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ABSTRACT

We present a study of the relation between dark matter halo mass and the baryonic content of

their host galaxies, quantified through galaxy luminosity and stellar mass. Our investigation

uses 154 deg2 of Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) lensing and

photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing

signal around our galaxies, we employ a galaxy–galaxy lensing halo model which allows us to

constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts

between 0.2 and 0.4, split into a red and a blue sample. We express the relationship between

dark matter halo mass and baryonic observable as a power law with pivot points of 1011 h−2
70 L⊙

and 2 × 1011 h−2
70 M⊙ for luminosity and stellar mass, respectively. For the luminosity–halo

mass relation, we find a slope of 1.32 ± 0.06 and a normalization of 1.19+0.06
−0.07 × 1013 h−1

70 M⊙
for red galaxies, while for blue galaxies the best-fitting slope is 1.09+0.20

−0.13 and the normalization

is 0.18+0.04
−0.05 × 1013 h−1

70 M⊙. Similarly, we find a best-fitting slope of 1.36+0.06
−0.07 and a normal-

ization of 1.43+0.11
−0.08 × 1013 h−1

70 M⊙ for the stellar mass–halo mass relation of red galaxies,

while for blue galaxies the corresponding values are 0.98+0.08
−0.07 and 0.84+0.20

−0.16 × 1013 h−1
70 M⊙.

All numbers convey the 68 per cent confidence limit. For red lenses, the fraction which are

satellites inside a larger halo tends to decrease with luminosity and stellar mass, with the sam-

ple being nearly all satellites for a stellar mass of 2 × 109 h−2
70 M⊙. The satellite fractions are

generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together

with the shallower relation between halo mass and baryonic tracer, is a direct confirmation
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from galaxy–galaxy lensing that blue galaxies reside in less clustered environments than red

galaxies. We also find that the halo model, while matching the lensing signal around red lenses

well, is prone to overpredicting the large-scale signal for faint and less massive blue lenses.

This could be a further indication that these galaxies tend to be more isolated than assumed.

Key words: gravitational lensing: weak – galaxies: haloes – cosmology: observations – dark

matter.

1 IN T RO D U C T I O N

In order to fully understand the mechanisms behind galaxy forma-

tion, the connection between galaxies and the extensive dark matter

haloes in which they are enveloped must be studied in exhaustive

detail. In pursuit of this precision, reliable mass estimates of both

the baryonic and the dark matter content of galaxies are required.

The visible component may be evaluated using galaxy properties

such as the luminosity or the stellar mass, properties which can

be derived via stellar synthesis models (Bell & de Jong 2001;

Kauffmann et al. 2003; Gallazzi et al. 2005; Salim et al. 2007).

The dark matter, on the other hand, cannot be observed directly but

must be examined through its gravitational influence on the sur-

roundings. At the largest scales reached by haloes, optical tracers

such as satellite galaxies are scarce. Furthermore, estimates of halo

mass from satellite galaxy kinematics (see, for example, More et al.

2011) do not only require spectroscopic measurements of a very

large number of objects, which are unfeasible with current instru-

mentation, but they also require the application of the virial theorem

with all its associated assumptions. To study any and all galaxies, it

is therefore desirable to use probes independent of these tracers, and

independent of the physical state of the halo, but with the power to

explore a large range of scales. These requirements are all satisfied

by weak gravitational lensing.

Gravitational lensing is a fundamental consequence of gravity.

As light from distant objects travels through the Universe, it is

deflected by intervening matter. This deflection causes the distant

objects, or sources, to appear distorted (and magnified). In the weak

regime, the distortion is minute, and only by studying the shapes

of a large number of sources can information about the foreground

gravitational field be extracted. By examining the average lensing

distortion as a function of distance from foreground galaxies, or

lenses, the density profiles of their dark matter haloes may be di-

rectly investigated; this technique is known as galaxy–galaxy lens-

ing. First detected by Brainerd, Blandford & Smail (1996), the

field of galaxy–galaxy lensing has been growing rapidly, with in-

creasing precision as survey area grows. Our understanding of the

underlying physics also increases as the interpretation of the signal

becomes more sophisticated. Simulations predict that dark mat-

ter haloes are well approximated by Navarro–Frenk–White (NFW)

profiles (Navarro, Frenk & White 1996), and comparing such a

profile to the observed signal around isolated lenses results in halo

mass estimates. Galaxies and their haloes are not generally isolated,

however, but reside in clustered environments. The ramification is

that the interpretation of the observed galaxy–galaxy lensing sig-

nal around foreground lenses becomes more complicated since the

signal from neighbouring haloes also influences the result. To ad-

dress this problem, a number of approaches have been employed.

Early studies modelled the lensing signal by associating all matter

with galaxies and comparing the resulting shear field to the obser-

vations in a maximum-likelihood approach (Schneider & Rix 1997;

Hudson et al. 1998; Hoekstra, Yee & Gladders 2004). In this case,

the clustering of galaxies was accounted for through the observed

positions, and Hudson et al. (1998) explicitly attempted to correct

for the offset signal seen by satellite galaxies in larger haloes. It

was, however, an approximate description. Alternatively, the issue

can be circumvented by selecting only isolated lenses (see Hoekstra

et al. 2005). This inevitably leads to a large reduction in the number

of lenses, and the sample is no longer representative as it does not

probe the full range of environments.

Over the past decade a new approach has gained traction: the

weak lensing halo model (Cooray & Sheth 2002; Guzik & Seljak

2002; Mandelbaum et al. 2005b; Leauthaud et al. 2011; van Uitert

et al. 2011). Within the halo model framework, all haloes are repre-

sented as distinct entities, each with a galaxy at the centre. Enclosed

in each main halo are satellite galaxies surrounded by subhaloes. In

this work, we seek to employ the halo model to gain a more accu-

rate picture of galaxy-size dark matter haloes, allowing for a more

precise analysis of the link between galaxies and the dark matter

haloes they reside in. For this purpose, we use image data from

the completed Canada–France–Hawaii Telescope Legacy Survey

(CFHTLS), and weak lensing and photometric redshift catalogues

produced by the Canada–France–Hawaii Telescope Lensing Survey

(CFHTLenS;1 Heymans et al. 2012; Hildebrandt et al. 2012; Miller

et al. 2013). This work improves on the preliminary galaxy–galaxy

lensing analysis carried out using a small subset of the CFHTLS and

a single-halo model fit to the inner regions only (Parker et al. 2007).

Furthermore, unlike Coupon et al. (2012) who studied the clustering

signal of galaxies for the full CFHTLS-Wide to constrain the evo-

lution in redshift of the stellar-to-halo mass relation, our analysis is

based on galaxy–galaxy lensing, which can directly constrain the

average halo mass of galaxies on small scales.

Three recent studies to use the galaxy–galaxy lensing halo model

to constrain these relations are Mandelbaum et al. (2006), van

Uitert et al. (2011, hereafter VU11) and Leauthaud et al. (2012).

Mandelbaum et al. (2006) studied the halo masses of lenses from the

full area of the fourth data release of the Sloan Digital Sky Survey

(SDSS DR4; Adelman-McCarthy et al. 2006) using a galaxy–galaxy

lensing halo model. The SDSS is very wide, but also very shallow

which means that for low-luminosity galaxies it is highly powerful

while it lacks the depth to constrain the halo masses of higher lumi-

nosity galaxies which are at higher redshifts on average. A similar

study was performed by VU11 using an earlier implementation of

the halo model software used for this paper. That study exploited

a 300 deg2 overlap between the SDSS DR7 and the intermediate-

depth second Red-sequence Cluster Survey (RCS2; Gilbank et al.

2011). The SDSS data were used to identify the lenses, but the lens-

ing analysis was performed on the RCS2, improving greatly at the

high-mass end on the previous analysis based on the shallow SDSS

alone. However, while the VU11 lenses had accurate spectroscopic

redshift estimates, there were no redshift estimates available for the

1 www.cfhtlens.org
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sources at the time. Thus, the work presented here has, aside from

the increased depth down to i ′
AB = 24.7, a further advantage over

the VU11 analysis owing to the high-precision photometric red-

shifts available for all objects used in our analysis (see Hildebrandt

et al. 2012). This makes it possible to cleanly separate lenses from

sources and therefore minimizes the contamination by satellites. It

also allows for optimal weighting of the lensing signal.

Leauthaud et al. (2012) combined several techniques to constrain

the relation between halo mass and stellar mass using data from the

deep space-based Cosmic Evolution Survey (COSMOS; Scoville

et al. 2007). They did not, however, refine their results by splitting

their lens sample according to galaxy type. In a follow-up paper,

Tinker et al. (2012) did split the COSMOS sample into star-forming

and passive galaxies to study the redshift evolution of the same

relation, but limited their study to massive galaxies located centrally

in a group-sized halo. Thanks to the large area and depth of the

CFHTLenS, we are in this paper able to investigate the relation

for blue and red galaxies separately without limiting our sample

in that way. We provide here a detailed comparison between our

results and those quoted in Mandelbaum et al. (2006), VU11 and

Leauthaud et al. (2012), but leave Tinker et al. (2012) due to the

large difference in sample selection between our analysis and theirs.

This paper is organized as follows: we introduce the data in

Section 2, and in Section 3 we review our halo model and the

formalism behind it. We investigate the lensing signal as a func-

tion of luminosity in Section 4 and as a function of stellar mass in

Section 5. In Section 6, we compare our results to the three previous

studies introduced above, and we conclude in Section 7. The fol-

lowing cosmology is assumed throughout (Wilkinson Microwave

Anisotropy Probe 7; Komatsu et al. 2011): (�M,��, h, σ8, w) =

(0.27, 0.73, 0.70, 0.81, −1). All numbers reported throughout the

paper have been obtained with this cosmology, and all h are factored

into the numbers. The h-scaling of each quantity is made explicit

via the use of h70 = H0/70 = 1 where appropriate.

2 DATA

In this paper, we present a galaxy–galaxy weak lensing analysis

of the entire Wide part of the Canada–France–Hawaii Telescope

Legacy Survey (CFHTLS-Wide). The unique combination of area

and depth makes this survey ideal for weak lensing analyses. The

CFHTLS was a joint project between Canada and France which

commenced in 2003 and which is now completed. The survey area

was imaged using the MegaPrime wide-field imager mounted at the

prime focus of the Canada–France–Hawaii Telescope (CFHT) and

equipped with the MegaCam camera. MegaCam comprises an array

of 9 × 4 CCDs and has a field of view of 1 deg2. The wide synoptic

survey covers an effective area of about 154 deg2 in five bands: u∗, g′,

r′, i′ and z′. This area is composed of four independent fields, W1–4,

each with an area of 23–64 deg2 and with a full multicolour depth of

i ′
AB = 24.7 (source in the CFHTLenS catalogue). The images have

been independently reduced within the CFHTLenS collaboration,

and for details on this data reduction process, we refer to Erben

et al. (2009, 2013).

CFHTLenS has measured accurate shapes and photometric red-

shifts for 8.7 × 106 galaxies (Heymans et al. 2012; Hildebrandt

et al. 2012; Miller et al. 2013). The shear estimates for the sources

used in this work have been obtained using lensfit as detailed in

Miller et al. (2013), and thoroughly tested for systematics within

the CFHTLenS collaboration (see Heymans et al. 2012). All sources

also have multiband photometric redshift estimates as detailed in

Hildebrandt et al. (2012). The catalogues we use in this work are

discussed in Heymans et al. (2012), Miller et al. (2013) and Hilde-

brandt et al. (2012), with the exception of the stellar mass estimates.

These estimates were obtained and tested for this paper and we

therefore describe them in detail below.

2.1 Stellar masses

Our primary photometry analysis uses the Bayesian photometric

redshift software BPZ (Benı́tez 2000; Coe et al. 2006) to estimate

photometric redshifts after performing an extinction correction on

the multicolour magnitudes. Using BPZ with a simple set of six mod-

ified Coleman, Wu & Weedman (1980) templates is our preferred

method to estimate redshifts when using only five optical bands (see

Hildebrandt et al. 2012), and we note that it has been shown that

the BPZ software is as accurate for photometric redshift estimates as

the alternative Bayesian LEPHARE
2 (Arnouts et al. 1999; Ilbert et al.

2006) software (see Hildebrandt et al. 2010 for a comparison). For

physical parameters such as stellar mass estimates, however, our

preferred method is to use a more complex set of galaxy templates.

Using LEPHARE and Bruzual & Charlot (2003) templates has been

proven to be a robust method to estimate physical parameters (see

Ilbert et al. 2010) and so we choose to use LEPHARE to estimate stel-

lar masses. For a consistent analysis, we also compute rest-frame

luminosities from the same spectral template as used for the stellar

mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-

tral energy distribution (SED) templates while keeping the redshift

fixed at the BPZ maximum-likelihood estimate. The SED templates

are based on the stellar population synthesis (SPS) package de-

veloped by Bruzual & Charlot (2003) assuming a Chabrier (2003)

initial mass function (IMF). Following Ilbert et al. (2010), our initial

set of templates includes 18 models using two different metallic-

ities (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially

decreasing star formation rates ∝ e−t/τ , where t is time and τ takes

the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The final template

set is then generated over 57 starburst ages ranging from 0.01 to

13.5 Gyr, and seven extinction values ranging from 0.05 to 0.3 using

a Calzetti et al. (2000) extinction law. Ilbert et al. (2010) investigated

the possible sources of uncertainty and bias by comparing stellar

mass estimates between methods. The expected difference between

our estimates and those based on a Salpeter IMF (Arnouts et al.

2007), a ‘diet’ Salpeter IMF (Bell 2008) or a Kroupa IMF (Borch

et al. 2006) is −0.24, −0.09 or 0 dex, respectively (see Ilbert et al.

