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Abstract—Sarcasm detection in conversation (SDC), a theoret-
ically and practically challenging artificial intelligence (AI) task,
aims to discover elusively ironic, contemptuous and metaphoric
information implied in daily conversations. Most of the recent
approaches in sarcasm detection have neglected the intrinsic
vagueness and uncertainty of human language in emotional
expression and understanding. To address this gap, we pro-
pose a complex-valued fuzzy network (CFN) by leveraging the
mathematical formalisms of quantum theory (QT) and fuzzy
logic. In particular, the target utterance to be recognized is
considered as a quantum superposition of a set of separate
words. The contextual interaction between adjacent utterances is
described as the interaction between a quantum system and its
surrounding environment, constructing the quantum composite
system, where the weight of interaction is determined by a fuzzy
membership function. In order to model both the vagueness
and uncertainty, the aforementioned superposition and composite
systems are mathematically encapsulated in a density matrix. Fi-
nally, a quantum fuzzy measurement is performed on the density
matrix of each utterance to yield the probabilistic outcomes of
sarcasm recognition. Extensive experiments are conducted on the
MUStARD and the 2020 sarcasm detection Reddit track datasets,
and the results show that our model outperforms a wide range
of strong baselines.

Index Terms—Sarcasm detection, emotion recognition, fuzzy
logic, quantum theory, artificial intelligence.

I. Introduction

S
ARCASM can be traced back to ancient Greece, and
was first recorded in English in 1579 [1]. It is a kind
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of rhetorical strategy that is intended to express criticism or
mock emotions by means of hyperbole, figuration, etc [2], [3]. 5

Through the theory discussion for a long time, it is finally
defined as “a mode of satirical wit depending for its effect

on bitter, caustic, and often ironic language that is usually

directed against an individual” [4]. The recent advancement
of Internet and social network services has led to a huge and 10

increasing usage of ironic language, which plays an important
role in daily discourse. We here give two real-life examples:
(1) a waiter sees one client struggling to open a door and asks
the client, “Do you want help?”, if the client replies by saying,
“No, I’m really enjoying the challenge”. Then the waiter knows 15

he’s being sarcastic. (2) When a husband comes home after a
long day at work, he expresses his sarcastic attitude, “I love
working 40 hours a week, well done!”.

Thus, identifying the sarcasm emotion of user-generated
texts has a large potential for a wide range of domains, e.g., to 20

help manufacturers predict the attitudes of consumers toward
their products and to help political associations understand
general public opinions. For example, Donald Trump takes an
irony tone at Joe Biden in his tweets such as “He is actually
somewhat better than a rabid dog”, due to his stance against 25

Biden who appeared to be his new rival in the next presidency
election. As another example, the third-party sellers on Amazon
want to find public or consumer opinions and emotions about
their products and services. Hence, there has been an increasing
interest from both academia and industry in detecting sarcasm 30

in texts [5], [6].
An effective sarcasm detector is also beneficial to applica-

tions like sentiment analysis [7], humor analysis [8], brand
management [9], business intelligence and more broadly across
our daily lives [10]. Sarcasm detection refers to the use of 35

natural language processing (NLP), statistics and machine/deep
learning methods to recognize sarcasm or irony orientations
for various granularities of texts at the sentence, document
or conversation levels. It is often formalized as the binary
classification problem [11]. Previous sarcasm detection methods 40

in the literature have mainly focused on analyzing narrative
texts, e.g., product reviews, tweets, etc., without involving
interaction among the writers or speakers.

Currently, there are a series of emerging conversational
sarcasm detection models that target at detecting the sarcastic 45

attitude of multiple speakers in an conversation. Compared
with the traditional sarcasm detection, SDC is more challenging
for two reasons: (1) in the conversation, the attitude of each
speaker is heavily influenced by other speakers, thus they
are inseparable and cannot be treated independently; (2) the 50
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Fig. 1: Sample sarcastic utterance in a conversation along with
its context.

interaction among people carries a wealth of information, such
as their social relationships, stances, etc. However, such models,
including the state of the art [12] are focused on investigating
the role of conversation context or learning the contextual
dependencies. They have not yet taken into consideration55

the inherent vagueness and uncertainty of human language
in sarcasm expression, which needs to be studied from a more
general cognitive science perspective. For illustration, Figure 1
provides a sarcastic example from the MUStARD dataset [2].

In cognitive science, emotions are considered as the uncertain60

and vague part of human perception [13]. The uncertainty
mainly refers to the spontaneity of emotional activities, where
emotions are generated automatically without any rational
reasoning process, and the change in emotional states does not
involve any rational logical reasons. Even we have collected65

all prior knowledge, we might not determine emotional states.
The vagueness refers that there is not a sharp line between
different emotions, e.g., sad and depressed. Since emotion is a
positive or negative personal experience, it cannot be as clear
and determinate as rational logic.70

As a specific form of emotional expression, sarcasm naturally
inherits these characteristics. To model the fuzziness, a large
body of fuzzy logic based models has been proposed [14],
[15], [16], [17], [18]. A detailed literature review is given
in Sec. II-B. They usually extract the syntactic and semantic75

features in a sentence by designing machine/deep learning
architectures and obtain the predictions through using various
fuzzy membership functions or constructing applicable if-then

rules. Most of them neglect another key factor determining the
sarcasm polarity, namely the uncertainty of human language.80

In recent years, quantum theory (QT), as a mathematical
formalism to model the uncertain particle behaviors in quantum
physics, has been adopted for describing elusive human
cognitive and emotional activities in various AI tasks [19], [11].
For instance, the quantum language model (QLM) [20] and85

neural network-based QLM [21] represented user’s information
needs and documents as density matrices (DMs) in a common
quantum probabilistic space. The quantum sentiment repre-

sentation (QSR) model [22], [23] learned both the sentiment
and semantic information with an improved version of QLM. 90

However, such QT-based models are limited in that they restrict
the models to finite vector spaces over real numbers. The
potential for complex-valued formulations has not been fully
developed. To address this problem, Wang and Li [24] defined
a complex semantic Hilbert space to capture the “quantumness” 95

in the cognitive aspect of human language. Nonetheless, their
model randomized the complex phase instead of digging into its
concrete meaning, and did not take into account the contextual
interaction information, which is crucial for understanding
human language. 100

