this new class of correlators repre-
sents the third-order level of GGL or simply “G3L”. Both
correlators express new aspects of the average matter dis-
tribution around lenses, which can be translated into third-
order galaxy biasing parameters (SWO05), especially if repre-
sented in terms of aperture statistics (Schneider 1998). This
paper chooses the aperture statistics to represent the G3L
signal. Thereby we essentially express the angular bispec-
trum of the (projected) matter-galaxy three-point correla-
tion. A rigorous mathematical description of the aperture
statistics is given in the following section.

A more intuitive interpretation (Simon et al. 2012) of
G3L is given by the definition of the real-space correlation
functions: the lens-lens-shear correlation function measures
the average excess shear (or excess mass, Simon et al. 2008)
around clustered lens pairs, i.e., in excess of the average
shear pattern around pairs formed from a hypothetical set
of lenses that is uniformly randomly distributed on the sky
(unclustered) but exhibit the same GGL signal as the lenses
in the data. It is a probe for the joint matter environment of
galaxy pairs, not single galaxies. This correlator promises to
put additional constraints on galaxy models (Saghiha et al.
2012) as it appears to be very sensitive to galaxy types.
On the other hand, the lens-shear-shear correlation function
measures the “excess shear-shear correlation”: it quantifies
the shear-shear correlation function in the neighbourhood
of a lens in excess of shear-shear correlations as expected
from randomly scattered lenses. Thereby it picks up the
(projected) matter density two-point correlation function
of matter physically associated with lenses. In a way this
makes the lens-shear-shear correlator similar to the tradi-
tional GGL, but now also probing the variance in the surface
matter density around lenses instead of merely the average.
The angular matter-galaxy bispectra are Fourier-transforms
of these correlators.

Simon et al. (2008) have demonstrated with the Red-
Sequence Cluster Survey (RCS1; Gladders & Yee 2005) that
both G3L correlation functions can readily be measured with
existing lensing surveys. The RCS1 study aimed to obtain
a high signal-to-noise ratio of the lensing signal, for which
all available lenses were combined into one lens catalogue.
Therefore, apart from this feasibility study in existing data,
little more is known on the dependence of the G3L signal on
galaxy properties. This paper is a first step to fill this gap
by systematically measuring G3L for a series of lens sam-
ples with varying properties. The amount of data available
through the CFHTLenS analysis allows this to be done for
the first time. An accompanying paper by Velander et al.
(2012) explores the GGL signal of CFHTLenS in the light
of the halo model (Cooray & Sheth 2002).

The paper is laid out as follows. Sect. 2 summarises the
aperture statistics that is devised to express the G3L signal,



gives their practical estimators and lists possible sources of
systematics. In Sect. 3, we outline the selection criteria of
our source and lens samples. Lenses are selected by luminos-
ity, stellar mass, redshift and two galaxy spectral types, all
to be analysed separately. Sect. 4 presents our G3L results.
For a large range of angular scales covered in this study, the
G3L signal is characterised by a simple power law whose pa-
rameters are given. Sect. 5 offers a physical interpretation of
the G3L statistics in terms of 3D galaxy-matter bispectra.
In this context, we also introduce a normalisation scheme
to remove, to lowest order, the impact of the exact shape of
the lens redshift distribution and the source redshift distri-
bution from the signal. Finally, the Sects. 6 and 7 present
our discussion and conclusions.

Throughout the paper we adopt a WMAP7 (Komatsu
et al. 2011) fiducial cosmology for the matter density Qm =
0.27, the cosmological constant 2y = 1—Qm = 0.73 (both in
units of the critical density) and Ho = 100h kms™'Mpc™?.
These parameters are consistent with gravitational lensing
constraints obtained from CFHTLenS itself (Kilbinger et al.
2012; Benjamin et al. 2012; Heymans et al. 2012). If not
stated otherwise, we explicitly use h = 0.73, in particular
for the absolute galaxy magnitudes and their stellar masses.

2 FORMALISM

This section summarises the theory and notation of G3L as
detailed in SWO05, and lists possible G3L specific systemat-
ics.

2.1 Galaxy-galaxy lensing preliminaries

The weak gravitational lensing effect (see Schneider 2006,
and references therein) probes the three-dimensional rela-
tive matter density fluctuations dm(Ri,X) = Apm/pm in
projection along the line-of-sight in terms of the lensing con-
vergence

_ 3 900 fx(X)
o) = oo [ s ey )

Here R, = fx(x)0 is a 2D vector perpendicular to a refer-
ence line-of-sight and 6 the angular position on the sky. The
comoving angular diameter distance fk(x) is written as a
function of comoving radial distance x. By Du := ¢/Ho we
define the Hubble length, and a(x) is the cosmic scale factor
at a distance x; we set a(0) = 1 by definition; ¢ is the vacuum
speed of light. By xn we denote the comoving Hubble radius
of today as the theoretical maximum distance at which we
can observe objects. The lensing efficiency averaged over the
probability density distribution function (p.d.f.) py(x)dx of
background galaxies (“sources”) is expressed by

X S = x)
g(x)=/ dx'pe () = 2)
N Tx(x)

Although the convergence in principle is observable
through magnification of galaxy images, past weak lensing
analyses and this paper focus on the related gravitational
shear (Kaiser & Squires 1993)

1 5 ) o 1
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By 6" we denote the complex conjugate of 6. For this pur-
pose, the complex ellipticity of the galaxy image

€(0) = 7c(0) + e 5 () =0 (4)

serves as a noisy estimator of 7; the noise term originates
from the unknown intrinsic shape ¢s. In addition, due to the
finite number of sources, one also experiences sampling noise
of the shear field. Note that we adopt the commonly used
complex notation of 2D vectors and spinors (in the case of
shears and ellipticities), where real and imaginary parts are
the components along two Cartesian axes in a tangential
plane on the sky.

Galaxy-galaxy lensing techniques correlate the total
matter distribution (@) with the relative number density
distribution rg(0) of lens galaxies (“lenses”) on the sky by
means of cross-correlating the lensing signal with positions
of foreground galaxies,

a(®) = 2= [T avna(feoex) . 0)

Ng
where pr(x)dyx is the p.d.f. of the lens (foreground) comov-
ing distances along the line-of-sight; ny(0) is the projected
number density of lenses and ny its statistical mean. For the
scope of this paper, ps(x) is estimated from a redshift p.d.f.
p=(2z)dz = pe(x)dx of a selected lens sample.

2.2 G3L aperture statistics

For practical purposes, the aperture statistics are a conve-
nient measure for a lensing analysis (Schneider et al. 1998;
Schneider 1998; van Waerbeke 1998; Crittenden et al. 2002).
They quantify moments of fluctuations in x(0) and kg(0)
within apertures of a variable angular scale §. The moments
are determined from the smoothed fields x(6) and rg(6),

Map(6) = /‘%ﬁu(we*l) k(D) | (6)
NO) = [ GEu(0le) me9) ”)

where u(19/0)0~2 is the smoothing kernel. For mathematical
convenience, we placed the aperture centre at 8. = 0 in
the previous definition. Third-order moments are defined by
considering the ensemble average of

WWM@%%M{N%wwWMw) ®)

WWM%%M:<WM%MM%%», ()

over all random realisations of the fields x(0) and k¢ (0). Due
to the assumed statistical homogeneity of the fields, the av-
erages do not depend on the aperture centre position. There-
fore, in practice, where only one realisation or survey is avail-
able, these quantities are estimated by averaging the prod-
ucts N (01)N (02) Map (63) and N'(01) Map (62) Map (63) for dif-
ferent aperture centres covering the survey area. See Fig. 1
for an illustration.

For a compensated filter u, i.e., fooo df 6u(f) = 0, the
aperture mass can in principle be obtained directly from the
observable shear through (Schneider et al. 1998)

Mo0) = [ [T a0 Ro@ie) . (0)
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Figure 1. Illustration of the aperture statistics. Fluctuations
N(0) in the projected galaxy number density (top panel),
smoothed to the characteristic filter scale 6, are statistically
compared to the filtered projected matter fluctuations Map(6)
(lensing convergence; bottom panel). We take NZ2(8)Map(6) or
N(B)Mgp(é), and average these for different aperture centres
(dashed circles) to estimate third-order moments of the joint
probability distribution of AV(6) and Map(0).

where y(9; @) := —e~?¥~.(9) denotes the Cartesian shear
~e at angular position 9 rotated by the polar angle ¢. The
real part of v(9; ) is the tangential shear, the imaginary
part the cross shear. The relation between the filters u(x)
and ¢(z) is given by

q(x) = (% / dssu(s)) —u(z) . (11)
= Jo
This paper uses the exponential aperture filter from van
Waerbeke (1998), exponential filter hereafter,

u(z) = % (1 - %2) e /2 (12)

which effectively has a finite support because of the Gaussian
factor that suppresses the filter strongly to zero for ¥ = 36
(SWO05). The Fourier transform of the aperture filter is

. 2
a(t) = / A0 u(0)e™40 = %e*‘% . (13)

Figure 2. Illustration of the parametrisation of the lens-
lens-shear three-point correlator (3(791,792,¢3) (top panel), and
the lens-shear-shear correlation function éi(19171927¢3) (bottom
panel). These statistics are employed to estimate the aperture
statistics in Fig. 1. The figure is copied from SWO05.

We generally denote a Fourier transform of f(8) by f(£) in
the following. The exponential filter @(¢) peaks in Fourier
space at an angular wave number of ¢ = /2, which deter-
mines a characteristic angular scale selected by an aperture
radius of 6.

2.3 Aperture statistics estimators

To obtain the third-order moments of the galaxy-matter
aperture statistics, we utilise the lens-lens-shear correlation
function G in the case of (N2J\/Iap> and the lens-shear-shear
correlation function G4 for (MMZ,). This section provides
only a brief description of this approach. For a more de-
tails, its computationally optimised implementation as well
as verification, we refer the reader to Sect. 3 of Simon et al.
(2008).

