

April 2006

NASA/TM-2006-214301

CFL3D Version 6.4—General Usage and

Aeroelastic Analysis

Robert E. Bartels, Christopher L. Rumsey, and Robert T. Biedron

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA’s

scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office is

also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are published by

NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI

Program Office’s diverse offerings include creating

custom thesauri, building customized databases,

organizing and publishing research results ... even

providing videos.

For more information about the NASA STI Program

Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2006

NASA/TM-2006-214301

CFL3D Version 6.4—General Usage and

Aeroelastic Analysis

Robert E. Bartels, Christopher L. Rumsey, and Robert T. Biedron

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

1

Abstract

This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to

provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases.

Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a

CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented

to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4

presented here that has not previously been published. There are also outdated features no longer used or

recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates

outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also

provides hints for usage, code installation and examples not found elsewhere.

2

Table of Contents

Topic Page

Introduction 5

What’s New in CFL3D v6.4 7

CFL3D Overview 8

Getting Started 14

Equations and Dimensions 20

Problem Formulation and Setup 23

Grid Generation 24

Multi-gridable Dimensions 32

Blocking and Boundary Conditions 34

Setting Up a Steady Run 62

Input/Output Specification 63

Title Line and Condition Data 65

Calculation of ReUe 67

Steady Solution Cycling 70

Grid Sequencing 73

Grid Sequencing at the Coarsest Level Only 80

Ramping up dt 83

Turbulence Model Input 86

Miscellaneous Input 90

Setting Up an Unsteady Run 92

Input for Time Advancement 92

Equations for τ-TS Time Advancement 96

Equations for t-TS Time Advancement 97

3

Table of Contents

Topic Page

Case Study 98

Speeding Up Execution Time 99

Sizing dt and Number of Sub-iterations 101

Sub-iterative Output – Checking Convergence 104

Multi-grid Strategies 108

User Specified Grid Motion 113

User Specified Rigid Grid Motion 115

Surface Motion - Deforming Mesh 127

Deforming Mesh Terminology 129

Deforming Mesh Using Exponential Decay Method 130

Transfinite Interpolation 132

Deforming Mesh Using Finite Macro-Element Method 133

Input for Deforming Mesh 135

Example 1: 3D Control Surface Rotation 144

Example 2: 2D Flap Rotation 155

Example 3: 2D Airfoil Pitch 173

Example 4: Internal Flow through a Flexible Tube 175

Example 5: Transport Wing Bending 176

Geometric Conservation Law 177

Coupled Motion: Deforming and Rigid Motion 179

4

Table of Contents

Topic Page

Aeroelastic Analysis 191

Example 1: BACT Model 192

Aeroelastic Input 197

Calculation of grefl 200

Modal equations and input 202

Method of fluid/structure integration 205

Modal Surface Input 207

Aeroelastic Output 210

Strategy for Aeroelastic Computations 212

User Specified Modal Motion 213

Example: Gaussian Pulsed Modal Motion 217

Keyword Input 219

Block Splitting and MPI 232

Running CFL3D in MPI Mode 251

Flow Visualization 256

Useful CFL3D Tools 259

References 263

Summary 264

5

Introduction

CFL3D is a Reynolds-averaged Navier-Stokes flow solver for structured grids. The original version, developed in the

1980’s was given its name to denote its origin in the Computational Fluids Laboratory. CFL3D solves the time-

dependent conservation law form of the equations using a semi-discrete finite-volume approach with upwind-biasing of

the convective and pressure terms and central differencing of the shear stress and heat transfer terms. Numerous

turbulence models are provided. Grids must be supplied external to the code.

The present document is an outgrowth of a course that was presented on the computational fluid dynamics code

CFL3D version 6.4. Publication of this material in the present form makes it available to many more users of the code.

This document should provide the information necessary to successfully use the code for a broad range of cases. The

target audience ranges from basic to advanced users. New users should find useful the discussion of general features

of the code and the many options that are available, code set up, creation of grids and input for steady and unsteady

computations. New features that are available in CFL3D version 6.4 will also be discussed. There is a lengthy

discussion of issues related to unsteady computations, moving and deforming meshes, aeroelastic simulations and

parallel computing using the message passing interface (MPI). Within these discussions there are detailed instructions

on input parameters, their use within the code, as well as illustrative examples.

Much of the course covers capability that has been a part of previous versions of the code, with material compiled from

a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is

presented to users of the code not familiar with computational fluid dynamics. There is also new capability in CFL3D

v6.4 that has not previously been published. This course intends to acquaint users with this new capability. There are

also outdated features no longer used or recommended in recent releases of the code. The information offered here

supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of

that is made. This document also provides hints for usage and code installation not found elsewhere.

6

Introduction

There is much information in the CFL3D v5.0 manual that is not presented in these notes. The use of patched, overset

or embedded grids is not discussed here. Since the intention is to provide users a practical guide on code usage,

there is very little discussion of the fluid dynamics equations and computational method used. This information is

available in the CFL3D v5.0 manual.

The attempt is to organize this material in an intuitive way. Topics are presented in the order they would be

encountered in the process of building up a real test case. The ordering of the information reflects the course

instructor’s own learning experience with CFL3D. Others may order the material differently. This course is not

comprehensive. Because of the vast number of ways in which CFL3D can be used there are many input options that

are not discussed and none are discussed in complete detail. Those that are discussed are the more commonly used

features. By the end of the course the reader should be able to perform a number of different analyses with the

code. If the reader is interested in more detail also consult the CFL3D v6 web page and the CFL3D v5.0 user’s

manual. These references are listed at the back of this document.

7

What’s New in CFL3D v6.4

There are new capabilities in CFL3D v6.4 presented in this document.

They are:

� New mesh deformation scheme with more options available.

� New aeroelastic analyses not available in previous versions of

CFL3D

� 2nd order time accuracy in turbulence modeling (default)

� New keywords are available

- 1st time accurate turbulence modeling (default is 2nd order)

- New options in turbulence modeling

- Full Navier-Stokes terms available

- Option to exercise mesh deformation without full flow solver

- Calculation of CFL number can be modified for axisymmetric

cases to increase convergence rate

� Changes in the input for prescribed modal motion

8

CFL3D Overview

� Major features

– Euler

– Laminar thin-layer Navier-Stokes

– Reynolds-Averaged thin-layer Navier-Stokes (RANS)

– Structured grid

– Single or multi-block

– Dynamic memory

– Parallel (MPI) capability

– Moving grid and mesh deformation capability

– CGNS (CFD General Notation System) capability for CFD output

� Discretization and numerical method

– Conservation law form of the Euler or RANS equations

– Spatial discretization is semi-discrete finite-volume approach

– Upwind-Biasing is used for the convective and pressure terms

– Solves either the steady or unsteady form of the equations

– Time advancement is implicit with dual time stepping

and sub-iterations

9

CFL3D Overview

� Discretization and numerical method (…continued)

– Approximate-Factorized (AF) numerical scheme

– Explicit block boundary conditions

– Multigrid

– Grid sequencing

� Block structures

– 1-1 blocking (preferred)

– Patching

– Overlapping

– Embedding

– Sliding patched zone interfaces

– Grids must have been created prior to execution of CFL3D

10

CFL3D Overview

� Turbulence models for RANS computation

– 0-equation models: Baldwin-Lomax, Baldwin-Lomax with Degani-Schiff
modification

– 1-equation models: Baldwin-Barth, Spalart-Almaras, including Detached Eddy
Simulation (DES)

– 2-equation models: Wilcox k-ω model, Menter’s k-ω Shear Stress Transport
(SST) model, Abid k-ω model, k-ω and k-ε Explicit Algebraic Stress Models
(EASM), k-enstrophy model

� Computing modes

– Sequential or single processor (single or multiple blocks)

– Parallel processing

� Message Passing Interface (MPI)

– Requires multi-block structure

– May be run on distributed memory machines. (PC clusters or parallel
supercomputer)

11

CFL3D Overview

� Computing modes (…continued)
– Complex computation

� Allows computation of sensitivity derivatives due to static and dynamic variables (e.g.
dCL/dα)

� Requires compiling of the complex executable for static and dynamic sensitivity
calculations

� Dynamic sensitivity calculations require additional keyword input

� Code developers and points of contact:
– Many developers have contributed to CFL3D

– Most recent primary NASA LaRC developers (POC’s) are:

Dr. Robert T. Biedron (757-864-2156, r.t.biedron@larc.nasa.gov) general flow solver,
multiblock, MPI

Dr. Christopher Rumsey (757-864-2165,c.l.rumsey@larc.nasa.gov) – turbulence models

Dr. Bob Bartels (757-864-2813, r.e.bartels@larc.nasa.gov) –

aeroelastic modules and deforming mesh

12

CFL3D Overview

� Online and printable documentation: http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html

– Recommend printing the Version 5.0 manual for reference (found as a link at the web site

above)

� Acquiring the code:
– Version 6 is currently available for general distribution to U.S. citizens within the United States.

The code cannot be released outside of the United States. If you would like a copy of the

code, please follow the request procedure below:

– Send e-mail or FAX (757-864-8816) to one of the POC’s requesting CFL3D Version 6, along

with a brief description of your planned usage of the code, your phone number, and FAX

number.

– Your request will be forwarded internally to a NASA Software Releasing Authority (SRA). The

SRA will determine whether or not the code may be released to you; if so, the SRA will e-mail or

FAX a Usage Agreement to you to fill out, sign and return to the SRA.

13

CFL3D Overview

� After the SRA has granted permission, the code will be provided to you

electronically. In addition, you will be added to the Version 6 user list, and will

receive any updates and/or corrections that occur.

� Note: even if you are a registered Version 5 user you must still follow the

formal request procedure for Version 6.

� Conditions of use:

– Do not distribute any part of the code outside of your working group

– Report any bugs you may find

– CFL3D is restricted to use within the United States

– Abide by any additional conditions in the usage agreement

14

Getting Started

� To install CFL3Dv6 on a particular machine, you must have

the following file:

cfl3dv6.tar.DATE.gz (tarred and gzipped version 6 package)

Note: DATE indicates the release date in the form MMM_DD_YYYY. For

example, cfl3dv6.tar.Sep_12_2003 indicates the code as of

September 12, 2003.

� Make sure that: ./ is in your path; if not, you will have to explicitly prepend ./ to

all the commands below

Type:

gunzip cfl3dv6.tar.DATE.gz

tar -xvf cfl3dv6.tar.DATE

15

You should end up with the following directory structure:

CFL3DV6

SOURCE BUILD HEADER

Within the source directory:

SOURCE

CFL3D PRECFL3D RONNIE MAGGIE SPLITTER TOOLS

DIST LIBS

Getting Started

16

Getting Started

Within the build directory:

BUILD

CFL CFLCMPLX PRECFL PRERON RON MAG TOOLS SPLIT

LIBS SEQ MPI LIBS SEQ MPI SEQ SEQ SEQ SEQ SEQ SEQ

This is the directory in which

the ./Install and ./make commands

are executed

After making, the

executable cfl3d_seq will be

found here

After making, the

executable cfl3d_mpi will be

found here

17

Getting Started

– In the subdirectory build, type:

Install [options] or ./Install [options]

Where [options] may be blank or one or more of the following:

-no_opt

� create executables with little optimization but fast compilation

-single

� create single precision executables

-noredirect

� disallow redirected input file; needed only for SP2 and sometimes on Linux with MPI

-mpichdir=dir1

� use MPICH on a workstation cluster; dir1 is the directory where mpich is located - not used on MPP
machines

-linux_compiler_flags=flag

� sets up to compile using special compiler flags for use on Linux operating systems only; flag is
currently Intel, PG, Lahey, or Alpha (Intel is currently the default) Example: To use the Portland
Group compiler MUST install with: ./Install -linux_compiler_flags=PG

-help

� print out the Install options

18

Getting Started

– Note: the directory paths for either the mpichdir or cgnsdir options

should be either absolute paths or paths relative to the installation

directory; the use of ~ to denote a home directory is not allowed.

– If -no_opt is not specified, various compiler optimization levels are used

to speed execution but results in slower compilation.

– If -mpichdir=dir1 is not used, then it is assumed "native" MPI is

available, and will use a default location for the necessary MPI libraries.

– If -single is not used, then double precision executables will be created

at the make [] command.

– Once installation is complete, a makefile will automatically be created

for the machine platform on which the code is installed.

– Go to the build directory.

– By typing “make” you will see all the make options available.

19

Getting Started

– Several of the most common make options are:

make cfl3d_seq - make the sequential (single processor) version of the code

make cfl3d_mpi - make the MPI (multiprocessor) version of the code

make splitter - make the block splitter executable

make cfl3d_tools - make some of the cfl3d utilities

– Within the build directory, type the make option for the executable you

want.

– To execute the sequential code type:

./cfl3d_seq < cfl3d.inp

– To execute the MPI code type:

mpirun –np <noprocessors> ./cfl3d_mpi < cfl3d.inp

where <noprocessors> is typically one greater than the number of blocks*

* The MPI process requires an extra administrative processor beyond those that perform the

computation. (e.g. For a 12 block grid, all with equal numbers of grid points, to be run on 3

processors, noprocessors = 4)

20

Equations and Dimensions
Reference parameters

� The governing equations are the Euler or Navier-Stokes

equations combined with a turbulence model for RANS

computation

� The governing equations are non-dimensionalized based

on the following parameters:

−

−

−

−

∞

∞

∞

µ

ρ

~

~

~

~

a

LR
Reference length used by the code (dimensional)

Free-stream density, mass/unit length cubed

Free-stream speed of sound, length/time

Free-stream molecular viscosity, mass/length-time

21

Equations and Dimensions

� Since there is no standard system of units for CFD models

the non-dimensionalization in CFL3D removes the necessity

of converting grids into units compatible with the code. The

way in which the non-dimensionalization is accomplished will

be presented later in this document.

� Note that the term free-stream is used in the

non-dimensionalization. CFL3D was developed primarily as

an external flow solver. It has the capability to perform

computations for internal flows as well. Therefore a more

general term reference state should probably be used, but

the term free-stream is used throughout the documentation.

22

Equations and Dimensions
Non-dimensional variables

In CFL3D the non-dimensionalizations are performed as follows:

∞∞∞∞

∞

====

====

a

w
w

a

v
v

a

u
u

L

at
t

L

z
z

L

y
y

L

x
x

RRRR

~

~

~

~

~

~

~

~

~

~~

~

~

~

~

~

~

ρ

ρ
ρ

Velocities nondim-

ensionalized by

speed of sound

Time nondim-

ensionalized by

speed of sound

and ref length

Non-dimensionalizing by speed of sound makes transonic the natural flow regime for CFL3D,

although low speed and hypersonic flows can be computed, with modified input, as well.

23

Problem Formulation and Setup
Overview

� There are five steps in problem formulation and setup

for steady and unsteady computation:

- Condition definition

- Grid generation

- Block splitting (if necessary)

- Blocking and boundary conditions

- Input development

� Parameters that define a condition are:

- Mach number

- Reynolds number

- Ambient temperature

- Grid orientation (angle of attack, side slip, etc…)

Input for these parameters will be discussed later. For the moment several of

these parameters are required for the proper construction of the grid…

24

Problem Formulation and Setup
Grid generation

Considerations that are important for generation of a grid:

� Reynolds number sets permissible ∆y+ at the surface.

� For most turbulent computations typically want a y+ ~ 1

for first grid off the surface

� For turbulent computations with wall function, typically want a

y+ ~ 50-100 for first grid off the surface

� Setting ∆y+ requires an estimate of the wall shear stress prior to

computing

Note that:

where y is normal distance to surface, is wall shear stress, is density

and v is kinematic viscosity.

ρ

τ

ν
wy

y =+

wτ ρ

25

Problem Formulation and Setup
Grid generation

� After the first converged successful run with a coarse grid, y+ of the first grid
can be checked. This value is found at the end of the cfl3d.out file.

(See Y+ MAX, Y+ MIN and Y+AVG below)

YPLUS STATISTICS (endpts not included) - BLOCK 1 (GRID 1)

K=1 SURFACE:

Y+ MAX JLOC ILOC Y+ MIN JLOC ILOC

0.535E+00 151 1 0.261E-01 217 1

DN MAX JLOC ILOC DN MIN JLOC ILOC

0.152E-05 228 1 0.149E-05 219 1

Y+ AVG Y+ STD DEV NY+ > 5 NPTS

0.264E+00 0.373E+00 0 199

YPLUS STATISTICS (endpts not included) - ALL GLOBAL BLOCKS

Y+ MAX ILOC JLOC KLOC BLOCK GRID

0.535E+00 1 151 1 1 1

Y+ MIN ILOC JLOC KLOC BLOCK GRID

0.261E-01 1 217 1 1 1

etc…

26

Problem Formulation and Setup
Grid generation

� Grid stretching away from a surface.

� Rule of thumb: ∆ζk+1 should be no more than 1.2 to 1.5 times ∆ζk

∆ζk+1

∆ζk

27

Problem Formulation and Setup
Grid generation

� Outer extent of grid

� Rule of thumb: The outer boundary of the grid should be at least

15 body lengths away (3D) and at least 20 body lengths away (2D).

This is not a hard and fast rule and there are some notable exceptions.

Note that the grid below would not be considered a fully acceptable grid.

28

Problem Formulation and Setup
Grid generation

� Grid quality
� Grid metric smoothness. CFL3D assesses the size of local

variations in grid metrics. Warnings are printed to the cfl3d.out

file. Any messages of the following form indicate a problem with

the grid:

FATAL si grid normal direction change near j,k,i,i+1= 23 5 164 165

... suspect bad grid

FATAL sj grid normal direction change near j,k,i,i+1= 23 5 164 165

... suspect bad grid

Etc… Or

WARNING: Dramatic si grid norm direction change (>120deg)

WARNING: Dramatic sj grid norm direction change (>120deg)

Etc…

29

Problem Formulation and Setup
Grid generation

� Grid quality (...continued)
� Negative grid volumes. CFL3D checks whether there are

negative volumes in the grid. Under normal operating procedures

the code will exit with an error message in the cfl3d.error file.*

� Grid clustering to resolve flow gradients
� Resolving a wake. Although angle of attack is specified in the

input, it does result in the possibility of flow separation and wing

stall and resulting wake. The wake may need grid clustering.

� Resolving a shock or curvature effect. Mach number effects

such as a shock or surface curvature may result in gradients that

require resolving.

� These steps must be performed prior to running CFL3D.

* There is a keyword option that allows computing to continue with negative volumes. This option will be

discussed later in the course under “Keyword Input”.

30

Problem Formulation and Setup
Grid generation

� Grid file format
� The grid file format must be unformatted

� Two grid data formats are possible, plot3d and cfl3d. These

formats are presented in the CFL3D version 5.0 manual.

� If CFL3D is compiled in double precision, the grid file must be

written as double precision real

� Example of multi-platform issue: If a Linux compiler is used to

compile CFL3D to read an SGI unformatted grid file, the grid file

must be generated with the same compile options

Example: Suppose the code ‘hygrid’ is used to generate the unformatted

grid file. On a Linux based PC platform using the Portland Group

compiler, the compile option –byteswapio swaps bytes from

big-endian to little-endian for input compatibility with a Sun or

SGI system. This compiler option will allow CFL3D to read the grid

file created either on the PC cluster or on an SGI machine.