2010). In their section 4.2, Ilbert et al. (2010) further argue that

the choice of extinction law may lead to a systematic difference

of 0.14, and the choice of the SPS model to a median difference

of 0.13–0.15 dex, with differences reaching 0.24 dex for massive

galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the

68 per cent confidence limits of the SED fit, using the full probabil-

ity distribution function. However, since we fix the redshift, these

errors tell us only how good the model fit is and do not account for

uncertainties in the photometric redshift estimates (see section 5.2

of Hildebrandt et al. 2012). To assess the stellar mass uncertainty

due to photometric redshift errors, we therefore compare our mass

estimates to those of the CFHT WIRCam Deep Survey (WIRDS;

Bielby et al. 2012). The WIRDS stellar masses were derived from

the CFHTLS Deep fields with additional broad-band near-infrared

2 www.cfht.hawaii.edu/∼arnouts/lephare.html
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data using the same method as described here. We are thus compar-

ing our CFHTLenS stellar mass estimates to other estimates which

are also based on photometric data, but which have deeper photom-

etry leading to a more robust stellar mass estimate. The additional

near-infrared data allow us to rely on these estimates up to a red-

shift of 1.5 (Pozzetti et al. 2007). For our comparison, we use a

total of 134 290 galaxies in the overlap between the CFHTLenS

and WIRDS data, splitting our sample into red and blue galaxies

using their photometric type TBPZ. TBPZ is a number in the range of

[1.0, 6.0] representing the best-fitting SED, and we define our red

and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ < 4.0,

respectively, where the latter captures most spiral galaxies. A

colour–colour comparison confirms that these samples are well de-

fined. In Fig. 1, we show the comparison between our stellar mass

estimates and those from WIRDS as a function of magnitude (top,

with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,

with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper, 0.2 ≤ zlens ≤ 0.4,

the total dispersion compared to WIRDS is then ∼0.2 dex for both

red and blue galaxies. The lower panel in the bottom plot of Fig. 1

shows that for red galaxies our stellar masses are in general slightly

lower than the WIRDS estimates, with the opposite being true for

blue galaxies. For galaxies brighter than i ′
AB ∼ 18, both the disper-

sion and the bias increase due to biases in the redshift estimates

(see Hildebrandt et al. 2012). The bias and dispersion also increase

rapidly at magnitudes fainter than i ′
AB ∼ 23, again due to redshift

errors.

We emphasize that this comparison with WIRDS quantifies only

the statistical stellar mass uncertainty due to errors in the photo-

metric redshifts and due to our particular template choice. Since the

mass estimates from both data sets have been derived using an iden-

tical method and template set, the systematic errors affecting stellar

mass estimates are not taken into account above. The uncertainties

arising from the choice of models and dust extinction law add 0.15

and 0.14 dex, respectively, to the error budget, as mentioned above,

resulting in a total uncertainty of ∼0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a

large range of lens properties and redshifts, which in turn grants us

the opportunity to thoroughly study the evolution of galaxy-scale

dark matter haloes. As discussed by Hildebrandt et al. (2012), the

use of photometric redshifts inevitably entails some bias in red-

shift estimates, and also in derived quantities such as luminosity

and stellar mass. Our analysis is sensitive even to a small bias

since our lenses are selected to reside at relatively low redshifts

of 0.2 ≤ zlens ≤ 0.4, where z is understood to be the peak of the

photometric redshift probability density function, unless explicitly

stated otherwise (see Fig. 2). Because our lensing signal is detected

with high precision, we empirically correct for this bias using the

overlap with a spectroscopic sample as described in Appendix B1.

Throughout this paper, we then use the corrected redshifts, lumi-

nosities and stellar masses for our lenses. For the full survey area,

we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass bins

as described in Sections 4 and 5 to investigate the halo mass trends

as a function of lens properties. Since we have access to multi-

colour data, we are also able to further divide our lenses in each

bin into a red and a blue sample using photometric type as de-

scribed in Section 2.1. We also ensure that our lenses are brighter

than i ′
AB < 23 which corresponds to an 80 per cent completeness

Figure 1. CFHTLenS stellar masses compared to those from the CFHT

WIRDS as a function of the i′AB magnitude (top) and redshift (bottom) for

red (dark purple solid dots) and blue (light green open triangles) galaxies.

The upper panels in each plot show the dispersion in log stellar mass, and the

lower panels show the bias of the CFHTLenS stellar mass estimates relative

to the WIRDS stellar mass estimates.

of the spectroscopic redshift sample we use to quantify the red-

shift bias discussed above. The high completeness ensures that the

spectroscopic sample is a good representation of our total galaxy

sample. The galaxy sample is dominated by blue late-type galaxies

for i ′
AB > 22, however, and we are thus unable to perform a reliable

redshift bias correction for red lenses at fainter magnitudes due to
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Figure 2. Magnitude (left-hand panel) and photometric redshift (right-hand

panel) distributions of galaxies in the CFHTLenS catalogue. For the left-

hand panel we show all galaxies in the CFHTLenS, while for the right-hand

panel we limit our sample to magnitudes brighter than i′AB = 24.7. The upper

limit of lens (source) magnitude used is shown with a dark purple dotted

(light green dashed) line in the left-hand panel, while our lens (source)

redshift selection is marked with dark purple dotted (light green dashed)

lines in the right-hand panel. Though the lens and source selections appear

to overlap in redshift, sources are always selected such that they are well

separated from lenses in redshift (see Section 2.2). Furthermore, close pairs

are down-weighted as described in Section 3.1.

a lack of objects. We therefore exclude red lenses with i ′AB > 22

while allowing blue lenses to magnitudes as faint as i ′
AB = 23. This

selection is also illustrated in Fig. 2.

To minimize any dilution of our lensing signal due to photo-

metric redshift uncertainties, we use an approach similar to that of

Leauthaud et al. (2012) and use only sources for which the redshift

95 per cent confidence limit does not overlap with the lens redshift.

We further ensure that the lens and source are separated by at least

0.1 in redshift space. To verify the effectiveness of this separation,

we compare the source number counts around our lenses to that

around random points (as suggested by Sheldon et al. 2004, section

4.1). This test shows no significant evidence of contamination. The

source magnitude is only limited by the maximum CFHTLenS anal-

ysis depth of i ′
AB ∼ 24.7 (see Heymans et al. 2012; Hildebrandt et al.

2012; Miller et al. 2013). Note that we do not apply a redshift bias

correction to source redshifts as there is no existing spectroscopic

redshift survey at these faint limits. While it is important to correct

our lenses for such a bias since the derived baryonic observables

such as luminosity and stellar mass depend strongly on redshift, it

is less important for the sources as the lensing signal scales with

the ratio Dls/Ds, where Ds and Dls are the angular diameter dis-

tances to the source, and between the lens and source, respectively.

This ratio is insensitive to small biases in the source redshifts. Our

source count for the full survey (excluding masked areas) is then

Nsource = 5.6 × 106, corresponding to an effective source density

of 10.6 arcmin−2 where we use the source density definition from

Heymans et al. (2012, equation 1).

The high quality of the CFHTLenS shear measurements has been

verified via a series of systematics tests presented in Heymans et al.

(2012) and Miller et al. (2013). To further illustrate the robustness of

the shears, we perform two separate analyses specifically designed

to test the galaxy–galaxy lensing signal. First, we use a sample of

magnitude-selected lenses across the entire survey and compare the

resulting weak lensing signal to that found by Parker et al. (2007)

for a 22 deg2 subset of the CFHTLS data, and to that found by VU11

for RCS2. Both previous analyses use shear measurement software

based on the class of methods first introduced by Kaiser, Squires &

Broadhurst (1995) and known as KSB. The details of the comparison

may be found in Appendix C1, and we find that the signal we

measure agrees well with these earlier shear measurements. The

second test, as described in Appendix C2, uses the seeing of the

images to test for any potential multiplicative bias still remaining.

We find that this bias is consistent with zero.

3 M E T H O D

To analyse the dark matter haloes surrounding our lenses, we use a

method known as galaxy–galaxy lensing and compare the measured

signal with a halo model. In this section, we will introduce the basic

formalism and give an overview of our halo model.

3.1 Galaxy–galaxy lensing

The first-order lensing distortion, shear, is a stretch tangentially

about a lens, induced by the foreground structure on the shape of a

background source galaxy. Assuming that sources are randomly ori-

ented intrinsically, the net alignment caused by lensing can be mea-

sured statistically from large source samples. In a galaxy–galaxy

lensing analysis, source galaxy distortions are averaged in concen-

tric rings centred on lens galaxies. We measure the tangential shear,

γt, as a function of the radial distance from the lens this way, and

also the cross-shear, γ ×, which is a 45◦ rotated signal. When aver-

aged azimuthally, the cross-shear can never be induced by a single

lens which means that it may be used as a systematics check. The

amplitude of the tangential shear is directly related to the differ-

ential surface density �	(r) = 	(< r) − 	(r), i.e. the difference

between the mean projected surface mass density enclosed by r and

the surface density at r, via

�	(r) = 	crit〈γt(r)〉 (1)

with 	crit the critical surface density

	crit =
c2

4πG

Ds

DlDls

, (2)

where Dl is the angular diameter distance to the lens, and Ds and

Dls are defined as before. Here, c is the speed of light and G is the

gravitational constant. By comparing differential surface densities

rather than tangential shears, the geometric factor is neutralized and

the amplitudes of the signals can be directly contrasted between

different samples. The only caveat is that the properties of lenses

depend on the lens redshift so this difference still has to be taken

into account.

We calculate the weighted average shear in each distance bin

from the lens by combining the shear measurement weight w with

the geometric lensing efficiency η = (DlDls)/Ds as described in

Velander, Kuijken & Schrabback (2011, appendix B4). By using

η we down-weight close pairs and can minimize any influence of

redshift inaccuracies on the measured signal that way. We quantify

any remaining redshift systematics by calculating a correction factor

for each mass estimate based on the redshift error distribution; see

Appendix B2 for details on how this is done. The average shear,

scaled to a reference redshift, is then given by

〈γt(r)〉 =

∑
wi(γt,i η−1

f ,i) η2
f ,i∑

wiη
2
f ,i

, (3)
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where ηf = η/ηref is the lensing efficiency weight factor with ηref a

reference lensing efficiency value. The lensing weight wi is defined

in equation 8 of Miller et al. (2013), and accounts both for the ellip-

ticity measurement error and for the intrinsic shape noise. Finally,

we convert the average shear to �	(r) using the 	crit computed for

the reference lens and source redshifts.

The CFHTLenS shears are affected by a small but non-negligible

multiplicative bias. Miller et al. (2013) have modelled this bias

using a set of simulations specifically created as a ‘clone’ of the

CFHTLenS, obtaining a calibration factor m(νSN, rgal) as a function

of the signal-to-noise ratio, νSN, and size of the source galaxy, rgal.

Rather than dividing each galaxy shear by a factor (1 + m), which

would lead to a biased calibration as discussed in Miller et al. (2013),

we apply it to our average shear measurement in each distance bin

using the correction

1 + K(r) =

∑
wiηf ,i[1 + m(νSN,i, rgal,i)]∑

wiηf ,i

. (4)

The lensing signal is then calibrated as follows:

〈γ cal(r)〉 =
〈γ (r)〉

1 + K(r)
. (5)

The effect of this correction term on our galaxy–galaxy analysis is to

increase the average lensing signal amplitude by at most 6 per cent.

Though there will be some uncertainty associated with this term,

Kilbinger et al. (2013) find that it has a negligible effect on their

shear covariance matrix. The calibration factor m enters linearly in

our equation (5), while it is squared in the Kilbinger et al. (2013)

correlation function correction factor, thus amplifying its effect. The

conclusion we draw is therefore that the impact of the calibration

factor uncertainty will be insignificant in this work. We also apply

the additive c-term correction discussed in Heymans et al. (2012)

but find that it does not change our results either.

The circular averaging over lens–source pairs makes this type

of analysis robust against small-scale systematics introduced by for

example point spread function (PSF) residuals in the shape measure-

ment catalogues. Because the galaxy–galaxy lensing signal is more

resilient to systematics than cosmic shear, we choose to maximize

our signal-to-noise by using the full CFHTLenS area (except for

masked areas) rather than removing the fields that have not passed

the cosmic shear systematics test described in Heymans et al. (2012).

However, there could be a spurious large-scale signal present owing

to areas being masked, or from lenses close to an edge, such that the

circular average does not cover all azimuthal angles. We correct for

such a spurious signal using a catalogue of random lens positions

situated outside any masked areas; the number of random lenses

used is 50 000 per square degree field, which amounts to more than

10 times as many as real lenses. The stacked lensing signal mea-

sured around these random lenses is evidence of incomplete circular

averages and will be present in the observed stacked lensing signal

as well. Because of our high sampling of this random point sig-

nal, we can correct the observed signal measured in each field by

subtracting the signal around the random lenses. This random point

test is discussed in more detail in Mandelbaum et al. (2005a). The

test shows that for these data, individual fields do indeed display

a signal around random lenses which is to be expected, even in

the absence of any shape measurement error, due to cosmic shear

and shot noise, and due to the masking effect mentioned above.

Averaged over the entire CFHTLenS area the random lens signal is

insignificant relative to the signal around true lenses ranging from

∼0.5 to ∼5 per cent over the angular range used in this analysis.

Additionally, to ascertain whether including the fields that fail the

cosmic shear systematics test biases our results, we compare the

tangential shear around all galaxies with 19.0 < i ′AB < 22.0 in the

fields that, respectively, pass and fail this test, and find no significant

differences between the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around

galaxy-size haloes, we have to account for the fact that galaxies

generally reside in clustered environments. In this work, we do this

by employing the halo model software first introduced in VU11. For

full details on the exact implementation, we refer to VU11; here we

give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak

(2002) and Mandelbaum et al. (2005b), where the full lensing signal

is modelled by accounting for the central galaxies and their satellites

separately. We assume that a fraction (1 − α) of our galaxy sample

reside at the centre of a dark matter halo, and the remaining objects

are satellite galaxies surrounded by subhaloes which in turn reside

inside a larger halo. In this context, α is the satellite fraction of a

given sample.