In this paper, we argue that there are some fundamental
connections between QT and fuzzy logic, since the fuzzy logic
interpretation of quantum mechanics has been demonstrated
under some circumstances [25]. Hence, unifying the quantum
theory formalism and fuzzy logic would give us a more power- 105

ful theoretical framework to capture the subtle sentiments and
semantics behind multiparty conversations. We thus propose a
complex-valued fuzzy network, termed CFN, to jointly capture
the uncertainty and vagueness of human language in sarcastic
expression1. To model the uncertainty, each utterance is treated 110

as a quantum superposition of a set of basis words, which is
represented by a complex-valued vector, where each component
adopts an amplitude-phase form z = reiθ. The contextual
interaction between adjacent utterances is described as the
interaction between a quantum system and its surrounding 115

environment, constructing a composite system. To model the
fuzziness, the weight of interaction is determined by the
fuzzy membership function. Then, the speaker’s sarcastic
attitude is viewed as a quantum mixed system composed of
composite systems, which is mathematically encapsulated in 120

a density matrix. Finally, considering the fact that all the
information contained in one system (which, in this paper,
refers to each utterance) is represented by the probability
distribution of quantum measurement results, sarcastic features
are extracted via the concept of quantum measurement, which 125

is a natural choice. A fuzzy quantum measurement is performed
on the density matrix of each target utterance to extract the
probabilistic features, while these features are passed to a fully
connected softmax layer to yield predictions over the sarcasm
labels. 130

We have designed and carried out extensive experiments
on two benchmark conversational sarcasm datasets, i.e., MUS-
tARD and the 2020 sarcasm detection Reddit track, to demon-
strate the effectiveness of the proposed CFN framework in
comparison with a wide range of baselines, including a machine 135

learning approach (i.e., support vector machine, SVM) and
seven state-of-the-art sarcasm detection approaches (i.e., con-
volutional neural network (CNN), bidirectional gated recurrent
unit (BiGRU), multi-head attention-based bidirectional long-
short memory (MHA-BiLSTM) network, bidirectional encoder 140

representations from transformers (BERT), RCNN-RoBERTa,
contextual sarcasm detection network (C-Net) and a multi-task
learning (MTL) framework). The results show that the CFN

1We have made our source code publicly available at
https://github.com/whatc0de/CFN-maste
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significantly outperforms a wide range of comparative models.
The rest of this paper is organized as follows. Section II out-145

lines the related work. Section III introduces the preliminaries
of quantum theory and fuzzy logic. In Section IV, we describe
the proposed complex-valued fuzzy network framework in
detail. In Section V, we report the empirical experiments and
analyze the results. Section VI concludes the paper and points150

out future research directions.

II. Related Work

A. Sarcasm Analysis

Sarcasm is a very subtle form of metaphorical language,
where the literal meaning of the sentence is contrary to its true155

interpretation. In NLP, sarcasm detection is typically treated as
a text classification task. Generally speaking, there exist three
categories of approaches in the current literature: rule-based,
machine learning-based and deep learning-based approaches.

Rule-based approaches. The rule-based approaches infer160

the overall sarcasm polarity of a piece of text based on refined
sarcasm rules, which do not require a large data corpus and
training algorithms. The early research in this direction assumed
interjections as stereotypic of sarcastic text. Bharti et al. [26]
proposed two lexicon based approaches, one of which is a165

parsing-based lexicon generation algorithm (PBLGA) and the
other is based on the occurrence of the interjection word.
Hernandez et al. [27] used the semantic relatedness between
words as the sarcastic features. Bouazizi el al. [28] defined
four sets of features that cover different types of sarcasm, and170

used these features to classify sarcastic tweets. Clews and
Kuzma [29] applied a string matching strategy against positive
sentiment and used interjection lexicons to judge sarcasm.
As the rule-based approaches largely depend on rules and
patterns, their classification accuracy is generally lower than175

machine/deep learning approaches. Satoshi Hiai [30] extracted
sarcastic sentences in product reviews using classification rules
and classified the sentences into eight classes by focusing
on evaluation expressions. Kamal et al. [31] proposed a self-
deprecating sarcasm detection approach using an amalgamation180

of rule-based techniques.
The rule-based approaches do not consider the contextual

interaction. Since they rely heavily on sarcasm rules or
lexicons, their classification performance is generally inferior
to machine/deep learning-based approaches.185

Machine learning-based approaches. These methods
mainly make use of machine learning methods, such as random
forest, support vector machines, and neural networks. They
often involve building classifiers from labeled data, essentially
a supervised classification task. For instance, Lunando et190

al. [32] employed the negativity information and the number of
interjection words in the translated SentiWordNet as features,
and fed them into various machine learning classifiers. Habernal
et al. [33] evaluated two machine learning classifiers with
various combinations of features, e.g., N-gram, POS, etc., on195

both the Czech and English sarcasm datasets. Mukherjee and
Bala [34] tested a range of feature sets using the Naive Bayes
and fuzzy clustering algorithms for sarcasm detection of online
text. Sharma [35] used features of user’s account and tweets,

and devised three machine learning algorithms for the task of 200

potential rumour origin detection. Kumar and Garg [36] com-
pared the performance of several machine learning algorithms,
including support vector machines, decision trees, and random
forest, etc.

There have been a few sarcasm detection approaches that 205

explored contextual features to acquire shared knowledge
between the speakers. Rajadesingan et al. [37] used the user’s
past tweets to construct a behavioral modeling framework tuned
for detecting sarcasm. Joshi et al. [38] proposed a sequence
labeling approach and showed that the history utterances help 210

improve the performance of sarcasm detection.
There are a range of machine learning-based rumor prop-

agation and recognition approaches that also develop similar
strategy to investigate rumor. Belen and Pearce [39] checked
general initial conditions of ignorants, spreaders and stiflers, 215

and analyzed how the initial conditions bear on what proportion
of ignorants by using rumor model. They also described an
impulsive control model of a rumor process to classify the
spreaders [40]. Belen et al. [41] proposed a solution to the
problem of a repeated rumor based on the classical Maki- 220

Thompson rumor model, and thus they improved the Maki-
Thompson model and derived a new solution for each dynamics
of spreading of a rumor [42]. Similarly, Wilhelm Weber
and Gürbüz [43] chose the numerical approach to study the
dynamics of a rumor propagation model, and conduct detailed 225

analysis. They then proved the effectiveness of the rumor
propagation model [44]. Further, they proposed a numerical
technique based on nonlinear ordinary differential equation, to
solve a rumor propagation model [45].