31

Problem Formulation and Setup
Grid generation

CFL3D requires that the right-hand rule be observed in both the

x,y,z orientation and the i,j,k index directions. Also, i,j and k do not

have to be in the x,y and z directions. Any permutation is valid as

long as the right-hand rule is upheld. Caveat: When using

turbulence models there are direction preferences as will be

discussed.

k

i
j

k

i

j

32

Problem Formulation and Setup
Multigridable dimensions

From CFL3D User’s Manual, 7.1.2, pg 129

To use multigrid, grid dimensions including all b.c. segments must be multigridable

33

Problem Formulation and Setup
Multigrid dimensions

From CFL3D User’s Manual, 7.1.2, pg 129

34

Problem Formulation and Setup
Blocking and boundary conditions

Blocking and boundary conditions are specified at the following boundaries:

i0 (i=1) and idim

j0 (j=1) and jdim

k0 (k=1) and kdim

where idim, jdim and kdim are the block dimensions in the ijk-directions.

Blocking and boundary condition data can be composed of multiple

segments but the combined segments must span each of the six block

faces. Note that to perform multigrid computations, the boundary and

blocking segments must be multigridable integers.

35

Problem Formulation and Setup
Blocking and boundary conditions

Example of possible blocking or boundary condition segments on the k0

face. Suppose that part of the k0 face below represents the surface of a

wing.

i=1 i=5

j=1

j=4

Blocking

segment

Solid surface boundary

condition segment

36

Problem Formulation and Setup
Blocking and boundary conditions

Volume edges define geometric extremities. The volume edges will

also be the start and end points of blocking pairs. All blocking and

boundary conditions will be on external surfaces of grid blocks.

Example: Trailing edge of an airfoil or tip of a wing.

Volume corners defined

by grid points, airfoil

trailing edge or wing tip

defined by volume edge

Airfoil trailing

edge or wing

tip

Block boundary

that will require

blocking data.

This boundary will

comprise part or all

of a grid face.

37

Problem Formulation and Setup
Blocking and boundary conditions

Blocking defines the start and ending indices of 1-1 interfaces between one or

more corresponding grid blocks.

Consider the example of a 2D airfoil using a single block C-grid with dimension 2x273x93.

CFL3D is a finite volume code and therefore requires 2 grid points in the span-wise

direction (always i-dir for a 2D grid). Note that the arrows in the right hand figure

below denotes the end of a blocking segment. The meaning of this statement will be

made clear in the following pages.

j=1j=37

(t.e.)

j=237

(t.e.) j=273

j=1

j=273

k=1

k=93

38

Problem Formulation and Setup
Blocking and boundary conditions

The following is the steady input file for the

single block C-grid 2D airfoil. Highlighted

sections are the blocking and boundary

condition input:

input/output files:

grid.bin

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NLR7301 airfoil, cfl3d type grid

Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0

sref cref bref xmc ymc zmc

1.0 1.0 1.0 0.075 0.0 0.0

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

idim jdim kdim

2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

idim:grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

jdim:grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 0 0 0 1 37 0

1 2 2004 0 0 0 37 237 2

tw/tinf cq

0. 0.

1 3 0 0 0 237 273 0

Boundary

conditions

39

Problem Formulation and Setup
Blocking and boundary conditions

kdim:grid segment bctype ista iend jsta jend ndata

1 1 1003 0 0 0 0 0

mseq mgflag iconsf mtt ngam

1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

1-1 blocking data:

nbli

1

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

patch interface data:

ninter

0

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1

movie

0

print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1

control surfaces

ncs

0

grid ista iend jsta jend ksta kend iwall inorm

Blocking

data

40

Problem Formulation and Setup
Blocking and boundary conditions

For this example, format of the blocking data in the input file:

1-1 blocking data:

nbli

1

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

Number of the blocking data line

Number of the block (in the present

example there is only 1 block)

Number of lines of blocking data

No. of lines

in each data

must equal nbli

Note: The text cards must be present, but the text within those lines

is arbitrary, and is for user information only. All lines with data are in free

field format throughout the input file.

41

Problem Formulation and Setup
Blocking and boundary conditions

Blocking data

1-1 blocking data:

nbli

1

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

j – start

indices

j – end

indices

i – start

indices
i – end

indices

Because this is a volume grid, the blocking will

always define a two-dimensional interface in index

space

First index variation

on both sides is in the

i-direction

Second index variation

on both sides is in the

j-direction

42

Problem Formulation and Setup
Blocking and boundary conditions

Consider a second example of a 2D airfoil using two blocks to compose a

C-grid. Block 1 has dimensions 2x93x5. Block 2 has dimensions 2x269x93.

Note again that the arrows in the right hand figure below denotes the end of

a blocking segment. This fact is made clear by the following page.

j=1j=33

(t.e.)

j=233

(t.e.)

j=

269

Block boundary
k=1k=5

j=

265

j=

265

Block 1

Block 2

43

Problem Formulation and Setup
Blocking and boundary conditions

Blocking data

1-1 blocking data:

nbli

3

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 1 5 1 3

2 2 1 1 1 2 33 1 1 2

3 1 1 1 1 2 97 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 2 1 269 1 2 265 1 1 2

2 2 1 265 1 2 233 1 1 2

3 2 1 1 1 2 1 97 1 3

3 blocking data

sets now

k-index of

block 1 now

varies with

the j-index of

block 2

A new blocking boundary appears that previously did

not exist

44

Problem Formulation and Setup
Blocking and boundary conditions

Blocking faces require corresponding boundary condition data

In the first example above, the blocking interface is at the k=1 boundary.

Therefore, the boundary condition data for that blocking interface is in the

‘k0’ boundary data.

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 1 2 1 37 0

.

.

.

1 3 0 1 2 237 273 0

Boundary condition type

for a blocking interface is 0

45

Problem Formulation and Setup
Blocking and boundary conditions

CFL3D will stop if the number of grid points across a blocking

interfaces does not match.

Suppose the following blocking data had been specified for example 1 above:

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 35 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

Execution will terminate with the following error message at the end of the file

‘precfl3d.out’:
.

.

the limits of ind2 are not the same for both sides for 1:1 plane 1

Erroneous

jend value

46

Problem Formulation and Setup
Blocking and boundary conditions

CFL3D also checks the input connection data by computing the geometric

mismatch between both sides of the interface. A true 1-1 interface will have

zero (machine zero) mismatch. Any mismatches larger than ε (where ε is

the larger of 10-9 or 10x(machine zero)) will cause a warning message.

Example of the output in ‘cfl3d.out’:

j= 1 1-1 blocking type 0 i= 1, 31 k=137, 69

connects to j = 1 of block 2

blocking check....geometric mismatch = 0.2166272E-03

47

Problem Formulation and Setup
Blocking and boundary conditions

Example of possible boundary condition segments on the k0 face. Suppose

that the k0 face below represents the surface of a wing.

i=1 i=5

j=1

j=4

48

Problem Formulation and Setup
Blocking and boundary conditions

At the unshaded cells, it is desired to apply a heated wall boundary condition, while at

the shaded cells it is desired to apply an adiabatic wall boundary condition. One way

to accomplish this objective is to divide the boundary into the segments shown. The

CFL3D input file would have input that looks like this:

k0: grid segment bctype ista iend jsta jend ndata

1 1 2004 1 5 1 2 2

tw/tinf cq

1.60000 0.00000

1 2 2004 1 3 2 4 2

tw/tinf cq

1.60000 0.00000

1 3 2004 3 5 2 4 2

tw/tinf cq

0.00000 0.00000

Note that for segment 1, for instance, the grid points i = 1 to 5, j = 1 to 2 define the

boundary of the cells at which the condition type is to be applied.

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3

49

Problem Formulation and Setup
Blocking and boundary conditions

Setting ista = iend = 0 and/or jsta = jend = 0 is a shorthand way of specifying the entire

range. In other words, an alternate boundary condition input with identical outcome

is:

k0: grid segment bctype ista iend jsta jend ndata

1 1 2004 0 0 1 2 2

tw/tinf cq

1.60000 0.00000

1 2 2004 1 3 2 4 2

tw/tinf cq

1.60000 0.00000

1 3 2004 3 5 2 4 2

tw/tinf cq

0.00000 0.00000

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3

50

Problem Formulation and Setup
Blocking and boundary conditions

The following 1000 series boundary conditions are available:

bctype boundary condition

1000 free stream

1001 general symmetry plane

1002 extrapolation

1003 inflow/outflow

1005 inviscid surface

1006 inviscid surface (using normal momentum)

1008 tunnel inflow

1011 singular axis – half-plane symmetry

1012 singular axis – full plane

1013 singular axis – partial plane

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these

boundary conditions

51

Problem Formulation and Setup
Blocking and boundary conditions

The following 2000 series boundary conditions are available:

bctype boundary condition

2002 specified pressure ratio

2003 inflow with specified total conditions

2004 no-slip wall

2005 periodic in space

2006 set pressure to satisfy the radial equilibrium equation

2007 set all primitive variables

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these

boundary conditions

52

Problem Formulation and Setup
Blocking and boundary conditions

The following 2000 series boundary conditions are available:

bctype boundary condition

2008 user specifies density and velocity components,

pressure extrapolated from interior

2009 sets total pressure and total temperature. Inflow pressure

extrapolated from interior

2014 user specifies transpiration through the boundary

2018 user specifies temperature and momentum components,

pressure extrapolated from interior

2028 user specifies frequency and maximum momentum

components, density and pressure extrapolated

2102 pressure ratio specified as a sinusoidal function of time

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these

boundary conditions

53

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1000 - Free stream. Extrapolation points just outside the

boundary are set to initial free stream values, which are:

where is density, u,v,w are the x,y,z components of velocity, p is pressure, a is

speed of sound and is ratio of specific heats. M is Mach number, is the angle

of attack and is the side slip angle.

γρ

βα

β

βα

ρ

/

cossin

sin

coscos

0.1

2

initialinitialinitial

initial

initial

initial

initial

ap

Mw

Mv

Mu

=

=

−=

=

=

∞

∞

∞

ρ

γ
β

α

54

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1001 - General symmetry plane. Suppose we wish to

simulate a 3D wing using the half wing shown. If only one type of maneuver is

performed (i.e. with aircraft maneuver symmetry in the x-y plane, x-z plane or

y-z plane only) the symmetry plane boundary condition can be used.

General symmetry

plane

55

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1002 - Extrapolation. Ghost points outside the flow field

domain are extrapolated from the interior.

Boundary condition 1003 - Inflow/Outflow. This condition uses Riemann

invariants to calculate inflow and outflow at the boundary cell face. It effectively

sets total pressure.

Boundary condition 1005 - Inviscid surface. Velocity components normal to the

surface are set to zero. Density and pressure gradients are set to zero.

Boundary condition 1006 - Inviscid surface. Similar to b.c. 1005 except that the

normal momentum equation is used to obtain wall pressure. Generally results in

a smoother solution near an inviscid surface.

Boundary condition 2004 - No slip wall. Viscous boundary conditions are set at

surface cell face, i.e. flow velocity equals the surface velocity.

56

Problem Formulation and Setup
Example of typical “outer” boundary conditions

Inflow/outflow, 1003

Inflow/outflow, 1003

extrapolation, 1002

57

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1005: Inviscid surface

.

.

.

i0: grid segment bctype ista iend jsta jend ndata

1 1 1005 1 5 1 2 0

1 2 0 1 3 2 4 0

idim:grid segment bctype ista iend jsta jend ndata

.

.

.

58

Problem Formulation and Setup
Blocking and boundary conditions

Note that the b.c. 1005 has no auxiliary data, while the b.c. 2004 has two

additional lines

.

.

k0: grid segment bctype ista iend jsta jend ndata

1 1 1005 1 5 1 2 0

.

.

…versus…

.

.

k0: grid segment bctype ista iend jsta jend ndata

1 1 2004 1 5 1 2 2

tw/tinf cq

1.60000 0.00000

Specifies no

additional data

entries

Specifies two

additional auxiliary

data entries

59

Problem Formulation and Setup
Blocking and boundary conditions

� Series 1000 boundary conditions require no auxiliary data

� Number of auxiliary data entries for series 2000 boundary conditions

are shown below

b.c. type No. of auxiliary

data

2002 1

2003 5

2004 2

2005 5

2006 4

2007 5*

2008 4*

2009 4*

2014 3

2016 7

2018 4*

2028 4*

2102 4

* Means turbulence data can also be specified, adding either 1 or 2 additional aux. data inputs

See the CFL3D version 5.0 manual and CFL3D Version 6 web page for

discussion of these boundary conditions

60

Problem Formulation and Setup
Blocking and boundary conditions

Example of a boundary condition with 5 auxiliary data entries: 2003 -

“Engine inflow”, inflow with specified total conditions:

.

.

k0: grid segment bctype ista iend jsta jend ndata

1 1 2003 1 5 1 2 5

Mach Pt/Pinf Tt/Tinf Alphae Betae

0.30 4.000 1.1755 0.0 0.0

.

.

61

Problem Formulation and Setup
Blocking and boundary conditions

.

.

.

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

idim: grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

jdim: grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 0 0 1 37 0

1 2 2004 0 0 37 237 2

tw/tinf cq

0. 0.

1 3 0 0 0 237 273 0

kdim: grid segment bctype ista iend jsta jend ndata

1 1 1003 0 0 0 0 0

.

.

.

1-1 blocking data:

nbli

1

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

.

.

Boundary condition

data

Blocking data

Input data so far for the 2D airfoil using a single block C-grid

i-boundary data

j-boundary data

k-boundary data

Number of k0

segments

62

Setting Up a Steady Run
Input/output file specifications

input/output files:

grid.bin

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

Grid file (Input) (Unit 1)

Plot3D output for the grid and q-array (Units 3 and 4)

Main CFL3D output (Unit 11)

Flow field residual history

Turbulence model residual history

Flow field, flow field and surface data print out file

Restart file (Input and Output) (Unit 2)

Some of the key input, output files:

63

Setting Up a Steady Run
Input/output file specifications

� These names can be changed by the user.

� Input/output redirects are permitted. (e.g. ../../grid.bin or

./cflout/cfl3d.out)

� Additional files are printed out not contained in this list. (e.g.

precfl3d.out, precfl3d.error, cfl3d.error, cfl3d.subit_res and

cfl3d.subit_turres) These files cannot be renamed or redirected

� The restart file name that is read at the start of the computation is

the same name used for output at the end. Scripting that saves

restart files to another name will be required if the user wishes to

save the input restart.

64

Setting Up a Steady Run
Navigating diagnostic output

Diagnostic output:
� Initial input syntax and completeness are checked in the

preprocessor ‘precfl3d’. This is an initial step automatically
performed by CFL3D. Output from this check will be in the
files ‘precfl3d.error’ and ‘precfl3d.out’. Input errors will cause
the output in ‘precfl3d.out’ to stop at the line at which the error
occurred. Often informative diagnostics will be output there.

� When the checker ‘precfl3d’ has determined that the input is

properly configured, the top of ‘cfl3d.out’ will show the input
values it has read.

� Other checks (e.g. grid dimension, blocking, incompatibility of
a restart file) are performed in ‘cfl3d’. Error output including
the suspected cause of the termination will be found in
‘cfl3d.error’. Sometimes additional insight into the cause of
the error can be found by checking the main output in
‘cfl3d.out’ although frequently there is little additional
diagnostic output in ‘cfl3d.out’ if the code terminates.

65

Setting Up a Steady Run
Title line and condition data

input/output files:

grid.bin

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NLR7301 airfoil, cfl3d type grid

Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0

sref cref bref xmc ymc zmc

1.0 1.0 1.0 0.075 0.0 0.0

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

idim jdim kdim

2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

idim:grid segment bctype jsta jend ksta kend ndata

1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

jdim:grid segment bctype ista iend ksta kend ndata

1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 0 0 0 1 37 0

1 2 2004 0 0 0 37 237 2

tw/tinf cq

0. 0.

1 3 0 0 0 237 273 0

We will now

focus on these

and subsequent

lines

66

Setting Up a Steady Run
Title line and condition data

NLR7301 airfoil, cfl3d type C-grid

Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0

Condition title line

Condition data

line
Free-stream

temperature,

degrees Rankine

ialph – indicator to determine whether angle of attack is measured in the

x-z plane or the x-y plane

ihstry – determines which variables are to be tracked for

convergence history. Default is Cl, Cd, Cy (or Cz), Cm.

Input of ReUe (Reynolds number) requires some additional explanation….

Angle of attack, Deg.

Sideslip, Deg.

67

Setting Up a Steady Run
Calculation of ReUe

Recall the nondimensionalizations:

∞∞∞∞

∞

====

====

a

w
w

a

v
v

a

u
u

L

at
t

L

z
z

L

y
y

L

x
x

RRRR

~

~

~

~

~

~

~

~

~

~~

~

~

~

~

~

~

ρ

ρ
ρ

Reference length

Reynolds number based on reference length:

∞

∞∞
=

µ

ρ
~

~~~

Re ~
R

L

LV

R



68

Setting Up a Steady Run
Calculation of ReUe

Calculation of ReUe

ReUe = 

Example:  Suppose we have a grid that is in inches, and we wish to retain that 

length scale so that the grid remains compatible with a finite element

model of the wing structure that is also in inches.  Suppose the 

Reynolds number is 1 million based on chord length of 20 inches.

Set                     , then                              ReUe

ReUe is the Reynolds number per unit grid length in millions

05.0,000,50)/
~

(ReRe1
~

~ ==== cLinchL RcLR
R

666
~ 10~

~~
10~

~~~

10Re −

∞

∞∞∞−

∞

∞∞− ×=×=×
µ

γρ

µ

ρ
RR

L

LRTMLV

R

69

Setting Up a Steady Run
Reference data input

sref cref bref xmc ymc zmc

1.0 1.0 1.0 0.075 0.0 0.0

Reference area used

in calculation of force

coefficients, in grid

units

Reference length used

in calculation of pitch

moment coefficient, in

grid units

Reference length used

in calculation of roll

moment coefficient, in

grid units

Center for moment

calculations, in grid units

70

Setting Up a Steady Run
Steady solution cycling input

input/output files:

grid.bin

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NLR7301 airfoil, cfl3d type grid

Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0

sref cref bref xmc ymc zmc

1.0 1.0 1.0 0.075 0.0 0.0

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

idim jdim kdim

2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam

1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

We will now want to

focus on these

three lines

71

Setting Up a Steady Run
Steady solution cycling input

Time step parameters:

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

Number of time step advances, and time accuracy:

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

Cycle control:

ncyc mglevg nemgl nitfo

2000 3 0 0

CFL number

(for steady run)

Number of

time stepsNumber of cycles

72

Setting Up a Steady Run
Steady solution cycling input

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

.

.

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

.

.

ncyc mglevg nemgl nitfo

2000 3 0 0

Note:
– when dt < 0, local time stepping is used, i.e. . This is used

for converging a steady state solution. For steady state computations

where ∆r is a measure of local grid spacing and ∆τ is the local pseudo

time step size.

– cfl_tau is not used when dt < 0. The value input for that parameter is a placeholder.

– iunst is set to 0 in the code when dt < 0.

– ntstep is set to 1 in the code when dt < 0.

– ncyc controls the number of steady solution cycles computed.

– Values of dt of -2.0 to -10.0 are typical. Lower values will be required for a

stiffer problem.

dtCFL =

rCFL ∆⋅=∆τ

73

Setting Up a Steady Run
Grid sequencing

Grid sequencing can and should be used to accelerate convergence to a

steady state solution. The following input sequences through three grid levels.

.

.

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

.

mseq mgflag iconsf mtt ngam

3 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 1 0 0

1000 2 0 0

500 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1

1 1

1 1 1

.

.

.

Sequencing from coarsest

to finest grid level, mseq

lines required

Number of sequence levels

mseq lines required

Number of coarser levels to be created

74

Setting Up a Steady Run
Grid sequencing output

The following grid level information will be found

in the cfl3d.out on the completion of the 3D

single block C-grid airfoil computation:

.