In practice, the aperture moments (N2 Map) or (N MZ,)
are not computed from the aperture mass M,, or aperture
number counts A directly. The information contained in
the aperture statistics is also contained inside two classes
of three-point correlation functions (SWO05), which are rel-



atively straightforward to estimate. Once the correlation
functions have been determined, they can be transformed to
the corresponding aperture statistics by an integral transfor-
mation. The estimation process thus proceeds in two basic
steps. In the first step, for (J\/'QMap> one estimates the source
tangential ellipticity relative to the midpoint connecting two
lenses,

G0, 02,65) = 3 (ma(O)ns (027 (05 24 22) ) . (19
g

The meaning of the notation is illustrated in the left panel

of Fig. 2. For (NMZ2,) one estimates the correlation of the

ellipticities of two sources relative to the line connecting

the sources as a function of separation from one lens (right

panel),

Go01,92,00) = 2 (@157 @ pa)na(02) ). (15)
g
Here and in the following equations a superscript “+” as
in ¥ means ~ for v~ (in case of G_ ) and the complex
conjugate v* for v (in case of éJr)

Both correlation functions are estimated inside bins of
similar triangles, i.e., lens-source triples within a configura-
tion of comparable side lengths 1,2 and opening angles ¢3,
by summing over all relevant galaxy triplets. Any triple of
three galaxy positions 8, 0;, 0 that meets the criteria of a
relevant triangle is flagged by AZI:2¢3 =1 and Aﬂl#zd"g =0
otherwise. For this study, we utilise 100 logarlthmlc bins for
both ¢ and 3, ang 100 linear bins for the opening angle

¢3. For estimating G we utilise

G (01,02, ¢3) = (16)
Ng Ng Ns
— S S wiepei@ites) [1 +w(0; — 6; |)]A191192¢%
i=1j=1k=1
Ng Ng ’

and for éi the estimator

G (01,92, ¢3) = (17)
Nq Ns N ) ) -
Z Z Z w; w €j€§672lvj e:l:2upkAij1k 203
i=1j=1k=1
Naq Ns N 01990 ’
> 2 > wiweAGTE
i=1j=1k=1

where Ngq and Ng are the number of lenses and sources, w;
are statistical weights of sources, ¢; are polar angles of the
position vectors of galaxies with respect to the coordinate
origin, ¢; are the source ellipticities, and

w(180]) = (re(0)r(0 + 20) ) (18)

is the angular two-point clustering of the lenses (e.g. Pee-
bles 1980). In this paper, the angular clustering of lenses
is estimated by means of the estimator in Landy & Szalay
(1993) prior to the estimation of G and then interpolated.
Sources are weighed by the inverse-variance uncertainty in
the lensfit ellipticity measurement (Miller et al. 2012).

_In a second step, we transform the estimates of G and
G+ to the aperture statistics by devising the transforma-
tion integrals Egs. (63), (57), and (59) in SWO05. There is
no need to remove the unconnected terms in the correlation
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functions. As shown in SWO05 (Sect. 7.2. therein), the trans-
formation from G to (N2Map> yields the same result when
5 is taken instead of G. Therefore, the integral transforma-
tion automatically ignores unconnected second-order terms
in the triple correlator, resulting in an aperture statistics
that are only determined by pure (connected) third-order
correlation terms. The same holds true for G and N pr).

2.4 Relation to 3D galaxy-matter bispectra

The aperture statistics are directly connected to the angular
cross-bispectra of the projected matter and lens distribution:

(N?Map) (615 055 03) = (19)
d2e, d%ey . _

[ e | G i) a0) i + 10 (1. 82)

(N'MZ,) (015623 03) = (20)
A d%ey . ~

/(2#)2/(27r) U(€101)u(l262)0(|€1 + £2]03)brrg (L1, £2) ,

where the angular galaxy-galaxy-matter bispectrum is

(e (£1)Fe(£2)R(£3)) = (27)°05) (€1 + €2+ £3)bggn (€, £2)(21)
and the angular matter-matter-galaxy bispectrum is
(R(€1)(£2)Fg (£3)) = (27)705” (€1 42+ £3)bs (€1, £2) (22)

For statistically homogeneous random fields, the triple cor-
relators on the left-hand side of the previous two equations
can only be non-vanishing when £; + €2 + €3 = 0, which
is reflected by the 2D Dirac delta functions 5](:)2)(:1:) on the
right-hand sides. Owing to homogeneity, the bispectra thus
depend only on two independent arguments £, for which
we arbitrarily choose £; and £>. This automatically implies
€3 = — (€1 + £2). In addition the statistical isotropy implies
that the bispectra are solely functions of the moduli of £; >
and the angle enclosed by both wave vectors.

As can be seen from Egs. (19), (20), the aperture statis-
tics are a locally filtered version of the bispectrum because
the exponential u-filter is relatively localised in ¢-space with
a filter maximum at fmax = \/5/0 By means of the filtering,
the aperture statistics basically becomes a band power bis-
pectrum version of bggx Or biwe. Hence the aperture statistics
Egs. (8), (9) measure two different angular galaxy-matter
band power cross-bispectra.

By virtue of the Limber approximation (Kaiser 1992;
Bartelmann & Schneider 2001) the angular bispectra and
thereby the aperture statistics Egs. (19), (20) can directly
be related to the 3D cross-bispectrum of the matter and lens
distribution (SW05) as primary physical quantities that are
assessed by the statistics:

bggr (21722) = (23)
3 g(x)pi (x) £ Lo
2D%I/ RNEIES )a(x)ngm(fK(x)’fK(x)’X)’
brrg(L1,82) = (24)
902 ™ g*(x)pe(x) £ £o
1D} / I Fza0g P (Gt e

where the 3D bispectra are determined by the Fourier trans-
forms of the matter density contrast, om(k,X), and galaxy
number density contrast, dg(k,x), at radial distance Y,
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namely

(3 (Fe1, x)3g (K2, X)0um (K3, X)) =
27)%6 (K + k2 + ks) Bygm (k1. k2, X)

(0 (o1, X)9m (K2, x)bg (K3, X)) = (26)
(2m)%8%) (k1 + k2 + k3) Bumg (K1, k2, X) -

The vector k is the comoving wave number of modes entering
the triple correlator. As before with the angular bispectra,
the spatial bispectra are also isotropic, i.e., they are only
functions of |k1|, |k2| and the angle spanned by k1 and ko.

To refine the previous RCS1 measurement in Simon
et al. (2008) for different galaxy populations, we focus
on equally-sized apertures with 61 = 602 = 603 only.
This leads us to the short hand notations (N2 Map)(6) =
(N2 M.p)(0;0;0), likewise for (NMZ). Due to the action
of the w-filter in the Egs. (19) and (20) this picks up
mainly bispectrum contributions from equilateral triangles
|€1| = [£2] = |£1+£2], albeit also mixing in signal from other
triangles because of the finite width of the u-filter in ¢-space.

(25)

2.5 Systematics indicators

The gravitational shear of distant galaxy images is produced
by small fluctuations d¢ in the intervening gravitational po-
tential. To lowest order in 6(]5/02 this is expected to only
produce curl-free shear fields (B-modes vanish). Current sur-
veys do not have the power to measure higher-order effects,
such that we expect these to be undetectable in our data.
Shear-related correlation functions, or aperture moments in-
volving the aperture mass, hence vanish after rotation of all
sources by 45°, i.e., after 7.(0) — —i~.(0). Translated into
data analysis, a 45° rotation of the source ellipticities should
result in a measurement that is statistically consistent with
the experimental noise (e.g. Hetterscheidt et al. 2007). We
use this as a necessary (but not sufficient) indicator for the
absence of systematics in the data.

The estimator G$* in Eq. (17) incorporates two sources
with two uniquely different possibilities to probe systemat-
ics: rotating the ellipticities €; and €j of both sources results
in the so-called B-mode channel of (V' MZ,)(6), denoted here
by (NM?)(0), and the P-mode channel, (N M, M.,)(0), if
only either ¢; or ¢ are rotated. As pointed out by Schneider
(2003), a P-mode is a signature of a parity-invariance viola-
tion in the shear data, which in a parity-invariant universe
can only be generated by systematics in the PSF correction
pipeline, or in the algorithm for the statistical analysis of the
data. Non-vanishing B-modes, on the other hand, can have
a physical cause. For example, they can be associated with
the intrinsic clustering of sources (Schneider et al. 2002), in-
trinsic alignment correlations of physically close sources or
intrinsic shape-shear correlations (Heymans et al. 2006, and
references therein). Especially the latter two are a concern
for this analysis, as these effects are known to affect the E-
mode channel of the aperture statistics, which is the prime
focus of this work. However, currently it is unclear by how
much this really affects G3L. We discuss in the following
Sect. 2.6 that the influence of these systematics can be sup-
pressed by separating lenses and sources in redshift, which
is carried out in our analysis.

Since the estimator G*" in Eq. (16) involves one source,
there is only a single systematics indicator of (N Map)(6),

which is a parity violation indicator, a P-mode channel. In
the following we will denote these statistics as (N2M)(6).
As shown in SWO05, the B- and P-modes of the statistics can
be computed from G and G4+ directly by utilising an alter-
native integral kernel in the transformation from correlation
functions to aperture statistics; see their Sect. 7.1 and 7.2.

2.6 Reduction of II- and GI-contributions

One possible source of systematics are correlations with in-
trinsic ellipticities es of sources. A correlation between e
of different sources (II-correlations) or between ¢ and a
fluctuation in the mass density field generating shear (GI-
correlations) is known to contribute to the shear correlation
functions (e.g Hirata & Seljak 2004; Heymans et al. 2006;
Joachimi et al. 2011). For a discussion of intrinsic align-
ments in CFHTLenS see also Heymans et al. (2012). We
argue here that selecting lenses and sources from well sep-
arated distances ideally removes contaminations by II- or
Gl-correlations in the G3L statistics.

Consider the galaxy number density contrasts kg1 and
Kg,2 in two arbitrary line-of-sight directions 6; and 62, re-
spectively, and a source ellipticity €s + in a third direction
03. The shear v and € are rotated in direction of the mid-
point between the two lenses according to the definition of
G. If lenses and sources are well separated in distance, then
their properties are statistically independent. The lens-lens-
shear correlator measures

G = (hgimga(r+e)) (27)
= (Rg1hg27) + (Kg1kg,2)(€)
= (Rg1kg27) ,

free of any systematic contribution from the intrinsic shape
€s, if € is statistically independent of the lens number den-
sity fluctuation kg, i.e.,

(Rg1rg,2)(€s) (28)

vanishing due to (es) = 0.

Now, consider a lens number density contrast xg in one
direction and the ellipticities €s; + ; of two source images
i = 1,2 in two other directions. The ellipticities are rotated
in direction of line connecting the sources in accordance with
the definition of G+. The triple correlator measures

G+ (kg7 + 1) (72 + €5,2)) (29)

= <“g’7it’72> + <’§g€3f1’72> + <“g’ﬁ€s,2>
(KgVi72) + (Kg€a172) + (Kei €s,2)
<“g’7it’72> + <’§g€3f1’72> + <“g’ﬁ€s,2> :

(Kg,1Kg,265) =

<Kg6i1€= 2>

(re) (e 6s2)

+
Jr

The last term in the third line vanishes because kg in
the foreground is independent of the intrinsic shape of the
sources in the background and because of (ks) = 0. The
latter follows from the definition of density fluctuations xg.