Machine learning-based approaches usually achieve higher 230

classification results than rule-based approaches. However,
they separate the feature extraction from the decision-making
process. Their performance largely depends on the feature
engineering, which is often cumbersome to design.

Deep learning based approaches. As deep learning based 235

architectures cast off the fetters of feature engineering, they
usually achieve a better performance. A growing number
of researchers apply deep learning technologies to sarcasm
recognition as well.

As one of the first studies, Poria et al. [46] employed 240

a pre-trained CNN for extracting sentiment, emotion and
personality features. Zhang et al. [47] used a bi-directional
gated recurrent neural network (RNN) to capture contextual
features for sarcasm detection. Similarly, Potamias et al. [6]
designed a deep framework, which consisted of the pre- 245

trained transformer-based architecture for irony and sarcasm
detection. Chaturvedi et al. [48] designed a deep CNN to extract
features from texts and images, and predicted the degree of
a particular emotion using a fuzzy logic classifier. Vashishtha
and Susan [49] proposed an unsupervised system that was 250

based on nine fuzzy rules to classify the posts into three
sentiment classes. Chatterjee et al. [50] took the context of
the utterance into consideration, and proposed a deep learning
based approach. Liu et al. [51] proposed a deep neural network,
called A2Text-Net, to mimic the face-to-face speech, which 255

integrated auxiliary clues such as punctuations, part of speech
(POS), emoji, etc., to improve the performance of sarcasm
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detection.
Recently, contextual information has been exploited for

sarcasm detection. Jaiswal [52] investigated various pre-trained260

language representation models and utilized the contextual
information along with the utterance for SDC. Ghosh et al. [53]
used LSTM and attention-based LSTM to investigate the role
of conversation context in detecting sarcasm in social media
discussions. For a similar purpose, Castro et al. [2] created265

a new dataset, MUStARD, for multimodal sarcasm research
with high-quality annotations, including both mutlimodal and
conversational context features. In a further work [54], they
argued that knowledge in sarcasm detection could also be
beneficial to sentiment analysis, and designed a multi-task270

learning framework using a deep neural network to improve
the performance of both tasks. Similarly, Chauhan et al. [5]
leveraged the multi-modal sentiment and emotion information
for solving the problem of multi-modal sarcasm detection in a
multi-task framework. However, they neglected the contextual275

interaction between adjacent utterances.
To sum up, the afore-discussed three types of studies have

made a good progress in sarcasm detection, and motivated our
work. They are mainly focused on studying refined sarcastic
rules, extracting effective features and building deep learning280

architectures for sarcasm recognition. However, to the best of
our knowledge, they have not yet systematically taken into
account the vagueness and uncertainty of human language in
sarcastic expression, which we aim to tackle in this paper.

B. Fuzzy Logic based Models285

To model the fuzziness in artificial intelligence problems, a
large body of fuzzy logic based models has been proposed [15],
[55]. For example, Alireza Goli’s team has proposed a range
of fuzzy models to solve cell formation problem (CFP) [14],
relief vehicles problem [16], transportation route planning [55],290

etc [56]. Kropat and Weber [57] depicted the eco-finance
networks for modeling gene-expression patterns with respect
to errors and uncertainty. Erik Kropat [58] introduced time-
discrete target-environment regulatory systems (TE-systems)
under ellipsoidal uncertainty, and presented a mixed integer295

regression problem for the relaxation by means of continuous
optimization. They [59] also discussed a lot of regression
models for gene-environment networks under ellipsoidal un-
certainty. In order to model the relations between the targets
and environmental entities of the regulatory network, they300

proposed a fuzzy target-environment network and analyzed
the vagueness of the regulatory system [60], [61]. Then, they
extended the concept of fuzzy target-environment networks to
fuzzy-regression models with fuzzy data sets for understanding
of interconnected complex systems. [62].305

To the best of our knowledge, our work is the first that
brings together quantum theory and fuzzy logic for SDC. The
major innovations of the work presented in this paper can be
summarized as follows.

• A novel application of fuzzy logic to SDC is proposed.310

• Inspired by quantum probability theory, we introduce
complex numbers into the utterance representation.

• A complex-valued fuzzy network is designed, which
leverages quantum probability theory and fuzzy logic

to capture both the vagueness and uncertainty in sarcastic 315

expression.
• We verify the effectiveness of our model by applying it

to the task of SDC. Empirical experimental results show
that our model outperforms strong baselines.

III. Preliminaries of Quantum Theory and Fuzzy Logic 320

A. Quantum Theory Preliminaries

In QT, the quantum probability space is naturally encapsu-
lated in an infinite complex Hilbert space, denoted as H. The
essential difference between quantum and classical probability
lies in the complex nature of quantum states. 325

With the Dirac’s notation, a pure quantum state can be
represented by a ray in a Hilbert space over the complex
numbers. A quantum state vector in a complex vector space, ~u,
can be expressed as a ket |u〉, and its transpose can be expressed
as a bra 〈u|. In Hilbert space, a quantum system can be in 330

multiple mutually exclusive basis states simultaneously, with
a probability distribution until it is measured, called quantum
superposition, namely, |u〉 =∑n

i=1
zi|wi〉, where the |wi〉 are

orthogonal unit vectors and the zi are complex components.
After measurement it then collapses to one of the basis states 335

that form the superposition. Quantum superposition describes
the uncertainty of a single particle. For example, if there are
two basis states |0〉 and |1〉, then a superposition state would be
|u〉 = zα|0〉+zβ |1〉, where zα and zβ are complex coefficients,
satisfying z2α + z2β = 1. 340