.

reading grid 1 of dimensions (I/J/K) : 2 273 93

creating coarser block 2 of dimensions (I/J/K) : 2 137 47

creating coarser block 3 of dimensions (I/J/K) : 2 69 24

.

.

.

***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1

level top = 1

level bottom = 1

number of global grid levels = 1

lglobal= 1

.

.

.

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 3 to finer block 2 (grid 1)

jdim,kdim,idim (finer grid)= 137 47 2

jj2,kk2,ii2 (coarser grid)= 69 24 2

interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2

level top = 2

level bottom = 1

number of global grid levels = 2

lglobal= 2

.

.

.

Coarsest to

mid level

Because ncg = 2, two

coarser levels created

75

Setting Up a Steady Run
Grid sequencing output

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 2 to finer block 1 (grid 1)

jdim,kdim,idim (finer grid)= 273 93 2

jj2,kk2,ii2 (coarser grid)= 137 47 2

interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 3 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 3

level top = 3

level bottom = 1

number of global grid levels = 3

lglobal= 3

Mid to finest level

76

Setting Up a Steady Run
Grid sequencing

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

idim jdim kdim

2 273 93

.

.

.

mseq mgflag iconsf mtt ngam

3 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 1 0 0

1000 2 0 0

500 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1

1 1

1 1 1

Note:
– The number of grid levels that will have been created are the coarser levels (ncg) plus the

finest level. Therefore, mseq must be equal to or less than ncg + 1. Setting mseq higher than
this will result in a termination and an error message in precfl3d.out.

– The permissible value of ncg will depend on the dimensions of the grid. It is usually good to
have three to four possible levels of multi-grid. For example, since four levels of multi-grid

are possible with this grid, we could have set ncg = 3.

These dimensions support up to

four multigrid levels. See version 5.0

manual for a table of multigridable

dimensions. Note that idim is not

multigridded for a 2D grid.

77

Setting Up a Steady Run
Grid sequencing

Note:

– Many more cycles will be done at the coarser levels. The

computing required for a 3D grid will be a factor of 8 cheaper at

each coarser level. For the present problem, the coarsest level

would be 64 times cheaper than the finest level if a 3D grid had

been used. Since it is a 2D grid it will be 16 times cheaper.

– It is usually good to completely converge the coarser levels

before proceeding to the finer level. However, some problems

will not compute well at a coarse level, but will compute at a finer

level.

– Mglevg is always starting from the finest level … as the following

example will show…

78

Setting Up a Steady Run
Grid sequencing

Example: We wish to compute on only the two coarser levels with the

grid used in the previous example. The following input has been set up:
.

.

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

.

mseq mgflag iconsf mtt ngam

2 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 1 0 0

1000 2 0 0

mit1 mit2 mit3 mit4 mit5 ...

1

1 1

.

.

.

Value of ncg is unchanged, but

now set mseq = 2

Based on this input, you would expect

CFL3D to compute on the two coarsest

levels, but it actually computes on the

second and finest levels…

79

Setting Up a Steady Run
Grid sequencing

…Here is what is actually output in cfl3d.out:

***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1

level top = 2

level bottom = 2

number of global grid levels = 1

lglobal= 2

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 2 to finer block 1 (grid 1)

jdim,kdim,idim (finer grid)= 273 93 2

jj2,kk2,ii2 (coarser grid)= 137 47 2

interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2

level top = 3

level bottom = 2

number of global grid levels = 2

lglobal= 3

Computations performed on the

middle and finest grids

80

Setting Up a Steady Run
Grid sequencing at coarsest levels only

Here is how to compute only on the two coarsest levels:
.

.

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

.

mseq mgflag iconsf mtt ngam

3 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

2000 1 0 0

1000 2 0 0

0 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1

1 1

1 1 1

.

.

.

The finest level is included but with

zero cycles

81

Setting Up a Steady Run
Grid sequencing at coarsest levels only

….and here is the output:

***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1

level top = 1

level bottom = 1

number of global grid levels = 1

lglobal= 1

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 3 to finer block 2 (grid 1)

jdim,kdim,idim (finer grid)= 137 47 2

jj2,kk2,ii2 (coarser grid)= 69 24 2

interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2

level top = 2

level bottom = 1

number of global grid levels = 2

lglobal= 2

Computations performed on the

coarsest and middle levels

82

Setting Up a Steady Run
Grid sequencing at coarsest levels only

Why is it sometimes valuable to compute on

the coarser levels only?

– Cost effectiveness of coarser levels

– Sometimes it is not possible to converge the finest level

– Many times you will want to compute unsteady solutions on

coarser levels only, especially when debugging. Computing

unsteady solutions on coarser levels only requires the steady

starting point be on a coarser level.

83

Setting Up a Steady Run
Ramping up dt

Sometimes it is useful for stiff problems to ramp up the

time step size. Ramping up the time step size is accomplished

with the following input:

dt irest iflagts fmax iunst cfl_tau

-2.0 0 1000 5.0 0 5.0

dtending = fmax * dtinitial

dtinitial

In this example, the final CFL value of 10 is obtained after 1000 cycles. Note

that this counter is reset with each restart. Therefore, dtinitial will have to be

reset to the dtending of the previous run.

No. of cycles over which time step ramping

occurs

84

Setting Up a Steady Run
Additional input

dt irest iflagts fmax iunst cfl_tau

-2.0 0 1000 5.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

irest = 0 - do not read restart

irest = 1 - read restart file

No. of cycles (or time steps)

between restart file writes

No. of grid blocks to be

read from the grid file
Controls checks for

negative values.

Usually set to 0.

i2d = 0 - 3D case

i2d = 1 - 2D case

i2d =-1 - 2D case with

far-field vortex

correction

Parameter controlling

accuracy of unsteady

solution

85

Setting Up a Steady Run
Additional input

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

idim jdim kdim

2 273 93

This card repeated ngrid times

This card repeated ngrid times

Parameters controlling

level of turbulence modeling

in the i, j, k directions

Flag for residual/update

usually set to 0

Flag controlling force computations on block

Faces. Format is IJK, e.g. 100 calculates force

On solid i=1 surfaces, 10 calculates force on solid

j=1 surfaces, etc…. See version 5 manual for more

Embedded mesh

flag, usually 0

86

Setting Up a Steady Run
Turbulence model input

There are more than 13 turbulence models available, but the following are the

most common turbulence models and the corresponding parameter input values:

0 - inviscid

1 - laminar

3 - turbulent, Baldwin-Lomax with Degani-Schiff

option (not recommended)

5 - turbulent, Spalart-Allmaras model

6 - turbulent, Wilcox k-ω

7 - turbulent, k-ω SST (Menter’s version)

13 - nonlinear EASM k-ε model

14 - nonlinear EASM k-ω model

See the CFL3D Version 5.0 manual (Appendix H) and the CFL3D Version 6 web page

(under `New Features’) for descriptions of these and other models. See also under the

‘Keywords’ discussion in these notes for parameters that turn turbulence model features on.

87

Setting Up a Steady Run
Turbulence model

Several key notes on turbulence models:

1. If ivisc(m) < 0, a wall function is employed

2. Thin-layer viscous terms (laminar or turbulent) can be included in the i,j or k
directions separately or combined. Cross-derivatives are not included. For the
Baldwin-Lomax model, terms are allowed simultaneously in two directions only,
either j-k or i-k.

3. Using the Baldwin-Lomax model with multi-zonal grids, wall distances are

calculated only within a given zone.

4. It is preferable to let k be the primary viscous direction and i be secondary viscous
direction.

5. The minimum distance function smin is computed from viscous walls only, not

inviscid walls.

88

Setting Up a Steady Run
Turbulence model

6. Note that the field equation turbulence models may or may not transition to

turbulent flow. Whether they transition will largely be determined by the free

stream value of turbulence. Free stream turbulence level can be set in the

key word input.

7. There are several places in which the turbulence level can be checked

– There is an option allows the output of turbulence quantities in the

plot3d file.

– The file ‘cfl3d.prout’ contains the value of the turbulent viscosity. This is

shown in the next slide.

See the CFL3D User’s Manual, Version 5.0, Section 3.7 for more complete discussion

89

Setting Up a Steady Run
Turbulence model output

The top of the ‘cfl3d.prout’ file is shown here:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR time

0.82000 0.00000 0.00000 0.236E+07 486.00000 0.03839

BLOCK 1 (GRID 1) IDIM,JDIM,KDIM= 73 345 73

NOTE: endpts may not be reliable

I J K X Y Z U/Uinf V/Vinf W/Winf P/Pinf T/Tinf MACH cp tur. vis.

1 1 1 0.70000E+01 0.00000E+00 0.18698E-09 0.10000E+01 -0.38013E-18 0.72322E-13 0.10000E+01 0.10000E+01 0.82000E+00 0.50654E-07 0.90000E-02

1 2 1 0.68895E+01 0.00000E+00 0.18866E-09 0.10000E+01 -0.16458E-16 -0.14259E-15 0.10000E+01 0.10000E+01 0.82000E+00 0.50654E-07 0.90000E-02

.

.

Data lines will be printed out for all flow field points specified by the user in the

‘print out’ portion of the input file.

Turbulent viscosity

90

Setting Up a Steady Run
Miscellaneous input

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

Lower and upper i,j,k indices of laminar

region

This card repeated ngrid times

This card repeated ngrid times

Embedded mesh specifications. Zero if

no embedded mesh. See version 5.0

manual for more information

91

Setting Up a Steady Run
Miscellaneous input

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

This card repeated ngrid times

This card repeated ngrid times

Spatial differencing

in the i,j,k directions.

ifds = 1 – flux-difference

splitting (Roe’s)

(recommended)

Spatial differencing

parameter for Euler

fluxes in the i,j,k

directions.

rkap0 = 1/3 - upwind-

biased third order

(recommended)

Flux limiter flag in the i,j,k directions.

iflim = 3 was recommended in Version 5.0

iflim = 4 is recommended in Version 6.0

92

Setting Up an Unsteady Run
Input for time advancement

input/output files:

grid.bin

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NLR7301 airfoil, cfl3d type grid

Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0

sref cref bref xmc ymc zmc

1.0 1.0 1.0 0.075 0.0 0.0

dt irest iflagts fmax iunst cfl_tau

.05 1 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

idim jdim kdim

2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam

1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

We will again

focus on these

three lines

93

Setting Up an Unsteady Run
Input for time advancement

Time step parameters:

dt irest iflagts fmax iunst cfl_tau

.05 1 0 1.0 0 5.0

Number of time step advances, and time accuracy:

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 100 -2

Iterative control:

ncyc mglevg nemgl nitfo

4 3 0 0

Non-dimensional time step size

Number of

time steps

Number of sub-iterations

Parameter

controlling time

accuracy and

dual time stepping

94

Setting Up an Unsteady Run
Input for time advancement

Order of time-accuracy, dual time scheme flag (ita)

ita = +1 First order accurate in time; physical time term only

(t-TS) method

ita = +2 Second order accurate in time; physical time term only

(t-TS) method

ita = -1 First order accurate in time; physical time and pseudo

time term (τ-TS) method

ita = -2 Second order accurate in time; physical time and

pseudo time term (τ-TS) method

95

Setting Up an Unsteady Run
Input for time advancement

Note:

� The approximate factorization scheme used to advance the solution in time
introduces first order errors in time. Furthermore, if the diagonal version is
utilized (idiag = 1), additional errors of order ∆τ are introduced. Sub-iterations
can be used to drive these factorization errors to zero. Therefore, if a formally
second-order (in time) solution is desired, sub-iterations must be used.

� The inclusion of a pseudo time term increases (often dramatically) the
maximum allowable time step one can take for a particular problem. However,
sub-iterations (ncyc > 1) are therefore mandatory and multi-grid is highly
recommended.

� Larger time steps imply greater error, therefore second order is recommended.

� You will almost never want to use the t-TS method of time stepping.

96

Setting Up an Unsteady Run
Equations for τ-TS time advancement

)(
))(1(

11

11
m

nmnm

m

QR
tJ

QQ

tJ

Q

J

Q

QCBAI
tJJ

+
∆

−+
−

∆

∆
+

∆

∆′

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆

+
+

∆

′+

−− φφ

τ

φ

δδδ
φ

τ

φ
ζηξ

Sub-iteration

index

Current time

step index

Non-dimensional

time step increment

Pseudo time

step increment

97

Setting Up an Unsteady Run
Equations for t-TS time advancement

)(
))(1(

1

1
m

nmn

m

QR
tJ

QQ

tJ

Q

QCBAI
tJ

+
∆

−+
−

∆

∆

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆

+

− φφ

δδδ
φ

ζηξ

Non-dimensional

time step increment

The pseudo time terms are omitted for t-TS time

advancement:

98

Setting Up an Unsteady Run
Case study: The t-TS and τ-TS schemes, oscillating spoiler

The solution using the t-TS

scheme blows up even at a

very small time step size

From: Bartels, R. E., “Mesh Strategies for Accurate

Computation of Unsteady Spoiler and Aeroelastic

Problems,” Journal of Aircraft, Vol. 37, No. 3, pp.

521-525.

99

Setting Up an Unsteady Run
Speeding up execution time

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

Parameters controlling the form

of the Jacobian matrices used on

the left hand side of the equations

Setting idiag(i), idiag(j), idiag(k) to 1 results in a very efficient trigiagonal

inversion of the left hand side of the equations in the i, j and k directions.

However, be aware of the implications of setting this …..

100

Setting Up an Unsteady Run
Diagonalized versus full Jacobian matrices

)(
))(1(

11

11
m

nmnm

m

QR
tJ

QQ

tJ

Q

J

Q

QCBAI
tJJ

+
∆

−+
−

∆

∆
+

∆

∆′

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆

+
+

∆

′+

−− φφ

τ

φ

δδδ
φ

τ

φ
ζηξ

idiag controls the form of the matrices A, B, C on the

left hand side only. If idiag = 0, the full 5x5 matrix is

used. If idiag = 1, the matrix is diagonalized (i.e.

Very efficient scalar tridiagonal inversion of the left

hand side of this equation).

Since when the solution converges, setting idiag = 1 does not

affect accuracy, … assuming the solution has been adequately converged.

0→∆ mQ

101

The reference length will be determined by the grid. For instance, if

a wing with a 5 inch physical chord length is modeled with a grid that has

a non-dimensional chord length of 5, then

Setting Up an Unsteady Run
Sizing ∆t, number of subiterations

RL
~

inch
inches

LR 1
5

5~
==

Note that in this case speed of sound, must be in inches/second.∞a~

Recall the non-dimensionalization of time:

RL

at
t ~

~~
∞∆

=∆

102

Setting Up an Unsteady Run
Sizing ∆t, number of subiterations

� One criteria for time step sizing is the time scale required to resolve a

phenomenon at some frequency. Another is the number of time steps

for a flow field particle to pass over a chord length. Consider 100 time

steps per cycle or 100 time steps to pass over a chord length as the

absolute minimum, which ever is smaller.

� The time step size and the number of sub-iterations may have to

be set lower/higher respectively by either accuracy or robustness

requirements. Short test runs should be performed to ensure

adequate convergence.

103

Setting Up an Unsteady Run
Sizing ∆t, number of subiterations

� Indicators that the time step size is too large:

� The solution converges very slowly or does not converge at all.

� The solution simply blows up.

� There are large numbers of negative turbulence parameter values

in the file ‘cfl3d.subit_turres’ the number of which is not converging toward

zero at the end of each time step.

� Indicator that the number of sub-iterations is too small:
� The force coefficients have not leveled out to an acceptable

convergence level.

� The residuals have dropped only by an insufficient magnitude. This

can also be a sign that the time step is too large.

� The solution has been converging, but eventually blows up or

starts to gradually diverge.

� Note that these symptoms can also be due to problems with the grid,

boundary conditions or turbulence model, so first ensure these issues

are settled.

104

Setting Up an Unsteady Run
Sub-iterative output – checking convergence

The file ‘cfl3d.subit_res’ contains the following sub-iterative output

subit log(subres) cl cd cy cmy

1 -0.44098E+01 -0.56246E-02 0.29632E+00 0.00000E+00 0.14528E-02

2 -0.45238E+01 0.28737E-01 -0.12683E-01 0.00000E+00 -0.50177E-02

3 -0.49884E+01 0.26860E-01 0.19477E+00 0.00000E+00 -0.47901E-02

4 -0.48541E+01 0.25869E-01 0.80380E-01 0.00000E+00 -0.42342E-02

5 -0.54203E+01 0.26254E-01 0.10470E+00 0.00000E+00 -0.42906E-02

6 -0.53829E+01 0.27267E-01 0.98269E-01 0.00000E+00 -0.44789E-02

7 -0.58126E+01 0.27020E-01 0.10995E+00 0.00000E+00 -0.44088E-02

8 -0.57635E+01 0.26710E-01 0.10469E+00 0.00000E+00 -0.43687E-02

9 -0.60754E+01 0.26657E-01 0.10302E+00 0.00000E+00 -0.43724E-02

10 -0.61285E+01 0.26713E-01 0.10312E+00 0.00000E+00 -0.43877E-02

11 -0.49984E+01 0.26728E-01 0.10431E+00 0.00000E+00 -0.43800E-02

12 -0.56927E+01 0.26415E-01 0.92217E-01 0.00000E+00 -0.42151E-02

13 -0.60126E+01 0.26287E-01 0.83844E-01 0.00000E+00 -0.40628E-02

14 -0.62182E+01 0.26167E-01 0.82317E-01 0.00000E+00 -0.40236E-02

15 -0.65022E+01 0.26110E-01 0.82955E-01 0.00000E+00 -0.40152E-02

16 -0.65972E+01 0.26076E-01 0.83164E-01 0.00000E+00 -0.40164E-02

17 -0.68247E+01 0.26050E-01 0.82959E-01 0.00000E+00 -0.40162E-02

18 -0.68719E+01 0.26052E-01 0.82589E-01 0.00000E+00 -0.40151E-02

19 -0.70916E+01 0.26059E-01 0.82439E-01 0.00000E+00 -0.40141E-02

20 -0.71274E+01 0.26055E-01 0.82404E-01 0.00000E+00 -0.40133E-02

Note that all iterations are output sequentially

ncyc = 10 so there

are 10 lines output

per time step

105

Setting Up an Unsteady Run
Sub-iterative output– checking convergence

Start of new time step sub-

iterations

106

Setting Up an Unsteady Run
Sub-iterative output– checking convergence

Force coefficients should be

converged before start of

next time step

107

Setting Up an Unsteady Run
Sub-iterative turbulence output

subit log(turres1) log(turres2) nneg1 nneg2

1 -0.73658E+01 -0.92553E+01 0 710

2 -0.74563E+01 -0.91092E+01 0 82

3 -0.76424E+01 -0.90767E+01 0 2

4 -0.80379E+01 -0.90899E+01 0 0

5 -0.82466E+01 -0.93470E+01 0 8

6 -0.84600E+01 -0.93751E+01 0 30

7 -0.86186E+01 -0.95757E+01 0 58

8 -0.88672E+01 -0.97150E+01 0 56

9 -0.89497E+01 -0.98376E+01 0 48

10 -0.91579E+01 -0.99516E+01 0 38

.

.

.

.

51 -0.95921E+01 -0.88827E+01 2498 2149

52 -0.95925E+01 -0.90172E+01 2340 2693

53 -0.95509E+01 -0.91643E+01 2124 2603

54 -0.99381E+01 -0.90386E+01 1959 1193

55 -0.98511E+01 -0.91025E+01 2244 1252

56 -0.99244E+01 -0.92361E+01 3529 1393

57 -0.10161E+02 -0.91691E+01 2373 1486

58 -0.10217E+02 -0.91525E+01 1395 1360

59 -0.10304E+02 -0.92210E+01 1266 1460

60 -0.10377E+02 -0.93327E+01 1109 1218

Note that there are a few grid

points that have negative values

of k and ω initially…

…however, large numbers of

negative values of turbulence

model parameters indicate a

potential problem

In this case

ncyc = 10 so there

are 10 turbulence

model iterations

per time step.