The last two terms in the last line are less clear. For
example in (mgezflfyz), ~2 could be correlated with both g1
(GI signal, if source 2 is behind source 1) and kg (GGL
signal). However, on the level of accuracy of the Born ap-
proximation that is used in Eq. (1), the shear 72 is linear in
the matter density contrast dm up to the distance of source
2. We can, therefore, split the contributions to 72 into three
parts y2 = Yk + Ve + Yrest, Namely (i) in contributions from
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Figure 3. Prediction of the third-order moment of the aperture
mass (M3,) for sources at redshift zs = 0.4.

matter within correlation length to the lens, 7., (ii) matter
within correlation distance to source 1, ., and (iii) the rest
Yrest, Which is neither correlated with kg nor with €. In
this case we find

(Rees172) = (Ree) (ed1) (ke (€5 17e)H{me) (1) (Frest) -(30)

All three terms vanish owing to (kg) = <5:1> = 0. A similar
rational shows that also <K/g’71i6572> vanishes to lowest order,
such that we expect to find in the weak lensing regime

G = (kg7 2) - (31)

2.7 Magnification of lenses

Another conceivable systematic effect is through cosmic
magnification (Narayan 1989; Bartelmann & Schneider
2001) that is generated by matter density fluctuations in
front of lenses. To lowest order, foreground matter density
fluctuations with lensing convergence k< (Eq. 1) integrated
to the lens distance modify the observed clustering of lenses
on the sky above a certain flux limit fi;,, according to

K = kg + A< + O(K2) (32)

compared to the unmagnified lens number density xg. Here,
we have X := 2(v—1) with 7ig(> fiim) & fi;n being the mean
number density of lenses with flux greater than fii,. Nor-
mally v — 1 is of the order of unity (van Waerbeke 2010)
or smaller. Likewise the shear distortion v = v« + 7>,
Eq. (3), into the same l.o.s. direction contains a contri-
bution < related to k<, and 7~ that is the shear orig-
inating from matter fluctuations beyond the foreground.
This in combination produces as additional contribution to
G = (ki 1kga2(v< +7>)) the term A (k< 1k<27<) and to
Gz = (rg(v<1+7>1) (Y< 217> 2)) the term M{r<y<,17<.2).

These terms are basically third-order cosmic shear cor-
relations or, in terms of the aperture statistics, related to the
(M3,(0)) statistics (Schneider et al. 2005). Third-order shear
correlations have been measured (Bernardeau et al. 2003;
Pen et al. 2003; Jarvis et al. 2004; Semboloni et al. 2011),
and (M2,(6)) has been found (Jarvis et al. 2004; Semboloni
et al. 2011) to be of the order of <1077 for aperture scales
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Figure 4. Total number of lenses (red) and sources (blue) in
the catalogue between 0.2 < zppoto < 1.2 and 17.5 < i’ < 22.5 for
lenses or 17.5 < ¢/ < 24.7 for sources. The figures comprise all
galaxies, complying with the selection cuts, contained within all
172 pointings. For the G3L analysis, the lens sample is further
subdivided in luminosity, stellar mass bins and photometric red-
shift, while sources are rejected for a photo-z of zphoto < 0.65.

of 8 ~ 1" and sources at zs ~ 1.0. As this includes contribu-
tions from the entire integrated matter up to zs, whereas the
G3L magnification effect only contributions from the matter
integrated up to the lens redshifts zq ~ 0.4, we consider this
an empirical upper limit for the magnification effect. In Fig.
3, we show a prediction of (M2, (6)) with sources at zs = 0.4
for a WMAPT7-like cosmology based on the theory described
in Semboloni et al. (2011). This result implies that the im-
pact of lens magnification on the G3L aperture statistics is
smaller than < 1078,

3 DATA
3.1 Object selection and photometric redshifts

This work uses the full CFHTLenS data set, which origi-
nates from the CFHTLS-Wide Survey. The CFHTLS-Wide
imaged 171 MegaCam (mounted on the CFHT) pointings in
the five broad-band filters u*, ¢’, r’, i’, and 2’. During the
observation campaign of CFHTLS, the i’-band filter was re-
placed by a new filter with a slightly different transmission
curve. For some of the pointings only the updated i’-band
filter magnitudes are available, which are treated as the old
filter magnitudes in the analysis. For details, see Erben et al.
(2012).

CFHTLenS has an effective area (different pointings
partly overlap) of about 154 square-degrees with high-
quality photometric redshifts down to i’ ~ 24.7. The data
set and the extraction of our photometric redshift catalogue
are described in Hildebrandt et al. (2012). Our data pro-
cessing techniques and recipes are described in Erben et al.
(2009) and Erben et al. (2012). As primary selection cri-
terion, we select sources brighter than i’ < 24.7 and lenses
brighter than i’ < 22.5. This will be further subdivided in
the following by using photometric redshifts (Fig. 4) and, in
the case of lenses, M, rest frame magnitudes, stellar masses
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Table 1. Selection criteria of lens samples and source sample for the G3L analysis applied to the samples in Fig. 4, following Mandelbaum
et al. (2006) for the lenses. The luminosity bins (L), stellar mass bins (sm) and galaxy type bins (ETG: early-type galaxies; LTG: late-
type galaxies) are again subdivided by 0.2 < zphoto < 0.44 (“low-2") and 0.44 < Zphoto < 0.6 (“high-2”). Sources attributed no statistical
weight w by lensfit are not used in the source sample. The galaxy numbers are for all pointings of which the final analysis discards
roughly 25%. Luminosities and stellar masses assume h = 0.73. (1) Zz: mean redshift, o.: r.m.s. variance of p(z); (2) and (3): best-fit
parameters of w(0) = Ay, (0/1)~> 4 IC within 0’2 < 6 < 10; (4): sample completeness; (5): mean r-band luminosity; (6): mean stellar

mass in units of 100 M.

Sample Selection #Galaxies z+ crgl) Aw/0.13) AB) fc(4) (M)B) (M,)O)
L1 low-z —-18 < M, < —17 36,372  0.22+£0.16 240£0.29 0454+0.11 0.14 -17.75 0.04
L1 high-z ? - - - - - - -
L2 low-z —-19< M, < —18 157,306  0.28 +£0.15 1.91+£0.23 0.35£0.05 0.45 -18.60 0.10
L2 high-z ? - - - - - - -
L3 low-z —-20< M, < —19 220,329 0.34+0.14 1414+0.12 043+0.05 0.81 -19.52 0.26
L3 high-z ? 75,902 0.48+0.11 1.63+0.18 0.54+0.08 0.42 -19.72 0.29
L4 low-z —21 < My < =20 149,190 0.34+0.12 1.63£0.07 0.53£0.03 0.95 -20.50 0.91
L4 high-z ? 185,286  0.51+0.10 1.624+0.08 0.69+0.04 0.82 -20.53 0.98
L5 low-z —22< My < —21 88,916 0.34£0.11 2.194£0.14 0.60+0.05 0.98 -21.48 3.09
L5 high-z ? 134,369 0.51+0.09 2.06+0.05 0.744+0.02 0.99 -21.49 3.06
L6 low-z 23 < M, < —22 31,373  0.35£0.10 3.02£0.24 0.65+0.07 0.99 -22.40 8.56
L6 high-z ? 55,315 0.524+0.08 2.50+0.10 0.924+0.04 1.00 -22.42 8.11
sml low-z 0.5 < M, /101 Mg < 1.0 78,181 0.34+0.12 2414034 0.434+0.09 0.94 -20.49 0.71
sm1 high-z ” 69,784 0.50£0.10 1.724+0.33 0.58+0.15 0.77 -20.66 0.73
sm2 low-z 1.0 < M, /100 Mg < 2.0 61,650 0.34+0.11 3.75+£0.82 0.36+0.11 0.98 -20.98 1.42
sm2 high-z ” 82,411 0.51£0.09 2.39£0.07 0.60+0.07 0.90 -20.99 1.45
sm3 low-z 2.0 < M, /101 Mg < 4.0 48,632 0.34+£0.10 3.47+£0.31 0.51+£0.07 0.99 -21.46 2.85
sm3 high-z ” 81,305 0.51£0.08 2.444+0.13 0.724+0.05 0.98 -21.45 2.85
sm4 low-z 4.0 < M, /101 Mg < 8.0 33,218 0.35+£0.09 4.05+£0.39 0.59+0.08 0.99 -21.91 5.60
sm4 high-z ” 57,049 0.51+0.08 2.72+£0.11 0.77£0.04 0.99 -22.00 5.59
smb low-z 8.0 < M. /10'° My < 16.0 15,527 0.36 £0.08 5.00+0.41 0.70£0.07 1.00 -22.40 10.86
smb high-z ” 27,598 0.51+0.08 3.56+0.24 0.81£0.07 1.00 -22.81 10.88
sm6 low-z 16.0 < M. /10" M < 32.0 4,605 0.36 £0.07 6.58+0.50 1.51£+0.07 1.00 -23.00 21.13
sm6 high-z ? 7,121 0.52£0.07 4.18+0.78 1.584+0.16 1.00 -23.22 20.90
sm7 low-z 32.0 < M. /100 Mg < 64.0 526 0.38+0.06 8.89+1.37 1.644+0.15 1.00 -23.60 40.81
sm7 high-z ” 775 0.524+0.07 561+£1.30 1.28£0.21 1.00 -23.67 38.52
ETG low-z 0<TB<2| —23< M, < —21 89,359 0.34£0.10 3.43£0.08 0.68+0.02 0.99 -21.88 5.91
ETG high-z ? 137,144  0.51+0.08 2.90+0.09 0.83+0.03 1.00 -21.91 5.74
LTG low-z 2<TB<6| —23< M, <21 30,926 0.35£0.13 0.70£0.13 0.87+0.18 0.96 -21.64 1.73
LTG high-z ? 52,527 0.514+0.10 1.334+0.16 0.78+0.11 0.99 -21.73 2.05
SOURCES 0.65 < Zphoto < 1.2 | w > 0 2,926,894  0.93 =+ 0.26 - - - - -

or SED information (details below). 43 pointings out of 171
exhibit a significant PSF residual signal, according to the
detailed tests in Sect. 4.2 of Heymans et al. (2012), and are
therefore discarded for the analysis (~ 25% area); 129 point-
ings are included in the analysis. This leaves a total effective
survey area of ~ 120 deg? that is eventually used in the anal-
ysis. Of this area an additional ~ 20% percent is lost due
to masking. The analysis is performed on individual fields
which allows us to use field-to-field variances of the mea-
surements to estimate the covariance of measurement errors
directly from the data.