A quantum event is defined to be a subspace of Hilbert
space, represented by any orthogonal projector Π. Assume |u〉
is a unit vector, i.e., ‖~u‖

2
= 1. The projector Π is written as

|u〉〈u|. A quantum mixed state corresponds to a probabilistic
mixture of pure states, which is represented by the density 345

matrix, ρ =
∑

λ µλ|u〉〈u|. Density matrix ρ is symmetric (i.e.,
ρ = ρT ), positive semi-definite (i.e., ρ ≥ 0), and of trace
1. The quantum probability measure M is associated with
the density matrix. The Gleason’s Theorem has proven the
existence of a mapping function M (|u〉〈u|) = tr (ρ|u〉〈u|) for 350

any |u〉. In QT, quantum measurement describes the interaction
(compositing) between a quantum system and the measurement
device, where the composition system can be represented by
the tensor product of two systems, e.g., M ⊗ |u〉.
Measurement . Measurement is a process of testing or 355

manipulating the physical property of a system. In classical
mechanics, the measurement process and measurement device
are independent of the measured objects, which will not affect
the measured objects. However, measurement in quantum world
has an impact on the measured object, such as changing the 360

state of the system to be measured. Quantum measurement is
described by a set of measurement operators acting on the state
space of the system being measured {Mm}, where m represents
the possible measurement outcomes. Suppose the quantum
system is in a state of ρ|u〉 before the measurement, then the 365

probability to obtain the outcome m after the measurement
is p (m) = 〈u|M†

mMm|u〉. Moreover, the state of quantum
system has changed to: Mm|u〉√

〈u|M†
mMm|u〉

.

By introducing the complex number, QT could define
complex probability amplitude to construct classical probability 370
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(i.e., the square of the probability amplitude equals to the
probability, providing a many-to-one relationship between
probability amplitude and probability), and thus describe
the uncertain events. QT provides a principled and effective
mechanism to capture the intrinsic uncertainty.375

B. Basic Notations and Concepts in Fuzzy Logic

The conventional Boolean logic has been applied to a wide
variety of AI applications, by only permitting two truth values,
i.e., true and false. It has many deficiencies since two truth
values are incapable of describing complex reasoning mode380

of human. As an extension, fuzzy logic was invented to deal
with vagueness and imprecise information by defining many
values between 0 and 1, in the form of fuzzy sets [3], [63].

Fuzzy logic commonly provides a three-step process, i.e.,
fuzzification, logical operation and defuzzification, to map the385

linguistic variables onto output results. Fuzzification targets at
converting the numerical input of a system x to the degree of
membership in a fuzzy set A, by using membership function
µA. The degree of membership could be any values within
the interval [0,1], µA (x) ∈ [0, 1]. There are different types of390

membership functions, e.g., triangular, trapezoidal, Gaussian,
sigmoid, polynomial functions, etc.

Fuzzy logic has defined three basic operators, AND, OR
and NOT. Assume that there are four fuzzy sets, i.e., A, B,
C and D, where C = A ∪ B, D = A ∩ B. Then, µC (x) =395

max {µA (x) , µB (x)}, µD (x) = min {µA (x) , µB (x)}, and
µAc (X) = 1 − µA (X). Defuzzification is the process of
transforming the output value of a fuzzy inference system into
a crisp output. There are some mostly-used algorithms, e.g.,
finding the center of gravity, calculating the average mean,400

calculating the left maximum, etc.
Building on many-valued logic, fuzzy logic aims to simulate

human intelligence for automatically handling vague informa-
tion, performing judgment and reasoning.

C. The Relations between QT and Fuzzy Logic405

QT has a close tie with fuzzy logic, since both of them
provide a mean to deal with concepts like vagueness and
uncertainty. In comparison to fuzzy logic that is based on
membership values, QT is defined on complex subspace
identified by projectors [25]. The interaction of a projector410

with a density matrix produces a value which can be directly
interpreted as the degree of membership. Meanwhile, the fuzzy
membership function could be used to depict the relative
importance of each quantum state. A few studies proved
that some logic operations of projectors (e.g., junction) in415

QT directly corresponds to the operations in fuzzy logic
under some conditions [64]. They also conducted detailed
analysis of a fuzzy logic interpretation of quantum theory by
demonstrating that the Schroedinger equation can be deduced
from the assumptions of the fuzziness [65].420

In this work, we bring QT and fuzzy logic together for
modeling the intrinsic vagueness and uncertainty of human
language in emotional expression and understanding.

D. How to Apply Key Notations to Our Approach

Here, we summarize the key notations in QT and fuzzy 425

logic and explain how to apply them to our approach. (1)
The quantum state |u〉 could be seen as the utterance u in
conversations, while the ith basis vector |wi〉 is linked to the
ith basis word vector. Each utterance is thus seen as in a
quantum superposition of a set of basis words, and represented 430

as |u〉 =
∑n

i=1
zi|wi〉. The target utterance |ut〉 and its λth

context |cλ〉 are calculated in the same way (c.f. Sec. IV-C).
(2) The composition system in QT is linked to the contextual
interaction between the target utterance |ut〉 and its context |cλ〉,
which could be calculated as the tensor product of them, e.g., 435

|Ψcλ
t 〉 = |ut〉⊗|c1〉⊗|c2〉, ...,⊗|cλ〉. (3) The final representation

of the target utterance is considered as a quantum mixed
state that is in a statistical mixture over multiple composition
systems, which can be mathematically encapsulated in a density
matrix, i.e., ρt =

∑

λ µλ|Ψcλ
t 〉〈Ψcλ

t |, where µλ is the fuzzy 440

membership function representing the relative importance of
the λth composition system (c.f. Sec. IV-D). (4) Since we
have obtained the representation of the target utterance ρt,
a sequence of quantum fuzzy measurements {Mm} on the
representation ρt, for obtaining refined sarcastic features by 445

calculating tr (Mmρt) (c.f. Sec. IV-E). Hence, we will benefit
from the unified and principled mathematics of QT.