The lensing signal induced by central galaxies consists of two

components: the signal arising from the main dark matter halo (the

1-halo term �	1h) and the contribution from neighbouring haloes

(the 2-halo term �	2h). The two components simply add to give

the lensing signal due to central galaxies:

�	cent = �	1h
cent + �	2h

cent . (6)

In our model, we assume that all main dark matter haloes are well

represented by an NFW density profile (Navarro et al. 1996) with

a mass–concentration relationship as given by Duffy et al. (2008).

The halo model parameters resulting from an analysis such as ours

(see, for example, Section 4) are not very sensitive to the exact halo

concentration, however, as discussed in VU11 and in Appendix A.

To compute the 2-halo term, we use the non-linear power spectrum

from Smith et al. (2003). We also assume that the dependence

of the galaxy bias on mass follows the prescription from Sheth,

Mo & Tormen (2001), incorporating the adjustments described in

Tinker et al. (2005). Note that this mass–bias relation is empirically

calibrated on large numerical simulations, and does not discriminate

between different galaxy types. Finally, we note that the central term

essentially assumes a delta function in halo mass as a function of

a given observable since we do not integrate over the halo mass

distribution. For a given luminosity bin, for example, the particular

mass distribution within that bin therefore has to be accounted for.

We do correct our measured halo mass for this in the following

sections, assuming a log-normal distribution, and the correction

method is described in Appendices B2 and B3 for the luminosity

and stellar mass analysis, respectively.

We model satellite galaxies as residing in subhaloes whose spa-

tial distribution follows the dark matter distribution of the main

halo. The number density of satellites in a halo of a given mass is

described by the halo occupation distribution (HOD) which is com-

monly parametrized through a power law of the form 〈N〉 = Mǫ .

Following Mandelbaum et al. (2005b), we set ǫ = 1 for masses

above a characteristic mass scale, defined to be three times the typi-

cal halo mass of a set of lenses. For masses below this threshold, we

use ǫ = 2. In our model, the subhaloes have been tidally stripped

of dark matter in the outer regions. As Mandelbaum et al. (2005b)

did, we adopt a truncated NFW profile, choosing a truncation radius

of 0.4r200 beyond which the lensing signal is proportional to r−2,

where r is the physical distance from the lens. This choice results
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in about 50 per cent of the subhalo dark matter being stripped, and

we acquire a satellite term which supplies a signal on small scales.

Thus, satellite galaxies add three further components to the total

lensing signal: the contribution from the stripped subhalo (�	strip),

the satellite 1-halo term which is off-centre since the satellite galaxy

is not at the centre of the main halo and the 2-halo term from nearby

haloes. Just as for the central galaxies, the three terms add to give

the satellite lensing signal:

�	sat = �	
strip
sat + �	1h

sat + �	2h
sat . (7)

There is an additional contribution to the lensing signal, not yet

considered in the above equations. This is the signal induced by

the lens baryons (�	bar). This last term is a refinement of the halo

model presented in VU11, necessary since weak lensing measures

the total mass of a system and not just the dark matter mass. Fol-

lowing Leauthaud et al. (2011) we model the baryonic component

as a point source with a mass equal to the mean stellar mass of the

lenses in the sample:

�	bar =
〈M∗〉

πr2
. (8)

This term is fixed by the stellar mass of the lens, and we do not

fit it. Note that we choose not to include the baryonic term for

neighbouring haloes, but its contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample of

which a fraction α are satellites, we combine the baryon, central

and satellite galaxy signals, applying the appropriate proportions:

�	 = �	bar + (1 − α)�	cent + α�	sat . (9)

All components of our halo model are illustrated in Fig. 3. In this ex-

ample, the dark matter halo mass is M200 = 1012 h−1
70 M⊙, the stellar

mass is M∗ = 5 × 1010 h−2
70 M⊙, the satellite fraction is α = 0.2,

the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On small scales the

1-halo components are prominent, while on large scales the 2-halo

components dominate.

Figure 3. Illustration of the halo model used in this paper. Here we

have used a halo mass of M200 = 1012 h−1
70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. The dark purple lines represent quantities tied to galaxies which

are centrally located in their haloes while the light green lines correspond

to satellite quantities. The dark purple dash–dotted line shows the baryonic

component, the light green dash–dotted line shows the stripped satellite halo,

the dashed lines denote the 1-halo components induced by the main dark

matter halo and the dotted lines represent the 2-halo components originating

from nearby haloes.

We note here that the halo model is necessarily based on a number

of assumptions. Some of these assumptions may be overly stringent

or inaccurate, and some may differ from assumptions made in other

implementations of the galaxy–galaxy halo model. To be able to

make useful comparisons with other studies (such as the compar-

ison done in this paper, see Section 6), particularly considering

the statistical power and accuracy afforded by the CFHTLenS, we

attempt to provide a quantitative impression of how large a role

the assumptions actually play in determining the halo mass and

satellite fractions. The full evaluation is recounted in Appendix A

where we study the effect of the following modelling choices: the

inclusion of a baryonic component, the NFW mass–concentration

relation as applied to the central halo profile, the truncation radius

of the stripped satellite component, the distribution of satellites

within a given halo, the HOD and the bias prescription. Our general

finding is that, given reasonable spans in the parameters affect-

ing these choices, the best-fitting halo mass can change by up to

∼15–20 per cent for each individual assumption tested. The magni-

tude of the effect depends on the luminosity or stellar mass, and bins

with a greater satellite fraction will often be more strongly affected.

In essentially all cases the effect is subdominant to observational

errors and we therefore do not take them into account in what fol-

lows, though we do acknowledge that several effects may conspire

to cause a non-negligible change to our results.

4 L U M I N O S I T Y T R E N D

The luminosity of a galaxy is an easily obtainable indicator of

its baryonic content. To investigate the relation between the dark

matter halo mass and galaxy mass, we therefore split the lenses

into eight bins according to MegaCam absolute r′-band magnitudes

as detailed in Table 1 and illustrated in Fig. 4. The lens property

averages quoted in this and forthcoming tables are pure averages

and do not include the lensing weights, unless explicitly specified.

The choice of bin limits follows the lens selection in VU11. This

choice will allow us to directly compare our results to the results

shown in VU11 since the RCS2 data have been obtained using the

same filters and telescope. We also split each luminosity bin into

red and blue subsamples as described in Section 2.1 and proceed

to measure the galaxy–galaxy lensing signal for each sample, with

errors obtained via bootstrapping 104 times over the full CFHTLenS

area, where the number of bootstraps ensure convergence of the

mean. We then fit the signal between 50 h−1
70 kpc and 2 h−1

70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and the

satellite fraction α are left as free parameters while we keep all other

variables fixed. When fitting, we assume that the covariance matrix

of the lensing measurements is diagonal. Off-diagonal elements

are generally present due to cosmic variance and shape noise, but

Table 1. Details of the luminosity bins. (1) Absolute

magnitude range; (2) number of lenses; (3) mean redshift;

(4) fraction of lenses that are blue.

Sample Mr ′
(1) nlens

(2) 〈z〉(3) fblue
(4)

L1 [−21.0, −20.0] 91 224 0.32 0.70

L2 [−21.5, −21.0] 33 633 0.32 0.45

L3 [−22.0, −21.5] 23 075 0.32 0.32

L4 [−22.5, −22.0] 12 603 0.32 0.20

L5 [−23.0, −22.5] 5344 0.32 0.11

L6 [−23.5, −23.0] 1704 0.31 0.05

L7 [−24.0, −23.5] 344 0.30 0.03

L8 [−24.5, −24.0] 76 0.30 0.09
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Figure 4. r′-band absolute magnitude distribution in the CFHTLenS cata-

logues for lenses with redshifts 0.2 ≤ zlens ≤ 0.4 (black solid histogram). The

distribution of red (blue) lenses is shown in dotted dark purple (dot–dashed

light green). Our lens bins are marked with vertical lines.

Choi et al. (2012) find that for a lens sample at a redshift range

similar to that of our lenses the covariance matrix is diagonal up to

∼1 Mpc, which corresponds well to the largest scale we include in

our fits (this is also confirmed via visual inspection of our matrices).

Furthermore, fig. 7.2 from the PhD thesis of Jens Rödiger3 shows

that the off-diagonal elements are comparatively small. Hence, we

do not expect that the off-diagonal elements in the χ2 fit will have

a significant impact on the best-fitting parameters. The results are

shown in Fig. 5 for all luminosity bins and for each red and blue lens

sample, with details of the fitted halo model parameters quoted in

Table 2. The halo masses in this table have been corrected for various

contamination effects as detailed in Section 4.1 and Appendix B.

Note that the number of blue lenses in the two highest luminosity

bins, L7 and L8, is too low to adequately constrain the halo mass.

In the following sections, these two blue bins have therefore been

removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with luminosity

for both red and blue samples indicating an increased halo mass.

In general, for identical luminosity selections, blue galaxies have

less massive haloes than red galaxies do. For the red sample, lower

luminosity bins display a slight bump at scales of ∼1 h−1
70 Mpc.

This is due to the satellite 1-halo term becoming important and

indicates that a significant fraction of the galaxies in those bins are

in fact satellite galaxies inside a larger halo. On the other hand,

brighter red galaxies are more likely to be located centrally in a

halo. The blue galaxy halo models also display a bump for the lower

luminosity bins, but this feature is at larger scales than the satellite

1-halo term. The signal breakdown shown in Fig. D2 (Appendix D)

reveals that this bump is due to the central 2-halo term arising from

the contribution of nearby haloes. We note, however, that in these

low-luminosity blue bins, the model overestimates the signal at

projected separations greater than ∼2 h−1
70 Mpc. This could be an

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

indicator that our description of the galaxy bias, while accurate for

red lenses, results in too high a bias for blue lenses. Alternatively,

the discrepancy may suggest that the regime where the 1-halo term

transitions into the 2-halo term is not accurately described due to

inherent limitations of the halo model, such as non-linear galaxy

biasing, halo exclusion representation and inaccuracies in the non-

linear matter power spectrum (see Section 3.2). To optimally model

the regime in question, the handling of these factors should perhaps

be dependent on galaxy type, but that is not done here. The reason

is that we do not currently have enough data available to investigate

this regime in detail. In the future, however, it should be explored

further.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity,

we have to correct our raw halo mass estimates for two systematic

effects. First, we rely on photometric redshift estimates which do

not benefit from the absolute accuracy of spectroscopic redshifts.

We can therefore not be certain that a lens which is thought to

be at a certain redshift is in fact at that redshift. If the redshift is

different, then the derived luminosity will also be different which

means that the lens may have been placed in the wrong bin. Though

the lenses can scatter randomly according to their individual redshift

errors, the net effect will be to scatter lenses from bins with higher

abundances to those with lower abundances. The measured halo

mass will therefore be biased. To correct for this effect, we create

mock lens catalogues and allow the objects to scatter according

to their redshift error distributions. Secondly, the halo masses in a

given luminosity bin will not be evenly distributed, which means

that the measured halo mass does not necessarily correspond to the

mean halo mass. The derivation of the factor we apply to our halo

masses to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected for

the above scatter effects, are shown as a function of luminosity

in the top panel of Fig. 6. Red lenses display a slightly steeper

relationship between halo mass and luminosity than blue lenses,

and the haloes of the blue galaxies are in general less massive for

a given luminosity bin. Following VU11, we fit a power law of the

form

M200 = M0,L

(
L

Lfid

)βL

(10)

with Lfid = 1011 h−2
70 Lr ′,⊙ a scaling factor chosen to be the r′-

band luminosity of a fiducial galaxy. Rather than fitting to the final

mass estimates, we fit this relation directly to the lensing signals

themselves (taking the scatter correction into account). We do this

because the error bars are asymmetric in the former case, but the

difference in results between the two fitting techniques is small.

For our red lenses, we find M0,L = 1.19+0.06
−0.07 × 1013 h−1

70 M⊙ and

βL = 1.32 ± 0.06, while for our blue lenses the corresponding

numbers are M0,L = 0.18+0.04
−0.05 × 1013 h−1

70 M⊙ and βL = 1.09+0.20
−0.13.

The parameters are quoted with their 1σ errors, and the constraints

for these fits are shown in Fig. 7. Here we again see that the red

lenses are better constrained than the blue. This is partly because

we have more red lenses in most bins, and partly because red lenses

in general are more massive at a given luminosity.

The mass-to-light ratios, M200/〈Lr〉, of our red sample

range from 62+18
−15 h70 M⊙ L−1

⊙ , at the lowest luminosity bin to

90 ± 13 h70 M⊙ L−1

⊙ for L5. For our blue sample, the numbers are

16+5
−4 h70 M⊙ L−1

⊙ for L1 and 15 ± 2 h70 M⊙ L−1

⊙ for L5. Beyond
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model

described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, �	, of the red (blue) lenses, and the solid

line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here

been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent

distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];

(6) mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses

[1011 h−1
70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in

Section 4.1.