3.2 Lens samples

To guarantee a high reliability of the photo-z estimates for
the lenses, a magnitude cut of i’ < 22.5 is applied. A detailed
account and tests of the CFHTLenS photo-z pipeline can
be found in Hildebrandt et al. (2012). Based on the galaxies

endowed with photometric redshifts, three classes of lens
samples are selected (Table 1):

e A luminosity or L-sample class, which consists of six
distinct rest-frame M, bins (SDSS r-filter; York et al. 2000),
labelled L1 to L6. The same formal luminosity bin limits as
in Mandelbaum et al. (2006) or Velander et al. (2012) are
applied, although we do not automatically expect equivalent
completeness of the samples. To quantify the completeness,
we introduce the f. parameter below.

e A stellar mass or sm-sample class, which is also further
subdivided using seven distinct stellar mass bins. Again, we
are guided by Mandelbaum et al. (2006) for compiling this
sample class. The sm class has sub-classes with labels sm1-
sm7.

e A galaxy type class using the T_B parameter in BPZ
(Benitez 2000), which provides the most likely galaxy SED
for a given galaxy and its estimated photo-z; see Erben et al.
(2012) for more details. T_B=2 as division line, we separate
early-type galaxies (“ETG”), which have T_-B< 2, from late
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Figure 5. In contrast to Fig. 4, this figure shows the full BPZ redshift posterior of the various samples. Low-z lenses are selected from
Zphoto € [0.2,0.44], high-z lenses from zphoto € [0.44,0.6], and sources from zphoto € [0.65,1.2]. The dashed black line enclosing the

source p.d.f. is a parametrised fit, see Sect. 3.3 for best-fit parameters.

type galaxies (“LTG”).1 In order to define a volume-limited
sample of ETG and LTG, we select only luminous galaxies
with restframe luminosities —23 < M, < —21. With this
luminosity cut, ETG and LTG are actually subsamples of
L5 and L6 combined.

The stellar masses of the lenses are determined from the
galaxy multi-colour data as described in Sect. 2.1 of Velander

1 Within BPZ values of T_B denote best-fitting galaxy tem-
plates: 1I=CWW-Ell, 2=CWW-Sbc, 3=CWW-Scd, 4=CWW-Im,
5=KIN-SB3, and 6=KIN-SB2. Note that the templates are inter-
polated, such that fractional numbers occur.

et al. (2012). The estimators assume a Chabrier (2003) star
initial mass function.

All three classes are further split into two photo-z bins:
a “low-z” bin with 0.2 < zphoto < 0.44 and a “high-2” bin
with 0.44 < zphoto < 0.60. As redshift estimators we use the
maximum probability redshifts of the redshift posterior pro-
vided by BPZ. The redshift boundaries give comparable num-
bers of lenses prior to attributing them to one of the three
lens classes (Fig. 4). Not counting the high-z L1 and L2 sam-
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ples, which have too faint limits to contain lenses?, we have
in total 28 lens subsamples.

The true redshift distribution of a lens sample is
not identical to the distribution of their photometric red-
shifts due to the errors in the photo-z estimators. For a
magnitude cut of i' < 22.5, the errors are approximately
0z S 0.04(1 + z) with a ~ 3% outlier rate (Hildebrandt et al.
2012). We combine the posterior redshift probability distri-
bution functions (p.d.f.) of all lenses given by BPZ, see Fig. 5,
to quantify the redshift uncertainties of complete lens sam-
ples. The depicted redshift probability distributions will be
utilised when normalising the G3L aperture statistics.

To help the comparison of our G3L results to future
studies, we also quote the angular clustering and complete-
ness of the lens samples. The results are listed in Table 1,
the details are described in Appendices Bl (clustering) and
B2 (completeness). In short, for the angular clustering of
lenses, we approximate the angular galaxy two-point cor-
relation function by a power law over the angular range
0’2 < 0 < 10’. For each lens sample with the photo-z bin
[21, 22], we quote the completeness factor f. that expresses
the average V' (21, zmax)/V (21, 22) of all lenses in the sample;
V(z1,22) is the light cone volume between redshift z; and
22, and Zmax < 22 is the maximum redshift up to which a
lens is still above the flux limit i = 22.5. A small f. is a sign
of a strong incompleteness because many galaxies similar to
those observed near z; are presumably missing at higher
redshifts. Due to the magnitude limit, samples containing
a substantial portion of faint galaxies are most affected by
incompleteness, most notably L1 and L2. As expected, the
completeness drops if one moves from the low-z to the high-
z bin in almost all cases. The few minor exceptions, L5 for
instance, are probably due to shot noise in the f. estima-
tor. We conclude that L4-L6, sm3-sm7 and ETG/LTG are
the most complete, volume-limited samples for our study
(fe > 0.80 for both low-z and high-z). In Table 1 we also
quote the average absolute r-band flux of the samples, listed
as magnitude (M,) and the their average stellar mass (M.).

3.3 Source sample

All details concerning the galaxy shape measurement (em-
ploying the lensfit algorithm; Kitching et al. 2008, Miller
et al. 2007, and Miller et al. 2012), CFHTLenS source cata-
logue generation, and the discussion of shear systematics are
presented in Heymans et al. (2012) and Miller et al. (2012).
We account for the multiplicative shear bias by employing
the Miller et al. (2012) normalisation scheme adjusted to
our estimators (see Appendix A).

In order to reduce the level of undesired II- and GI-
correlations in the measurements, we attempt to separate
sources and lenses by redshift, utilising photometric red-
shifts as estimators. As a compromise between accurate red-
shift estimates and a large numbers of sources, we apply a
magnitude limit i’ < 24.7 to the lensfit shear catalogue and
select sources between 0.65 < Zphoto < 1.2. As for the lenses,
the true redshift distribution is derived from the combined

2 Actually, we find a few galaxies in the high-z L1/L2 samples.
These are probably extreme outliers with greatly inaccurate red-
shift estimates.

posterior redshift p.d.f. of individual sources, shown in ev-
ery panel of Fig. 5 in comparison to the redshift distribution
of the lens samples. The individual posteriors are weighted
with the source weight that is also used in the lensing anal-
ysis. The source redshift p.d.f. is well fitted by a broken
exponential distribution

exp (—po(zo — 2)P') if z < zo,
Po(z) ox { exp (—p2(z — 20)P®)  otherwise (33)

with fit parameters po = 91.14, p1 = 2.623, p2 = 4.093,
p3 = 1.378 and zp = 0.794 (dashed black lines). With our
selections we find about 3 x 10° sources with mean redshift
Z 2~ 0.93. As can be seen in Fig. 5, the overlap of the various
pe(z) and the source py,(2) is small but not entirely vanishing,
mainly at z = 0.5 — 0.7 for the high-z and at z ~ 0.6 for the
low-z samples. The typical overlapping area of the redshift
probability distribution functions (visible in Fig. 5) is ~ 12%
for the high-z samples and ~ 4% for the low-z samples.

4 RESULTS

4.1 Measurements and their uncertainties

In order to obtain measurements for the lensing aperture
statistics, we use the method outlined in Sect. 2.3. As the
binning grid for G** and G, 100 log-bins ranging between
9 arcsec and 50 arcmin are set up for ¥; /2, 100 linear bins are
used for the opening angle ¢3, yielding overall 10° bins with
bin widths A¢s = 3.6 deg and Aln¥ = 0.058. All measure-
ments are performed separately on every individual point-
ing, out of 129 square pointings with roughly 1deg?® each.
Adjacent pointings partly overlap, however, which reduces
the area that is actually used. In our study, we crop the
pointings to remove the overlap. For the final result, indi-
vidual estimates are combined by averaging the individual
G*=' and G weighted by the number of triangles within
each bin.

Finally, the combined estimates are transformed to
the aperture statistics by the integral transformations dis-
cussed in SWO05. In his way, the aperture statistics between
0’5 < 0ap < 10’ for ten aperture scale radii are computed. As
addressed in Simon et al. (2008), the transformation from G
or G+ to aperture statistics becomes biased towards small
and large aperture radii due to an insufficient sampling of
the correlation functions. A similar transformation bias is
also known for the aperture mass statistics (Kilbinger et al.
2006). For the small separations, the bias depends in detail
on the mean number density of the galaxies, most crucially
the lenses, and the clustering of the lenses, which in com-
bination determines the sampling of the correlation func-
tions by small triangles. By comparison to simulated data,
we made sure that this bias is negligible (below ~ 10%)
within the range of 1’ <60 < 10" in our case (see Fig. 1 in
Saghiha et al. 2012 for an illustration of the transforma-
tion bias). The variance of the measurements across all 129
pointings is used to estimate the covariance of measurement
errors (Jackknifing; Appendix B1). The inverse covariance
matrix is estimated from the pointing-to-pointing covariance
according to the method in Hartlap et al. (2007).
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Figure 6. Measurements of the E-mode aperture statistics (N2 Map)(0) (top figure) and (Nl\/lgpﬂ@) (bottom figure) as a function of
aperture scale radius 0. The left column depicts measurements for the low-z bin, the right column the high-z bin. Different lines refer
to different lens samples (Table 1). Note that the values get biased for 6 < 1’ due to the transformation bias. Error bars indicate the
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increasing from -17.8 mag to -22.4 mag; sml-sm6: increasing stellar masses from 7 x 109 Mg to 2 x 10! Mg.
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Table 2. Results of the null tests for the different channels of the statistics. Quoted values are the reduced Ax? with d.o.f=7. for the
E-modes and P-mode, (N2M ), and d.o.f.=14 for the combined B/P-mode, (NM?2) and (N'M | Map). E-modes consistent with a null
signal are in bold, P- or P/B-modes inconsistent with a null signal are underlined. Adopted confidence levels are 95%. Only data points
within the range 1’5 < 6 < 10’ were used for this test.

0.22 < zphoto < 0.44 0.44 < zphoto < 0.60

(N2 Map) NVMZ,) (N2 Map) NVMZ,)
Sample E-mode P-mode E-mode P/B-mode E-mode P-mode E-mode P/B-mode

L1 3.22 1.27 2.64 1.24 - - - -
L2 7.32 1.57 2.31 1.75 - - - -
L3 3.79 0.66 4.93 0.75 3.21 0.94 2.38 1.22
L4 9.26 0.58 2.62 1.14 7.66 0.89 2.38 0.79
L5 6.72 1.00 4.31 0.80 7.08 1.95 0.81 1.06
L6 7.76 0.99 4.92 0.74 7.07 1.50 1.74 0.41
sml 6.41 1.06 4.06 1.55 5.18 0.74 1.90 0.68
sm2 12.43 0.59 3.55 1.11 5.97 0.40 0.95 0.83
sm3 7.07 0.99 4.05 0.76 5.62 0.65 0.18 1.19
smd 7.64 1.86 4.83 0.58 5.93 0.27 2.28 1.12
sm5 3.76 1.27 4.95 0.52 6.74 1.18 0.78 0.96
sm6 0.65 0.91 1.15 1.00 2.33 0.68 0.64 1.42
sm7 0.93 1.16 0.66 1.61 0.45 0.42 1.52 1.87
ETG 12.50 0.87 6.62 0.65 15.24 1.74 1.21 1.06

LTG 0.77 0.85 1.58 1.52 0.90 1.20 1.45 0.37



4.2 E-mode measurements

Fig. 6 summarises the E-mode results for the luminosity
and stellar mass bins of the (N?Ma,p) (top) and (NMZ,)
statistics (bottom). Due to the incompleteness in the sam-
ples, L1 and L2 are empty in the higher redshift bin and
hence are missing in the corresponding plots. Likewise, due
to the small number of lenses and correspondingly large er-
ror bars, also the data points of sm7 are missing. The signal
dependence on galaxy type is displayed separately in Fig.
7. For aperture radii greater than ~ 2 arcmin the measure-
ments seem to be well approximated by power laws, which
will be determined below. Below roughly 2 arcmin there are
indications of deviations from the power-law behaviour at
smaller radii in several cases, e.g., (N?Map) of low-z L1/L4,
or (N'MZ,) of high-z L4/L6.