Even though the turbulence model appears to be converging well, a large number of

negative values may mean that the time step size is too large for the turbulence model.

Usually reducing time step size will fix this problem.

The file ‘cfl3d.subit_turres’ contains the following sub-iterative output

for Menter’s shear stress transport (SST) k-w turbulence model:

108

Setting Up an Unsteady Run
Multigrid strategies

� Multigrid is a must for unsteady computations. The following input

section establishes four multigrid sub-iterations each on three levels,

the third being the finest:

mseq mgflag iconsf mtt ngam

1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

Correction and residual

smoothing, typically

not used (issc=issr=0)

Mesh sequencing and

multigrid parameters

Multigrid cycling

parameters

Number of iterations for each

level, mitL = 1 recommended

109

Setting Up an Unsteady Run
Multigrid strategies

mseq mgflag iconsf mtt ngam

1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

Note:

� iconsf is a parameter for setting conservative flux treatment for embedded grids. For
most computations it is set to zero.

� mtt is a flag for additional iterations on the up portion of the multigrid. Recommend
setting to zero.

� ngam is the multigrid cycle flag. ngam = 1 sets V-cycle, ngam = 2 sets a W-cycle. The
W-cycle is not recommended for overlapped grids.

� mglevg is the number of grids to use in multigrid cycling. E.g. mglevg = 1 sets the finest
grid level only, mglevg = 2 sets two grid levels, etc…

� nemgl is set to zero when there are no embedded grids.

� nitfo1 is the number of first order iterations. Zero is recommended.

110

Setting Up an Unsteady Run
Multigrid strategies

What if you want to compute an unsteady solution using multigrid on

coarser levels only? Assume that the steady starting solution has been

performed on coarser levels only, as we previously discussed. The

following input will allow you to perform the unsteady run:

mseq mgflag iconsf mtt ngam

2 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo

4 2 0 0

0 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1

1 1 1

Note that a line with 0 sub-iterations

is included for a 3 level multigrid

111

Setting Up an Unsteady Run
Multigrid strategies

….and here is the output:
.

.

reading grid 1 of dimensions (I/J/K) : 2 273 93

creating coarser block 2 of dimensions (I/J/K) : 2 137 47

creating coarser block 3 of dimensions (I/J/K) : 2 69 24

.

.

.

reading restart file for block 2 (grid 1)

reading vist3d data from restart file, block 2

reading field eqn turb quantities from restart file, block 2

.

.

.

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1

level top = 2

level bottom = 1

number of global grid levels = 2

lglobal= 2

The full grid is read, and two

coarser levels created

This level is the finest on

which computations are

performed

Restart data is read for

coarser block 2 only

112

Setting Up an Unsteady Run
Multigrid strategies

.

.

interpolating correction from coarser block 3 to finer block 2 (grid 1)

jdim,kdim,idim (finer grid)= 137 47 2

jj2,kk2,ii2 (coarser grid)= 69 24 2

.

.

writing restart file for block 2

writing vist3d data to restart file, block 2

writing field eqn turb quantities to restart file, block 2

writing 2nd order time data to restart file, block 2

***** ENDING TIME ADVANCEMENT, iseq = 1 *****

writing plot3d file for JDIM X KDIM = 137 x 47 grid

plot3dg file is an xyz file at grid points

plot3dq file is a q file at grid points

plot3d files to be read with /mgrid/blank/2d qualifiers

writing printout file for IDIM X JDIM X KDIM = 2 x 137 x 47 grid

Only the coarser level solution

is written to the restart file

Multigrid performed

on the two coarser levels

only

Plot3D and print out data

written for coarser level

113

User Specified Grid Motion
Overview

CFL3D has the capability to perform computations for prescribed

surface motion in two ways

1. Prescribed, or user specified rigid grid motion. In this mode, the entire grid or

set of grids translates or rotates in a manner prescribed by user input.

2. Prescribed surface motion with deforming mesh. In this mode, the

surface(s) prescribed by the user translate or rotate and the mesh

deforms accordingly.

These types of motion are only available when the code is running in

unsteady mode.

114

User Specified Grid Motion
Rigid grid rotation

As an example consider the wing

shown:

x

z y

Axis of rotation

defined, in this case,

about an axis in the

Y-direction

The entire grid rotates

115

User Specified Rigid Grid Motion
Rigid grid rotation

The following unsteady input file performs

rotation about the axis shown:
input/output files:

wbgrid.cfl

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000

dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 1 2.00000

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 1 for rigid

translation or rotation

116

User Specified Rigid Grid Motion
Rigid grid rotation

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 5 5 5

idim jdim kdim

73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata

1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata

1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 1 49 1 33 0

1 2 2004 1 49 33 313 2

tw/tinf cq

0.00000 0.00000

1 3 0 1 49 313 345 0

1 4 0 49 73 1 173 0

1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata

1 1 1003 1 73 1 345 0

117

User Specified Rigid Grid Motion
Rigid grid rotation

mseq mgflag iconsf mtt ngam

1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo

8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

1-1 blocking data:

nbli

2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2

2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 345 1 49 313 1 1 2

2 1 49 345 1 73 173 1 1 2

patch interface data:

ninter

0

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

movie

0

print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

118

User Specified Rigid Grid Motion
Rigid grid rotation input

control surfaces:

ncs

0

grid ista iend jsta jend ksta kend iwall inorm

moving grid data - rigid translation (forced motion):

ntrans

0

lref

grid itrans rfreq utrans vtrans wtrans

grid dxmax dymax dzmax

moving grid data - rigid rotation (forced motion):

nrotat

1

lref

1.0

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx

1 10. 10. 10.

Patched data:

ninter2

0

Rigid translation input. Note that

ntrans = 0, so that only remaining

header lines are included.

Rigid rotation input

The following lines must

be included when iunst = 1

119

User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing attention on the rigid rotation input:

moving grid data - rigid rotation (forced motion):

nrotat

1

lref

1.0

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx

1 10. 10. 10.

Number of grid blocks to be

rotated

Line repeated nrotat times

Line repeated nrotat times

Reference length for reduced frequency

120

User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing on the last two lines of input on the last slide:
.

.

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx

1 10. 10. 10.

.

.

grid - Grid block to be rotated

irotat - Type of rotation

= 0 - no rotation

= 1 - rotation with constant angular speed

= 2 - sinusoidal variation of angular displacement

= 3 - smooth increase in displacement,

asymptotically reaching a maximum angle

rfreq - reduced frequency when irotat = 2; growth rate to maximum angular displacement when

irotat = 3

121

User Specified Rigid Grid Motion
Rigid grid rotation input

.

.

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx

1 10. 10. 10.

.

.

omegax, omegay, omegaz - x,y,z components of rotational velocity when irotat = 1; maximum angular

displacements about x,y,z-axes when irotat > 1

xorig, yorig, zorig - x,y,z coordinate of origin of the rotational axis

dthymx, dthymx,dthzmx - maximum (absolute) rotational displacement about the x,y,z-axes to be

allowed for this grid (set dthxmx,dthymx, dthzmx = 0 if no restriction is

required)

122

User Specified Rigid Grid Motion
Rigid grid rotation input

Example of sinusoidal rotational motion irotat = 2. The following terms are defined:

The rotational displacement (radians) within the code is governed by

Based on these equations of sinusoidal motion,

where N is the desired number of time steps per cycle. Consult Chapter 4 of the

Version 5.0 User’s Manual pp. 55-62 for details on all types of motion.

.deg,
~

,.deg,
~

,.deg,
~

,

max,max,max, zyx

refr

omegazomegayomegax

Llrefkrfreq

θθθ ===

==

)2sin(
180

~

)2sin(
180

~
,)2sin(

180

~

max,

max,max,

ref

rzz

ref

ryy

ref

rxx

L

t
k

L

t
k

L

t
k

π
π

θθ

π
π

θθπ
π

θθ

=

==

Nk

L
t

r

ref
=∆

123

User Specified Rigid Grid Motion
Rigid grid rotation

The following diagnostic information on the rotation of

the surface(s) will be printed in ‘cfl3d.out’:
.

.

.

rotating block 1 to new position

creating coarser block 2 of dimensions (I/J/K) : 37 173 37

restricting grid speeds from finer block 1 to coarser block 2

creating coarser block 3 of dimensions (I/J/K) : 19 87 19

restricting grid speeds from finer block 2 to coarser block 3

.

.

.

writing restart file for block 1

writing vist3d data to restart file, block 1

writing field eqn turb quantities to restart file, block 1

writing 2nd order time data to restart file, block 1

writing dynamic mesh data to restart file, block 1

.

.

.

Note that new dynamic mesh data

has been written to the restart file

Grid speed information computed

for moving grid

124

User Specified Rigid Grid Motion
Rigid grid translation input

.

.

control surfaces:

ncs

0

grid ista iend jsta jend ksta kend iwall inorm

moving grid data - rigid translation (forced motion):

ntrans

1

lref

1.0

grid itrans rfreq utrans vtrans wtrans

1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax

1 10. 10. 10.

moving grid data - rigid rotation (forced motion):

nrotat

0

lref

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

grid dthxmx dthymx dthzmx

Patched data:

ninter2

0

Rigid rotation input. Note that

nrotat = 0, so that only remaining

header lines are included.

Rigid translation input

125

User Specified Rigid Grid Motion
Rigid grid translation input

Focusing attention on the rigid translation input:

moving grid data - rigid translation (forced motion):

ntrans

1

lref

1.0

grid itrans rfreq utrans vtrans wtrans

1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax

1 10. 10. 10.

Number of grid blocks to be

translated

Line repeated ntrans times

Line repeated ntrans times

Reference length for reduced frequency

126

User Specified Rigid Grid Motion
Rigid grid translation input

Focusing on the last two lines of input from the last slide:
.

.

grid itrans rfreq utrans vtrans wtrans

1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax

1 10. 10. 10.

.

grid - Grid block to be rotated

itrans - Type of translation

= 0 - no translation

= 1 - translation with constant speed

= 2 - sinusoidal variation of displacement

= 3 - smooth increase in displacement,

asymptotically reaching a maximum displacement

rfreq - reduced frequency when itrans = 2; growth rate to maximum displacement when itrans = 3

utrans, vtrans, wtrans - x,y,z components of translation velocity when itrans = 1; maximum

displacements in the x,y,z directions when itrans > 1

dymax, dymax,dzmax - maximum (absolute) translation displacement in the x,y,z directions to be

allowed for this grid.

127

Surface Motion - Deforming Mesh
Overview

� CFL3D can perform several types of user specified surface motion
by deforming the mesh, i.e. surface rotation and/or translation of all
or partial segments of the solid surfaces as well as modal motion of
surfaces.

� Aeroelastic, user defined deforming mesh surface and user defined
rigid grid motion can be performed in any combination.

� There are two methods of deforming the mesh.
– Exponential decay combined with Trans-Finite Interpolation (TFI) of

interior mesh points.

– Finite macro-element deformation combined with TFI.

� Note that deforming surface motion can only be performed with the
code running in unsteady mode.

128

Surface Motion - Deforming Mesh
Overview

� In the first mesh movement option (exponential decay method) deformation is

performed in two steps.

– The first step is exponential decay of control points away from the moving surface. The rate

of the exponential decay is controlled by user input.

– The second step is a TFI of mesh points interior to the control points.

� Advantage of the exponential decay method is that it is computationally efficient

� In the second mesh movement option (finite macro-element method) deformation is

also performed in two steps.

– The first step is a finite element solution of macro-element points. The resulting solution

transmits surface motion to the element node points. The element stiffness varies with

distance from the surface. User specified input controls the rate at which the element

stiffness decays away from surfaces.

– The second step is a TFI of mesh points interior to the element node (or control) points.

– See Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block

Navier-Stokes Code,” NASA/TM-2005-213789, July 2005.

� Advantage of the finite macro-element method is that it maintains mesh quality, but is

significantly more computationally time consuming.

129

Surface Motion - Deforming Mesh
Deforming mesh terminology

Control point, also called

node point - member of a

sub-grid set of mesh points

An exterior

face of the

flow field

block
Deforming

grid surface, e.g.

wing surface

Sub-grid surface

point

CFD

mesh

points

130

Surface Motion - Deforming Mesh
Deforming mesh using exponential decay method

)/(

],1min[

)(

2max2

11

αβ −∆∆=

=

−=−

−

++

rrA

and

eD

where

rrDrr

sc

A

sc

n

s

n

ssc

n

c

n

c

r

rrrr

Nearest

surface sub-

grid point, s

Control

point, c

∆rsc

The movement of surface points is transmitted into the flow field sub-grid

through an exponential decay function Dsc . The rate of decay is controlled

by the parameters β2 and α2.

131

Surface Motion - Deforming Mesh
Deforming mesh with exponential decay method

Note several potential draw backs to this approach:

� Too rapid a rate of decay (β2 too large, α2 too small) results in the
possibility of the surface points moving through nearby control
points.

� Too low a rate of decay (β2 too small, α2 too large) results in the
possibility of surface deformation being transmitted too far into the
flow field with possible penetration of opposing surfaces.

� Typical values for decay parameters are:

β2 = 1 - 10 , α2 = 0.005 – 0.05

132

Surface Motion - Deforming Mesh
Trans-Finite Interpolation (TFI) of interior points

Mesh points interior

to the sub-block

face are inter-

polated using

deflection of four

corner control

points

The final step is a volume TFI of

interior grid points based on locations

of mesh points on the sub-block faces

133

Surface Motion - Deforming Mesh
Coordinate systems and terminology for finite macro-element method

Computational domain Physical domain

Nodes using constant skip values Arbitrary node placement

134

Surface Motion - Deforming Mesh
Finite macro-element method

mmm C εσ
rr

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

m

m

m

m

m

m

mxz

yz

xy

zz

yy

xx

m

mxz

yz

xy

zz

yy

xx

m

G

G

G

E

E

E

C

00000

00000

00000

00000

00000

00000

,,

ε

ε

ε

ε

ε

ε

ε

σ

σ

σ

σ

σ

σ

σ
rr

where

The equations of elasticity are solved using Hooke’s law for element m

mmmm fGGfEE 00 , ==
)/exp(1

1

max1 rr
f

m

m
∆∆−−

=
β

2

,

2

,

2

,)()()(mcsmcsmcsm zyxr ∆+∆+∆=∆

∆rm is computed as

The user controls the rate of decay of material properties by the parameter β1.

Typical values of β1 are in the range of 1 – 2.

135

Surface Motion - Deforming Mesh
Input for deforming mesh

.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

4 -1 2.0 1.1 10.0 0.01 0

grid iskip jskip kskip

1 4 4 2

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

nskip - number of blocks for which skip value data is input. If nskip = 0 the code
computes default skip values (isktyp = -1,1) or control point index values

(isktyp = -2,2).

isktyp - Parameter defining the mesh deformation approach

= - 2

= - 1

= 1

= 2

exponential decay method

finite macro-element method

136

Surface Motion - Deforming Mesh
Input for deforming mesh

.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

1 -1 2.0 1.0 10.0 0.01 0

grid iskip jskip kskip

1 4 4 2

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

beta1 - Parameter controlling macro-element stiffness decay (typically 1.0-2.0)

alpha1 - Relaxation parameter for Gauss-Seidel solver (typically 0.8-1.2).

beta2 - Decay parameter for the exponential decay method (typically 1 - 10).

alpha2 - Decay parameter for the exponential decay method (typically 0.005-0.05).

nsprgit - Number of spring analogy smoothing steps performed with the exponential

decay method. This step applies nsprgit spring analogy steps to the control
points after application of the exponential decay step (typically 0-2).

137

Surface Motion - Deforming Mesh
Input for deforming mesh

� There are 4 options for the construction of control points.

– Option 1: Code generated minimum number of control points.

– Option 2: Code generated default skip values.

– Option 3: User input of i,j,k skip values for each block.

– Option 4: User defined input of control point i,j,k indices for each block.

� These options depend on the value of nskip and the value of isktyp

– Option 1: isktyp = -2, 2 and nskip = 0

– Option 2: isktyp = -1, 1 and nskip = 0

– Option 3: isktyp = -1, 1 and nskip = ngrid (Note: ngrid = number of grid blocks)

– Option 4: isktyp = -2, 2 and nskip = ngrid

� Option 1 creates the minimum number of control points (at non-constant intervals) by

placing control point points only at each boundary segment extremity. This is the

preferred method.

� Options 2 creates skip values that result in control points at constant intervals through

out each of the grids, with control points at each boundary segment extremity.

Sometimes this is more robust than option 1, but can create many more control

points.

preferred

method

138

Surface Motion - Deforming Mesh
Option 1 – Code generated minimum number of control points

It is possible to have the code calculate the minimum number of control points. This is

the preferred method. The following lines of input accomplish that:
.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 2.0 1.1 10.0 0.01 0

grid iskip jskip kskip

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted. The code

calculates the minimum number of control points possible consistent with placing control

points at each boundary segment extremity. The values it calculates will be found in the

‘cfl3d.out’ section that reflects input. Note that the value of isktyp must be either 2 or -2.

In general control points will not be at constant intervals.

nskip = 0 and isktyp = -2

139

Surface Motion - Deforming Mesh
Option 2 – Code generated skip values

It is possible to have the code calculate default skip values. The following lines of input

accomplish that:
.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -1 2.0 1.1 10.0 0.01 0

grid iskip jskip kskip

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted. The code

calculates the largest values of iskip, jskip, kskip possible. The values it calculates will be

found in the ‘cfl3d.out’ section that reflects input. Note that the value of isktyp must be

either 1 or -1.

nskip = 0 and isktyp = -1

140

Surface Motion - Deforming Mesh
Option 3 – User i,j,k skip input

.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

4 -1 2.0 1.1 10.0 0.01 0

grid iskip jskip kskip

1 4 4 2

2 4 8 2

3 4 8 2

4 4 4 2

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

grid - The block number for which skip values are input

iskip - Skip value for control points in the i-direction

jskip - Skip value for control points in the j-direction

kskip - Skip value for control points in the k-direction

nskip lines are required

Note: It is required that
nskip = ngrid

141

k

j i

Surface Motion - Deforming Mesh
Permissible skip values

For this grid:

idim = 9, jdim = 9, kdim = 5

and

iskip = 4, jskip = 4, kskip = 2

iskip, jskip, kskip values determine

the i, j, k skip intervals for creating

the sub-grid

Skip values must evenly divide into one minus the

dimension of the grid. jskip must divide evenly into jdim-1.

iskip must divide evenly into idim-1 , etc…

With idim = 9, permissible values of iskip are 2, 4 and 8.

With jdim = 9, permissible values of jskip are 2, 4 and 8.

With kdim = 5, permissible values of kskip are 2 and 4.

142

Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

.

.

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

2 -2 2.0 1.1 10.0 0.01 0

Control point input section

GRID NIND NJND NKND

1 3 5 3

************************** I NODE INDICES ***

1 73 81

************************** J NODE INDICES ***

1 33 173 313 345

************************** K NODE INDICES **

1 25 73

GRID NIND NJND NKND

2 3 5 3

************************** I NODE INDICES ***

1 73 81

************************** J NODE INDICES ***

1 33 173 313 345

************************** K NODE INDICES **

1 25 73

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

nskip input sets

are required

nskip = ngrid

isktyp must equal -2 or 2

143

Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

� This option is used when there are problem areas in the surface motion that

require customized control point placement. e.g. significant surface motion

restricted to a small portion of the entire surface area or if the finite macro-element

method is used and added control points are needed to define affine element

shapes.