Sample 〈Lred
r 〉(1) 〈M red

∗ 〉(2) M red
h

(3) αred(4) 〈Lblue
r 〉(5) 〈Mblue

∗ 〉(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,

reaching 272+116
−72 h70 M⊙ L−1

⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated

with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-

tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,

and as the luminosity increases the satellite fraction decreases. This

indicates that a fair fraction of faint red lenses are satellites inside

a larger dark matter halo, consistent with previous findings (see

Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest

luminosity bins, the satellite fraction is difficult to constrain due

to the shape of the halo model satellite terms (light green lines in

Fig. 3) becoming indistinguishable from the central 1-halo term

(dark purple dashed), as discussed in Appendix D. To ensure that
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Figure 6. Satellite fraction α and bias-corrected halo mass M200 as a func-

tion of the r′-band luminosity. The dark purple (light green) dots represent

the results for red (blue) lens galaxies, and the dash–dotted lines show the

power-law scaling relations fitted to the Fig. 5 galaxy–galaxy lensing signal

(rather than to the points shown) as described in the text. The dotted line in

the lower panel shows the α prior applied to the highest luminosity bins.

Figure 7. Constraints on the power-law fits shown in Fig. 6. In dark purple

(light green) we show the constraints on the fit for red (blue) lenses, with

lines representing the 67.8, 95.4 and 99.7 per cent confidence limits and

stars representing the best-fitting value.

our halo masses are not biased low, we follow VU11 and apply a

uniform satellite fraction prior to these bins, allowing a maximum

α of 20 per cent. This prior is marked in Fig. 6. For blue lenses,

the satellite fraction remains low across all luminosities indicating

that almost none of our blue galaxies are satellites, again consistent

with previous findings. This may be a sign that blue galaxies in our

analysis are in general more isolated than red ones for a given lumi-

nosity, a theory corroborated by the low signal on large scales for

blue galaxies (see Fig. D2 in Appendix D). Here we have made no

distinction between field galaxies and galaxies residing in a denser

environment; for a more in-depth study of this distinction, see Gillis

et al. (2013).

5 ST E L L A R M A S S T R E N D

The galaxy luminosity as a tracer of baryonic content depends both

on age and on star formation history. A galaxy’s stellar mass does

not have such dependence and may therefore be a better indicator of

its baryonic content. In this section, we study the relation between

the galaxy stellar mass and the dark matter halo mass, dividing

the lenses into nine stellar mass bins as illustrated in Fig. 8 with

details in Table 3. As we did for the luminosity analysis (Section 4),

we further split each stellar mass bin into a red and a blue sample

using their photometric types to approximate early- and late-type

galaxies.

Figure 8. Stellar mass distribution in the CFHTLenS catalogues for lenses

with redshifts 0.2 ≤ zlens ≤ 0.4 (black solid histogram). The distribution of

red (blue) lenses is shown in dotted dark purple (dot–dashed light green).

Our lens bins are marked with vertical lines.

Table 3. Details of the stellar mass bins. (1) Stellar mass

range [h−2
70 M⊙]; (2) number of lenses; (3) mean redshift;

(4) fraction of lenses that are blue.

Sample log10M∗
(1) nlens

(2) 〈z〉(3) fblue
(4)

S1 [9.00, 9.50] 126 406 0.33 0.981

S2 [9.50, 10.00] 78 283 0.32 0.828

S3 [10.00, 10.50] 48 957 0.32 0.391

S4 [10.50, 11.00] 37 365 0.32 0.043

S5 [11.00, 11.25] 7474 0.32 0.003

S6 [11.25, 11.50] 2447 0.31 0.001

S7 [11.50, 11.75] 396 0.30 0.000

S8 [11.75, 12.00] 12 0.31 0.000
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CFHTLenS: galaxy baryon-dark matter relation 2121

Figure 9. Galaxy–galaxy lensing signal around lenses which have been split into stellar mass bins according to Table 3, modelled using the halo model

described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, �	, of the red (blue) lenses, and the solid

line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here

been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent

distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix E.

Table 4. Results from the halo model fit for the stellar mass bins. (1) Mean luminosity for red lenses

[1010 h−2
70 L⊙]; (2) mean stellar mass for red lenses [1010 h−2

70 M⊙]; (3) scatter-corrected best-fitting mean

halo mass for red lenses [1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for

blue lenses [1010 h−2
70 L⊙]; (6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting

mean halo mass for blue lenses [1011 h−1
70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted pa-

rameters are quoted with their 1σ errors. Note that the red results from the S1 and S2 bins, and the blue results

from the S5 and S6 bins, are not used for fitting the power-law relation in Section 5.1.

Sample 〈Lred
r 〉(1) 〈M red

∗ 〉(2) M red
h

(3) αred(4) 〈Lblue
r 〉(5) 〈Mblue

∗ 〉(6) Mblue
h

(7) αblue(8)

S1 0.22 0.24 0.03+1.90
−0.02 0.92+0.08

−0.28 0.41 0.18 1.28+0.41
−0.33 0.00+0.00

−0.00

S2 0.44 0.66 5.68+2.16
−1.84 0.41+0.04

−0.04 1.11 0.54 2.00+0.64
−0.62 0.00+0.00

−0.00

S3 1.06 1.97 5.81+1.67
−1.20 0.23+0.02

−0.02 2.87 1.59 9.14+2.37
−1.88 0.00+0.01

−0.00

S4 2.46 5.64 26.3+3.23
−2.88 0.11+0.02

−0.02 7.07 4.27 26.8+11.0
−10.3 0.00+0.02

−0.00

S5 5.38 13.0 81.2+12.1
−8.91 0.10+0.03

−0.03 – – – –

S6 8.96 22.6 160+28.3
−24.2 0.10+0.05

−0.05 – – – –

S7 14.3 38.6 388+90.7
−67.1 0.20+0.00

−0.09 – – – –

S8 19.1 62.7 174+353
−167 0.20+0.00

−0.20 – – – –

We measure the galaxy–galaxy lensing signal for each sample as

before, and fit on scales between 50 h−1
70 kpc and 2 h−1

70 Mpc using

our halo model with the halo mass M200 and the satellite fraction

α as free parameters. Similarly to the previous section, the results

are shown in Fig. 9 for all stellar mass bins and for each red and

blue lens sample, with details of the fitted halo model parameters

quoted in Table 4. There are no blue lenses available in the two

highest stellar mass bins, and in bins S5 and S6 the number of

blue lenses is too low to constrain the signal. We therefore remove

them from our analysis in the following sections. The mean mass

in each bin increases with increasing stellar mass as expected, re-

sulting in an increased signal amplitude. Similar to the luminosity

samples in the previous section, the red lower mass bins display a

bump at scales of ∼0.5 h−1 Mpc. Here the lowest bins contain less

massive galaxies than the lowest luminosity bins and the bump is

more pronounced, indicating that most of the galaxies in these low-

mass samples are satellite galaxies. The contribution from nearby

haloes is again clearly visible in the best-fitting halo model of

the lower mass blue samples, though as noted in Section 4, this

may be due to an inaccurate galaxy bias description for blue lenses.
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5.1 Stellar mass scaling relations

Just as for the luminosity bins, we have to correct the halo mass

estimates for two scatter effects: one due to errors in the stellar

mass estimates and another due to halo masses not being evenly

distributed within a given bin. We describe the correction for these

effects in Appendix B3. The best-fitting halo masses, once corrected

for these scatter effects, and satellite fractions α for each stellar

mass bin are shown in Fig. 10. In the lowest mass bin, nearly all

red lenses are satellites, while for higher masses the majority are

located centrally in their halo. As discussed in Section 4.2, this

fraction is difficult to constrain for high masses due to the shape of

the halo model satellite terms. We therefore apply the same uniform

satellite fraction prior to the high-stellar-mass bins as we did to the

high-luminosity bins, allowing a maximum α of 20 per cent. The

overall low satellite fraction for blue galaxies, suggesting together

with low large-scale signal that most blue galaxies are isolated, is

consistent with the luminosity results.

To quantify the difference in the relation between the dark matter

halo and stellar mass between red and blue lenses, we fit a power

law to the lensing signals in each bin simultaneously, similarly to

our treatment of the luminosity bins in the previous section. The

form of the power law is

M200 = M0,M

(
M∗

Mfid

)βM

(11)

with Mfid = 2 × 1011 h−2
70 M⊙ a scaling factor chosen to be the

stellar mass of a fiducial galaxy as in VU11. We note that for the

lowest red stellar mass bins, though the halo model fits the data very

well (see Fig. 9), the sample consists largely of satellite galaxies

as mentioned above. The central halo mass associated with these

lenses is therefore effectively inferred from the satellite term, and

thus constrained indirectly by the halo model and so we exclude the

two lowest stellar mass bins from our analysis.

Figure 10. Satellite fraction α and halo mass M200 as a function of stellar

mass. The dark purple (light green) dots represent the results for red (blue)

lens galaxies. The open circles show the points that have been excluded from

the power-law fit because of a high satellite fraction. The dotted line in the

lower panel shows the α prior applied to the highest stellar mass bins.

Figure 11. Constraints on the power-law fits shown in Fig. 10. In dark

purple (light green) we show the constraints on the fit for red (blue) lenses,

with lines representing the 67.8, 95.4 and 99.7 per cent confidence limits

and stars representing the best-fitting value.

The resulting best-fitting values for red lenses are M0,M =

1.43+0.11
−0.08 × 1013 h−1

70 M⊙ and βM = 1.36+0.06
−0.07, and for blue lenses

M0,M = 0.84+0.20
−0.16 × 1013 h−1

70 M⊙ and βM = 0.98+0.08
−0.07. We show

the constraints and best-fitting values in Fig. 11. The red lenses are

clearly better constrained than the blue ones due to the stronger

signal generated by these generally more massive galaxies. We note

here that due to a lack of massive blue lenses in our analysis, the

two galaxy-type results probe different stellar mass ranges. The blue

relation is limited to the low-stellar-mass end only, while the red

relation is constrained mostly at higher stellar masses.

The baryon fraction, M∗/M200, is fairly constant between stellar

mass bins though it shows a tendency to decrease for red lenses

from 0.034+0.010
−0.007 for S3 to 0.010 ± 0.002 for S7. For blue lenses,

it conversely shows a slight increase from 0.014+0.892
−0.009 for S1 to

0.016 ± 0.002 for S4. These numbers are indicators of the baryon

conversion efficiency, though the particular environment each sam-

ple resides in affects the numbers. Since the red and blue samples

probe different stellar mass ranges, we cannot directly compare the

two.

6 C O M PA R I S O N W I T H PR E V I O U S R E S U LT S

Early galaxy–galaxy lensing-based works that have investigated the

relation between luminosity and the virial mass of galaxies include

Guzik & Seljak (2002) and Hoekstra et al. (2005). In these works, the

mass is found to scale with luminosity as ∝L1.4 ± 0.2 and ∝L1.6 ± 0.2,

respectively, in agreement with our findings. We focus, however,

on comparing our halo mass results with those from three recent

comprehensive galaxy–galaxy lensing halo model analyses which

used data from three decidedly different surveys: the very wide

but shallow SDSS (Mandelbaum et al. 2006), the moderately deep

and wide RCS2 (VU11) and the very deep but narrow COSMOS

(Leauthaud et al. 2012). All four data sets are shown in Figs 12 and

13, with our results denoted by solid dots.
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Figure 12. Comparison between four different data sets. The left (right) panels show the measured halo mass as a function of luminosity (stellar mass), and

the top (bottom) panels show the results for red/early-type (blue/late-type) galaxies. The data sets used are all based on galaxy–galaxy lensing analyses with

solid dots showing the CFHTLenS results from this paper. Also shown are halo masses measured using the RCS2 (open stars; VU11), the SDSS (open squares;

Mandelbaum et al. 2006) and COSMOS (solid band; Leauthaud et al. 2012). In the case of COSMOS, we use the results from their lowest redshift bin. Also

note that no distinction between red and blue lenses was made in the COSMOS analysis, so the same results are shown in both right panels.

We begin our comparison by noting that the various works em-

ploy different halo models, so we urge the reader to keep the

study of the impact of different modelling choices in mind (see

Appendix A). Furthermore, they use different galaxy-type separa-

tion criteria. Mandelbaum et al. (2006) and VU11 base their selec-

tion on the brightness profile of the lenses, while we use the SED

type. As both selection criteria are found to correlate well with the

colours of the lenses, we expect the galaxy samples to be similar –

but not identical – and the differences between the samples could

have some effect. Leauthaud et al. (2012) did not split their sam-

ple in red and blue, which is why we show the same constraints

in both panels of Figs 12 and 13. Further variations between the

analyses are discussed in more detail below. With these caveats in

mind, we observe that all studies find similar general trends, with

a halo mass that increases with increasing luminosity and/or stellar

mass. It is also clear that blue/late-type galaxies tend to reside in

haloes of lower mass than red/early-types do. The halo mass esti-

mates of blue galaxies presented in these studies are in excellent

agreement. For the red galaxies, our mass estimates are consistent

with those from VU11 and Mandelbaum et al. (2006) except near

Lr ∼ 1011 h−2
70 L⊙, where they are 2σ–3σ lower. However, as a

function of stellar mass, our mass estimates of early-types broadly

agree with theirs. The halo masses of early-types also agree with

the results from Leauthaud et al. (2012) at stellar masses below

M∗ ∼ 1011 h−2
70 M⊙. At higher stellar masses, the mass estimates

are ∼2σ lower than those from Leauthaud et al. (2012), but we

note that this is also the case for the halo masses from VU11 and

Mandelbaum et al. (2006). We will discuss this in more detail below.

In general, a consistent picture of the relation between the baryonic

properties of galaxies and their parent haloes is emerging from the

four independent studies.

Since our halo model is most closely related to that used by VU11

(shown as open stars in Figs 12 and 13), a detailed comparison is

more straightforward compared to the other analyses. In VU11,

1.7 × 104 lens galaxies were studied using the overlap between the

SDSS and the RCS2. The combination of the two surveys allowed

for accurate baryonic property estimates using the spectroscopic

information from the SDSS, and a high source number density

of 6.3 arcmin−2 owing to the greater depth and better observing

conditions of the RCS2 compared to the SDSS. Because we use

photometric redshifts for our analysis, our lens sample is more than

60 times that of VU11, reflecting the small fraction of galaxies that

have spectroscopic redshifts determined by SDSS. The even greater

depth of the CFHTLenS compared to the RCS2 means that our

source density is a factor of 1.7 higher. Furthermore, in contrast to

VU11, we have individual redshift estimates available for all our

sources. The increased number density and redshift resolution in our

analysis results in significantly tighter constraints on the relations

between halo mass and luminosity, and between halo mass and

stellar mass.