The result of (N2M.,p,) of the late-type galaxies (LTG)
stand out as being the only one that is completely consistent
with zero despite relatively small error bars. Therefore, the
excess mass around late-type galaxy pairs vanishes within
the statistical uncertainties. In strong contrast to that, the
corresponding signal of the early-type galaxy (ETG) sample
is highly significant. From the LTG signal upper limit we
estimate the ETG signal to be greater by a factor of at least
~ 10. This confirms the prediction of Saghiha et al. (2012)
that is based on galaxy population synthesis models.

The low-z sample L1, with the fewest number of lenses,
presumably is affected by the transformation bias. This can
be seen by the clear drop of the data points for (N2 Map)
below 6., ~ 2arcmin compared to a power-law behaviour
at larger scales.

4.3 Systematics tests

General tests for systematics on the level of shear catalogue
generation are to be found in Heymans et al. (2012). We only
use CFHTLenS pointings that passed the therein described
tests for cosmic shear applications. To further test for sys-
tematics in our measurements, we check for the consistency
of the aperture statistics B- and P-modes with a null signal.
The details of this test and, moreover, G3L measurements
within separate CFHTLenS fields (W1-W4) are presented in
Appendix C. The null test also allows to quantify the signif-
icance of the signal in the E-mode channels of the statistics.
Table 2 summarises the tests for all statistics and galaxy
samples.

In summary, we find that B/P-modes in the aperture
statistics are consistent with zero between 1 arcmin and 10
arcmin. When looking at the combined L1-L6 sample, sep-
arate measurements within the survey fields W1-W4 agree
well for both the low-z and the high-z redshift bin. This
demonstrates the internal consistency of the data, and that
the observed signals do not originate from a single, possibly
peculiar field. As to the E-mode channels of the statistics,
we find for (N?M,,) highly significant signals (95% confi-
dence) for all low-z samples, except for sm6 and sm7, and
most high-z lens samples. Sm6 and sm7 pose exceptions
because they contain relatively small numbers of galaxies.
Apart from the high-z L3, L4, and sm4, all high-z sample
measurements of (N Mgp) are consistent with zero, whereas
their low-z counterparts are mostly significant. As (N'MZ,)
involves a three-point correlation function with two sources
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Figure 8. Visualisation of the G-measurement. Shown is the ex-
cess mass (kg (01)kg(02)x(03)) (intensity scale) as function of 03
around early-type (top) and late-type galaxy pairs (bottom) with
mean angular separations |61 — 62| between 40 and 60 arcsec; one
map pixel corresponds to 1.67 arcsec (z- and y-axis labels). The
lens positions 61,02 are indicated as boxes, the contours show
the S/N levels 2,3, ... (positive excess mass) and -3,-2 (negative
excess mass). To increase the signal-to-noise the low-z and high-
z maps of the ETG and LTG samples have been combined. A
smoothing with a Gaussian kernel of r.m.s.-size 6.7 arcsec has
been applied to map.

and one lens, the noise level of this measurement is naturally
higher than for (N2 M,p).
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5 INTERPRETATION
5.1 Lens-pair excess mass

Although aperture statistics and G3L-correlators essentially
contain the same information, we would like to show our G-
measurements for at least the ETG and LTG samples. As
outlined in Simon et al. (2008), the G3L correlation func-
tion G can conveniently be interpreted as a convergence map
(excess mass map) once the separation of the two lenses is
fixed; the E-mode in G is a series of such maps for varying
lens-lens separations. After a rotation, the correlator G is
a stacked shear field around the lens pair, from which we
subtract off the GGL signal around individual the lenses to
determine the connected part G. To obtain the excess mass
maps for the ETG and LTG in Fig. 8 we transform this
stacked shear field to a convergence map utilising the algo-
rithm in Kaiser & Squires (1993). For these maps, we con-
sider relatively small lens-lens separations between 40 and 60
arcsec as in Simon et al. (2008), and we combine the maps
of the low-z and high-z samples; lens-lens-source triangles
are rescaled inside the map such that lenses are always at
the same position in the map (boxes). We also exploit the
parity invariance of the maps by averaging the left and right
half of the map, thereby increasing the signal-to-noise, see
Simon et al. (2008) for details.

The ETG map contains more significant structure and
higher convergence values compared to the LTG map, which
has only a weak signal. Qualitatively, the excess mass of the
ETG sample is concentrated between the lens pair, whereas
the LTG lenses seem to possess a small halo of excess mass
around the individual lenses and a convergence trough be-
tween them. The latter implies that the average convergence
about a LTG pair (both lenses at similar distance) at given
separation is lower than the sum of convergence around two
mean individual late-type galaxies. We will study these maps
in more detail in a forthcoming paper and focus on the aper-
ture statistics for the remainder of this paper.

5.2 Power-law fits to measurements

For aperture scale radii larger than 6 > 2, our measure-
ments are reasonably consistent with a simple power law.
Therefore, we fit power laws (N M) (0ap) = Ao(6/1")~
to data points within 1’5 < § < 10’ to quantify the measured
profiles of the statistics n =2,m =1 and n =1,m = 2, see
Table 3. The fit starts at 1.5 arcmin in order not to be too
strongly influenced by the transformation bias. Fits use the
Jackknife covariance matrices based on the measurements
in the different pointings, as in Eq. (B2). For the fit, a mul-
tivariate Gaussian noise model for the measurement errors
is adopted. The quoted values indicate the posterior me-
dian and a 68% credibility region about the median for the
amplitude Ao and slope «. The posterior adopts a top-hat
prior for the power-law slope, only allowing values within
a € 0,5].

Fig. 9 depicts the dependence of the slope « on the lens
M, magnitude and stellar mass for (N2M,p) of all sam-
ples with at least a 95% confidence detection (Table 2). We
find a clear trend towards steeper slopes (steeper equilat-
eral bispectra) for more luminous galaxies and galaxies with
higher stellar mass. Note that sm6 and sm7 contain on av-

erage galaxies more luminous than these of L5 and L6 (Ta-
ble 1). The figure also depicts the measured slopes for the
ETG samples, which are consistent with the L-subsamples
of comparable M, luminosity (between L5 and L6). Slopes
weakly constrained by the data have posterior medians that
are drawn towards the centre of the top-hat prior, a = 2.5.
This mainly applies to the noisier (N M§p> measurements,
for which reason they are not included in Fig. 9 but are
listed in Table 3.

5.3 Normalised measurements

The G3L aperture statistics are directly related to the 3D
matter-galaxy cross-bispectra and the redshift distribution
of lenses and sources (Sect. 2.4). The radial galaxy distribu-
tions and the fiducial cosmology define a smoothing kernel
in radial and transverse direction. To disentangle, to low-
est order, the dependence of the signal on the physically
relevant bispectrum from the dependence on source or lens
distribution, we introduce a normalisation scheme.

Combining Eq. (19) and Eq. (23) shows that (N2 M.;)
constitutes a radially and transversely weighted average of
the 3D bispectrum Bggm (K1, k2, x), namely

(N Map) (615 02; 03) (34)
C3Qm [ g(0)pE(x) [ d201d?E.d?ls
- 2D%I/o de%(x)GQ(X)/ @m0

X ﬂ(flgl)ﬂ(ézez)ﬂ(f;ge:;)

X (27‘r)25D(f1 + £o + e3)ngm(fK£—(1X), fKe—(QX)’X) .

By changing the integration variables as in £; = fix(x)k: we
write this integral as

(N Map) (015 05 05) (35)
= /0 ” dX gggm (X)
— 1 1 1
* ngm(fK(X)%’ fr(x)02’ fK(X)937X) 7

for which we introduce the u-filtered bispectrum

— 111
B m ) ) I
&8 <R1 R:' Rs X) (36)

A%k d%k
— / W‘*D; (0 R Yi(ha Ra)a( e + k| Rs)
H

X Bggm (K1, k2, X)) .

As implied by (35), the lensing aperture statistics is ba-
sically the transversely u-filtered bispectrum Bgem aver-
aged in radial direction by the kernel ggem(X). For equally-
sized aperture radii 61 = 02 = 03, the u-filter gives most
weight to the equilateral bispectrum Bggm (k1, k2, x) with
k1 = k2 = |k1 + k2|, but also mixes in other triangle config-

urations to some degree. The radial weighting kernel,

_ 3 g0 () fr (%)
2 a(x) ’

is peaked at a radial distance xmax that is determined by
the redshift p.d.f. of lenses and sources (top row of Fig. 10).
Therefore, most weight is given to the bispectrum at dis-
tance Xmax-

Geem (X) : (37)
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Figure 9. Dependence of the power-law index « in the normalised aperture statistics (NQJ\/[ap> between 1’5 < 6 < 10’ with M,-band
magnitude (left panel) and stellar mass of lenses (right panel). Table 3 lists the power law indices of all statistics. Only fits to measurements
with a 95% confidence detection are plotted. The shaded region highlights the 68% credibility region of the combined low-z (open crosses)
and high-z (open stars). Also shown are the slopes for the early-type galaxy sample in the corresponding magnitude range (left panel).
For clarity, these data points are offset about their actual mean (M;) = —21.88(—21.91) for the low-z (high-z) sample.

Table 3. Power-law fits (N M%) (0) = Ao(6/1')~* to the measured aperture statistics in Fig. 6; Ao is the signal amplitude at an
aperture scale radius of # = 1arcmin. The fit considers only data within 6 € [1/5,10’]. Quoted errors bracket a 68% credibility region

about the median.
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The kernel @ggm(x) is not normalised, i.e.,

Jdx geem(x) # 1, such that the aperture statistics as-
sumes a value that depends not only on the underlying
3D bispectrum Bggm but also on the normalisation. In
order to make measurements comparable for different lens
and source samples, we define a normalised statistics Bggm
through the relation

(N?Map) (015 025 03) (38)

Xh
= Bgem (R1, R2, R3) / dX ggem (X)
0

with R; := fk(Xmax)0i. We emphasise that by this definition
Bggm is not a deprojection of the angular aperture statistics
to the spatial 3D bispectrum. This would involve the inver-
sion of the y-integral. Instead we, in effect, normalise the
statistic by the area [ dx gggm(X), and we convert angular
scales to projected physical scales through the angular di-
ameter distance fx(Xmax) at maximum weight gggm (Xmax)-
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Figure 10. Radial weight of the matter-galaxy bispectrum for the different lens samples used in this study: (N2 Map) (top row) and
(NMZ,) (bottom row). The left column is for lenses with zphoto € [0.2,0.44] (low-2), the right column for zpheto € [0.44,0.6] (high-z).
L1-L6: M,-luminosities increasing from -17.8 mag to -22.4 mag; sml-sm7: increasing stellar masses from 7 x 109 Mg to 4 x 10! Mq;

ETG: early-type galaxies; LTG: late-type galaxies.