IV. Complex-valued Fuzzy Network

In order to capture both the vagueness and uncertainty in
human language, with conversational sarcasm detection as a 450

particular exemplar in this paper, we propose an end-to-end
neural network based on QT and fuzzy logic, called complex-
valued fuzzy network.

A. Problem Formulation and Overall Framework

Problem Formulation. Suppose the dataset has L 455

samples, the γth sample Xγ could be represented as
{Xγ = (Cλ, Ut) , Yt}, where Cλ, Ut, Yt represent the λth

conversational context, the target utterance and its label
respectively, where Cλ ∈ H

lλ×dλ , Ut ∈ H
lt×dt . Here, lλ

and lt denote the sequence length of contextual and target 460

utterances, dλ and dt mean the dimensions of the contextual
and textual features. λ ∈ [1, 2, ..., k], γ ∈ [1, 2, ..., L].

Now, given a conversation (including the context Cλ and
target utterance Ut), how to determine the sarcasm polarity
(Yt). We formulate the problem as follows: 465

ζ =
∏

λ

p (Yt|Cλ, Ut,Θ) (1)

where Θ represents the parameter set.
Overall Framework. The architecture of the CFN frame-

work is shown in Fig. 2. (1) In the embedding layer, the
target utterance ut and its λth contextual utterance cλ are
embedded as complex-valued embeddings that are expressed 470

in polar form, denoted as |ut〉 and |cλ〉. (2) In the fuzzy
composition layer, the interactions between |ut〉 and its
contexts {|c1〉, |c2〉, . . . , |cλ〉, . . . , |ck〉} are modeled as mul-
tiple quantum composite systems, which are given by the
tensor product of individual utterance embedding, where the 475
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Fig. 2: The architecture of complex-valued fuzzy network. ⊗ denotes the tensor product operation. ⊛ denotes an outer production
to a vector. ⊙ denotes point-wise multiplication. ⊕ refers to a element-wise addition. M© means a quantum fuzzy measurement.

results are mathematically encapsulated in the density matrix
ρt. (3) Sarcastic features are extracted via the concept of
quantum measurement, which is a natural choice given the
quantum state representation of sarcastic sentence. The fuzzy
measurement layer is designed to perform a set of quantum480

fuzzy measurement operators to extract the sarcastic features
~mt. (4) The dense layer is employed to infer the final sarcasm

polarity for the utterance.

B. Theoretical Advantages of Our CFN Framework

Before presenting the CFN framework, we provide the485

mathematical proofs here to show the advantages of our CFN
framework in the form of three propositions.

Proposition 1 Quantum probability is more general to

capture the uncertainty in human language.

Proof. Let z (x) = reiθ be a quantum complex probabil-
ity amplitude of event x. Using the definition of quantum
probability, we get the classical probability of event x

p (x) = |z (x)|2 = r2,

that is
r =

√

p (x)

where r ∈ R, θ ∈ (−π, π). Given p (x), the complex
probability amplitude will satisfy

z (x) =
√

p (x)× (cos θ + i sin θ) = reiθ

Hence, ∃ r1, r2 ∈ R, r1 6= r2 and ∀ θ1, θ2 ∈ (−π, π) , θ1 6=
θ2, satisfies that z1 (x) = r1e

iθ1 , z2 (x) = r2e
iθ2 . We obtain

|z1 (x)|2 = p (x) = |z2 (x)|2 (2)

s.t r21 = r22

We conclude that ∃z1, z2 ∈ H and z1 6= z2, then z1 →490

p ∧ z2 → p.
Remark 1. For example, the probability of a word w is 0.5,

i.e., p (x = w) = 1

2
, then the corresponding probability ampli-

tude may be z (x = w) =
√
2

2
ei

π
4 or z (x = w) = −

√
2

2
ei

3π
5 ,

etc. There is a many-to-one relationship between complex 495

probability amplitude and probability. The amplitude r links
to the probability, while the phase θ may be associated with
hidden sentiment or sarcasm orientations. An utterance thus
could be represented in an amplitude-phase manner.

Proposition 2 Quantum superposition embodies a non-linear 500

fusion of basis states.

Proof. Let z1 (w1) and z2 (w2) be the complex probability
amplitudes of two basis words w1, w2 respectively, where
z1 (w1) , z2 (w2) ∈ H

lt×dt .
Let a compound term be c ∝ (w1 w2), we obtain

z3 (c) = αz1 (w1) + βz2 (w2) (3)

s.t α2 + β2 = 1,

α, β ∈ H

where z3 (c) ∈ H
lt×dt . Based on Proposition 1, we have

p (w1) = |z1 (w1)|2 , p (w2) = |z2 (w2)|2

s.t p (w1) , p (w2) ∈ [0, 1]

We can derive the probability of the compound term:

p (c) = |z3 (c)|2 = |αz1 (w1) + βz2 (w2)|2

= (αz1 (w1) + βz2 (w2)) · (αz1 (w1) + βz2 (w2))
†

= αz1 (w1) · (αz1 (w1))
†
+ βz2 (w2) · (βz2 (w2))

†

+ αz1 (w1) · (βz2 (w2))
†
+ βz2 (w2) · (αz1 (w1))

†

= αz1 (w1) · (αz1 (w1))
†
+ βz2 (w2) · (βz2 (w2))

†

+ αz1 (w1) · (βz2 (w2))
†
+
(

αz1 (w1) · (βz2 (w2))
†
)†

= |αz1 (w1)|2 + |βz2 (w2)|2 + 2Re
(

αz1 (w1) · (βz2 (w2))
†
)

= |αz1 (w1)|2 + |βz2 (w2)|2 + 2 |αz1 (w1)βz2 (w2)| cosθ
= α2p (w1) + β2p (w2) + 2αβ

√

p (w1) p (w2)cosθ
(4)



IEEE TRANSACTIONS ON FUZZY SYSTEMS, XX-XX 7

We use contradiction to prove the non-linearity. Assume that

p (x) = α2p (w1) + β2p (w2) + 2αβ
√

p (w1) p (w2)cosx
(5)

which is a linear function, satisfying

kp (x) = p (kx) ∀x,

since this must hold for all x, it certainly must hold in the
special case x = π

2
. Let k = 2, then

2α2p (w1) + 2β2p (w2) + 4αβ
√

p (w1) p (w2)cos
π

2
=

α2p (w1) + β2p (w2) + 2αβ
√

p (w1) p (w2)cos
2π

2
(6)

which leads to the ridiculous conclusion that

α2p (w1) + β2p (w2) = −2αβ
√

p (w1) p (w2) (7)

Our assumption that Eq. 5 is linear is false.505

Remark 2. Hence, the probability of the compound term is
the non-linear superposition of the probabilities of the basis
words, with an interference term determined by the relative
phase θ. This provides a higher level of abstraction.