� Note that a control point must be placed at the extremities of all boundary condition

segments, 1-1 blocking segments and all block corners.

� The code will do a check at 1-1 blocking segments to see if the control points you

have selected result in continuity in control placement between 1-1 blocking

boundaries. It will add points as necessary to maintain control point continuity. This

is a very powerful feature that can be very useful when adding control points.

� The code will not tell you if a b.c. segment extremity or block corner does not have a

control point assigned to it. It will simply cause the grid motion to be messed up and

produce negative volumes!

144

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

x

z y

Trailing edge control

surface

As an example consider the wing

shown undergoing control surface

rotation:

145

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

The following unsteady input file performs the

control surface rotation about the hinge point:
input/output files:

wbgrid.cfl

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000

dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 2 2.00000

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 2 for

deforming mesh

146

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 5 5 5

idim jdim kdim

81 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 4 4 4

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1005 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata

1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 1 81 1 73 0

jdim: grid segment bctype ista end ksta kend ndata

1 1 1003 1 81 1 73 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 1 73 1 33 0

1 2 2004 1 73 33 313 2

tw/tinf cq

0.00000 0.00000

1 3 0 1 73 313 345 0

1 4 0 73 81 1 173 0

1 5 0 73 81 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata

1 1 1003 1 81 1 345 0

147

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

mseq mgflag iconsf mtt ngam

1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo

8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

1-1 blocking data:

nbli

2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 73 33 1 1 2

2 1 73 1 1 81 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 345 1 73 313 1 1 2

2 1 73 345 1 81 173 1 1 2

patch interface data:

ninter

0

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 73 1 33 313 1 1 1 1

movie

0

print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 73 1 33 313 1 1 1 1

148

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

Control Surfaces:

ncs

0

Grid ista iend jsta jend ksta kend iwall inorm

Moving grid data – deforming surface (forced motion):

ndefrm

2

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 29 53 33 72 1 1

1 29 53 274 313 1 1

Moving grid data – aeroelastic surface (aeroelastic motion):

naesrf

0

Iaesrf ngrid grefl uinf qinf nmodes iskyhook

Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0

Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0

Control point index input

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

The following lines must

be included when iunst = 2

User specified surface

motion input

Aeroelasticity input. Note

that only header cards

are input when naesrf = 0

Mesh deformation

input

149

.

.

Moving grid data – deforming surface (forced motion):

ndefrm

2

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 29 53 33 72 1 1

1 29 53 274 313 1 1

.

.

Grid - grid block containing the moving surface

idefrm - type of surface motion

= 1 - translation

= 2 - rotation

rfreq - reduced frequency of the surface motion

u/omegax, v/omegay, w/omegaz - x,y,z-components of surface translational velocity if idefrm = 1

- x,y,z-components of surface rotational velocity if idefrm = 2

xorig, yorig, zorig - x,y,z coordinates of the origin of the rotation axis (note: value
must be input even when idefrm = 1)

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

ndefrm lines required

ndefrm lines required

Note that ndefrm = 2 because the trailing edge control

surface is defined by an upper wing surface segment

and a lower wing surface segment

150

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

.

.

Moving grid data – deforming surface (forced motion):

ndefrm

2

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 29 53 33 72 1 1

1 29 53 274 313 1 1

.

.

Starting and ending

i-indices of moving

surfaces

Starting and ending

j-indices of moving

surfaces

Starting and ending

k-indices of moving

surfaces

Note that the two surface definitions actually comprise a single control

device (upper and lower surfaces of the trailing edge control device).

1st grid point aft of

Xorig = 0.75

151

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

Short cut: If all the solid surfaces are to be rotated or translated in an identical

manner, an input shortcut could have been applied:
.

.

Moving grid data – deforming surface (forced motion):

Ndefrm

-1

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 0 0 0 0 0 0

.

.

1 line only

1 line only

Setting ndefrm = -1 applies the input values to all surfaces. Input

values of grid, and icsi, icsf, jcsi, jcsf, kcsi, kcsf are placeholders.

152

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0

Control point index input

Note that α2 * ∆ rmax is the distance to which

surface motion is transmitted unabated into

the flow field

β2 - rate at which surface motion decays

away from a moving surface (outside

of inner region controlled by α2)

Control point index input using

Exponential Decay Method (isktyp < 0)

nskip = 0 forces automatic generation of the minimum number of control points

(with isktyp = -2,2) at all segment and block extremities, while maintaining continuity

at all blocking boundaries

153

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 2.0 1.1 1.0 0.005 0

Control point index input

Moving grid data – multi-motion coupling

ncoupl

0

Slave master xorig yorig zorig

� This input option automatically creates the following control points: (This format is how it

would look if you were to input these control points by hand (i.e. using Option 4))

� Note that i node indices, j node indices, k node indices span the entire

block. (i.e. idim = 81, jdim = 345, kdim = 73)

� Boundary segments have a control point. The trailing edge at j = 33 and 313

has control points assigned. The wing tip at i = 73 has a control point assigned.

� Other control points have been assigned at discontinuities in the surface movement.

(e.g. at i = 28, 29 and 53, 54 and j = 72, 73 and 273, 274) See the next slide.

GRID NIND NJND NKND

1 7 8 2

************************** I NODE INDICES ***

1 28 29 53 54 73 81

************************** J NODE INDICES ***

1 33 72 73 273 274 313 345

************************** K NODE INDICES **

1 73

Control point option 1 is used here

154

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with exponential decay method

Upper surface control point locations

GRID NIND NJND NKND

1 7 8 3

************************** I NODE INDICES ***

1 28 29 53 54 73 81

************************** J NODE INDICES ***

1 33 72 73 273 274 313 345

************************** K NODE INDICES **

1 25 73

Control points selected

Center of rotation

Discontinuous

grid motion

Control surface definition

Control points

located at all

grid motion

discontinuities

155

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

Consider the 2D three element airfoil with rotation and translation of the

trailing edge flap.

Final mesh, flap 60 degrees

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”

NASA/TM-2005-213789, July 2005.

Initial mesh, flap 30 degrees

156

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

.

.

MOVING GRID DATA - DEFORMING SURFACE (FORCED MOTION):

NDEFRM

1

LREF

1.0

GRID IDEFRM RFREQ U/OMEGAX V/OMEGAY W/OMEGAZ XORIG YORIG ZORIG

3 2 0.05 0.00 25.00 0.00 0.80 0.00 0.00

GRID ICSI ICSF JCSI JCSF KCSI KCSF

3 1 2 49 217 1 1

MOVING GRID DATA - AEROELASTIC SURFACE (AEROELASTIC MOTION):

NAESRF

0

IAESRF NGRID GREFL UINF QINF NMODES ISKYHOK

FREQ GMASS DAMP X0(2N-1) X0(2N) GF0(2N)

MODDFL AMP FREQ T0

GRID IAEI IAEF JAEI JAEF KAEI KAEF

MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT

NSKIP ISKTYP BETA1 ALPHA1 BETA2 ALPHA2 ISPRNIT

4 2 1.000 1.000 20.000 0.005 0

CONTROL POINT INDEX INPUT

GRID NIND NJND NKND

1 2 33 2

*** I NODE INDICES **

1 2

Number of mesh

blocks

This section defines

the rotation of the

trailing edge flap

Finite Macro-Element

Method with user input

of control point indices

157

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

*** J NODE INDICES **

1 10 34 49 75 101 113 137 161 201

237 273 299 317 333 349 380 395 410 433

445 473 509 545 585 609 633 645 671 697

712 736 745

** K NODE INDICES **

1 57

GRID NIND NJND NKND

2 2 27 2

** I NODE INDICES ***

1 2

** J NODE INDICES ***

1 10 34 49 75 101 113 137 145 157

185 225 261 281 299 325 361 397 437 461

485 497 523 549 564 588 597

** K NODE INDICES ***

1 89

GRID NIND NJND NKND

3 2 16 2

** I NODE INDICES ***

1 2

** J NODE INDICES ***

1 10 34 49 75 101 116 121 129 153

165 191 217 232 256 265

** K NODE INDICES ***

1 65

GRID NIND NJND NKND

4 2 32 5

Up to 10 per line,

500 total allowed

158

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

*** I NODE INDICES ***

1 2

*** J NODE INDICES ***

1 10 34 49 75 101 116 121 133 161

201 237 257 273 289 320 335 350 373 385

413 449 485 525 549 573 585 611 637 652

676 685

*** K NODE INDICES ***

1 10 17 24 33

MOVING GRID DATA - MULTI-MOTION COUPLING

NCOUPL

0

SLAVE MASTER XORIG YORIG ZORIG

159

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”

NASA/TM-2005-213789, July 2005.

Initial macro-elements Final macro-elements

Initial mesh Final mesh

160

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with finite macro-element method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”

NASA/TM-2005-213789, July 2005.

Flap cove detail, undeflected Flap cove detail, deflected

161

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation – 1-1 block point checking

Control points without

1-1 point blocking check

Control points with

1-1 point blocking check

Control point orientation after

flap is deflected

Block

boundaries

separate due

to high strain

rates in cove

region.

162

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using exponential decay method

Without spring analogy smoothing steps

With 5 spring analogy smoothing steps

163

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using exponential decay method

.

.

MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT

NSKIP ISKTYP BETA1 ALPHA1 BETA2 ALPHA2 ISPRNIT

0 -2 1.000 1.100 2.000 0.05 2

CONTROL POINT INDEX INPUT

MOVING GRID DATA - MULTI-MOTION COUPLING

NCOUPL

0

SLAVE MASTER XORIG YORIG ZORIG

An alternate approach is to allow automatic creation of the minimum number

of control points. (Option 1) The input below accomplishes that by setting nskip = 0.

Note that the exponential decay method is used (isktyp < 0).

These parameters define the

control point motion with the

Exponential Decay Method

164

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using exponential decay method

.

.

moving grid data - data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprngit

4 -2 1.000000 1.100000 2.000000 0.050000 2

ng nipt njpt nkpt

1 2 11 2

control point i-indices for grid levels 1 2 3

1 1 1

2 1 1

control point j-indices for grid levels 1 2 3

1 1 1

49 25 13

50 25 13

137 69 35

273 137 69

317 159 80

473 237 119

609 305 153

696 348 174

697 349 175

745 373 187

control point k-indices for grid levels 1 2 3

1 1 1

57 29 15

The control points that are code selected appear in the ‘cfl3d.out’ file:

ng nipt njpt nkpt

2 2 11 2

control point i-indices for grid levels 4 5 6

1 1 1

2 1 1

control point j-indices for grid levels 4 5 6

1 1 1

49 25 13

50 25 13

137 69 35

145 73 37

281 141 71

325 163 82

461 231 116

548 274 137

549 275 138

597 299 150

control point k-indices for grid levels 4 5 6

1 1 1

89 45 23

.

.

.

The resulting mesh movement is shown in the next slide.

Control points

at finest grid

level

165

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using exponential decay method

Initial macro-elements Final macro-elements

Initial mesh Final mesh

166

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

� The mesh movement shown in the previous slides is robust (no negative volumes) through the

entire range of motion shown, however mesh quality aft of the flap is somewhat degraded after

deflection.

� If β2 is set to 1.0 or if the finite macro-element method is used with the code selected minimum

number of control points (as was shown), negative volumes are the result.

� There is a simple way to fix this problem, demonstrated next. In the process an option

for running the code will be demonstrated in which only the mesh motion and mesh calculations

(e.g. metric and volume calculations) are performed in the code. This option greatly speeds up the

code when the mesh motion is being debugged.

� The ‘Mesh only’ run option is invoked by using the keyword input, meshdef 1 . Keyword

input will be discussed in detail later in the course. Note spelling and capitalization are important.

� The input to accomplish this is as follows:
.

.

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

>

meshdef 1

negvol 1

<

3 Element Airfoil case

Mach alpha beta ReUe Tinf,dR ialph ihstry

.

.

Keyword input

167

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

� Setting the keyword meshdef to 1 also causes the control points to be output in a

Tecplot file in point wise data format. Other auxiliary data are also printed out in other

files.

� If one processor is used all block control points are output into the file Tecplot data

file ‘fort.4000’. Data included in this file are x,y,z locations of control points, x,y,z

deflections per time step, node number, and node number of the nearest surface point.

� If multiple processors are used, the control points from the blocks processed on each

processor are put in the successive files ‘fort.4001, fort.4002, …’

� Note that if the option movie = inc is used, the control points at every inc time steps

will be output. If movie = 0, only control points at the final time step will be output.

� Once the control points are plotted it is possible to better visualize where added control

points need to be placed.

� This is the option that was used to create the plots of control points shown in this

presentation.

168

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

� Returning to the flap rotation example above, say we want to run it using control point

option 1 (nskip = 0, isktyp = -2,2) but now using the finite macro-element method

(isktyp = 2)

� The input parameters used are: β1 = 1.0, α1 = 0.9.

� Keywords ‘meshdef 1’ and ‘negvol 1’ are set. When the keyword ‘negvol 1’ is used,

the code continues executing and prints a diagnostic message in ‘cfl3d.out’ indicating

where the negative volume occurred.

� The code encounters negative volumes, with the following messages appearing

in the ‘cfl3d.out’ file:
.

.

WARNING ... negative volume at i,j,k= 1 514 2 block 1 not stopping!

WARNING ... negative volume at i,j,k= 1 515 2 block 1 not stopping!

.

.

� The majority of negative volumes appear to be in block 1. By plotting the control point

output it is clear that elements around the leading edge slat are not well defined, and

probably causing poorly defined (singular) macro-elements in that region.

169

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

� The first step in solving this problem is

to observe that the file ‘meshdef.inp’

has been created.

� This file contains the control points that

were created by the code.

� Contents of this file can be pasted into

the input and customized as needed.

� Since negative volumes occurred in

block 1 we will add to the control

points in that block.

GRID NIND NJND NKND

1 2 11 2

******************************* I NODE INDICES ************************************

1 2

******************************* J NODE INDICES ***********************************

1 49 50 137 273 317 473 609 696 697

745

******************************* K NODE INDICES ***********************************

1 57

GRID NIND NJND NKND

2 2 11 2

******************************* I NODE INDICES ************************************

1 2

******************************* J NODE INDICES ************************************

1 49 50 137 145 281 325 461 548 549

597

******************************* K NODE INDICES ***********************************

1 89

GRID NIND NJND NKND

3 2 8 2

******************************* I NODE INDICES ***********************************

1 2

******************************* J NODE INDICES **********************************

1 49 50 121 129 216 217 265

******************************* K NODE INDICES *********** ***********************

1 65

GRID NIND NJND NKND

4 2 10 2

******************************* I NODE INDICES ***********************************

1 2

******************************* J NODE INDICES **********************************

1 49 50 121 257 413 549 636 637 685

******************************* K NODE INDICES **********************************

1 33

Contents of ‘meshdef.inp’:

170

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

� These additional points have been

chosen simply to fill in gaps in the

control point distribution.

� This customized input is pasted into

the input file, and nskip set to 4.

GRID NIND NJND NKND

1 2 18 2

******************************* I NODE INDICES ************************************

1 2

******************************* J NODE INDICES ***********************************

1 49 50 103 137 173 223 273 297 317

373 423 473 543 609 696 697 745

******************************* K NODE INDICES ***********************************

1 57

GRID NIND NJND NKND

2 2 11 2

******************************* I NODE INDICES ************************************

1 2

******************************* J NODE INDICES ************************************

1 49 50 137 145 281 325 461 548 549

597

******************************* K NODE INDICES ***********************************

1 89

GRID NIND NJND NKND

3 2 12 2

******************************* I NODE INDICES ***********************************

1 2

******************************* J NODE INDICES **********************************

1 49 50 73 101 121 129 137 157 216

217 265

******************************* K NODE INDICES *********** ***********************

1 65

GRID NIND NJND NKND

4 2 10 4

******************************* I NODE INDICES ***********************************

1 2

******************************* J NODE INDICES **********************************

1 49 50 121 257 413 549 636 637 685

******************************* K NODE INDICES **********************************

1 10 17 33

Contents of ‘meshdef.inp’ customized:

Points added that remove

the negative volumes in

block 1

Points added to better define

the flap region

171

GRID NIND NJND NKND

1 2 26 2

********************************** I NODE INDICES ************************************

1 2

********************************** J NODE INDICES ************************************

1 49 50 103 109 129 137 173 203 223

273 297 317 373 423 473 523 543 573 609

617 637 643 696 697 745

********************************** K NODE INDICES ************************************

1 57

GRID NIND NJND NKND

.

.

.

.

GRID NIND NJND NKND

3 2 13 2

********************************** I NODE INDICES *************************************

1 2

********************************** J NODE INDICES *************************************

1 49 50 73 101 121 129 137 157 163

216 217 265

********************************** K NODE INDICES ************************************

1 65

GRID NIND NJND NKND

4 2 20 4

********************************** I NODE INDICES ************************************

1 2

********************************** J NODE INDICES ************************************

1 49 50 73 101 121 257 313 363 413

463 483 513 549 557 577 583 636 637 685

********************************** K NODE INDICES ************************************

1 10 17 33

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

This is the data output into the new

file ‘meshdef.inp’ after the code is

rerun. This file is printed out because

new points have been added by the code

in addition to points added by the user.

Control points added

by user

Control points added

by the code to maintain

1-1 blocking interface

continuity

Control point indices the code actually uses:

172

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

Control point lines

added by the user

Control point indices the code actually uses:

With these new control points, the code runs robustly with no negative

volumes for both the exponential decay and finite macro-element methods

for a range of parameter values. Note that the region just aft of the flap

retains grid quality better using the finite macro-element method than did the original.

Control point lines added

by the code to maintain

continuity at 1-1 blocking

interfaces

173

Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with finite macro-element method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”

NASA/TM-2005-213789, July 2005.

Initial macro-element orientation Finite macro-element orientation

after pitch up

Trailing edge detail of macro-element

Orientation – note orthogonality

Trailing edge detail of mesh

orientation

174

Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with exponential decay method

Initial control point orientation
Control point orientation

after pitch up, β2 = 2, α2 = .005

175

Surface Motion - Deforming Mesh
Example 4 : Internal flow through a flexible tube using the finite macro-element method

y

x

z

x

y

z

Top
view:

Bottom
view:

y

x

y

z

y

x

X-Y plane view of

deformed control points

X-Y plane view of

deformed mesh points

Y-Z plane view of

deformed control points

Control points for motion

of internal flow field mesh

Deformed flexible

tube surface

176

Surface Motion - Deforming Mesh
Example 5 : Transport wing bending using the Exponential Decay Method

Deformed mesh

Initial and deformed

geometry

This example used

mesh movement Option 2

(isktyp = -1, nskip = 0)

177

Surface Motion - Deforming Mesh
Geometric conservation law

In general the equations computed are

)(
1

QR
t

Q

J
=

∂

∂

where

Q - solution vector

J - Jacobian of the grid transformation

R(Q) - right hand side composed of spatial flux terms

For steady and unsteady computations:

⎥
⎦

⎤
⎢
⎣

⎡
∂

−∂
+

∂

−∂
+

∂

−∂
−=

ζηξ

)()()(
)(vvv HHGGFF

QR

where

F,G,H - inviscid fluxes

Fv,Gv,Hv - viscous fluxes

178

Surface Motion - Deforming Mesh
Geometric conservation law

For unsteady deforming mesh computations there is an additional term:

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂

∂
+⎟
⎠
⎞

⎜
⎝
⎛

∂

∂
+⎟
⎠
⎞

⎜
⎝
⎛

∂

∂
+⎟
⎠
⎞

⎜
⎝
⎛

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡
∂

−∂
+

∂

−∂
+

∂

−∂
−=

JJJJt
Q

HHGGFF
QR

ttt

vvv

ζ

ζ

η

η

ξ

ξ

ζηξ

1

)()()(
)(

Geometric Conservation Law (GCL), due to grid volume

change

The implication of this is that a computation using rigid grid motion may

perform somewhat differently than a deforming grid solution with the same

time step size, number of sub-iterations and CFL number. However, the

two fully converged solutions will be the same. See Bartels, R. E., “Mesh and

Solution Strategies and the Accurate Computation of Unsteady Spoiler and

Aeroelastic Problems,” Journal of Aircraft, Vol. 37, No. 3, May 2000, pp. 521-529.