The same line of reasoning can be applied to the second
G3L aperture statistics for which we obtain

(N'MZ,) (615023 63) (39)

Xh
= Bmmg(R17 R27 R3) / dX qmmg (X) 5
0

with its own radial filter

990 ¢* () () fR (%)
4D a?(x) ’

o (X) (40)
Examples of kernels ¢mmg(X) relevant for this work are de-
picted in the bottom row of Fig. 10.

By definition the aperture statistics (N"M,3), as mo-
ments of smoothed density contrasts on the sky, are dimen-
sionless. As gggm (X) has the dimension [length™'], Eq. (37),
we deduce from Eq. (35) that the u-filtered Bggm is also
dimensionless. This becomes also obvious from Eq. (38) be-
cause the normalisation integral is dimensionless. A similar
argument applies to the dimensionless Bmmg-

In our analysis, we estimate the equilateral Bggm
or Bmmg amplitudes of all samples at a common
comoving length scale of R; = Rimpe = 1h;01()Mpc (or
k ~ \/§/R1MpC ~ 14 hlool\/[pcf1 for the exponential wu-
filter). For this purpose, the power-law fits in Table 3 to
the aperture statistics are employed, which essentially de-
scribe the data at the scales of interest, to interpolate in the

case of Bggm

Bggm (R) := Bgegm (R, R, R) (41)
_ Ao (fK(XmaX) X 1/>+a < R )7(1
B fOXh dX Gggm (X) hfol() Mpc hfoltjMPC ‘
=:Bggm (RiMpc)

We are quoting only the amplitude Bggm (Rimpe) in the fol-
lowing. Likewise for the matter-matter-galaxy bispectrum
Biumg we have

B (R) 1= Bung (R B, B) (42)
— Ao fic(Xmax) x 1’ - i h
L dX qume (X) ( hioo Mpe ) (W) |

=:Bmmg(RiMpc)

To assess the uncertainty in the bispectrum amplitude, we
marginalise over the uncertainties in Ao, the aperture statis-
tics amplitude at 1 arcmin, and «, the power-law index, tak-
ing into account the correlation of their errors. A value of
Rimpe corresponds to an aperture scale radius between 2.5
to 3.5arcmin depending on the mean redshift of the lens
samples. The compiled results are plotted in Fig. 11 — one
of the main results of our study — to highlight the trends
with M, magnitude and stellar mass. As before, only mea-
surements with highly significant detections are included in
the plot.
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Figure 11. Trends of the (significant) galaxy-matter bispectra Bmmg(R) and Bggm (R) for k = v/2/R = 1.03 h73sMpc~! with function of
M-luminosity (left panel) and stellar mass (right panel). Shown are both redshift bins together. The left panel also includes Bggm (R) data
points of the early-type galaxy sample. These data points are somewhat offset with respect to their actual mean (M,) = —21.88(—21.91)
(high-z in brackets) for clarity. The shaded area highlights the 1o constraints of Bggm (R) for low-z and high-z combined.

At the corresponding M, magnitude range, we include
also the normalised (N?M.,,) amplitude of the ETG sample.
Their amplitude is somewhat higher in comparison to L5 and
L6. This can be explained by the fact that the LTG sample
is included in the L samples but not in the ETG sample of
similar luminosity: the LTG have a normalised amplitude
considerably smaller than that of the ETG.

5.4 Third-order galaxy biasing

SWO05 introduced a set of third-order galaxy biasing param-
eters bz, r1,72 to parametrise the galaxy-matter bispectra
relative to the matter bispectrum Bmmm,

ngm (kl, k2, X) bgr2 Bmmm(kly k27 X) ) (43)
Bmmg(k17 k2, X) = b37”1 Bl’l)l’l)l’l)(kly k27 X) . (44)

The coefficients b3, 71,72 are also functions of ki, k2, X,
which has been omitted here to save space. For galax-
ies faithfully tracing the underlying matter distribution
one finds r1 = ro = bg =1 for all scales. This parametrisa-
tion generalises the earlier similar second-order galaxy bias
parametrisation (e.g., Pen et al. 2003; Hoekstra et al. 2002;
Tegmark & Bromley 1999) to the third-order. Our nor-
malised G3L measurements of Bggm (R) and Bmmg(R) can
be utilised to constrain the ratio r1/(r2bs) for a physical
scale R by considering the combined statistics

Bunmg (R)

Bggm (R)

o dX Gaam (X) (NMZ) (RSt (Xmax))
S0 AX Gmms (X) (N2Map) (RS (Xmax))
for a lens sample. We assume here that both kernels gggm

and ¢mmg peak at the same distance Xmax, which is approxi-
mately valid for our study. This bias parameters in r1/(r2b3)

U(R) (45)

are smoothed in k and x with maximum weight at k ~ v/2/R
(equilateral triangles) and xmax. The exact smoothing ker-
nels are given in Appendix D. A deviation of U(R) from
unity hence indicates a biased galaxy population.

We calculate the ¥(R) statistics for the samples L1-L6,
samples sml-smb5, and the ETG sample (all low-z only) for
angular scales between one and ten arcmin. The remaining
measurements are too noisy for useful constraints. Fig. 12
summarises these novel measurements. The error distribu-
tions of the ratios W(R) are estimated by employing Monte-
Carlo realisations of Bggm and Bmmg (assumed Gaussian);
depicted are the mean and variances oy in the resulting
distributions. Alternatively, one could utilise the analytic
probability distribution function given in Hinkley (1969).

6 DISCUSSION

We performed a G3L analysis of approximately 100 square
degree of the CFHTLenS data set. The data is endowed
with photometric redshifts of galaxies and lensfit estimates
of the PSF-corrected source ellipticities. For the first time,
the signal-to-noise of the lensing data is sufficient to mea-
sure third-order galaxy-galaxy lensing as a function of lens
luminosity, stellar mass and galaxy type. The work of Simon
et al. (2008), analysing the RCS1 data, demonstrated that
G3L measurements are principally possible with contempo-
rary lensing surveys. This is confirmed by this study. We fur-
ther subdivided the lens samples in M,-luminosities, stellar
masses, SED types, and a “low-2z" (0.2 < 2zphoto < 0.44) and
a “high-2” (0.44 < zphoto < 0.6) redshift bin by utilising the
photometric redshifts of the lenses. We presented the G3L
measurements in terms of aperture statistics that probes the
angular bispectrum of the (projected) matter-galaxy three-
point correlations. In one case (“lens-lens-shear”), the mea-
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Figure 12. Results of the W-statistics which probes the third-order galaxy biasing parameters of our lens samples. Plotted is r1/(b3r2)
as function of scale k = \/E/R = \/i/(fK(Xmax)e) for the angular range 1’ < 6 < 10’. Used are only significant measurements in the
low-z samples. Luminosity samples are in the left panel, stellar mass samples and the ETG sample in the right panel. Data points with
uncertainties larger than og > 0.8 are not shown. The shaded area indicates the mean and standard deviation of the mean of combined
samples. L1-L6: M,-luminosities increasing from -17.8 mag to -22.4 mag; sml-sm5: increasing stellar masses from 7 x 10° Mg to 101! Mq;

ETG: early-type galaxies.

surements quantify correlations between two lens positions
and the surface matter density around the lens pair; this can
be interpreted as excess surface mass density about galaxy
pairs (Simon et al. 2012). In the other case (‘“lens-shear-
shear”), it expresses correlations between a lens position
and the surface mass density in two different directions close
to the lens. The here adopted G3L aperture statistics has
the practical advantage to separate E- and B/P-modes from
these measurements, which is utilised to detect signatures of
possible systematics in the data. On this level, no significant
G3L systematics signals were detected.

To reduce the impact due to intrinsic alignments of
sources, we separated lens and source galaxy samples phys-
ically from each other by exploiting the photometric red-
shifts in the survey. We showed that in the ideal case of
no radial overlap, neither II-correlations nor GI-correlations
contribute to the correlator. Owing to the uncertainty in the
galaxy redshifts, however, perfectly non-overlapping distri-
butions are hard to achieve. We found that our low-z lens
samples have still a small overlap of ~ 4% with the source
sample, the high-z samples a moderate overlap of ~ 12%
(overlap of redshift probability distribution functions). Be-
cause of the small overlap, at least for the low-z samples we
do not expect significant contributions from intrinsic align-
ment correlations. To test the degree of contamination by
GI- and II-correlations, we compared the aperture statistics
of the combined sm3-smb samples, both low-z (Zq = 0.35)

and high-z (Zq = 0.51), for two cases. In one case, we se-
lected sources by 0.65 < zphoto < 1.2 (Zs = 0.93) as before.
In the second case, we were more conservative by selecting
only sources within 0.8 < zphoto < 1.2 (2Zs = 1.02), thereby
discarding about one third of our sources. However, the lat-
ter case reduced the overlap from 3.3% (10.9%) to 0.6%
(2.5%) for the low-z (high-z) sample. The statistics were
normalised by fdxqggm(x) (f dX@mmg(X)) to compensate
the signal change owing to the different source depths. The
maximum signal increase is ~ 30% for (N'MZ,) of the high-
z lens sample. Fig. 13 shows the difference in normalised
statistics for fixed lens samples but varying source depths.
Here we assumed that fk(xmax) is identical for both com-
pared signals, i.e., both signals were differenced at the same
aperture scale radius. This assumption is accurate within a
few percent here. As expected, the difference is consistent
with zero, the level of GI/II-systematics in the statistics is
therefore negligible within the measurement errors.

As second possible source of systematics we identified
the magnification of the lens number densities by matter
fluctuations in front of the lenses. To first order this effect
is comparable to the aperture mass skewness (M3, (6)) asso-
ciated with sources at redshift zs ~ 0.4. We estimated this
effect to be of the order of < 107% at # ~ 1 arcmin. We
therefore conclude in comparison with our measurements
that in the range 1’ < 6 < 10’ the lens number density
magnification effect is negligible for both (N?M,,) and for
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Figure 13. Plotted are the differences of
(N2Map)(0)/ [ dx ggem(x) for sources with zppoto = 0.65 and
Zphoto = 0.8, and the analogue for (N'MZ,)(0)/ [ dx gmmg(x)-
For fixed lens samples (sm3-5 combined; either low-z or high-z),
the result is expected to be consistent with zero. Note that
neighbouring error bars are correlated.