As evidenced by Fig. 12, our halo masses agree well with those

found by VU11 in general, though our halo mass relations are

shallower; for red lenses we measure a power-law slope for the

relation between halo mass and luminosity of 1.32 ± 0.06, and
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Figure 13. Comparison between four different data sets, showing the ratio

of measured halo mass to stellar mass as a function of stellar mass. The top

(bottom) panels show the results for red/early-type (blue/late-type) galaxies.

The data sets used are all based on galaxy–galaxy lensing analyses with solid

dots showing the CFHTLenS results from this paper. Also shown are halo

masses measured using the RCS2 (open stars; VU11), the SDSS (open

squares; Mandelbaum et al. 2006) and COSMOS (solid band; Leauthaud

et al. 2012). In the case of COSMOS, we use the results from their lowest

redshift bin. Also note that no distinction between red and blue lenses was

made in the COSMOS analysis, so the same results are shown in both panels.

between halo mass and stellar mass of 1.36+0.06
−0.07, while VU11 find

slopes4 of 2.2 ± 0.1 and 1.8 ± 0.1, respectively, using the same

power-law definitions. The general trend with stellar mass of a

decreasing baryon conversion efficiency for red lenses was observed

by VU11 as well, but they were unable to discern a trend in their

late-type sample. There are some differences between the analyses

which should be noted, however. As mentioned above, we divide

our lens sample into a red and blue one based on the SED type, while

VU11 use the brightness distribution profiles to separate their lenses

into a bulge-dominated and a disc-dominated sample. Even though

the resulting samples are expected to be fairly similar, they are

not identical. As the mass-to-luminosity ratio of galaxies strongly

depends on their colour, even small colour differences between the

samples could result in different masses. This may explain why our

halo mass estimates of the red lenses at the high-luminosity end

are lower than those of VU11 and Mandelbaum et al. (2006), who

both use identical galaxy-type separation criteria and whose masses

agree in this regime. The difference is smaller for the stellar mass

results, providing further support for this hypothesis. Furthermore,

4 The RCS2 halo masses shown in Figs 12 and 13, and the power-law slopes

quoted in the text have been updated since the publication of VU11 to ac-

count for an issue with the halo modelling software. The issue was discovered

and resolved during the preparation of this paper. We note that the change

to the RCS2 results is within their reported observational uncertainties.

in our halo model we account for the baryonic mass of each lens,

something that was not done in VU11. As shown in Appendix A,

however, the slope and amplitude of our power laws do not change

significantly when the baryonic component is removed. Hence, this

does not explain why VU11 find a steeper slope than we do.

Another factor to be taken into account is the fact that we limit our

lens samples to redshifts of 0.2 ≤ zlens ≤ 0.4 keeping our mean lens

redshift fairly stable at 〈zlens〉 ∼ 0.3. This is not done in VU11, and as

a result the median redshift of our lower luminosity or stellar mass

bins is higher than that for the same bins in VU11, with the opposite

being true for the higher bins. Recent numerical simulations indicate

that the relation between stellar mass and halo mass will evolve with

redshift (see for example Conroy & Wechsler 2009; Moster et al.

2010). Lower mass host galaxies (M∗ < 1011 M⊙) increase in stellar

mass faster than their halo mass increases, i.e. for higher redshifts

the halo mass is lower for the same stellar mass. The opposite trend

holds for higher mass host galaxies (M∗ > 1011 M⊙). As a result, the

relation between halo mass and stellar mass (or an indicator thereof,

such as luminosity) steepens with increasing redshift. This means

that for the lower luminosity bins, where our redshifts are higher, we

may measure a steeper slope than VU11 and vice versa for higher

luminosity bins. The effect is likely small, however, because of the

relatively small redshift ranges involved.

Finally, we note that the lenses in the sample studied by VU11 are

rather massive and luminous as only galaxies with spectroscopy are

used. Our lens sample includes many more low-luminosity and low-

stellar-mass objects, however. Hence, the difference in slope may

be partly due to the fact that we probe different regimes, and that

the relation between the baryonic observable and halo mass is not

simply a power law but turns upwards at high luminosities/stellar

masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn

our attention to the comparison with the Mandelbaum et al. (2006)

analysis of 3.5 × 105 lenses in the SDSS DR4, shown as open

squares in Figs 12 and 13. Their lens sample is, similarly to the

VU11 sample, also divided into early- and late-type galaxies based

on their brightness profiles. To allow for a comparison between

our results and theirs, we first have to consider the differences in

the luminosity definition. Mandelbaum et al. (2006) use absolute

magnitudes which are based on a K-correction to a redshift of z= 0.1

and a distance modulus calculated using h = 1.0. Furthermore, their

luminosities are corrected for passive evolution by applying a factor

1.6(z − 0.1). However, VU11 convert their luminosities, which

are similar to ours, using the Mandelbaum et al. (2006) definition

and find that for low-luminosity low-redshift samples the difference

between the two definitions is negligible. The more luminous lenses

reside at higher redshifts and for them the correction is found to be

greater, most likely due to the difference in the passive evolution

corrections. Since our lenses are confined to relatively low redshifts,

and since the main difference between luminosity definitions is the

passive evolution factor, we can compare our results to Mandelbaum

et al. (2006) without correcting the luminosities. Our halo mass

definition is also different from that used by Mandelbaum et al.

(2006) though. Mandelbaum et al. (2006) define the mass within

the radius where the density is 180 times the mean background

density while we set it to be 200 times the critical density. The

correction factor stemming from the different definitions amounts

to ∼30 per cent. Having corrected for this, our results are then

very similar to those from Mandelbaum et al. (2006), but the same

concerns of object selection and baryonic contribution discussed

above apply here as well. The relation that Mandelbaum et al.

(2006) find between halo mass and luminosity for red lenses is
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shallower than the one found by VU11, as discussed therein, and is

therefore more in agreement with our results. For the stellar mass

relation, however, they find a steeper power-law slope, though this

result is mostly driven by their highest stellar mass bin as pointed

out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analysis

of galaxy–galaxy lensing, galaxy clustering and galaxy number

densities using data from the COSMOS survey, shown as a solid

band in the right-hand panels of Figs 12 and 13. For our comparison,

we select the results from their lowest redshift bin, since its redshift

range of 0.22 < z < 0.48 is very similar to the redshift range used

here. Contrary to the other data sets, Leauthaud et al. (2012) did

not separate their lens sample according to galaxy type. The results

shown in the top panel of Figs 12 and 13 are therefore identical to

those shown in the bottom panel. Note that at high stellar masses,

their sample is expected to be dominated by red galaxies, and at

low stellar masses by blue galaxies, as these are generally more

abundant in the respective regimes (see Table 3). For stellar masses

lower than 1011 h−1
70 M∗, the agreement between Leauthaud et al.

(2012) and the other galaxy–galaxy lensing results is excellent for

both galaxy types. For higher stellar masses, however, Leauthaud

et al. (2012) find higher halo masses than what has been observed in

the lensing-only analyses discussed above. This may be explained

if a larger fraction of the galaxies used in the Leauthaud et al. (2012)

analysis reside in dense environments and can be associated with

galaxy groups and clusters such that their halo masses correspond

to the total mass of these structures. This theory is corroborated by

fig. 10 of Leauthaud et al. (2012) which shows that for large stellar

masses, the ratio of stellar mass to halo mass is very similar to that

determined for a set of X-ray luminous clusters in Hoekstra (2007),

indicating that we are entering the cluster regime. Furthermore,

the sampling variance is not taken into account in the COSMOS

error range. This is likely to affect the higher stellar mass bins

more because the number of objects there is sparse. Additionally,

the results from the COSMOS analysis of X-ray selected groups

presented in Leauthaud et al. (2010), which is centred on a redshift

similar to ours and also shown in fig. 10 of Leauthaud et al. (2012)

as grey squares, agree better with our results for higher stellar

masses. We note, however, that another possibility is that the high

stellar mass end constraints from Leauthaud et al. (2012) may be

driven mainly by the stellar mass function (SMF) rather than by

the lensing measurements. This, combined with the differences in

the two halo model implementations, could also contribute to the

observed discrepancy.

A further subtlety discussed in Section 4.2 is that the satellite

fraction of galaxies with high stellar masses is not well constrained

by galaxy–galaxy lensing only. Since the satellite fraction and halo

mass are weakly anticorrelated (see VU11), our halo masses may

be slightly underestimated if the satellite fractions are too high.

Furthermore, the modelling of the shear signal from satellites in

this mass range is a bit uncertain as they may have been stripped

of more than the 50 per cent of their dark matter we have assumed

so far, and this could also have some effect. However, we estimate

that these modelling uncertainties only have a small effect on our

best-fitting halo masses, and that it is not sufficient to explain the

differences between the results.

7 C O N C L U S I O N

In this work, we have used high-quality weak lensing data produced

by the CFHTLenS collaboration to place galaxy–galaxy lensing

constraints on the relation between the dark matter halo mass and

the baryonic content of the lenses, quantified through luminosity

and stellar mass estimates. The combination of large area and high

source number density in this survey has made it possible to achieve

tighter constraints compared to previous lensing surveys such as the

SDSS, COSMOS or the RCS2. We also extended our study to lower

stellar masses than have been studied before using a halo model such

as the one described here.

In this paper, we have included a halo model constituent which

was neglected by most earlier implementations: the baryonic com-

ponent. Since the lensing signal is a response to the total mass

of a system, it is essential to account for baryons in order to not

overestimate the mass contained in the dark matter halo. We have

shown, however, that care has to be taken when including a bary-

onic component since doing so has a greater impact on the fitted

halo mass than one might naı̈vely expect due to the complicated

interplay between stellar mass, satellite fraction and halo mass.

As luminosity and stellar mass increase, the halo mass increases

as well. For red lenses, the halo mass increases with greater bary-

onic content at a higher rate than for blue galaxies, independent

of whether the measure of baryonic content is luminosity or stel-

lar mass. The two measures thus produce comparable results. For

each we fit power-law relations to quantify the rate of increase in

halo mass. We find a best-fitting slope of 1.32 ± 0.06 and a nor-

malization of 1.19+0.06
−0.07 × 1013 h−1

70 M⊙ for a fiducial luminosity of

Lfid = 1011 h−2
70 L⊙ for red galaxies, while for blue galaxies we

find a slope of 1.09+0.20
−0.13 and a normalization of 0.18+0.04

−0.05 ×

1013 h−1
70 M⊙. The power-law relation between stellar mass and halo

mass has a slope of 1.36+0.06
−0.07 and a normalization of 1.43+0.11

−0.08 ×

1013 h−1
70 M⊙ for a fiducial mass of Mfid = 2 × 1011 h−2

70 M⊙ for

red galaxies, and for blue galaxies we find a slope of 0.98+0.08
−0.07 and

a normalization of 0.84+0.20
−0.16 × 1013 h−1

70 M⊙.

For our blue galaxy selection, the satellite fraction is low across

all luminosities and stellar masses considered here. The signal at

large scales for these samples is also generally low in the lowest

luminosity and stellar mass bins, indicating that these galaxies are

relatively isolated and reside in less clustered environments than the

red galaxies do and that we may be overestimating the galaxy bias

for these samples. At low luminosity/stellar mass, a considerable

fraction of red galaxies are satellites within a larger dark matter

halo. This fraction decreases steadily with increasing luminosity or

stellar mass. In general, the satellite fractions show that at these

redshifts the galaxies in denser regions are mostly red while for the

same luminosity or stellar mass isolated galaxies tend to be bluer

and thus star forming. This indicates that the star formation history

of galaxies differs depending on the density of the environment they

are residing in.

Another finding of this work is that for faint and low-stellar-

mass blue galaxies, the amplitude of the lensing signal at projected

separations larger than ∼2 h−1
70 Mpc is lower than the corresponding

best-fitting halo model. For the red galaxies, the halo model fits the

data well over all scales. This could indicate that while the bias

description works well for red galaxies, it is not optimal for blue

galaxies. If this is the case, then the environments in which the two

samples reside are radically different and the difference will have

to be taken into account in the future. Alternatively, the discrepancy

could be caused by other choices that affect the 1-halo to 2-halo

transition regime in our halo model implementation. Currently, we

do not have enough data to favour or rule out either scenario, but

we plan to explore this further in upcoming works.

The relations between baryonic content indicators and dark mat-

ter halo mass presented in this work, as well as the dependence of

the satellite fraction on luminosity and stellar mass, improve our
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understanding of the mechanisms behind galaxy formation since

they provide constraints that can be directly compared to numerical

simulations that model different galaxy formation scenarios. With

currently ongoing (for instance DES5 or KiDS; de Jong et al. 2013)

and planned (such as LSST,6 HSC7 or Euclid;8 Laureijs et al. 2011)

surveys, weak lensing analyses will become yet more powerful than

the one presented in this paper. In preparation for the future, there

are therefore several sources of uncertainty that should be inves-

tigated. As mentioned above, the galaxy bias description may not

be optimal for blue lenses, and with future data this bias can likely

be constrained directly using galaxy–galaxy lensing observations.