Proposition 3 Quantum composition system describes the510

correlations between parts and whole.

Proof. Let ui and uj represent two adjacent utterances, we
obtain

|ui〉 = α1|w1〉+ β1|w2〉
|uj〉 = α2|w1〉+ β2|w2〉

s.t α2
1 + β2

1 = 1, (8)

α2
2 + β2

2 = 1,

α1, α2, β1, β2 ∈ H

State space of a composite system Hui,uj
consisting of two

utterances ui and uj is written as a tensor product of the
individual state spaces |ui〉 and |uj〉:

Hui,uj
= |ui〉 ⊗ |uj〉
= (α1|w1〉+ β1|w2〉)⊗ (α2|w1〉+ β2|w2〉)
= α1|w1〉 ⊗ (α2|w1〉+ β2|w2〉)
+ β1|w2〉 ⊗ (α2|w1〉+ β2|w2〉)
= α1α2|w1w1〉+ α1β2|w1w2〉
+ β1α2|w2w1〉+ β1β2|w2w2〉

(9)

Let |w1〉 = (x1, x2)
T , |w2〉 = (y1, y2)

T , then

Hui,uj
= α1α2

[

x2
1 x1x2

x2x1 x2
2

]

+ α1β2

[

x1y1 x1y2
x2y1 x2y2

]

+ β1α2

[

y1x1 y1x2

y2x1 y2x2

]

+ β1β2

[

y21 y1y2
y2y1 y22

]

(10)

where Hui,uj
is controlled by the basis words.515

Remark 3. Eq. 10 proves that the composition system
consisting of utterances embodies the correlations between
words, which inspires us to model the contextuality by a “global
to local” way. The details of the CFN framework will be given
in the next subsections.520

C. Complex-valued Utterance Embedding

In QT, quantum probability could be seen as the mathe-
matical product of generalizing classical probability to the
complex number field. Complex numbers are introduced to
describe uncertain quantum state and behavior by defining the 525

concept of quantum probability amplitude, where the modulus
squared of the quantum probability amplitude represents a
classical probability, providing a many-to-one relationship
between probability amplitude and probability. Complex prob-
ability amplitude possesses outstanding ability to model the 530

uncertainty.
Motivated by Wang and Li’s work [66], we seek inspira-

tions from quantum probability, and design a complex-valued
utterance embedding layer. As word is the basic semantic unit
of human language, we regard each word wj in conversations 535

as the basis state |wj〉, and assume that {|w1〉, |w2〉, ..., |wn〉}
builds the orthogonal basis of dialogic Hilbert space Hd. The
basis state |wj〉 is mapped into dialogic Hilbert space Hd using
one hot encoding, which consists of zero in all cells with the
exception of a single one in a cell used uniquely to identify 540

the word, i.e., |wj〉 =
(

0, 0, ..., 0
j−1

, 1
j
, 0
j+1

, ..., 0

)T

.

Then, an utterance could be seen as a collection of words.
In QT, superposition is a fundamental concept, which has
described the inherent uncertainty in the state of a microscopic
particle (which, in this paper, refers to human sarcastic attitude). 545

In order to capture the uncertainty in human language, we
regard the target utterance ut as a quantum superposition
of a set of basis words {|w1〉, |w2〉, ..., |wn〉}, which can be
formulated as:

|ut〉 =
n
∑

j=1

zj |wj〉

zj = rje
iθj

(11)

where n is the number of words in the utterance. zj is a 550

complex probability amplitude that is expressed in polar form,
sufficing

∑

z2j = 1. i is the imaginary number satisfying the
equation i2 = −1. rj represents the absolute value or modulus
of the complex vector, termed amplitude. θj ∈ (−π, π) is the
argument (phase) of zj , referring to the angle of the ray with 555

the positive real axis.
Let the amplitude R represent the length of the ray while

the phase Θ denotes its direction. In this paper, we associate
both of them with specific linguistic meanings. The amplitude
is analogous to the semantic knowledge. As for the phase, 560

since sarcasm is closely related to sentiment, it is linked to
the sentiment orientation of the utterance. Now, the target
utterance has been represented as a complex-valued vector,
i.e., |ut〉 =

(

r1e
iθ1 , r2e

iθ2 , ..., rne
iθn
)T

. The embedding of
λth contextual utterance, i.e., |cλ〉, can be calculated in the 565

same way.
Eq. 11 is proposed to map each utterance into an embedding

and learn its complex-valued vector representation. This
complex-valued representation could capture the uncertainty
in human language via the concept of quantum superposition 570

and complex probability amplitude. This representation can be
used to model the interaction between the target utterance and
its contexts as a basic form (c.f. Eq. 13).
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Moreover, this representation uses both the amplitude and
phase to determine the complex probability amplitude zj ,575

releasing strong ability to model the probability. It also
allows for a non-linear fusion of amplitudes and phases in
its mathematical form. Suppose the components r1j e

iθ1
j and

r2j e
iθ2

j represent the jth dimension of two utterances u1 and

u2 respectively. The component r3j e
iθ3

j of the combination of580

u1 and u2 could be computed as:

r3j e
iθ3

j = r1j e
iθ1

j + r2j e
iθ2

j

=

√

∣

∣r1j
∣

∣

2
+
∣

∣r2j
∣

∣

2
+ 2r1j r

2
j cos

(

θ1j − θ2j
)

× e
i arctan

(

r1
j
sin(θ1j)+r2

j
sin(θ2j)

r1
j
cos(θ1j)+r2

j
cos(θ2j)

)

(12)

Eq. 12 provides a non-linear fusion way to describe the
compound term or phrase.