N M§p>. For a more detailed investigation of systematics,
however, realistic models of intrinsic alignments and magni-
fication for third-order correlations are required, which are
currently unavailable.

The observed aperture statistics depend on the redshift
distributions of lenses and sources. Results of the statistics
would hence differ when changing the source or lens red-
shift distribution, even if the underlying comoving spatial
3D matter-galaxy bispectrum were unchanged throughout
the light-cone. In order to partially correct for this effect,
we employed a new technique that normalises the aper-
ture statistics with the lensing efficiency and relates angu-
lar scales to effective spatial scales; this yields two kinds of
galaxy-matter bispectra Bggm (R) and Bmmg (R), originating
from (N?M.p) and (NMZ,), respectively. The normalised
statistics obtained are basically band bispectra due to the
smoothing of the exponential u-filter in k-space and the ra-
dial smoothing of the lensing kernels. Only by means of our
or similar normalisation schemes, measurements for different
lens samples or same galaxy selections at different redshifts
become comparable. In particular, the application of our
normalisation simplifies the comparison with results from
future studies. The problem of unnormalised measurements
becomes particularly obvious for (N?M,p) of the low-z L1
sample in Fig. 6 (top left panel) in comparison to the L6 sam-
ple in the same panel: for § 2 2 arcmin both measurements
are basically identical, although the normalisation reveals
that the lower luminosity galaxies have a smaller bispec-
trum amplitude (Fig. 11, left panel). This effect results from
a completely different redshift distribution of the L1 lenses
that, due to sample incompleteness, have a mean redshift of
z ~ 0.22 instead of L6’s z ~ 0.34.

We estimated the measurement errors directly from the
data by Jackknifing the signal variance across the survey
pointings. Ideally, with statistically independent pointings
this would properly account for uncertainties due to source
shape noise, sampling noise and cosmic variance. However,

Galazy-galaxy-galaxy lensing in CFHTLenS 19

Table 4. Values of the normalised galaxy-matter bispectra
Bggm (R) (top half) and Bmmg(R) (bottom half) at R =
1h;01()Mpc for the late-type (LTG) and early-type (ETG) galaxy
sample.

Sample low-z high-z

ETG +1.04179:17 x 10~*
LTG +4.371250 x 1076

+9.48T139 x 10~
+1.0771-87 x 10~

5
5

ETG +5.98713% x 1075
LTG +6.9375 55 x 1076

+1.427337 x 10~
—-1.39%985 x 10~

oo

the pointings are bundled together in large fields W1-W4
with extensions of several degrees across the sky. This makes
pointings of the same field partly correlated. Therefore, the
cited uncertainties are probably somewhat too optimistic in
the sense that they underestimate the cosmic variance.

To refine the previous RCS1 measurement in Simon
et al. (2008) for different galaxy populations and to investi-
gate the dependences of bispectra amplitudes on galaxy pop-
ulations, we focussed here on equally-sized apertures. This
gives most weight to the equilateral bispectra. We found
that the aperture statistics are reasonably well described by
a power law on angular scales ranging from roughly two ar-
cmin to ten arcmin. On smaller angular scales, we observe
evidence for a change of slope, but we are also increasingly
affected by the transformation bias. For instance, (N2 M,,)
of the fainter low-z L4 sample clearly flattens below ~ 2
arcmin. Qualitatively, this behaviour is also observed in the
semi-analytic galaxy models studied in Saghiha et al. (2012),
see their Fig. 8. A similar change of slope, maybe also a
steepening, is visible for the (N'MZ,) statistics of the lu-
minosity samples. A comparison of galaxy models to our
measurements requires a careful replication of the galaxy
sample selections, their uncertainties, and the survey incom-
pleteness. Moreover, as concluded in Saghiha et al. (2012),
no reliable galaxy model is currently available to predict
the correct amplitude of G3L measurements — or to even
double-check whether our results may be strongly effected
by galaxy selection effects. We hence postpone this task to
a future paper.

The measurements of Bggm utilising ETG and LTG
pairs (subdivision of the combined L5/L6 sample) show that
the excess mass around pairs is a strong function of galaxy
type. The high excess mass signal of ETG is comparable
to the strong signal of pairs in our sm-samples with stel-
lar masses of ~ 10" My, whereas the excess mass of LTG
is consistent with zero in our case (Table 4). A plausible
explanation for this is the fact that many early-type galax-
ies in the ETG sample ((M.) ~ 6 x 10"° M) are satellites
in dense cluster environments, whereas LTG are frequently
field galaxies. This was, for instance, found by the GGL
study of Mandelbaum et al. (2006) in SDSS. The splitting
into ETG from over-dense and under-dense regions that was
conducted in this study is actually comparable to the lens-
lens-shear correlation function because the G3L correlator
gives more weight to pairs in cluster environments, sim-
ply because more pairs are found in these regions. Recently,
Saghiha et al. (2012) studied the excess mass for two state-
of-the-art semi-analytic galaxy models. Although the G3L
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amplitudes and colour distributions of the two considered
models are inconsistent, both models predict a large differ-
ence in (N?Ma,p) for zqg = 0.17 red and blue galaxies up to
a factor of ~ 10% at 6 ~ 2arcmin. With our uncertainties in
the LTG signal, we estimate the difference to be at least a
factor ~ 10, strongly confirming the previous prediction.
By forming ratios of normalised bispectra, our new
statistic ¥(R) := Bmmg(R)/Bgem (R) approximately yields
the ratio r1/(r2b3) of (smoothed) third-order biasing param-
eters (SWO05). The details of the smoothing are determined
by the shapes of the u-filter, the peaked kernels gmmg, ¢ggm,
and to some extent also the matter bispectrum (Appendix
D). Deviations of ¥ from unity indicate galaxies that not
faithfully trace the underlying matter density field, i.e., bi-
ased galaxies. This new technique for investigating galaxy
bias with lensing advances the methodology of van Waer-
beke (1998) and Schneider (1998) that focus on second-order
galaxy bias. The application of the latter found that galax-
ies are generally biased tracers (Hoekstra et al. 2001; Simon
et al. 2007; Jullo et al. 2012). We confirm this finding by
employing third-order galaxy-matter correlations.

7 CONCLUSIONS

e We detect G3L with unprecedented high significance in
the CFHTLenS for galaxy populations of different luminos-
ity, stellar mass, and SED type. This applies to both third-
order galaxy-galaxy-matter correlations (Bgem) and galaxy-
matter-matter correlations (Bmmg)-

e We find that the (equilateral) galaxy-matter bispec-
tra are, within the remaining statistical errors, reason-
ably well scale-invariant for the spatial (comoving) scales
0.3Mpc~ ! <k < 2.2Mpce~ . On smaller scales, not included
in our power-law fits, there are indications of deviations from
the power-law shape in several cases.

e The low-z and high-z counterparts of the same lens
samples yield very similar bispectra amplitudes Bggm (Fig.
11) and slopes (Fig. 9). This points to little evolution of the
bispectrum between redshift z ~ 0.3 — 0.5, especially for our
M,-selected galaxies. There is, however, some evidence for
a change in the amplitude of Bggm for stellar-mass selected
galaxies below ~ 10" My: high-z lenses show a lower am-
plitude than the low-z lenses (right panel of Fig. 11). This
implies an increase of excess mass about pairs of galaxies
of fixed stellar mass with time, as, e.g., may be expected in
a CDM scenario due to the continuous accretion of matter.
Evolution trends of Bmmg are unclear due to the measure-
ment uncertainties in the high-z samples.

e For Bgem the slope and the amplitude is a changing
function of galaxy luminosity, stellar mass and galaxy type.
The amplitude change is also observed for Bmmg. Brighter
or more massive galaxies (by stellar mass) exhibit a steeper
bispectrum, which implies that the excess mass is more con-
centrated in these cases. Moreover, there is a clear trend to-
wards higher amplitudes for both more luminous and more
massive galaxies. This shows that more luminous or massive
galaxies, or galaxy pairs in the case of Bggm, inhibit denser
environments than fainter or lighter galaxies.

e We observe a strong signal for the excess mass around
early-type galaxies (ETG) pairs. Late-type galaxy pairs
(LTG), on the other hand, have a signal that is consistent

with zero when studied as aperture statistics. This remark-
able observation is in excellent agreement with the recent
prediction of Saghiha et al. (2012) based on semi-analytic
galaxy models. The measurement therefore suggests that
virtually all signal in this magnitude range originates from
ETG pairs, and possibly mixed pairs of ETG and LTG,
rather than from LTG pairs. This can be explained by the
fact that a large fraction of ETG are satellite galaxies in
cluster. By explicitly mapping out the excess mass around
LTG and ETG galaxy pairs we have also found that both
maps are fundamentally different in their amplitudes as well
as in their general appearance.

e The mismatch between Bggm and Bmmg for the same
lens galaxy sample immediately indicates galaxies biased
with respect to the matter distribution. This mismatch is
captured by the galaxy bias statistics W(R) (Fig. 12) that
shows for our low-z samples values comparable for a wide
range of galaxy luminosities and stellar masses. Therein,
we probe the non-linear regime on scales smaller than k ~
0.8 Mpc™*. We find best constraints on ¥(R) with the stellar
mass samples, which has for all samples sm1-sm5 and scales
combined (minimum-variance weighted) an average value of
W = 0.51 £+ 0.07. This shows — for the first time employ-
ing third-order lensing statistics — that galaxies are biased
tracer of the matter density field. Although W(R) indicates
that the ratio 71/(r2bs) stays relatively constant with scale,
with a possible shallow local minimum at k& ~ 1.8 Mpc™!, the
additionally observed change of the bispectrum amplitudes
with galaxy luminosity or mass means that the individual
bias parameters have to differ between the galaxy samples.

e Finally, we emphasise that theory is lacking behind in
interpreting the G3L measurements. Reliable model predic-
tions , e.g., in the vein of Takada & Jain (2003), are needed,
not only to properly interpret the measurements, but also to
gain a better understanding of systematics and to verify that
selection effects in the data do not spoil the measurement.
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APPENDIX A: MULTIPLICATIVE SHEAR
BIAS

Miller et al. (2012) discusses a calibration scheme for corre-
lation function estimators involving shear estimates from the
lensfit pipeline. For details, we refer the reader to the men-
tioned article, Sect. 8.3 and 8.4. Analogous to the calibration
scheme of the two-point shear-shear correlation function de-
tailed therein, we divide G, Eq. (16), and G, Eq. (17),
by 14+ Kg (91,92, ¢3) and 1+ Kg (Y1, U2, ¢3), respectively.
Both calibration factors are given by
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The multiplicative bias factors m;, provided in the
CFHTLenS catalogue® for each source, are functions of the
source signal-to-noise and angular size. Note that for non-
vanishing values of 14 m; > 0, the calibration is mathe-
matically equivalent to employing the transformation €;
€i/(1+m;) and w; — w;(1+4m;) in the estimators Gt and
G