Recent simulations have also indicated that there is a redshift evo-

lution of the halo mass relations, and this evolution can be studied

with weak lensing (see Choi et al. 2012; Hudson et al. 2013). Other

possible improvements to the halo model used here include studies

of the distribution of satellites within a galaxy dark matter halo, a

more accurate description of the regime where the 1-halo term and

2-halo term overlap (i.e. halo exclusion) and investigations into the

stripping of satellite haloes. The analysis presented in this paper is a

significant advance on recent analyses, and with future surveys we

will be able to use galaxy–galaxy lensing to study the connection

between baryons and dark matter in exquisite detail.
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A P P E N D I X A : IM PAC T O F H A L O M O D E L

ASSUMPTI ONS

In this appendix, we discuss the impact of the different assumptions

which the halo model is necessarily based on. Some of these may be

overly stringent or inaccurate, and with the accuracy afforded by the

CFHTLenS it is important to provide a quantitative impression of

how large a role they actually play in determining the halo mass and

satellite fractions. Here, we only quote the results from studying red

lenses since they are better constrained than the blue lenses, but the

results for the latter are qualitatively equivalent. For comparison, we

remind the reader that the observational errors we are comparing to

are typically in the range of 15–40 per cent (excluding the highest

mass bin).

Assumptions that have an effect on small scales where the

baryonic, central 1-halo and the stripped satellite terms dominate

will translate into an effect on the measured halo mass. To see the

impact the inclusion of a baryonic component has, we remove it

completely from our model. We find that the masses for some bins

then increase by as much as 15 per cent. It may appear counter-

intuitive that including a baryonic component with a mass which

is of the order of 5 per cent of the total mass should result in a

halo mass estimate that is lowered by a greater amount than that.

The explanation lies in the halo model fitting, and specifically in

the way the satellite fraction is allowed to vary. Adding a baryonic

component on small scales will result in a lowered central halo

mass. The central halo profile reaches further than the baryonic

component however, and thus power on intermediate scales is also

diminished. To compensate for this loss of power, the halo model

will increase the satellite 1-halo term by increasing the satellite

fraction, which also increases the stripped satellite halo term, low-

ering the central 1-halo term further until an equilibrium is reached.

These mechanisms are illustrated for red galaxies in luminosity

bin L4 in Fig. A1, where we have allowed halo mass, satellite

fraction and stellar mass fraction to vary simultaneously for both

panels. This figure also makes clear the degeneracies introduced

to the halo model if the stellar mass is left as a free parameter in

addition to halo mass and satellite fraction. Higher luminosity or

stellar mass bins are more severely affected by this effect than the

lower end due to the lack of a prominent satellite 1-halo feature. To

study the effect on the best-fitting power-law parameters, we re-fit

the halo models excluding the baryonic component. The resulting

slope and amplitude of the power law do not change significantly.

We note, however, that our baryonic component only accounts for

the stars in the lens and not for example the hot gas. The influence of

 at C
alifo

rn
ia In

stitu
te o

f T
ech

n
o
lo

g
y
 o

n
 Jan

u
ary

 2
3
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://arxiv.org/abs/astro-ph/1310.6784
http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


2128 M. Velander et al.

Figure A1. Dependence of halo model fitting parameters halo mass M200

and satellite fraction α on stellar mass, with fSM the fraction of true mean

stellar mass used in the halo model and contours showing the 67.8, 95.4 and

99.7 per cent confidence intervals. The left-hand panel shows that including

a baryonic component in the model (i.e. setting fSM = 1) will result in a

significantly lower best-fitting halo mass than not doing so (fSM = 0), and

the right-hand panel shows that the reason for this is an increased satellite

fraction. In our analysis, we keep the stellar mass component fixed at fSM = 1.

feedback on the gas distribution in galaxies is a complicated issue

which may also affect our results, as discussed in van Daalen et al.

(2011) and Semboloni et al. (2011), but it is an effect which we do

not attempt to model here. However, as future lensing surveys grow

more powerful and the data allow for greater accuracy, this will be

an important effect to study.

The two dark matter terms which dominate on these small scales

are mainly affected by two implementation choices: the profile types

of our dark matter haloes (NFW, possibly stripped, in this case) and

the relation between the halo mass and its NFW concentration for

which we have selected the relation described by Duffy et al. (2008).

To estimate the magnitude of the impact, we change our central 1-

halo term while keeping everything else the same. Because the

relative amplitudes of the different terms in our halo model are

intimately connected, this will only give an approximate idea of the

influence of these choices, since we have not changed the stripped

satellite term, or the distribution of satellites which still follows

the original NFW. First we change the concentrations of our NFW

haloes. The 1σ error intervals of the three Duffy et al. (2008) relation

parameters result in a variation in concentration of at most 4 per cent

for our halo masses. If we instead were to assume that the haloes in

our sample were fully relaxed, the concentration may increase by as

much as 25 per cent for the lowest stellar mass bin. To test the effect

of such a change in concentration, we multiply the original Duffy

et al. (2008) concentration of the central NFW halo by a factor

of 1.25 which results in the same mass being contained within

a smaller radius. In general that means that the satellite 1-halo

term has to compensate on intermediate scales, leading to a greater

satellite fraction and therefore a lower halo mass. The lower the

luminosity or stellar mass, the less affected the estimated halo mass

since the satellite 1-halo term feature is clearly visible in the signal

and therefore well constrained. For the highest luminosity or stellar

mass bins, the estimated halo mass is then up to about 10 per cent

less than our original estimate, a variation which is subdominant

to the observational errors in all bins. As mentioned, the satellite

fraction is also affected by this, increasing by about 30 per cent for

the higher luminosity or stellar mass bins while staying roughly the

same for the lower bins.

Moving on to the modelling of the satellite halo, we choose to

strip 50 per cent (corresponding to a truncation radius of 0.4r200) of

the satellite dark matter irrespective of type or distance to the centre

of the main halo. Though this is a somewhat simplistic modelling

choice, we can test how the measured halo mass is affected by a

change in the amount of dark matter that is stripped from the satellite

haloes. Gillis et al. (2013) find that for groups in the CFHTLenS,

high density environment galaxies with a stellar mass between 109

and 1010.5 and located at redshifts between 0.2 and 0.8 have been

tidally stripped of 57 per cent of their mass. This corresponds to a

truncation radius of (0.26 ± 0.14)r200. Furthermore, the two extreme

cases where either all or none of the mass is stripped from the

satellite haloes have both been ruled out (see Mandelbaum et al.

2006). We therefore test two more sensible truncation radii: 0.2r200

and 0.6r200. In the first case, more dark matter is stripped from the

average satellite than for our standard choice, while the opposite

is true in the second case. For the range in luminosities and stellar

masses used in this work, the best-fitting satellite fractions do not

change much with the different truncation radii (at most it decreases

by about 10 per cent for the case where the truncation radius is

smaller). As the truncation radius is reduced, some signal is lost on

small scales and the modelling software compensates by increasing

the halo mass by about 10–15 per cent at most. Similarly, the best-

fitting halo mass is slightly smaller when a greater truncation radius

is used, though the effect is less pronounced. The larger the satellite

fraction, the more the signal is affected and the greater the effect is on

the fitted halo mass. The effect is more pronounced for the reduced

truncation radius than for the increased one due to the shape of the

halo profile, though it is still smaller than the observational errors.

To further investigate what range of truncation radii is reasonable

requires the use of high-resolution hydrodynamical simulations,

and that is beyond the scope of this work. Since it is unlikely that

the majority of satellites are strongly stripped (Mandelbaum et al.

2006), we therefore choose to not take this effect into account. With

the statistical improvement offered by the next generation of weak

lensing surveys, however, a more sophisticated description of the

stripping of satellite haloes, possibly as a function of distance from

the centre of the main halo, is needed.

We now turn our focus to the factors that influence the model on

intermediate scales, i.e. where the satellite 1-halo term dominates.

The shape of the satellite 1-halo term is determined by the distri-

bution of satellites within the main halo, while the amplitude is

affected by the HOD (Mandelbaum et al. 2005b). Here we assume

that the distribution of satellites follows the distribution of the dark

matter exactly. It may very well be, however, that the satellites are

less concentrated than the dark matter halo is (see, for example,

Nagai & Kravtsov 2005; Guo et al. 2012). To assess the impact of

using a different concentration parameter for the satellites than for

the dark matter, we try two cases: csat = 2cdm and csat = 0.5cdm. This

check has already been carried out by VU11, and their best-fitting

parameters do not change significantly, but with the greater signal-

to-noise of our signal we consider it appropriate to repeat the test.

Doubling (halving) the NFW concentration of the satellite galaxies

implies a somewhat reduced (added) satellite 1-halo contribution

on small scales. This results in a <10 per cent decrease (increase)

of the satellite fraction and a decrease (increase) in the estimated

halo mass ranging from 2 to 20 per cent over the luminosity and

stellar mass range included in our analysis. This fits within our er-

ror bars, but with future signal precision this is another assumption

that requires some scrutiny.

Moving on to the choice of HOD, we note that it would be very

difficult to determine the number of satellites expected for a given

mass, the HOD, from a galaxy–galaxy analysis such as this. The

reason is that it is nearly completely degenerate with the satellite
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fraction. The satellite fraction is mainly determined from these

scales where the satellite 1-halo represents the main contribution

to the total signal. Changing the amplitude of the satellite 1-halo

term by changing the HOD therefore mimics a change in satellite

fraction. We note, however, that Mandelbaum et al. (2005b) can

recover a simulated satellite fraction with an accuracy of 10 per cent

using an HOD identical to the one in this paper. To see the impact

such an error may have on our halo masses, we take our best-fitting

satellite fraction in each luminosity or stellar mass bin, increase it by

10 per cent and fit a new halo mass estimate. The most affected bins

are again the ones with the highest satellite fraction, with the new

halo estimate being less than 10 per cent lower than the original one

for nearly all bins used in this analysis, reaching 15 and 20 per cent

for S3 and L1, respectively.

On scales beyond ∼1 h−1
70 Mpc, the 2-halo terms become impor-

tant, and the choice of bias influences these terms. The prescription

we adopt for the bias in our halo model does not include non-linear

effects. Fig. 1 from Mandelbaum et al. (2013) shows that non-

linear bias affects the galaxy dark matter cross-correlation coeffi-

cient at the 2 per cent level at a comoving separation of 4 h−1
70 Mpc.

The magnitude of the effect diminishes with increasing distance

to 1 per cent at 10 h−1
70 Mpc, and the influence on our 2-halo terms

should be comparable. The affected regime, where the 1-halo and

2-halo terms overlap, is notoriously difficult to model however. One

major issue is that of halo exclusion which attempts to account for

the way neighbouring dark matter haloes overlap. To illustrate the

influence of the 2-halo terms on our best-fitting parameters, we can

choose to limit our fit to scales where these terms do not play a ma-

jor role, i.e. fit out to 0.5 h−1
70 Mpc rather than to our default choice

of 2 h−1
70 Mpc (see Section 4). The results are then noisier of course,

but still well within our error boundaries. For low luminosity or

stellar mass, the halo mass is reduced by about 15 per cent. For

the higher luminosity/stellar mass bins, the differences are smaller.

The results including or excluding scales where the 2-halo terms are

significant are therefore consistent with each other. Thus, since the

effect of non-linearity is likely small compared to other modelling

uncertainties on these scales, and since the affected range is beyond

that used to determine halo masses in this paper, we choose not to

include non-linear biasing in our model.

The above study shows that none of the systematic effects con-

sidered here will significantly change our best-fitting parameters.

Re-fitting the power-law relations between halo mass and observ-

able (see Sections 4.1 and 5.1) in each case confirms that the effect

on these relations is subdominant to the observational uncertainties.

We note, however, that it is possible for several of these effects to

conspire, causing a shift or a tilt in one or more of the power-law

relations. This should be kept in mind for the next section and for

any future comparisons with our results.

A P P E N D I X B : C O R R E C T I O N S F O R SI G NA L

C O N TA M I NAT I O N

B1 Photometric redshift bias correction

Though the quality of the CFHTLenS photometric redshift esti-

mates is high, there is still a small bias present due to the inherent

limitations of template-based Bayesian methods, as discussed in

Hildebrandt et al. (2012). This bias will affect not only the redshift

itself, but also the derived quantities such as luminosity and stellar

mass. Since our lenses reside at relatively low redshifts, we there-

fore have to correct our lens redshifts and derived quantities for

this bias in order to achieve accurate object selection for our dark

matter halo relations. Additionally, if this bias is not corrected for,

the angular separations between lenses and sources will be altered,

causing a coherent shift in the lensing signal radial binning. The

resulting halo model fit will then also be affected, further illustrat-

ing the importance of this correction. Following Hildebrandt et al.

(2012), we perform our correction using spectroscopic redshifts in

the overlap with the VIMOS VLT Deep Survey (VVDS; Le Fèvre

et al. 2005; Garilli et al. 2008), the DEEP2 galaxy redshift sur-

vey (Davis et al. 2003, 2007; Newman et al. 2013) and the SDSS

(Eisenstein et al. 2001; Strauss et al. 2002). The completeness of

this spectroscopic sample is shown in Le Fèvre et al. (2005, fig. 16)

and Newman et al. (2013, fig. 31). To ensure a completeness of at

least 80 per cent, we select only lenses with magnitude i ′AB < 23, as

mentioned in Section 2.2. Since the bias is a function of magnitude

and galaxy type, we start by splitting our sample into red and blue

subsamples via their photometric type (as described in Section 2.1)

and use several magnitude bins. We then quantify the bias in each

bin by fitting a straight line of the form

(zspec − 0.3) = a(zphot − 0.3) + b, (B1)

where zspec is the spectroscopic redshift from VVDS/DEEP2/SDSS,

zphot is the CFHTLenS photometric redshift estimate, a is the slope

and b is the offset. The pivot point of 0.3 roughly corresponds to

the mean redshift of our lens sample, though the correction is in-

sensitive to this number. The slope a is fitted simultaneously in all

magnitude bins but allowed different values for red and blue sam-

ples, while the offset b is allowed to vary between both type and

magnitude bins. Keeping the slope fixed allows for a more robust

estimate for the bias, though we have verified that allowing it to

vary has negligible impact on the results in practice. The resulting

fit parameters are shown in Table B1. Note that there is no correc-

tion performed for red galaxies beyond a magnitude of i ′AB = 22

since we do not use fainter red lenses (see Section 2.2).