D. Learning Contextual Interaction with The Fuzzy Composi-

tion Layer585

In QT, ideal quantum measurement describes the interaction
(coupling) between a quantum system, the measurement device
and their surrounding environments (e.g., other neighbor
systems). However, we argue that the measurement device and
the environments may not participate equally in the interaction590

with the quantum system in realistic world, i.e., their degrees of
involvement in the interaction are not equal. This interaction is
analogous to the interaction among utterances in a conversation,
while different context utterances, e.g., in the previous turns of a
conversation, express different intensities of human interaction.595

Inspired by this observation, we treat the target utterance ut

as a quantum system to be measured, its contextual utterances
C = {c1, c2, ..., ck} as the surrounding environments. The
measurement device is characterized as a set of measurement
operators, which will be detailed in next subsection (c.f.600

Sec. IV-E). Based on fuzzy logic, we thus design a fuzzy
composition layer to capture contextual interaction among
utterances.

Suppose that a target utterance ut is represented by its
complex-valued embedding |ut〉, and its contexts are repre-605

sented by their embeddings {|cλ〉}kλ=1
= {|c1〉, |c2〉, ..., |ck〉}

respectively. The interaction between the target utterance ut

and its λth context cλ constructs a composite system |Ψcλ
t 〉,

which is given by the tensor product of individual utterance
embedding. In this work, the intensity of human interaction is610

dependent on the distance of context utterances directly. We aim
to learn both long and short range contextual interactions, by
constructing multiple composite systems with a variable number
of contexts. The λth composite system could be computed as:

|Ψcλ
t 〉 = |ut〉 ⊗ {|cq〉}λq=1

= |ut〉 ⊗ |c1〉 ⊗ |c2〉⊗, ...,⊗|uλ〉
(13)

where λ ∈ [1, k]. According to Eq. 13, we have built615

k composite systems for k context utterances, i.e., Ψk =
{|Ψc1

t 〉, |Ψc2
t 〉, ..., |Ψck

t 〉}. The role of Eq. 13 is to learn the
interactions between the target utterance and its contexts, by
introducing the operation of tensor product, where the result
is represented as the composite system.620

Then, the final representation of the target utterance is in a
statistical mixture over multiple composite systems Ψk, which
can be mathematically encapsulated in a density matrix. Sup-

pose the λth composite system |Ψcλ
t 〉 =

(

Ψcλ
t,1,Ψ

cλ
t,2, ...,Ψ

cλ
t,d

)

,

the density matrix of utterance ut can be represented as: 625

ρt =

k
∑

λ=1

µλ|Ψ
cλ
t 〉〈Ψ

cλ
t |

=



















∑

λ µλ

(

Ψ
cλ
t,1

)

2
∑

λ µλΨ
cλ
t,1Ψ

cλ
t,2 ...

∑

λ µλΨ
cλ
t,1Ψ

cλ
t,d

∑

λ µλΨ
cλ
t,2Ψ

cλ
t,1

∑

λ µλ

(

Ψ
cλ
t,2

)

2

...
∑

λ µλΨ
cλ
t,2Ψ

cλ
t,d

... ...

∑

λ µλΨ
cλ
t,d

Ψ
cλ
t,1

∑

λ µλΨ
cλ
t,d

Ψ
cλ
t,2 ...

∑

λ µλ

(

Ψ
cλ
t,d

)

2



















(14)

where µλ is the fuzzy membership function representing the
relative importance of the λth composite system. We argue that
there is no firm boundary among the degrees of the participation
in interaction, and thus adopt a Sigmoidal fuzzy membership
function to model the fuzziness. µλ is decided by µ (λ : a, c) = 630

1

1+e−a(λ−c) , where λ is the index of context utterance, a and c

are trainable parameters learned during training.
Eq. 14 is used to obtain the matrix representation of the

target utterance, and has shown each element of matrix. The
density matrix ρt has encoded all the information and properties 635

of the target utterance ut, e.g., the semantic dependencies, the
probabilistic distribution information. The target utterance |ut〉
and its contexts {|cλ〉}kλ=1

are unified into a density matrix, for
capturing both the uncertainty and vagueness simultaneously.
The density matrix ρt is thus fed into the quantum fuzzy 640

measurement layer to extract more refined sarcastic features.

E. Quantum Fuzzy Measurement

In QT, measurement is a process of testing or manipulating
the physical property of a quantum system, e.g., the movement
locus of a particle. The outcome of quantum measurement is 645

associated with a set of numerical values. Before performing
quantum measurement, there is uncertainty in the system in
that it takes all possible measurement values simultaneously.
After the measurement, the system collapses into one of these
basis values, and the uncertainly on the system state is hence 650

removed.
Further, the information and property of a system (e.g., an ut-

terance’s sarcastic features) could be depicted by the probability
distribution of the measurement outcomes, which are acquired
by performing a finite set of quantum measurements on the 655

system [67]. As an extension of standard quantum measurement,
quantum fuzzy measurement argues that the measurement
device does not participate completely in interaction with the
quantum system, meaning that the measurement device is not
necessarily orthogonal to the quantum system, and could be set 660

freely. Motivated by this, we perform a sequence of quantum
fuzzy measurements with different measuring angles on the
composite system, for obtaining rich sarcastic features for the
target utterance ~mt = (m1,m2, ...,mG).