179

Surface Motion - Deforming Mesh
Multiple types of coupled motion

Consider the example of wing plunge combined with control surface

rotation. Since the control surface rotation is about a point fixed on the

larger moving wing surface, coupling of the two motions will be

required. There are two ways to perform this coupled motion:

1. Coupling control surface rotation and wing translation combined using
mesh deformation.

2. Coupling control surface rotation using mesh deformation with rigid
grid translation.

Although these two approaches result in identical wing surface motion,

off body grid motion will be much different.

180

Surface Motion - Deforming Mesh
Example: Control surface rotation plus wing plunging

x

z y

Trailing edge control

surface

As an example consider the wing

shown having both wing plunge plus

control surface rotation:

181

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

The following unsteady input file performs the wing plunging with

control surface rotation using deforming mesh:

input/output files:

wbgrid.cfl

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000

dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 2 2.00000

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 2 since

deforming mesh is used

182

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 5 5 5

idim jdim kdim

73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata

1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata

1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 1 49 1 33 0

1 2 2004 1 49 33 313 2

tw/tinf cq

0.00000 0.00000

1 3 0 1 49 313 345 0

1 4 0 49 73 1 173 0

1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata

1 1 1003 1 73 1 345 0

183

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

mseq mgflag iconsf mtt ngam

1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo

8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

1-1 blocking data:

nbli

2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2

2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 345 1 49 313 1 1 2

2 1 49 345 1 73 173 1 1 2

patch interface data:

ninter

0

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

movie

0

print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

184

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

Control Surfaces:

ncs

0

Grid ista iend jsta jend ksta kend iwall inorm

Moving grid data – deforming surface (forced motion):

ndefrm

3

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 1 0.10 0.00 0.00 0.20 0.00 0.00 0.00

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 1 49 33 313 1 1

1 25 37 33 65 1 1

1 25 37 281 313 1 1

Moving grid data – aeroelastic surface (aeroelastic motion):

naesrf

0

Iaesrf ngrid grefl uinf qinf nmodes iskyhook

Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0

Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0

Control point index input

Moving grid data – multi-motion coupling

ncoupl

1

Slave master xorig yorig zorig

1 1 0.75 0.00 0.00

User specified surface

motion data now

includes both trans-

lation and rotation

Multi-motion coupling

data now included

185

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

Focusing on the user specified motion input:
.

.

Moving grid data – deforming surface (forced motion):

ndefrm

3

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 1 0.10 0.00 0.00 0.20 0.00 0.00 0.00

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 1 49 33 313 1 1

1 25 37 33 65 1 1

1 25 37 281 313 1 1

.

.

The new lines prescribe

the motion of the wing

surface

Note that idefrm = 1, which corresponds to translational motion.

186

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

The following unsteady input file performs the wing plunging using

rigid grid translation and control surface rotation using deforming mesh:

input/output files:

wbgrid.cfl

plot3dg.bin

plot3dq.bin

cfl3d.out

cfl3d.res

cfl3d.turres

cfl3d.blomax

cfl3d.out15

cfl3d.prout

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000

dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 3 2.00000

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 3, for

deforming mesh plus

rigid grid motion

187

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 5 5 5

idim jdim kdim

73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi

0 0 0 0 0 0

inewg igridc is js ks ie je ke

0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)

1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)

1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp

1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata

1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata

1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata

1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata

1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata

1 1 0 1 49 1 33 0

1 2 2004 1 49 33 313 2

tw/tinf cq

0.00000 0.00000

1 3 0 1 49 313 345 0

1 4 0 49 73 1 173 0

1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata

1 1 1003 1 73 1 345 0

188

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

mseq mgflag iconsf mtt ngam

1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo

8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...

1 1 1

1-1 blocking data:

nbli

2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2

2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 345 1 49 313 1 1 2

2 1 49 345 1 73 173 1 1 2

patch interface data:

ninter

0

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

movie

0

print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

189

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

Control Surfaces:

ncs

0

Grid ista iend jsta jend ksta kend iwall inorm

moving grid data - rigid translation (forced motion):

ntrans

1

lref

1.0

grid itrans rfreq utrans vtrans wtrans

1 2 0.10 0.00 0.00 5.00

grid dxmax dymax dzmax

1 10. 10. 10.

moving grid data - rigid rotation (forced motion):

nrotat

0

lref

grid irotat rfreq omegax omegay omegaz xorig yorig zorig

grid dthxmx dthymx dthzmx

Moving grid data – deforming surface (forced motion):

ndefrm

2

lref

1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf

1 25 37 33 65 1 1

1 25 37 281 313 1 1

Rigid grid motion

input

Surface motion

input

190

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

Moving grid data – aeroelastic surface (aeroelastic motion):

naesrf

0

Iaesrf ngrid grefl uinf qinf nmodes iskyhook

Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0

Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0

Control point index input

Moving grid data – multi-motion coupling

ncoupl

1

Slave master xorig yorig zorig

1 1 0.75 0.00 0.00

Note: CFL3D does not allow initiating new kinds of motion upon restarts. Therefore if an initial

deforming mesh computation is performed to reach an equilibrium before initiating a combined rigid

and moving (deforming) control surface computation, the option iunst = 3 must be used from the start

(that is after an initial steady state computation with dt < 0), with control surface motion set to zero.

Multi-motion coupling

data included

Aeroelastic header lines

included

Deforming mesh input

191

Aeroelastic Analysis
Overview

� CFL3D has the capability to perform both static and dynamic aeroelastic analysis. In
this analysis the fluid and structure interact through a time marching simulation (e.g.
flutter analysis, etc…)

� All aeroelastic and modal analyses are performed by running the code in unsteady
mode

� CFL3D performs aeroelastic analysis for a linear structure modally and

a linear and nonlinear structure when loosely coupled with either NASTRAN

or ABAQUS finite element analyses.

� For modal analysis, the equations of structural dynamics must be decoupled modally
– Eigenvalue analysis is required prior to running CFD to obtain frequencies, generalized

masses and mode shapes.

– A preprocessing step projecting the mode shapes onto the CFD surface grids is required.

– The code reads the modal data projected onto the CFD surfaces in the file ‘aesurf.dat’. This
file must be contained in the directory in which the executable resides.

� CFL3D also has the capability to perform unsteady deforming body analysis using
mode shapes. In this mode the user specifies modal motion (e.g. control surface
rotation, wing plunge oscillation, etc…) in the aeroelastic input section

192

Aeroelastic Analysis
Example of an aeroelastic model

Consider the Benchmark Active

Controls Technology (BACT)

aeroelastic model shown. The

model has pitch and plunge

aeroelastic degrees of freedom. The

model parameters are:

MT = 5.966 slugs

Sα = 0.01420 slug-ft

Iα = 2.8017 slug-ft2

Kh = 2659 lb/ft

Ka = 2897 lb-ft/rad

193

Aeroelastic Analysis
Example of an aeroelastic model

The coupled equations of structural dynamics are

where ζ1 is plunge (h) and ζ2 is pitch (α). Eigen-analysis of this system

yields the frequencies

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ******

))(,(

),(
q

0

0

dydxxxyxc

dydxyxc

K

K

IS

SM

eap

phT ζζ
ααα

α &&

)12.5(sec/1564455.32

)36.3(sec/1113283.21

Hzrad

Hzradh

=

=

αω

ω

194

Aeroelastic Analysis
Example of an aeroelastic model

Using the eigenvectors

the generalized masses are obtained

5974345042.0001571926.0

0024991919.0409404775.0

2221

1211

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

ϕϕ

ϕϕ
φ

000000000.1

000000000.1

2

1

=

=

m

m

195

Aeroelastic Analysis
Example of an aeroelastic model

… and the decoupled equations of structural dynamics

where

Carrying through the multiplication on the right-hand side, we have

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ******

T1-

2

2

2

1

))(,(

),(
qM

0

0

10

01

dydxxxyxc

dydxyxc
qq

eap

p
φ

ω

ω
&&

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0

0

m

m
M

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−+
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ****

2212

**

2111

**

1-

2

2

2

1

)}(){,(

)}({),(
qM

0

0

10

01

dydxxxyxc

dydxxxyxc
qq

eap

eap

ϕϕ

ϕϕ

ω

ω
&&

qφζ = φφ
ω

ω

α
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
K

K

m

m hT

0

0

0

0
2

22

2

11

196

Aeroelastic Analysis
Example of an aeroelastic model

The mode shapes that are input into CFL3D are revealed by the

last equations

These can be used to create the modal shape projected to each

wing surface grid point for input into CFL3D. Note that x* and y* are

in the same units as the structural model.

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−+
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ****

2212

**

2111

**

1-

2

2

2

1

)}(){,(

)}({),(
qM

0

0

10

01

dydxxxyxc

dydxxxyxc
qq

eap

eap

ϕϕ

ϕϕ

ω

ω
&&

First mode shape, Φz,1

Second mode shape, Φz,2

197

Aeroelastic Analysis
Aeroelastic input

.

.

.

dt irest iflagts fmax iunst cfl_tau

0.0125 1 0 1.0 2 5.0

.

.

.

control surfaces:

ncs

0

grid ista iend jsta jend ksta kend iwall inorm

moving grid data - deforming surface (forced motion)

ndefrm

0

lref

grid idefrm rfreqi omegax omegay omegaz xorig yorig zorig

grid icsi icsf jcsi jcsf kcsi kcsf

iunst = 2 for an

aeroelastic simulation

User specified

deforming surface

Input, header lines

only

198

Aeroelastic Analysis
Aeroelastic input

moving grid data - aeroelastic surface (aeroelastic motion)

naesrf

1

iaesrf ngrid grefl uinf qinf nmodes iskyhk

1 -1 0.08333 730. 1000. 2 0

freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)

21.1113283 1.0000 0.00 0.0 0.0 0.

32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0

0 0.000 0.00 0.00

0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef

1 0 0 0 0 0 0

moving grid data - skip data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0

Control point index input

moving grid data - multi-motion coupling

ncoupl

0

slave master xorig yorig zorig

Aeroelastic input

Mesh deformation

input

199

Aeroelastic Analysis
Aeroelastic input

Focusing on the aeroelastic input section:

moving grid data - aeroelastic surface (aeroelastic motion)

naesrf

1

iaesrf ngrid grefl uinf qinf nmodes iskyhk
1 -1 0.08333 730. 1000. 2 0

freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)

21.1113283 1.0000 0.00 0.0 0.0 0.

32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0

0 0.000 0.00 0.00

0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef

1 0 0 0 0 0 0

iaesrf - Identifier of the aeroelastic surface for which data is being supplied

ngrid - Number of surface segments that make up this aeroelastic surface

nmodes - Number of modes to be modeled in CFL3D

iskyhk - Not currently used, any value will serve as a placeholder

uinf - Free-stream velocity, in the same units as the equations of structural dynamics

qinf - Dynamic pressure, in the same units as the equations of structural dynamics

grefl - Conversion from CFD grid units to structural equation units.

Number of aeroelastic

surfaces

naesrf lines

nmodes lines

one line only when

ngrid = -1 (Currently this

Is the only option)

200

Aeroelastic Analysis
Aeroelastic input

Regarding the input parameter grefl, consider the equations of structural dynamics for the

pitch/plunge example:

The actual equations solved in CFL3D are:

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ

Φ
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ **

2,

**

**

1,

**

1-

2

2

2

1

),(

),(
qM

0

0

10

01

dydxyxc

dydxyxc
qq

zp

zp

ω

ω
&&

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ

Φ
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞
dydxyxc

dydxyxc
qq

zp

zp

1,

1,1-2

2

2

2

1

),(

),(
qMgrefl

0

0

10

01

ω

ω
&&

Lengths in CFD

grid units

Lengths in structural

model units

CFDAE SSgrefl /=By definition:

201

Aeroelastic Analysis
Aeroelastic input

In the present example the structural equations are in units of feet, while the CFD grid

is in units of inches. Note that the aspect ratios of the original and rescaled model

must be identical. Conversion for the present example can be obtained from

This is the grefl parameter that would be entered in the aeroelastic input section.

unitgridftSSgrefl CFDAE /08333.0
144

1
/ ≈==

202

Aeroelastic Analysis
Modal form of the equations

Consider the decoupled equations of structural dynamics for N (or nmodes in the

input) modes

where q is the modal variable vector and Q is the generalized force vector, each of

length N. ω1 ,…, ωN are the natural frequencies of each structural mode in radians,

and m1 ,…, mN are the generalized masses.

{ } { } { }

{ }Q

m00

00

00m

00

00

00

200

00

002

100

00

001

1-

N

1-

1

2

2

111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

O

O&O&&O qqq

NNN ω

ω

ζω

ζω

203

Aeroelastic Analysis
Modal form of the equations

CFL3D input definitions as they relate to the modal equations of

structural dynamics are as follows:

Units for frequency is radians/time (usually time scale is seconds

for the structural dynamics equations).

initNinit

initNinit

initNinit

N

N

N

QNgfQgf

qNxqx

qNxqx

Ndampingdamping

Nfreqfreq

mNgmassmgmass

==

==

=−=

==

==

==

)*2(0,,)2(0

)*2(0,,)2(0

)1*2(0,,)1(0

)(,,)1(

)(,,)1(

)(,,)1(

1

1

1

1

1

1

L

&L&

L

L

L

L

ζζ

ωω

204

� x0(2*n-1) is the initial generalized displacement of the mode; will override the value in the

restart file (if restarting) when x0(2*n-1) is nonzero. Otherwise, it will not override the restart

value. This allows the mode to be perturbed for excitation of aeroelastic dynamic response

after a static aeroelastic starting solution has been performed.

� x0(2*n) is the initial generalized velocity of the mode; will override the value in the restart file

(if restarting) when x0(2*n) is nonzero. Otherwise, it will not override the restart value. This

allows the mode to be perturbed for excitation of aeroelastic dynamic response after a static

aeroelastic starting solution has been performed.

� gf0(2*n) is the generalized force offset to include for the mode. This value is included in

CFL3D computation of generalized force in the following way for mode n = 1 to nmodes:

Aeroelastic Analysis
Aeroelastic input

{ })*2(02 ngfsdcgreflqQ npn −⋅Φ= ∫∫∞

rr

Value from input

205

Aeroelastic Analysis
Method of integrating the fluid/structure coupling based

on the state transition matrix solution

n -1 n n + 1

F lu id

S tru c tu re

()1

2
11 3~ −+ −Θ+Θ= nn

i

nn QQxx

()nn

i

nn QQxx +Θ+Θ= ++ 1

2
11

1~ +nx

The structural dynamic equations are written in state space form and solved

using the state transition matrix solution and a predictor/corrector scheme.

The fluid/structure cycling is shown below:

1+nQ

Predictor step:

After the predictor step, the structure surface is moved using the predicted

modal solution , the flow field is converged to the solution at time step

n+1, and the new generalized force is computed.

Corrector step:

206

The parameter is the state transition matrix. The parameter is the

discrete integration of the state input, and is the state vector containing the

generalized aerodynamic force at time step n. The solution and generalized

force state vectors are

The value is the intermediate state solution used to update the mesh.

This method uses a second order backward differencing of the fluid/structure

coupling. Combined with second order backward differenced fluid dynamics

solver and the second order backward differencing of the mesh time metrics, the

overall scheme is second order accurate. For the original method see: Edwards,

J. W., Bennett, R. M., Whitlow Jr., W., Seidel, D. A.,“Time-Marching Transonic

Flutter Solutions Including Angle-of-Attack Effects,” Journal of Aircraft, 20 (1983),

pg. 899-906.

Aeroelastic Analysis
Method of integration and fluid/structure coupling

Θ iΘ
nQ

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

NN

N

Q

Q

Q

q

q

q

q

x

0

0

,

11

1

M

&

M

&

x~

207

Aeroelastic Analysis
Modal surface input

� Currently CFL3D assumes that the aeroelastic surface comprises

all boundary segments with the boundary condition types 1005,

1006, 2004, 2014 or 2016.

� Note that the boundary condition 1001 is not considered an

aeroelastic surface. Therefore, if a symmetry plane is required to

deform with a pitching wing, it must be treated as an inviscid wall

boundary (1005 or 1006)

� The modal input file aesurf.dat must have modal data for a given

surface point in free field ascii format (no commas) with Φx,n, Φy,n,

Φz,n modal deflections at each surface point for each mode n.

208

Aeroelastic Analysis
Format of the modal surface input

The following ordering is required:

j = 1 surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend , repeat nseg times

j = jdim surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend , repeat nseg times

k = 1 surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend , repeat nseg times

k = kdim surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend , repeat nseg times

i = 1 surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , k = ksta to kend , repeat nseg times

i = idim surface:

Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend, k = ksta to kend , repeat nseg times,

Repeat all of the above input for n = 1 to nmodes, repeat ngrid times, repeat naesrf times.

Segment limits defined in

boundary condition input

209

Aeroelastic Analysis
Format of the modal surface input

� The ordering of the aeroelastic surface points must correspond to
the order of the points in the CFD grid file read by CFL3D.

� Aeroelastic segments must be input in the same block order as the
grid file, and segments must be input in order of ascending indices.

� When creating a multi zonal grid using the utility ‘splitter’, be aware
that the final ordering will generally not correspond to the ordering of
the unsplit grid. Ordering of the split grid zones can be found in the
‘splitter.out’ file, from which can be found the required order of the
surface grid points for the ‘aesurf.dat’ file.

Example: Consider a block face that has dimensions kdim = 49, idim =
49 with several aeroelastic segments. If segment 1 has indices k =
33 to 49, i = 13 to 33, and segment 2 has indices k = 1 to 33, i = 1 to
33, then segment 2 must be input first.

210

Aeroelastic Analysis
Aeroelastic output

� Aeroelastic time history output is in the file ‘genforce.dat’.

� This file is generated if iunst = 2 and aeroelastic surfaces
are defined in the input file (naesrf≠0).

� After header information, modal response data for each
mode is written sequentially.

� Unlike output data in the ‘cfl3d.subit_res’ file, a complete
time history of this data for the entire simulation is
retained and written/read to/from restart files and
subsequently output to the ‘genforce.dat’ file.

211

Aeroelastic Analysis
Aeroelastic output

Consider the example output contained in the ‘genforce.dat’ file:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach= 0.7700E+00, alpha= 0.0000E+00, ReUe= 0.3860E+07

Number of aeroelastic surfaces = 1

Data for aeroelastic surface 1

mode number 1

it time xs(2*n-1) xs(2*n) gforcn(2*n)

1 0.3125000E-01 0.0000000E+00 0.0000000E+00 -0.3471162E-05

2 0.6250000E-01 0.0000000E+00 0.0000000E+00 -0.3214494E-05

3 0.9375000E-01 0.0000000E+00 0.0000000E+00 -0.2996337E-05

4 0.1250000E+00 0.0000000E+00 0.0000000E+00 -0.2789857E-05

mode number 2

it time xs(2*n-1) xs(2*n) gforcn(2*n)

1 0.3125000E-01 0.2980232E-09 0.3442899E-09 0.6291896E-05

2 0.6250000E-01 0.3089730E-09 0.3565678E-09 0.6644112E-05

3 0.9375000E-01 0.3203131E-09 0.3692693E-09 0.6907312E-05

4 0.1250000E+00 0.3320569E-09 0.3824084E-09 0.7143990E-05

Time - Non-dimensional time (CFL3D non-dimensionalization)

xs(2*n-1) - Modal or generalized variable output

xs(2*n) - Modal velocity output

gforcn(2*n) - Modal or generalized force output

Title line from the input file

Data from the input file

Mode 1 time history

from starting run

Mode 2 time history

from starting run

212

Aeroelastic Analysis
Strategy for aeroelastic computations

The following strategies may be used for performing static or dynamic

aeroelastic simulations

� Static aeroelastic computations can be performed by:
– Start either from scratch (irest = 0), or restart, after a steady state computation (in

which dt < 0, iunst = 0). Starting from scratch is not recommended.