APPENDIX B: LENS SAMPLES SUPPLEMENT
Bl Angular clustering of lenses

The angular correlation function w(6) of the lenses as a func-
tion of separation 6 is approximated by a simple power law
(Peebles 1980):

Y
w(0) = As, (%) +1C, (B1)
where A, is the clustering strength at a separation of one ar-
cmin, A the slope of the correlation function and the constant
offset IC, the integral constraint (Groth & Peebles 1977). We
find this fitting function to be a good description of w(f) be-
tween 0'2 < 0 < 10’. The estimator of w(f) by Landy & Sza-
lay (1993), employed for this paper, requires the repeated
counting of galaxy pairs in separation bins for random real-
isations of unclustered galaxy distributions, factoring in the
incompleteness of the survey. The figures quoted in Table 1
consider the masks of individual survey pointings, but pre-
suming the same survey completeness within regions that
are not masked out. For the final w(#), all pair counts from
all individual survey fields are added so that, in effect, fields
with more galaxies attain a higher weight in the average.
The binned w(f) is stored as data vector d.
Pointing-to-pointing Jackknife sampling To esti-
mate the statistical uncertainty of d, we prepare a set of N,
Jackknife samples d}", where d; is the combined data vec-
tor omitting the ith patch. The Jackknife covariance of the
sample mean is then (Shao 1986; Norberg et al. 2009):

NP
-1 2" [agm]"
=% ;Adl [Adl ] , (B2)
where
Ad" = (N, — 1)(d—d") . (B3)

For Table 1, a power law fit is applied to the ensemble av-
erage d of all pointings, taking into account the Jackknife
covariance C. The #-binning in d is also applied to the power
law model, Eq. (B1), by averaging the model over the width
of each bin. Note that the inverse of C, required for the
likelihood analysis of the model fit parameters, has to be
corrected to obtain an unbiased estimator of the inverse co-
variance (Hartlap et al. 2007). Similar corrections of inverse

3 Publicly available under http://www.cadc-ccda.hia-iha.
nrc-cnrc.gc.ca/community/CFHTLens/query.html
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covariances are applied throughout the paper without fur-
ther mentioning.

B2 Completeness of lens sample

Here we define a parameter that quantifies the completeness
of our lens samples. First we define the comoving volume
V(z1, 22) confined by the redshift boundaries z1 < z < 22,

x(z1)

dx fz(x) (B4)
x(z0)

‘/(2:17 ZQ) = Q

where 2 is the solid angle of the patch field-of-view minus
the solid angle of mask regions, and

z dzl
x(z) = Du . B) (B5)
where FE(z) := H(z)/Hy is the Hubble parameter H(z) as a
function of redshift normalised to Hp.

Due to the incompleteness in our flux-limited survey, a
galaxy is only visible up to a certain redshift zmax. In gen-
eral, and especially for faint galaxies, one can expect the
limit zmax to be a complicated function of intrinsic galaxy
properties and position, survey instrumentation, survey con-
ditions and the data reduction pipeline. Nevertheless, here
we take the simplistic view that the main factor is the ap-
parent i’-band magnitude of the lens (extinction corrected),
which is limited to i’ < 22.5, such that our lens samples are
predominantly magnitude limited. We further assume that
a K-correction is negligible over the redshift bin [z1, z2] of
interest. Under these circumstances, one finds implicitly for

Zmax:
DL(ZmaX) _ 100.4(77l1imit*77l)DL(Z) , (BG)

where z is the redshift of the galaxy, m its i’-band magni-
tude, and Mmiimit = 22.5 the asserted magnitude limit of the
lens catalogue. By Dv(z) = (1 + 2) fx(x(2)) we denote the
comoving luminosity distance as a function of redshift.

In order to quantify for Table 1 the completeness of
a sample of N, galaxies, we estimate over which fraction
fe = V (21, 2max)/V (21, 22) an observed galaxy in the sam-
ple would be observable. We take the average of all volume
fractions of all lenses in a sample,

and marginalise over the uncertainties in the galaxy red-
shifts, quantified by the p.d.f. p;(z)dz. Importantly, zZmax,:
denotes the maximum redshift at which the ith galaxy would
still be included within the galaxy catalogue, complying with
all survey and sample selection criteria. A completeness pa-
rameter close to unity means that essentially all galaxies in
the sample are visible throughout the entire volume, whereas
fe < 1indicates a significant fraction of galaxies that is only
visible in a small subvolume at lower redshift. Obviously, fc
is merely an estimator (upper limit) for the sample com-
pleteness as galaxies already not observed at redshift z; are
not accounted for. Note that the solid angle {2 cancels inside
the expression for f. and is hence not needed.

V(zl, MIN (2. 22))
V(21722) ’

(B7)
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Figure C1. Plots of (VM| Map), (NM?) (L1 low-z and sm7
high-z) in comparison to the E-mode (lines). Both samples failed
the 95% confidence level null test for the P/B-modes, see Table
2.

APPENDIX C: SYSTEMATICS

C1 B/P-mode consistency with null

As indicator of possible systematics in the estimators,
we test (V>M ) and the combined (N'M | M.,y), (NM?)
against the null hypothesis. A null measurement should re-
sult in a

Ax* =d'C'd, (C1)

that is statistically consistent with a vanishing signal, with
d being a vector consisting of the measurements for the P-
mode ((N?Mayp)) or both the P- and B-mode ((NV'MZ,)). By
C we denote the Jackknife covariance of the measurements
as obtained from the variance of B/P-mode measurements
in the pointings, as explained in Sect. B1. This covariance
is larger than a null hypothesis covariance as it possibly
also contains power from B/P-modes present in the data. A
true null model would contain only power from galaxy shape
noise and sampling noise. The test results can be found in
Table 2. Measurements inconsistent with a null signal (95%
confidence) are underlined, thus for Ax? > 2.0 (1.68) per
degree of freedom for (N?M.p) ((N'MZ,)). In total, we find
two lens samples that fail the test; they are plotted in com-
parison to their E-mode in Fig. C1. In both cases the failures
are related to the (N M§p> statistics and significantly neg-
ative B-modes. Note that errors between neighbouring bins
are strongly correlated.

Finding two measurements out of in total 57 that fail
the 95% test is what we would expect as false positive rate.
We therefore conclude that the influence of systematics on
the E-mode measurement that reveal themselves via the P-
or B-modes is likely to be small compared to our measure-
ment uncertainties. Note that the sm7 sample that failed
the null test is not used in the final analysis because the
corresponding E-mode signal is consistent with zero.

C2 Field dependence of the G3L signal

The CFHTLS wide survey consists of four contiguous fields
W1 (~ 72deg?), W2 (~ 33deg?), W3 (~ 49 deg?) and W4
(~ 25deg?); the field areas do not include masking or ex-
cluded fields due to significant PSF residuals. The fields are
well separated on the sky and were observed at different
times of the year. By splitting the measurements into W1-
W4, we check whether the G3L measurements are compa-
rable for different subsets of the data. To have a possibly
large sample for this test, we combine the signals of the
samples L1 to L6 for each field, see Fig. C2. Only mea-
surements from pointings within the same fields W1-W4 are
combined, their statistical uncertainties originate from the
Jackknife technique (as in Eq. B2). Therefore, the error bars
do not include the cosmic variance between the fields, which
should be most prominent at the larger angular scales.

We find excellent agreement between the measurements,
considering that statistical uncertainties at larger scales are
higher than indicated and that errors between neighbouring
angular bins are correlated. In particular, this separation of
data shows that the G3L signal does not originate from sin-
gular fields that are extreme outliers compared to the others.
Since the uncertainties of the final combined measurements
are based on the pointing-to-pointing variance of the entire
survey, a possible systematic deviation of one field will be
included as systematic error inside the error bars.

APPENDIX D: THIRD-ORDER GALAXY
BIASING

The values Bggm (Bmmg) measure the u-filtered bispectrum
Baem (Bmmg), radially smoothed with maximum weight at
Xmax- The maximum weight of the u-filter in Fourier space
is at k = \/i/R for a given real space scale R. From the
definition of the W-statistics, Eq. (45), from Eq. (34) and

from a similar equation for (N'MZ,) it follows that
V(R) (D1)

N ded2k1d2k2 meg(k17k27X;R) (bg?"l) (k17k27X)
J dxd?k1d?ks Fgm (K1, k2, x; R) (b372) (K1, k2,X)

where the smoothing kernels in (k, x)-space are

Frimg(k1, k2, x; R) (D2)
_ Gmmg (X)
B OXh dX gmmg(X)
(k1 A)a(keA)u(|k1 + k2|A) Bomm (K1, k2, X)
Fagm(k1, k2, x; R)
_ egm (X)
IOXh dX Ggem (X)
w(kiA)u(k2A)a(|k1 + k2|A) Bomm (K1, k2, X)

X

with A := Rfk(x)/fk(Xmax).- As can be seen, the detailed
weight within a band defined by the width of the u-filter is
also determined by the actual matter bispectrum Bmmm-
We can further exploit the statistical isotropy of the
galaxy-matter bispectra, which means that both Bmmm and
the galaxy biasing parameters r1,72,b3 are only functions
of |k1|,|k2|, ¢; ¢ is the angle spanned by ki and k2. The
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Figure C2. Measurements of the aperture statistics (top row: (N2Map), bottom row: (N'M2,)) for the combined L1-L6 sample (low-z
and high-z redshift bin separately). The measurements are split for the four fields W1-W4. The error bars indicate only the pointing-to-
pointing variance within the same field. The fields vary in size and thus the sizes of lens and source catalogues vary. Lines connect the
data points to guide the eye.

previous expressions therefore simplify to

V(R) (D3)
o f dXd(Z5 dki1dkakiks meg(' . ) (bSTl) (k17 k27 ¢7 X)
~ [ dxd¢ dkidkakiks Fegm(...) (b3r2) (k1, k2, ¢,x)

where

Fome(...) (D4)

_ Gumg (X)
Jo dX qmme (X)
(k1 A) (ko A)ii(|k1 + k2| A) Bomm (k1, k2, ¢, X)

Figm (.-

— Jgem (X)
IOXh dX Ggem (X)
(k1 A)a(k2A)a(|k1 + k2|A) Bumm (K1, k2, ¢, %) |

and

ke + Kol = \/k2 4k + 2k cos ¢ (D5)

Note that for equilateral triangles we have k1 = k2 = |k1 +
k2| and thus cos ¢ = —1/2.