We then use these fit parameters to correct our lens photomet-

ric redshift estimates in the range 0.2 ≤ z ≤ 0.4. Calculating the

luminosity distances and estimating the K-corrections correspond-

ing to the original and corrected redshifts using the g′ − r′ colours

of the galaxies, we adjust the absolute magnitudes accordingly.

We further derive new stellar mass estimates by scaling them to

their new luminosities assuming a constant (pre-correction) stellar

mass-to-luminosity ratio. The impact on the red galaxy properties

is negligible, but for blue galaxies the correction is larger with the

average luminosity and stellar mass increasing by ∼12 per cent. We

therefore proceed to use the corrected quantities in our luminosity

and stellar mass analyses (see Sections 4 and 5).

The sources will also be affected by photometric redshift bias,

but its impact on the measured halo masses is expected to be much

smaller than the effect of the lens redshift bias. To confirm this

hypothesis, we shift all sources by a constant bias of 2 per cent

and redo the analysis of Sections 4 and 5. This bias value is most

Table B1. Redshift bias fit parameters for red and blue subsam-

ples. The slope a is kept fixed between magnitude bins while the

offset b is allowed to vary.

Magnitude bin ared bred (×10−2) ablue bblue (×10−2)

(14,19] 0.99 −0.62 1.08 −2.52

(19,20] 0.99 0.20 1.08 7.46

(20,21] 0.99 4.64 1.08 3.69

(21,22] 0.99 4.64 1.08 5.07

(22,23] – – 1.08 4.06
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likely slightly larger than necessary (see Hildebrandt et al. 2012,

fig. 4), but the resulting halo masses agree with the original halo

masses within 1σ . We therefore do not need to correct our sources

for photometric redshift bias.

B2 Photometric redshift scatter correction

Before interpreting the luminosity results, we have to take into ac-

count the effect of Eddington bias (Eddington 1913). The precision

of our photometric redshifts is high with a scatter of σ z ∼ 0.04 for

both lenses and sources (Hildebrandt et al. 2012), but nevertheless

the errors on the redshift estimates have to be taken into account. If

the true redshift differs from the estimated one, this will affect all

derived quantities. An underestimated redshift, for example, would

cause the estimated absolute magnitude to be fainter than the true

absolute magnitude and the lens would be placed in the wrong lu-

minosity bin. As can be seen in Fig. 4, there are more faint objects

than bright, which means that more objects will scatter from fainter

bins into brighter bins than the other way around. This will lower

the lensing signal in each bin and bias the observed halo mass low,

and the amount of bias will be luminosity dependent. To estimate

the impact of redshift scatter, we create a simulated version of the

CFHTLenS as follows. We fit an initial power-law mass–luminosity

relation of the form (see equation 10, Section 4.1)

M200 = M0,L

(
L

Lfid

)βL

(B2)

to the raw estimated halo masses, with Lfid = 1011 h−2
70 Lr ′,⊙. We

then use this relation to assign halo masses to our lenses. Splitting

the resulting lens catalogue into the usual magnitude bins for the red

and blue samples separately, we obtain our ‘true’ halo mass for each

bin. Constructing NFW haloes from these halo masses at the photo-

metric redshift of the lenses, we create mock source catalogues with

the observed source redshift distribution but with simulated shear

estimates with strengths corresponding to those which would be

induced by our lens haloes. We then scatter the lenses and sources

using the full redshift probability density function, split the lens

catalogue according to the scattered magnitudes and measure the

resulting signal within 200 h−1 kpc of the lenses using our scattered

shear catalogue. We only use the small scales for our mass estimate

to avoid complications due to insufficient treatment of clustering

since on these scales only the central 1-halo signal is relevant, and

we force our satellite fraction to zero to obtain a pure NFW fit. This

way we obtain the ‘observed’ halo mass for each magnitude bin.

The ‘observed’ halo mass is then compared to the ‘true’ value for

each bin. To increase the statistical precision of the correction, we

determine the average of 10 lens catalogue realisations. Since the

starting point is a perfect signal, the number of realizations given

the area is adequate to retrieve the correction factor. This correc-

tion simultaneously accounts for all the effects resulting from any

photometric redshift scatter in our analysis, such as the scattering

of lenses between luminosity bins, the effect on the lens and source

redshift distributions, the smoothing of the signal due to mixing

of the projected lens–source separations, and the non-linear depen-

dence of the critical surface density 	crit on the lens and source

redshifts. Note that the errors on the correction factors indicate only

the propagated photometric redshift uncertainty, and even though

they are small compared to the errors on the shear measurements,

we have included them in our final error budget. The error on the

correction factor does not include the uncertainties of the input

parameters. However, we expect these additional uncertainties to

Figure B1. Correction factor as a function of luminosity induced through

inaccuracies in the photometric redshift estimates. The dark purple solid

(light green dotted) line with dots (triangles) shows the scatter correction

factor for the red (blue) lens sample. The error bars show the scatter between

10 lens catalogue realizations.

be negligible compared to the errors on the halo masses (see the

discussion in Appendix B3).

The results from this test are shown in Fig. B1. The quality of

our photometric redshifts is high which means that the correction

factor is small overall, reaching only ∼30 per cent for a luminosity

of Lr ′ ∼ 2.5 × 1011 h−2
70 L⊙. Here the contamination is largest due

to the shape of the luminosity function causing a larger fraction of

low-luminosity objects to scatter into the higher luminosity bin. For

our faintest red luminosity bin, the correction is ∼20 per cent, in this

case caused by larger errors in the photometric redshift estimates.

The correction factor is less than unity for lower,luminosity bins due

to the turn-over of the distribution of red lenses at Mr ′ ∼ −21.2 (see

Fig. 4). The smaller correction factor for blue lenses is due to their

somewhat flatter mass–luminosity relation (see Fig. 6). Because of

the relative insensitivity of halo mass to changes in luminosity, mi-

nor errors in luminosity measurements due to photometric redshift

inaccuracies will not strongly affect the halo mass estimate. The

process described in this appendix could in principle be iterated

over, starting from the fitting of a mass–luminosity relation, until

convergence is reached. Since Hoekstra et al. (2005) find that dif-

ferent choices for that relation yield similar curves, we choose not

to iterate further.

We also have to correct our luminosity bins for a second scatter

effect. As discussed in VU11 (Appendix B), the observed halo mass

does not necessarily correspond to the mean halo mass in a given bin

since the halo masses in that bin are not evenly distributed and the

NFW profiles do not depend linearly on halo mass. The distribution

within each bin generally follows a log-normal distribution, and

to correct for this effect we follow a similar procedure as the one

outlined in Appendix B3, with the difference that we do not scatter

the luminosities as we have already corrected for that by accounting

for the error in photometric redshift. We stress that this is an intrinsic

effect unrelated to any measurement errors. The full correction

factor, taking into account both scatter effects discussed here, is

shown in Table B2.

The general procedure outlined in this appendix is repeated for

the stellar mass bins, though we use the stellar mass–halo mass

relation to assign halo masses to the mock lens catalogue, and then

bin the lenses according to stellar mass rather than luminosity. In

this case, we do not use the resulting correction factor, but we do

include the errors on the said correction factor in our error budget

in order to account for the above-mentioned effects in our stellar

mass results. The correction factor itself, however, only conveys the
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Table B2. Photometric redshift scatter

correction factors applied to observed

halo masses in each luminosity bin (see

Section 4) for red and blue lenses. These

factors correct both for scatter due to red-

shift errors and for the fact that the ob-

served halo mass does not necessarily cor-

respond to the mean halo mass.

Bin f lscat
red σ f, red f lscat

blue σ f, blue

L1 0.86 0.01 0.94 0.01

L2 0.89 0.01 0.96 0.01

L3 0.96 0.01 1.01 0.01

L4 1.02 0.01 1.05 0.01

L5 1.09 0.01 1.04 0.01

L6 1.13 0.02 1.20 0.04

L7 1.16 0.02 – –

L8 1.36 0.10 – –

impact of photometric redshift uncertainties, and not the additional

effects influencing the stellar mass errors. The scatter due to stellar

mass errors is accounted for following the method described in the

next appendix, and applying this correction factor as well would

therefore amount to double-counting.

B3 Stellar mass bin scatter correction

In a process similar to the scatter in luminosity, objects will scat-

ter between stellar mass bins due to errors on the stellar mass

estimates. Though objects scatter randomly according to their in-

dividual stellar mass errors, the net effect will be to scatter lenses

from greater abundance to lower according to the SMF. Because the

SMF declines steeply at higher stellar mass bins, these will be more

severely affected by low-mass object contamination. As a result, the

observed lensing mass in the highest stellar mass bins will be biased

low (see appendix A in VU11). Additionally, the lensing halo mass

estimates will be affected by the fact that the observed halo mass

does not necessarily correspond to the mean halo mass in a given

bin, as discussed in Appendix B2.

To assess the impact of both these effects simultaneously, we

follow a procedure similar to the one used to correct for redshift

scatter, as described in the previous appendix. We start by fitting

an initial power-law halo mass–stellar mass relation using the raw

observed lensing halo mass. Drawing a large number of simulated

lens galaxies from the SMF, we take these stellar masses to be the

true unscattered values and assign a halo mass according to the

fitted halo mass–stellar mass relation. As described above, this halo

mass will be distributed within the stellar mass bin according to

some distribution. Following VU11, we therefore correct the halo

mass for this effect by drawing from a log-normal distribution with

a mean given by the original halo mass and a width determined by

More et al. (2011). We now know the ‘true’ mean halo mass for each

bin. Using the resulting simulated lens catalogue, we create a source

catalogue with shears determined analytically. We then scatter the

lenses assuming a Gaussian error distribution with a width of 0.3 dex

as appropriate for our stellar mass errors (see Section 2.1) to create

a new simulated lens catalogue, this time containing ‘observed’

stellar masses. Dividing this ‘observed’ lens catalogue according to

the usual stellar mass bins for red and blue samples separately, we

measure the signal in the simulated shear catalogues and again fit

an NFW profile. This way we obtain the ‘observed’ halo mass for

Figure B2. Mass correction factor as a function of stellar mass induced

through inaccuracies in the stellar mass estimates. The dark purple solid

dots (light green open triangles) show the correction factor for the red

(blue) lens sample. As discussed in the text, the dot–dashed lines show the

correction factors if stellar mass errors of 0.2 dex are assumed, rather than

the default 0.3 dex, and the dotted lines show the correction factors derived

using stellar mass errors of 0.4 dex.

Table B3. Bin scatter correction fac-

tors applied to observed halo masses

in each stellar mass bin (see Section 5)

for red and blue lenses. These factors

correct both for scatter due to stellar

mass errors and for the fact that the ob-

served halo mass does not necessarily

correspond to the mean halo mass.

Bin f mscat
red f mscat

blue

S1 0.59 1.18

S2 0.74 1.28

S3 0.91 1.50

S4 1.19 1.83

S5 1.53 –

S6 1.86 –

S7 2.26 –

S8 2.73 –

each stellar mass bin. By taking the ratio of simulated ‘observed’ to

‘true’ halo mass, we arrive at the correction factor for stellar mass

scatter as shown in Fig. B2. We can now apply this factor, as quoted

in Table B3, to our halo mass estimates to correct for the scatter

between stellar mass bins, and for the fact that the observed halo

mass does not correspond to the mean halo mass, simultaneously.

The correction factor is relatively sensitive to the adopted value

of the stellar mass error, particularly in the regime where the SMF

is steep. Therefore, in addition to the correction factor used, we also

show in Fig. B2 the correction factors obtained if we adopt a stellar

mass error of 0.2 or 0.4 dex instead, covering the plausible range

of values that the stellar mass error could take. This illustrates how

the correction factor coherently shifts if the stellar mass error is

different from what we assume. For S8 of the red lenses, the change

is largest, with an increase (decrease) of the correction factor by

∼50 per cent for 0.4 dex (0.2 dex), respectively. We do not use the

plausible range of correction factors as the error on the correction,

since a different stellar mass error would only lead to a coherent

shift of all the correction factors and hence of the corrected halo

masses. This property of the correction factors would be lost, and

the error bars on the halo masses would be severely overestimated,
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causing an unjustified loss of information. However, for com-

pleteness, we note that the best-fitting power-law normalization

and slope are 1.14+0.07
−0.08 × 1013 h−1

70 M⊙ (0.84+0.20
−0.16 × 1013 h−1

70 M⊙)

and 1.23+0.06
−0.07 (0.98+0.08

−0.07) for red (blue) lenses when we adopt

a stellar mass error of 0.2 dex, and 1.83 ± 0.13 × 1013 h−1
70 M⊙

(0.84+0.20
−0.16 × 1013 h−1

70 M⊙) and 1.50+0.05
−0.07 (0.98+0.08

−0.07) for red (blue)

lenses for a stellar mass error of 0.4 dex.

Additionally, the correction factor has some error due to the

uncertainties of the other input parameters, such as in the adopted

power-law relations, the SMF and the scatter in halo mass. VU11

found that the correction is fairly insensitive to changes in the

power-law relation; using the power law obtained after the stellar

mass scatter correction only changed the correction factor by at

most 4 per cent. The impact here will be even smaller as the power

laws are less steep, and we therefore ignore their effect. Next, the

SMF is not the intrinsic SMF as objects have already scattered.