– Set iunst = 2 , dt > 0 and damp = .99999… and perform the computation in a time

marching manner to convergence.

� Flutter onset computations can be performed by:
– Converging a static solution as outlined above.

– Setting damp to the correct value for the elastic system being modeled.

– Setting an initial perturbation x0(2*n) or x0(2*n-1) in the desired mode.*

* If a restart in the middle of a flutter computation is performed, the initial

perturbation values from the previous run must be reset to zero at the restart of the new run.

213

Aeroelastic Analysis
User specified modal motion

The user may specify modal motion within the aeroelastic input (e.g.

control surface rotation, wing plunge oscillation, impulse for frequency

response, etc…) The following modifications to the aeroelastic input

specifies modal motion:
.

.
moving grid data - aeroelastic surface (aeroelastic motion)

naesrf

1

iaesrf ngrid grefl uinf qinf nmodes iskyhk
1 -1 0.08333 730. 1000. 2 0

freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)

21.1113283 1.0000 0.00 0.0 0.0 0.

32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0

1 0.005 0.20 0.00

0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef

1 0 0 0 0 0 0

.

.

This line specifies motion for

mode 1

214

Aeroelastic Analysis
User specified modal motion

moddfl

type of time-varying modal perturbation desired:

< 0, mode displacement and velocity set to zero

= 0, no perturbation (solution via the dynamic modal equations)

= 1, harmonic (sinusoidal) perturbation

= 2, Gaussian pulse

= 3, step pulse

A (amp)

amplitude of modal perturbation.

ωr (freq)

reduced frequency of modal perturbation if moddfl = 1

half-width of Gaussian pulse if moddfl = 2

use any value as a placeholder for moddfl = 0

t0 (t0)

time about which Gaussian pulse is centered if moddfl = 2

time of the step pulse if moddfl = 3

use any value as a placeholder for moddfl = 0

215

Aeroelastic Analysis
User specified modal motion

For harmonic perturbation the modal displacement and velocities for mode n

are computed in the following way:

where A = amp, ωr = freq in radians per dimensional time, and t* is dimensional

time,

(uinf) is in the aeroelastic input section and is from the main

aerodynamic input section. t is CFL3D non-dimensional time.

For a Gaussian pulse the displacement and velocity for mode n are computed

with

)cos(,)sin(** tAkqtAq rrnrn ωω == &

[] []

2
/)2log(

2,
2

0
*2

0
*

r

ttC

n

ttC

n

Cwhere

CAeqAeq

ω=

−== −−−− &

∞∞∞∞ == MUaagrefltt /,/*

∞U ∞M

216

Aeroelastic Analysis
User specified modal motion

For step pulse the modal displacement and velocities for mode n

are computed in the following way:

0,
2

,
22

0,0
2

0

*

0

*

*

*

0

*
*

0

0

*

0

*

==
∆

+>

∆
==

∆
+<<

∆
−

==
∆

−<

nn

nn

nn

qAqthent
t

ttif

t

A
qAqthen

t
tt

t
tif

qqthent
t

ttif

&

&

&

217

For this example:

Recommend sizing time step so that there are an absolute minimum of 25 time steps

within the half life of the pulse (∆t = kr/25). In this case we would have ∆t = 0.004.

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

t

Aeroelastic Analysis
Example: Gaussian modal pulse and time step sizing

Time to reach half height

2

0

/)2log(

/5.0,1.0,0.1

r

r

C

agrefltkA

ω=

=== ∞

greflat /0 ∞

1.0/ == ∞agreflk rr ω

∞∞∞∞ == MUaagrefltt /,/*

218

Aeroelastic Analysis
Example: Shaping and sizing the Gaussian modal pulse

0 25 50 75 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

f Hz

The user will need to ensure that all

the modes of interest lie within the

frequency band of the pulse

Fourier frequency

Spectrum

� For a linear response, we will usually want the amplitude as small as possible while staying

significantly (say several orders of magnitude) above numerical round off errors.

� Low frequency responses will be very sensitive to the steady convergence of a solution. Therefore,

great care must be exercised in adequately converging the steady state if an FRF is the desired

outcome.

� The solution is very sensitive to sub-iterative convergence at each time step. A strategy of multiple

restarts with different numbers of sub-iterations through the pulse region can reduce the overall run

time.

219

Keyword Input
Overview

� There is additional input in CFL3D version 6 that does not fit into an input

format consistent with earlier versions of the code. These input parameters

have been included as keyword input.

� Keyword input is an optional input specified by lines started by a line with ‘>’

and ended with a line containing ‘<‘.

� The following example illustrates how keyword input is included:

cfl3d.out20

ovrlp.bin

patch.bin

restart.bin

>

gamma 1.32

negvol 1

<

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

Keyword input included at the

end of file specification and

before the title line.

220

Keyword Input
Valid Keywords

Name Description Default Value

cbar Ref. temp. for Sutherland Law 198.6

gamma Ratio of specific heats 1.4

pr Prandtl number 0.72

prt Turbulent Prandtl number 0.90

Physical Properties

Name Description Default Value

atol Tolerance for detecting singular lines 10-7

epsa_r Eigenvalue limiter (entropy fix for high Mach flows) 0.0

Limiters

221

Keyword Input
Valid Keywords

Name Description Default Value

avn Factor multiplying uref for preconditioning 1.0

cprec Relative amount of preconditioning 0.0

uref Limiting velocity for preconditioning xmach

Preconditioning

Name Description Default Value

cltarg Target Cl 99999.

dalim Limit of alpha change (deg) per update 0.2

icycupdt Number of cycles between alpha updates (if > 0; if

< 0, alpha is never updated)

1

rlxalph Relaxation factor used to update angle of attack 1.0

Specified CL

222

Keyword Input
Valid Keywords

Name Description Default Value

cflturb Cfl no. for turbl eqns. = cflturb x abs(dt) If cflturb > 0 0

(model dependent default)

edvislim Limiter for eddy viscosity in 2-equation

turb models; eddy viscosity limited to edvislim times the

laminar viscosity

100000.

ibeta8kzeta flag (0/1) to set beta8 term when using k-enstrophy

turbulence model (ivisc=15); 0 = use beta8=0.0 (helps avoid

numerical problems); 1 = use beta8=2.3 (available after

V6.3)

0

ides flag (0/1) to perform DES with turbulence model (1) or not

(0)

0

cdes constant associated with DES 0.65

ieasmcc2d flag (0/1) to turn on 2-D curvature correction when using

EASM models (ivisc=8,9,11,12,13,14) (1) or not (0)

(available after V6.3)

0

isarc2d flag (0/1) to turn on 2-D curvature correction when using SA

model (ivisc=5) (1) or not (0) (available after V6.3)

0

Turbulence models

223

Keyword Input
Valid Keywords

Name Description Default Value

sarccr3 value of cr3 parameter in SARC model (available after V6.3) 0.6

ikoprod flag: 0=use approximate (vorticity-based) turb production

term (-2*mut*WijWji) for turb models 6, 7, 10, or 15; 1=use

strain-rate based term (2*mut*SijSij); 2=use full production

term (ivisc=15 only) (available after V6.3)

0

(vorticity-based

production)

isstdenom flag (0/1): 0=use vorticity term in denominator of eddy

viscosity in SST model (#7); 1=use strain term

(available after V6.3)

0

(vorticity term)

itaturb flag (0/1) to control time accuracy of turb. model; 0 for 1st

order in time regardless of parameter "ita" for the mean flow;

1 for same order as set by ita

1

(turb. Time accuracy

same as mean flow, set

via ita)

iturbord flag controls whether turbulence model advection terms are

1st or 2nd order upwind on RHS (1=1st, 2=2nd) (note: LHS

uses 1st order in both cases) (available after V6.3)

1

(1st order)

Turbulence models

224

Keyword Input
Valid Keywords

Name Description Default Value

iturbprod flag: 0=use strain-rate based turb production

term (2*mut*SijSij) for EASM turb models 8, 9, 13, or 14;

1=use full production term

0

(strain-rate based term)

nfreeze Freeze turb. model for nfreeze cycles 0

(not frozen)

nsubturb Number of iterations of turb model per cycle 1

pklimterm factor used to limit production of k in 2-eqn turb models

(chooses min of Pk and pklimterm*Dk); make this term large

for no limiting (available after V6.3)

20.0

tur10 & tur20 turbulent quantity freestream levels < 0 use default value

(different for each turb model, see manual Appendix H)

=0 use this number as the specified user input value

-1

tur1cut value that nondimensional epsilon (or omega or enstrophy)

is reset to when it tries to drop equal to or below tur1cutlev;

if <=0 then no update occurs when value tries to drop equal

to or below tur1cutlev (available after V6.3)

1.e-20 for all models

except -1 for ivisc=15

Turbulence models

225

Keyword Input
Valid Keywords

Name Description Default Value

tur2cut value that nondimensional k is reset to when it tries to drop

equal to or below tur2cutlev; if <=0 then no update occurs

when value tries to drop equal to or below tur2cutlev

(available after V6.3)

1.e-20

tur1cutlev &

tur2cutlev

lower levels of nondimensional epsilon (or omega or

enstrophy)

and k which, when reached, cause the turb quantities to be

reset to tur1cut or tur2cut (available after V6.3)

0

Turbulence models

226

Keyword Input
Valid Keywords

Name Description Default Value

idef_ss flag (0/1) to deform volume grid to surface in file

newsurf.p3d

0

(don’t deform)

meshdef flag (0/1) to bypass flow solution while still computing grid

operations such as metrics and volumes; 0 = normal

operation; 1 = bypass flow solution (available after V6.3)

0

negvol flag (0/1) to enable/disable stop if neg. volumes/bad

metrics are detected

0

(stop for negative volumes)

Deformation/grid motion

Name Description Default Value

ibin flag (0/1) for formatted/unformatted output

plot3d files

1 (unformatted)

iblnk flag (0/1) for un-iblanked/iblanked output plot3d

files

1 (iblanked)

Input/output control

227

Keyword Input
Valid Keywords

Name Description Default Value

iblnkfr flag (0/1) for un-iblanked/iblanked fringe points in

plot3d files (overset grids only)

1

(iblanked)

icgns flag (0/1) to not use/use CGNS files* 0 (don’t use CGNS files)

ip3dgrad flag (0/1) for solution/derivative data output to

plot3d q file (complex code only)

0

(solution to q file)

irghost flag to read ghost-cell data from restart file (1) or

not (0); V5 restart files and Beta V6 restart files do

not contain ghost-cell data; newer V6 restart files

do

1

(read ghost-cell data)

iwghost flag to write ghost-cell data to restart file (1) or not

(0); V5 restart files and Beta V6 restart files do not

contain ghost-cell data; newer V6 restart files do

1

(write ghost-cell data)

Input/output control

228

Keyword Input
Valid Keywords

Name Description Default Value

itime2read flag (0/1) to skip/read 2nd order (in time)

turbulence terms and dt in restart file: need to skip

if using an older time-accurate-with-2nd-order-time

restart file

1

(read 2nd order time

turbulence terms and dt)

iteravg flag to store iteration-averaged conserved

variables in PLOT3D files: 0 = no averaging or

storage 1 = start averaging now

2 = continue averaging from previous run

0

Input/output control

Name Description Default Value

memadd additional memory (in words) added to work array

(in case sizer underestimates)

0

(no addition to work)

memaddi additional memory (in words) added to iwork array

(in case sizer underestimates)

0

(no addition to iwork)

Memory management

229

Keyword Input
Valid Keywords

Name Description Default Value

noninflag flag (0/1) to indicate whether to use inertial (0) or

noninertial (1) reference frame for governing

equations; noninertial frames allow for steady state

solutions if the rotation rate is constant

0

(inertial reference frame)

xcentrot rotation center x-coordinate for non-inertial

reference frame (also used for roll-angle input)

0.0

ycentrot rotation center y-coordinate for non-inertial

reference frame (also used for roll-angle input)

0.0

xrotate rotation rate about x-axis for non-inertial reference

frame (non-dimensionalized the same way as

omegax for rotating grids - see manual)

0.0

yrotate rotation rate about y-axis for non-inertial reference

frame (non-dimensionalized the same way as

omegay for rotating grids - see manual)

0.0

zcentrot rotation center z-coordinate for non-inertial

reference frame (also used for roll-angle input)

0.0

zrotate rotation rate about z-axis for non-inertial reference

frame (non-dimensionalized the same way as

omegaz for rotating grids - see manual)

0.0

Reference frame

230

Keyword Input
Valid Keywords

Name Description Default Value

xrotrate_img complex perturbation to rotation rate about x-axis

for non-inertial reference frame, for computing rate

derivatives

0.0

yrotrate_img complex perturbation to rotation rate about y-axis

for non-inertial reference frame, for computing rate

derivatives

0.0

zrotrate_img complex perturbation to rotation rate about z-axis

for non-inertial reference frame, for computing rate

derivatives

0.0

Reference frame

Name Description Default Value

alpha_img Imaginary perturbation to alpha 0.0

beta_img Imaginary perturbation to beta 0.0

geom_img Imaginary perturbation to grid 0.0

Other

231

Keyword Input
Valid Keywords

Name Description Default Value

reue_img Imaginary perturbation to unit Re 0.0

surf_img Imaginary perturbation to surface grid 0.0

ifullns flag (0/1) to specify inclusion of cross-derivative

terms; 0 = thin-layer N-S; 1 = full N-S (available

after V6.3)

0

ivolint flag (0/1) to use approximate/exact one-to-one

boundary volumes (0 emulates V5.0)

1 (exact volumes)

tinf_img Imaginary perturbation to Tinf 0.0

xmach_img Imaginary perturbation to Mach no. 0.0

iaxi2plane flag for use with particular axisymmetric cases (for

which i2d=0 and idim=2); if iaxi2plane = 1, the time

step based on CFL number is modified so it does

not depend on the i-direction metrics (available

after V6.3)

0

(no mods to time step)

roll_angle x-axis roll angle (deg) "+" is clockwise viewed from

"- x" (left roll to pilot) (grid is rotated to this angle)

0.0

Other

232

Block Splitting and MPI
Overview

� Message Passing Interface (MPI) protocol is used for parallelization of

CFL3D

� MPI parallelizes by parceling out grid blocks to different processors

� For MPI to be useful, at least two or more blocks and at least three

processors will be required.

� Often grids will arrive as multiple block grids. However, there are several

reasons that additional block splitting will be required:

– If the original mesh is not split into a sufficient number of blocks to efficiently use

the processors available.

– If the blocks are of disparate sizes, so that load balancing will be difficult.

233

Block Splitting and MPI
Overview

� Note, however, that there is a limit on the number of blocks for a given

overall grid size for which efficient parallelization can take place.

– Problem of growing communications between processors compared to

processing per block (communication time).

– Because CFL3D treats block boundaries explicitly, splitting into an ever

increasing number of blocks amounts to making the code explicit. An increasing

number of blocks means that an increasing number of sub-iterations will be

required.

� The following illustrates the increasing communications with decreasing

block sizes….

234

Block Splitting and MPI
Problem of the humming bird versus the elephant

0 25 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

idim

Consider the ratio of number of surface points to the total number of grid points as grid size

diminishes. These results are based on a grid having equal idim, jdim, kdim dimensions.

volume

areasurface
R =

At an average dimension

of 10x10x10, boundary

data takes a third of

the total memory. (Which

is not a problem for MPI, but…

communication becomes

a growing percentage of

the computation time.)

235

Block Splitting and MPI
Overview

With the issues clearly in mind, there are times when splitting is useful…

� The tool ‘splitter’ is available with CFL3D for use in splitting blocks.

� It is created by performing the following command in the ‘build’ directory:

make splitter

� The executable will be in the directory ‘~/cfl3dv6/build/split/seq/’.

� An example input can be found in the CFL3D version 6 web page.

236

Block Splitting and MPI
Example: Splitting a single C-H grid

Lets consider again the BACT wing we have looked at previously. This

grid has i,j,k dimensions 73 (spanwise) x 345 (streamwise) x 73 (normal to

wing).

Suppose a 32 processor PC cluster

is available for this problem. It would

be useful to split this block into at least

24 blocks. However consideration

must also be given to how many

times each dimension can be split

and still retain the proper dimensions

to perform multi-grid computations.

237

Block Splitting and MPI
Example: Splitting a single C-H grid

An acceptable block split can be obtained by requiring M, the number of

split blocks, in the following computation

be an integer. D is the overall dimension of the un-split grid, and d is

the proposed dimension of the split grid. For the current example, the j-

dimension can be split with blocks having dimension of 9, 87 or 173.

1

1

−

−
=

d

D
M

2
1173

1345
,4

187

1345
,43

19

1345
=

−

−
==

−

−
==

−

−
= MMM

238

Block Splitting and MPI
Example: Splitting a single C-H grid

Note that block dimensions of 87 or 173 will allow only 3 levels of multigrid, a

dimension of 9 allows 4. We will chose a dimension of 87.

Similar computations for the idim = 73 and kdim = 73 lead us to chose 6 blocks in

those directions with dimension of 13. This will result in a total of 144 blocks.

This number of blocks will allow us to use 4, 24, 48 or 144 processors efficiently.

These computations result in 3 splits in the j-direction, 5 splits in the i-direction

and 5 splits in the k-direction for a total of 13 splits. The input that performs these

splits is shown in the next slide.

239

Block Splitting and MPI
Example: Splitting a single C-H grid

The splitter input file for this grid is

shown:

INPUT (UNSPLIT) FILES

cfl3d.inp

ronnie.inp

grid.unf

sd_grid.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

OUTPUT (SPLIT) FILES

cfl3d.inp_split

ronnie.inp_split

grid_split.unf

sd_grid_split.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

NSPLITS

13

1

2

87

1

2

173

1

2

259

1

1

13

1

1

25

1

1

37

1

1

49

1

1

61

1

3

13

1

3

25

1

3

37

1

3

49

1

3

61

240

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES

cfl3d.inp

ronnie.inp

grid.unf

sd_grid.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

OUTPUT (SPLIT) FILES

cfl3d.inp_split

ronnie.inp_split

grid_split.unf

sd_grid_split.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

cfl3d.inp - cfl3d input file for the unsplit grid

ronnie.inp - ronnie input file for the unsplit grid, if not a patched case, enter the word null

grid.unf - grid file for the unsplit grid; can be formatted or unformatted

sd_grid.unf - sensitivity file for the unsplit grid NOTE: Currently not supported in Version 6; the same

functionality is now handled via complex variables and a complex-valued grid file;

enter the word null

241

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES

cfl3d.inp

ronnie.inp

grid.unf

sd_grid.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

OUTPUT (SPLIT) FILES

cfl3d.inp_split

ronnie.inp_split

grid_split.unf

sd_grid_split.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

cfl3d.inp_split - cfl3d input file for the split grid

ronnie.inp_split - ronnie input file for the split grid, if not a patched case, enter the word null

grid_split.unf - grid file for the split grid; can be formatted or unformatted

sd_grid_split.unf - sensitivity file for the split grid NOTE: Currently not supported in Version 6; the

same functionality is now handled via complex variables and a complex-

valued grid file; enter the word null

242

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES

cfl3d.inp

ronnie.inp

grid.unf

sd_grid.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

OUTPUT (SPLIT) FILES

cfl3d.inp_split

ronnie.inp_split

grid_split.unf

sd_grid_split.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

icflver

= 4 the cfl3d input file is a version 4.1 type

= -4 the cfl3d input file is a version 4.1hp type

= 5 the cfl3d input file is a version 5/6 type

ironver

= 0 ronnie input file is the old style, with all "from" blocks listed on one line

= 1 ronnie input file is the new style, with each "from" block having it's own line

NOTE: a value for ironver must always be entered, even if the case does not involve

patched grids.

243

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES

cfl3d.inp

ronnie.inp

grid.unf

sd_grid.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

OUTPUT (SPLIT) FILES

cfl3d.inp_split

ronnie.inp_split

grid_split.unf

sd_grid_split.unf

ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

igrdfmt

= 0 grid file is formatted

= 1 grid file is unformatted

isdfmt

= 0 sensitivity file is formatted

= 1 sensitivity file is unformatted

NOTE: Currently not supported in Version 6; the same functionality is now handled via complex

variables and a complex-valued grid file; however a value is still required - use 0 or 1

244

Block Splitting and MPI
Example: Splitting a single C-H grid

.

.

NSPLITS

13

1

2

87

1

2

173

1

2

259

.

.

nsplits - number of grid splits to perform (can be 0 in order to convert grid from formatted to

unformatted or vice versa). Following the value of nsplits, nsplits triplets of integers must

appear, one integer of the triplet per line….

nsplits

245

Block Splitting and MPI
Example: Splitting a single C-H grid

.

.

NSPLITS

13

1

2

87

1

2

173

1

2

259

.

.

iblk - block number of the block to be split. NOTE: iblk always refers to the original, unsplit

block number

ldir

= 1 split in the i-direction

= 2 split in the j-direction

= 3 split in the k-direction

index - split the block in the ldir direction at this value of the index

iblk

ldir

index

Same triplet repeated 13 times

246

Block Splitting and MPI
Example: Splitter output

*

* * * *

* * SPLITTER - CFL3D BLOCK AND INPUT FILE SPLITTER * *

* * * *

* * VERSION 6.X : Computational Fluids Lab, Mail Stop 128, * *

* * NASA Langley Research Center, Hampton, VA * *

* * Release Date: MMM DD, YYYY. * *

* * * *

*

*

memory allocation: 431.046108 Mbytes, double precision

input (unsplit) files

cfl3d.inp

null

wbgrid.cfl

null

icflver ironver igrdfmt isdfmt

5 1 1 1

output (split) files

cfl3d.inp_split

null

wbgrid_split.cfl

null

icflver ironver igrdfmt isdfmt

5 1 1 1

247

Block Splitting and MPI
Example: Splitter output

converting unsplit cfl3d input file to tlns3d map file

checking dimensions...

reading grid...

grid: wbgrid.cfl

block # 1: il= 73, jl= 345, kl= 73

number of splits = 13

split block coord index

1 1 J 87

2 1 J 173

3 1 J 259

4 1 I 13

5 1 I 25

6 1 I 37

7 1 I 49

8 1 I 61

9 1 K 13

10 1 K 25

11 1 K 37

12 1 K 49

13 1 K 61

new block old block i0 i1 j0 j1 k0 k1

1 1 1 13 1 87 61 73

2 1 1 13 87 173 61 73

3 1 1 13 173 259 61 73

4 1 1 13 259 345 61 73

5 1 13 25 259 345 61 73

6 1 13 25 173 259 61 73

7 1 13 25 87 173 61 73

8 1 13 25 1 87 61 73

9 1 25 37 1 87 61 73

10 1 25 37 87 173 61 73

11 1 25 37 173 259 61 73

12 1 25 37 259 345 61 73

13 1 37 49 259 345 61 73

14 1 37 49 173 259 61 73

15 1 37 49 87 173 61 73

16 1 37 49 1 87 61 73

17 1 49 61 1 87 61 73

18 1 49 61 87 173 61 73

19 1 49 61 173 259 61 73

20 1 49 61 259 345 61 73

21 1 61 73 259 345 61 73

22 1 61 73 173 259 61 73

23 1 61 73 87 173 61 73

24 1 61 73 1 87 61 73

25 1 61 73 1 87 49 61

26 1 61 73 87 173 49 61

27 1 61 73 173 259 49 61

28 1 61 73 259 345 49 61

248

Block Splitting and MPI
Example: Splitter output

29 1 49 61 259 345 49 61

30 1 49 61 173 259 49 61

31 1 49 61 87 173 49 61

32 1 49 61 1 87 49 61

33 1 37 49 1 87 49 61

34 1 37 49 87 173 49 61

35 1 37 49 173 259 49 61

36 1 37 49 259 345 49 61

37 1 25 37 259 345 49 61

38 1 25 37 173 259 49 61

39 1 25 37 87 173 49 61

40 1 25 37 1 87 49 61

41 1 13 25 1 87 49 61

42 1 13 25 87 173 49 61

43 1 13 25 173 259 49 61

44 1 13 25 259 345 49 61

45 1 1 13 259 345 49 61

46 1 1 13 173 259 49 61

47 1 1 13 87 173 49 61

48 1 1 13 1 87 49 61

.

.

.

.

.

.

121 1 61 73 1 87 1 13

122 1 61 73 87 173 1 13

123 1 61 73 173 259 1 13

124 1 61 73 259 345 1 13

125 1 49 61 259 345 1 13

126 1 49 61 173 259 1 13

127 1 49 61 87 173 1 13

128 1 49 61 1 87 1 13

129 1 37 49 1 87 1 13

130 1 37 49 87 173 1 13

131 1 37 49 173 259 1 13

132 1 37 49 259 345 1 13

133 1 25 37 259 345 1 13

134 1 25 37 173 259 1 13

135 1 25 37 87 173 1 13

136 1 25 37 1 87 1 13

137 1 13 25 1 87 1 13

138 1 13 25 87 173 1 13

139 1 13 25 173 259 1 13

140 1 13 25 259 345 1 13

141 1 1 13 259 345 1 13

142 1 1 13 173 259 1 13

143 1 1 13 87 173 1 13

144 1 1 13 1 87 1 13

split-grid basic dimensions are multigridable to ncg = 1

Input points: 1838505

Ouput points: 2117232

249

Block Splitting and MPI

Notes regarding use:

� IF A LIMITER IS DESIRED, USE IFLIM=4. This will allow for consistent results with

block splitting; iflim=3 is not recommended - iflim=4 is basically a correct

implementation of iflim=3 for multiple blocks, and should now be viewed as the

recommended limiter for any case that needs one.

� Also, for exact consistency between split and unsplit grids, version 5 emulation (i.e.

"Install -v5) should not be used. Version 5 (and earlier versions) made an

approximation for cell volumes at 1-1 block interfaces that has been eliminated in

version 6 in favor of the exact treatment.

� The input file part of the splitter works by first converting the unsplit CFL3D input file

to a TLNS3D map file, splitting the TLNS3D map file, then converting the split

TLNS3D map file back to a CFL3D input file.

250

Block Splitting and MPI

Notes (...continued):

� Caveats: The conversions from the CFL3D input file to a TLNS3D map file are not

perfect! The user is urged check the resulting split CFL3D input (and patch) files.

– A useful check before actually splitting the files is to run this splitter with the number of

splittings = 0, and the output grid file as null. Running splitter in this way will cause to code to

go through the translations, but the "split" files will have the same numbers of blocks, and the

"split" grid will not be output.

– A "diff" or "gdiff" will point to translation-induced differences that should be easier to sort out

than when coupled with true splitting. Note that the 2-step process almost always results in a

reordering of some boundary condition segments.

251

Running CFL3D in MPI mode

� MPI requires one processor for overhead. For example if a 32

processor cluster is employed, and there are 28 blocks to be

computed on 28 processors, then the command line will read:

mpirun –np 29 cfl3d_mpi < cfl3d.inp &

� You may want to verify the correct procedure for running mpi code

on your platform (e.g. some mpp's use -n instead of -np)

252

Running CFL3D in MPI mode

� Because version 6 has dynamic memory allocation, there is no requirement to run precfl3d before

you can run cfl3d. However, you may still find it useful to do so in order to assess how much

memory will be required to run the case at hand, allowing you to determine whether a particular

problem can fit within the memory of the machine, or to determine the appropriate queue in which

to submit the job.

� The usage of precfl3d has changed slightly from previous versions: you must now specify the

number of processors in addition to the input file, for example:

precfl3d -np num_procs < cfl3d.inp &

where num_procs is the total number of processors, including the host. When running on a single

processor, that processor is the host, so num_procs=1 will suffice to assess the memory

requirements for the sequential version of the code.

� An important reason why you may want to run precfl3d before running the parallel version of the

code is that for num_procs > 1, precfl3d will output an auxiliary file called ideal_speedup.dat.

This file will list the best possible speedup you could hope to achieve for the current case, using

various numbers of compute processors, ranging from 1 to the number of zones in your grid.

253

Running CFL3D in MPI mode

The BACT case with 144 blocks was run

on 24 processors (-np 25). In the

‘precfl3d.out’ file the following

information is contained:

BLOCK TO NODE MAPPING

no. of blocks = 288

no. of nodes = 24

block node

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

9 5

10 5

11 6

12 6

13 7

14 7

.

.

.

265 13

266 13

267 14

268 14

269 15

270 15

271 16

272 16

273 17

274 17

275 18

276 18

277 19

278 19

279 20

280 20

281 21

282 21

283 22

284 22

285 23

286 23

287 24

288 24

254

Running CFL3D in MPI mode

.

.

**

SUMMARY OF STORAGE REQUIREMENTS - W + WK ARRAYS

sequential version:

permanent array w requires 131825665 (words)

temporary array wk requires 2681342 (words)

temporary array iwk requires 187820 (words)

parallel version, per node:

permanent array w requires 5506908 (words)

temporary array wk requires 1500235 (words)

temporary array iwk requires 187820 (words)

>>> Estimate for mwork (sequential) = 134507007 <<<

>>> Estimate for mworki (sequential) = 187820 <<<

>>> Estimate for mwork (per node, parallel) = 7007143 <<<

>>> Estimate for mworki (per node, parallel) = 187820 <<<

>>> Parallel code sized for 24 nodes, min. (+host) <<<

**

255

Running CFL3D in MPI mode

In the ‘cfl3d.out’ file the same information

is found plus the following contained at

the end:
.

.

computational rate by mesh sequence (based on wall time):

iseq 1 181.13 microseconds/cell/time step

90.56 microseconds/cell/subiteration

timing for complete run - time in seconds

node user system total wall clock

0 10.15 17.60 27.75 325.00

1 3.64 0.55 4.19 228.00

2 5.37 0.92 6.29 325.00

3 3.90 0.52 4.42 228.00

4 5.36 0.87 6.23 325.00

5 5.85 1.14 6.99 324.00

6 4.54 0.89 5.43 228.00

7 4.38 0.83 5.21 227.00

8 4.03 0.79 4.82 226.00

9 4.31 0.70 5.01 228.00

10 6.08 1.00 7.08 325.00

11 4.40 0.77 5.17 227.00

12 4.19 0.65 4.84 227.00

13 4.20 0.74 4.94 226.00

14 4.42 0.66 5.08 225.00

15 4.25 0.81 5.06 226.00

16 4.35 0.68 5.03 225.00

17 4.08 0.83 4.91 225.00

18 4.22 0.87 5.09 225.00

19 4.35 0.66 5.01 225.00

20 4.17 0.66 4.83 225.00

21 3.78 0.55 4.33 224.00

22 3.59 0.49 4.08 225.00

23 3.58 0.51 4.09 224.00

24 3.40 0.40 3.80 224.00

total: 114.59 35.09 149.68

total run (wall) time = 0 hours 3 minutes 44 seconds

memory for cfl3d has been deallocated

256

Flow Field Visualization
Plot3D output

CFL3D is capable of creating Plot3D files of the grid and flow field.

Specification of the region of the flow field for output is found in the

following input lines:
.

.

dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1

movie

0

nplot3d specifies the number

of blocks to output

Input nplot3d

lines

If nplot3d < 0, then the Plot3D files are automatically set to include all solid

Surfaces (no field points) for 3D cases or all field points for 2D cases

257

Flow Field Visualization
Plot3D output

.

.

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1

movie

0

Grid - Designated grid number to be output

iptyp = 0 - grid point type – grid file and Q file output

= 1 - cell center type – grid file and Q file output

= 2 - cell center type - grid file and turbulence file output (ivisc > 1 only)

> 2 - cell center type – grid file and function file output (iptype = 3 – minimum distance to

nearest viscous wall or directed distance (ivisc > 1 only), iptype = 4 – eddy

viscosity (ivisc > 1 only)

ista, jsta, ksta - starting indices in the i,j,k directions

iend,jend,kend - ending indices in the i,j,k directions (note that if these values are set higher than

idim, jdim,kdim, the code will reset them to the block dimensions)

iinc,jinc,kinc - increment in the i,j,k directions

Note: Setting ista = iend = iinc = 0, etc… is a short hand way of specifying the entire range.

258

Flow Field Visualization
Movie output

.

.

plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1

movie

10

Note that one gird file and one solutions file are generated.

Movie = 0 no output of intermediate solutions (if nplot3d > 0), then a single solution is written at the end of the run.

Movie > 0 output of additional solutions every movie iterations (time steps)

Movie < 0 output of the initial flow field at the beginning of the run and output of additional solutions every movie

iterations (time steps)

Caution: Use with care. Plot3D file will get very large very quickly.

The tool ‘moovmaker’ will read the plot3D solution and grid file and create a movie for a 2D flow field in which the 3rd

dimension will be time. The grid output by ‘moovmaker will be called ‘g.bin’ and the solution file will be called ‘q.bin’.

Creating these files will allow animating the 3rd dimension (time) to produce a movie of the flow field.

Flag to append Plot3D solution output

every 10 time steps

259

Useful CFL3D Tools

� Get_FD.F

– This program reads two CFL3D restart files and calculate finite differences of force and

moment coefficients; it is used to validate complex-variable approach for determining solution

derivatives.

� INGRID_to_p3d.F

– This program converts PEGSUS 4.x INGRID file to a PLOT3D file that can be used in

CFL3D. Note that the INGRID file must correspond to grid points rather than "augmented"

cell centers.

� XINTOUT_to_ovrlp.F

– This program converts the XINTOUT overset grid interpolation file from PEGSUS to the

ovrlp.bin file used by CFL3D.

� cfl3d_to_pegbc.F

– This program creates a peg.bc.raw file for use with PEGSUS 5.x.

� cgns_to_cfl3dinput.F

– This program reads a CGNS file and creates a PLOT3D-type grid as well as a best-guess for

a CFL3D input file.

260

Useful CFL3D Tools

� everyother_xyz.F

– This program reads a grid and creates an every-other-point grid. This can be useful in

combination with the program v6inpdoubhalf.F, in order to reduce the required CFL3D run-

time memory when you are only running on a coarser-level grid (and not taking it up to the

finer level(s).

� grid_perturb.F

– This program generates a real-valued grid (PLOT3D multiblock form) by reading in a real-

valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-

sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z

components of the ndv design variables). The code Get_FD.F may be used with the two

restart files to determine d(Cl)/d(DV), d(Cd)/d(DV), etc.

� grid_perturb_cmplx.F

– This program generates a complex-valued grid (PLOT3D multiblock form) by reading in a

real-valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-

sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z

components of the ndv design variables). The output grid may be read into the complex

version of CFL3D (cfl3dcmplx_mpi or cfl3dcmplx_seq) to determine the solution derivatives

with respect to the chosen design variable.

261

Useful CFL3D Tools

� initialize_field.F

– This program creates a restart.bin restart file in which you can specify specific initial

conditions, region by region. This can be useful when "freestream everywhere" is not a

desirable initial condition.

� moovmaker.F

– This program reads the PLOT3D files output by CFL3D when the MOVIE parameter is used

for 2-D datasets (or 3-D datasets surface-only), and creates new PLOT3D files with time as

the third (k) direction.

� p3d_to_INGRID.F

– This program converts either PLOT3D or CFL3D type grids into either INGRID type grids that

can be used with PEGSUS 4.x, or PLOT3D type grids that can be used with PEGSUS 5.x.

The converted grids can contain either the grid points as given in the input grids, or

"augmented" cell centers of the input grids.

� p3d_to_cfl3drst.F

– This program reads PLOT3D files and creates an approximate restart.bin restart file. This

can be useful if: (1) you are given a PLOT3D Q-file from another code, and you wish to use it

as a basis for starting CFL3D, or (2) you have lost the CFL3D restart file, but you still have

the PLOT3D Q-file.

262

Useful CFL3D Tools

� plot3dg_to_cgns.F

– This program reads a PLOT3D grid file and a CFL3D input file and creates a CGNS file (with

grid, BC, and 1-to-1 connectivity information in it).

� v6_restart_mod.F

– This program reads a restart.bin restart file and manipulates it. It can switch between

unformatted and formatted (which is useful if you need to transfer the restart file to a machine

of different architecture). It can also write out the restart file either the same size, half the

size, or double the size. Going to half size is useful if one wishes to restart from a fine grid

solution and run on a coarser level. User can choose to coarsen/refine only particular index

directions, if desired. The program cannot both coarsen and refine different directions

simultaneously.

� v6inpdoubhalf.F

– This program reads a CFL3D input file and creates a new input file appropriate for a grid of

either half or double the size. This can be useful in combination with the program

everyother_xyz.F when running on coarser grid levels, and you wish to reduce the run-time

memory required.

263

References

Edwards, J. W., Bennett, R. M., Whitlow Jr., W., Seidel, D. A., “Time-

Marching Transonic Flutter Solutions Including Angle-of-Attack Effects,”

Journal of Aircraft, 20 (1983), pp. 899-906.

Lee-Rausch, E. M., Batina, J. T., “Wing flutter boundary prediction using

unsteady Euler method,” Journal of Aircraft, 32 (1995), pp. 416-422.

Krist, S. L., “CFL3D User’s Manual (Version 5.0),” NASA/TM-1998-208444,

June 1998.

Bartels, R. E., “Mesh Strategies for Accurate Computation of Unsteady

Spoiler and Aeroelastic Problems,” Journal of Aircraft, 37 (2000),

pp. 521-525.

CFL3D version 6.0 web site: http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html.

Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured

Multi-Block Navier-Stokes Code,” NASA/TM-2005-213789, July 2005.

264

Summary

� CFL3D is a general purpose production-level CFD code for fluid

dynamics, with many capabilities and options.

� This tutorial has summarized many of the newest features of the

code, and also has explained in detail how to set up and run it for

general cases.

� Particular focus has been given to CFL3D’s upgraded deforming

mesh and aeroelastic analysis capabilities.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

CFL3D Version 6.4—General Usage and Aeroelastic Analysis

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Bartels, Robert E.; Rumsey, Christopher L; and Biedron, Robert T.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19247

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 01
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to
provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases.
Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a
CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented
to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4
presented here that has not previously been published. There are also outdated features no longer used or
recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates
outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also
provides hints for usage, code installation and examples not found elsewhere.

15. SUBJECT TERMS

Aeroelastic analysis; CFL3D; CFL3D version 6.4; Computational fluid dynamics code

18. NUMBER
 OF
 PAGES

269

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

984754

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2006-214301

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 200601-