However, we cannot reliably obtain the intrinsic SMF where it

matters most, i.e. at the high stellar mass range, as the number of

galaxies is too low. We therefore do not attempt to obtain the intrinsic

SMF, but rather note this as a caveat. Finally, we note that the

correction factor is insensitive to the adopted width of the halo mass

distribution.

A P P E N D I X C : T E S T S F O R G A L A X Y– G A L A X Y

LENSING SY STEMATICS

C1 Initial consistency analysis of the CFHTLenS catalogue

In this study, we use lenses and sources from the full 154 deg2

CFHTLenS catalogue. The accuracy of the CFHTLenS shears has

been verified through several rigorous tests aimed at the study of

cosmic shear (Heymans et al. 2012; Miller et al. 2013), but it is

interesting to compare the galaxy–galaxy lensing signal with the

results from two previous analyses of a similar nature. The first is

the galaxy–galaxy lensing analysis in the CFHTLS-Wide conducted

by Parker et al. (2007), and the second is based on the shear cata-

logue from VU11 (see Section 6). In Parker et al. (2007), an area of

∼22 deg2 in i′ was analysed, corresponding to about 14 per cent of

our area. Since they only had data from one band, their analysis also

lacked redshift estimates for lenses and sources, but they separated

lenses from sources using magnitude cuts. The shear estimates for

their sources were obtained using a version of the technique in-

troduced by Kaiser, Squires & Broadhurst (1995) as outlined in

Hoekstra et al. (1998). These shear estimates were measured on a

stacked image rather than obtained by fitting all exposures simul-

taneously (see Miller et al. 2013 for a discussion on this). To avoid

the strong PSF effects at the chip boundaries, Parker et al. (2007)

limited their analysis to the unique chip overlaps. In contrast, we

are able to use all the data we have at our disposal. The data from

VU11 are the subset of ∼400 square degrees of the RCS2 with i′-

band coverage, which is shallower than the CFHTLS and for which

also no redshifts were available for the sources at the time of this

analysis.

To compare and contrast our lensing signal with these previous

works, we mimic the analysis presented in Parker et al. (2007)

as closely as possible and apply the same i′-band magnitude cuts

as employed in Parker et al. (2007), with 19.0 < i ′
AB < 22.0 for

lenses and 22.5 < i ′
AB < 24.5 for sources. Parker et al. (2007) boost

their signal to correct for contamination by sources that are phys-

ically associated with the lens, and we apply the same correction

factor to our values. The resulting galaxy–galaxy signal, scaled

Figure C1. Comparison of three data sets: the shear catalogues from

∼22 deg2 CFHTLS (pink open squares), the results from RCS2 (light green

open stars) and our results (dark purple solid dots). The curves show the

best-fitting singular isothermal sphere for each data set (with light green and

pink nearly identical), and the grey triangles show the cross-shear from our

results which should be zero in the absence of systematic errors.

with the angular diameter distance ratio 〈β〉 = 〈Dls/Ds〉 = 0.49

from Parker et al. (2007), is shown as dark purple solid dots in

Fig. C1. We also re-analysed the original shear catalogues used

for the Parker et al. (2007) analysis with the results shown as pink

open squares in Fig. C1. The signal from the VU11 shape measure-

ment catalogues of the RCS2 is obtained using a source selection

of 22 < r′ < 24 instead because the limiting depth in i′ is 23.8

for the RCS2. The measurements are also corrected for contam-

ination by physically associated sources, as described in VU11,

and scaled with 〈β〉 = 0.30 which is determined by integrating

over the lens and source redshift distributions that were obtained

from the CFHTLS ‘Deep Survey’ fields (Ilbert et al. 2006). The

measurements are shown as light green open stars. Fig. C1 shows

that the lensing signals generally agree well. We fit an singular

isothermal sphere (SIS) profile to the shear measurements that have

been scaled by 〈β〉 on scales between 7 and 120 arcsec, and find a

scaled Einstein radius of r̃E = 0.277 ± 0.006 arcsec for our results,

r̃E = 0.267 ± 0.011 arcsec for the Parker et al. (2007) measure-

ments and r̃E = 0.262 ± 0.007 arcsec for VU11, which are broadly

consistent.

The best-fitting SIS profile corresponds to a velocity dis-

persion of σ v = 97.9 ± 1.0 km s−1, which is lower than the

σ v = 132 ± 10 km s−1 quoted in Parker et al. (2007). However,

using the re-analysed Parker et al. (2007) shear catalogue, we find a

velocity dispersion of σ v = 96.6 ± 2.0 km s−1. For the VU11 results,

we find a velocity dispersion of σ v = 95.4 ± 1.3 km s−1, slightly

lower but in reasonable agreement with our results. Note that there

are various small differences between the analyses, such as dif-

ferent effective source redshift distributions and different weights

applied to the shears. Additionally, we use the multiplicative bias

correction factor for our measurements, while the other works did

not have such a correction. All these differences could have small

but non-negligible effects on the results. The discrepancy with the

velocity dispersion quoted in Parker et al. (2007) remains unex-

plained, but we conclude that the shear estimates are in fact fully

consistent.
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C2 Seeing test

Miller et al. (2013) isolated a general multiplicative calibration fac-

tor as a function of the signal-to-noise ratio and size of the source

galaxy, m(νSN, r), using simulations. To confirm the successful cal-

ibration of the CFHTLenS shears in the context of galaxy–galaxy

lensing, we study how a shear bias relates to image quality. In gen-

eral, a round PSF causes circularization of source images which in

turn can cause a multiplicative bias of the measured shapes if it is

not properly corrected for. Such a systematic would depend on the

size of the PSF. Assuming that the systematic offset due to PSF

anisotropy is negligible [a fair assumption given our correction for

a spurious signal around random lenses; see Section 3.1 and the

detailed analysis of PSF residual errors in Heymans et al. (2012)],

and assuming that the shapes of very well resolved galaxies can

be accurately recovered, the observed average shear in a galaxy–

galaxy lensing azimuthal distance bin is related to the true average

shear via

〈γ obs〉 = 〈γ true〉

[
1 +M

〈(
r∗

r0

)2
〉]

, (C1)

where γ obs is the observed shear, γ true is the true shear, r∗ is the

PSF size, r0 is the intrinsic (Gaussian) size of the galaxy andM

is a value close to zero representing the multiplicative bias. The

particular dependence on the PSF size is the result of a full moments

analysis (see for example Paulin-Henriksson et al. 2008).

Since the bias depends on the size of the PSF relative to the size of

galaxies, data with a spread in seeing should enable us to determine

the biasM directly from the data, thus allowing us to deduce the

true performance of the shape measurement pipeline. The CFHTLS

images have such a spread, with the best seeing being 0.44 arcsec

and the worst being 0.94 arcsec, and therefore provide us with a neat

way of determining this bias. Since at small projected separations

from the lens, the tangential shear signal is generally well described

by an SIS profile:

γ (θ ) =
θE

2θ
, (C2)

where θ is the distance to the lens and θE is the Einstein radius; we

therefore have a simple relationship between the observed Einstein

radius and the true one:

θobs
E = θ true

E

[
1 +M

〈(
r∗

r0

)2
〉]

. (C3)

By measuring the Einstein radius of the average lens as a function

of seeing, we can therefore determine both the true Einstein radius

and the performance of the shape measurement pipeline.

We select our lenses in magnitude and redshift as described in

the main paper (Section 2.2), though we do not distinguish be-

tween red and blue galaxies, and we also split our data according

to Table C1. Dividing the data according to image quality in this

way may imply some minor selection effects, such as redshift and

magnitude estimates being less accurate for worse seeing and thus

PSF. Since great care has been taken to correct for such effects (see

Hildebrandt et al. 2012), we will assume here that the lens samples

are comparable between seeing bins. Having selected our lenses,

we measure the galaxy–galaxy lensing signal in each seeing bin

and fit an SIS to the innermost 200 h−1
70 kpc. By fitting only small

scales, we avoid the influence of neighbouring haloes. The results

are shown in Fig. C2 and quoted in Table C1. We then fit the rela-

tion described by equation (C3) to the resulting Einstein radii and

find a value ofM = −0.071 ± 0.075. This is consistent with no

Table C1. Details of the seeing bins.

Sample Nfields 〈r∗〉 (arcsec) θE (arcsec) σθE

P1 27 0.50 0.053 0.005

P2 23 0.57 0.044 0.006

P3 33 0.62 0.050 0.005

P4 38 0.67 0.047 0.005

P5 28 0.72 0.040 0.006

P6 36 0.80 0.049 0.005

Figure C2. Galaxy–galaxy lensing signal quantified through the best-fitting

Einstein radius (see equation C2) as measured in each of six seeing bins,

according to Table C1. The solid line shows the best-fitting model using

equation (C3) while the dashed line shows the average Einstein radius as-

suming no bias.

bias, a fact which is further illustrated in Fig. C2; the data points

agree with an average Einstein radius of 0.058 ± 0.003, shown as a

dashed line.

APPENDI X D : D ETAI LED LUMI NOSI TY BINS

In this appendix, we show the decomposition of the best-fitting

halo model for red (Fig. D1) and blue (Fig. D2) lenses, split in

luminosity according to Table 1. Showing the full decomposition is

highly informative because it highlights some of the major trends

and clarifies which effects dominate in each case.

The baryonic component based on the mean stellar mass in

each bin (dark purple dot–dashed line) becomes more dominant

for higher luminosities, but the luminous size of the lenses also

increases, making measurement of background source shapes in

the innermost distance bins difficult. Thus, it is not possible to

reliably constrain the baryonic component with our data. Yet the

effect of including the baryons in our model is an overall lowering

of the dark matter halo profile (dark purple dashed) compared to

the model without baryons. For the red lenses, we see that a con-

siderable fraction of the sample at lower luminosities necessarily

consists of satellite galaxies, since there is a clear bump in the signal

at intermediate scales which has to be accounted for. This satellite

fraction continuously drops as luminosity increases, and simultane-

ously becomes more difficult to constrain since the combination of

the stripped satellite profile (light green dash–dotted) and satellite

1-halo terms (light green dashed) becomes almost indistinguishable
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Figure D1. Galaxy–galaxy lensing signal around red lenses which have been split into luminosity bins according to Table 1, and modelled using the halo

model described in Section 3.2. The black dots denote the measured differential surface density, �	, and the black line shows the best-fitting halo model with

the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model

fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the

negative points. The grey squares represent distance bins containing no objects.

Figure D2. Galaxy–galaxy lensing signal around blue lenses which have been split into luminosity bins according to Table 1, and modelled using the halo

model described in Section 3.2. The black dots denote the measured differential surface density, �	, and the black line shows the best-fitting halo model with

the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model

fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the

negative points. The grey squares represent distance bins containing no objects.
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from a single NFW profile for high halo masses. This effect was

discussed in more detail in VU11, appendix C.

For the blue lenses, the signal becomes very noisy for the two

highest luminosity bins due to a lack of lenses. These two bins are

therefore discarded from the full analysis in Section 4. In general,

blue galaxies produce a noisier signal than red galaxies for the same

luminosity cuts. This could be because blue lenses are in general

less massive, and there are fewer of them which results in a weaker

signal and a lower signal-to-noise for most bins. It could also be

an indicator that the physical correlation between stellar mass and

halo mass is noisier for these lenses. We also notice that nearly all

blue lenses are galaxies located at the centre of their halo, rather

than being satellites. This is consistent with previous findings. It is

possible that satellite galaxies in general are redder because they

have been stripped of their gas and thus have had their star formation

quenched. It could also mean that most blue galaxies in our analysis

are isolated; we have made no distinction between field galaxies and

galaxies in a more clustered environment. If blue galaxies are more

isolated than red ones, then the contribution from nearby haloes

(dotted lines) would also be less. It is clear from Fig. D2 that the

large scales are not optimally fitted by our model, and isolation may

be one of the reasons since we assume the same mass–bias relation

for blue galaxies as for red. With current data it is not possible to

constrain the bias as a free parameter, but with future wider surveys

this could be done.

APPENDI X E: D ETAI LED STELLAR MASS

B I N S

The decomposition of the best-fitting halo model for red and blue

lenses, divided using stellar mass as detailed in Table 3, is shown in

Figs E1 and E2, respectively.

By construction, the baryonic component amplitude (dark purple

dash–dotted line) increases with increasing bin number, and so does

the dark matter halo mass (dashed lines). Note that with our stellar

mass selections we push to smaller and fainter objects, so the objects

in the three lowest mass bins are on average less massive and less

luminous than the galaxies in the faintest luminosity bin. In these

bins, nearly all red galaxies are satellites, while for higher stellar

mass bins the satellite fraction diminishes, a behaviour which is

consistent with the trends we saw for luminosity (Appendix D). For

the higher stellar mass bins, as for the higher luminosity bins, the

sum of the satellite stripped and 1-halo terms results in a profile

which resembles a single NFW profile, making the satellite fraction

more difficult to determine. For the blue lenses, we run into the same

issues for the highest mass bin as for the highest luminosity bins;

the number of lenses is too small to constrain the halo model and

so the bin has to be discarded. Furthermore, the satellite fraction is

low across all blue lens bins indicating that these lenses are most

likely isolated, which is consistent with the low large-scale signal

and with our findings for luminosity.

Figure E1. Galaxy–galaxy lensing signal around red lenses which have been split into stellar mass bins according to Table 3, and modelled using the halo

model described in Section 3.2. The black dots denote the measured differential surface density, �	, and the black line shows the best-fitting halo model with

the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model

fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the

negative points. The grey squares represent distance bins containing no objects.
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Figure E2. Galaxy–galaxy lensing signal around blue lenses which have been split into stellar mass bins according to Table 3, and modelled using the halo

model described in Section 3.2. The black dots denote the measured differential surface density, �	, and the black line shows the best-fitting halo model with

the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model

fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the

negative points. The grey squares represent distance bins containing no objects.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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