We define a set of fuzzy measurement operators
{

M δ
t

}G

δ=1
, 665

each of which is constructed by two sub-measurement Mt and
{Mδ}Gδ=1

. Mt represents a trainable measurement operator
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(i.e., matrix) for the target utterance ut, while {Mδ}Gδ=1

represents another trainable measurement operator. The δth

fuzzy measurement operator M δ
t is a d× d matrix, satisfying670

the completeness condition that:

G
∑

δ=1

(

M δ
t

)†
M δ

t = 1 (15)

In QT, based on the density matrix of utterance ut, the
probabilistic expected value of quantum fuzzy measurement
result, denoted as

〈

mδ
〉

, is calculated as:

〈mδ〉 =
∑

λ

µλ〈Ψcλ
t |M δ

t |Ψcλ
t 〉

=
∑

λ

µλtr(M
δ
t |Ψcλ

t 〉〈Ψcλ
t |)

=
∑

λ

tr
(

µλM
δ
t |Ψcλ

t 〉〈Ψcλ
t |
)

= tr

(

∑

λ

µλM
δ
t |Ψcλ

t 〉〈Ψcλ
t |
)

= tr
(

M δ
t ρt
)

(16)

Eq. 16 computes the expected value of the δth measurement675

result, and leads to the following calculation about the proba-
bility distribution over the measurement outcomes. We regard
this probability distribution as the feature vector (i.e., ~mt) for
the target utterance. The procedure is written as:

mδ = tr
(

M δ
t

(

M δ
t

)†
ρt

)

= tr

(

(

M δ
t

)†
M δ

t

∑

λ

µλ|Ψcλ
t 〉〈Ψcλ

t |
)

=
∑

λ

µλtr
(

(

M δ
t

)†
M δ

t |Ψcλ
t 〉〈Ψcλ

t |
)

=
∑

λ

〈Ψcλ
t |
(

M δ
t

)†
M δ

t |Ψcλ
t 〉

(17)

where M δ
t = MtMδ, δ ∈ [1, 2, ..., G]. Eq. 17 is computed680

to obtain the probabilistic value of the δth fuzzy measure-
ment outcome, which is treated as the δth eigenvector of
~mt. Finally, we have obtained a probabilistic feature vector
~mt = (m1,m2, ...,mδ, ...,mG).

F. Dense Layer685

The probabilistic features ~mt is passed to a fully connected
layer whose output is used as the final utterance representation
~xt = (x1, x2, ..., xκ). ~xt is fed into the softmax function for
sarcasm classification.

G. Classification690

We put ~xt into a softmax function to yield the sarcasm
label Y ∈ {ysar, ynon}. That is,

ŷ = softmax (Wy~xt + by) (18)

where Wy and by are the weight and bias.

Model training. In our framework, cross entropy with L2

regularization is used as the loss function, which is defined as: 695

J = − 1

N

∑

t

∑

ξ

y
ξ
t logŷ

ξ
t + τr ‖φ‖2 (19)

where yt denotes the ground truth, ŷt is the predicted sarcasm
distribution. t is the index of utterance, ξ is the index of class,
and L is the total number of utterances. τr is the coefficient
for L2 regularization. We use the back propagation method to
compute the gradients and update all the parameters. In order 700

to avoid overfitting, we use dropout strategy.

V. Experiments

In this section, we validate the theoretical advantages of the
QPM framework from an experimental viewpoint.

A. Experimental Settings 705

Our main research questions are:

(1) Is the complex-valued fuzzy representation effective for
modeling human language?

(2) Does modeling of conversation context help in conversa-
tional sarcasm detection? 710

(3) Which component of CFN plays a key role on the
performance?

To answer (1), we compare the performance of the CFN
model with a number of baselines, and analyze the importance
of the complex-valued fuzzy representation. To answer (2), 715

we also perform all the experiments for the target utterances
without context information, and make a detailed contrast.
To answer (3), we conduct an ablation test by removing one
component at a time and evaluate their impacts.

Datasets. Given that SDC is a new area, the benchmark 720

datasets are relatively limited. In this work, we perform
experiments on the MUStARD2 [2] and the 2020 sarcasm
detection Reddit track3 [68] datasets. MUStARD comprises
690 videos from several sources, e.g., Big Bang Theory, Friends,
etc. The utterance in each dialogue is annotated with sarcastic 725

or non-sarcastic label. Each utterance and its context consists of
three modalities: video, audio, and text. Also, all the utterances
are accompanied by their speaker identifiers. In this work, we
focus on conversational sarcasm detection only from the textual
information. Multimodal sarcasm detection is left as future 730

work.
The 2020 sarcasm detection Reddit track (the Reddit track

for short) is a subset of the Reddit Corpus, which consists of
sarcastic responses and their contexts (quotes to which the posts
are replies to). It contains 3,100 posts per class (sarcastic and 735

not-sarcastic, for a total of 6200 posts) and more than 18,000
contextual utterances. Table I shows the detailed statistics for
these two datasets.

Pre-processing. Apart from the standard preprocessing
steps such as lowercasing the letters, removal of emojis, and 740

correcting spelling mistakes, we remove the stop words using a
standard English stopword list. Note that we do not filter out the
punctuations, since they tend to carry subjective information.

2https://github.com/soujanyaporia/MUStARD
3https://github.com/EducationalTestingService/sarcasm/releases
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Dataset
No. of Utterance

No. of Contexts
Sarcastic Non-sarcastic

MUStARD 345 345 2261
the Reddit track 3100 3100 18618

TABLE I: Statistics of the datasets.

Evaluation metrics. We adopt the precision, recall, micro

F1 score, accuracy, sensitivity and specificity as the evalu-745

ation metrics to evaluate the classification performance. We
run the experiments using five-fold cross-validation on all the
comparative models.

Hyperparameters setting. In this work, the amplitudes are
initialized with BERT semantic representation. The phases are750

set to the sentiment orientations of utterances using BERT.
The fuzzy measurements are randomly initialized with an unit
matrix. All weight matrices are given their initial values by
sampling from a uniform distribution U(−0.1, 0.1), and all
biases are set to zeros. The coefficient of L2 normalization in755

the objective function is set to 10−5, and the dropout rate is
set to 0.5.

We search for the best performance from a parameter pool,
which contains a learning rate in {0.001,0.005,0.01}, the batch
size in {32,64} and the number of fuzzy measurements in760

{100,300,500,1000,1500}.

B. Comparative Models

In order for a comprehensive evaluation of the CFN frame-
work, we include a range of baselines for comparison. They
are listed as follows.765

SVM+BERT [69] represents the textual utterances using
BERT vectors and standard hyperparameter settings for sarcasm
detection. We set the kernel function to “RBF”. We also attempt
to concatenate the contextual features.

CNN [70] contains two convolutional layers and a fully770

connected layer, which is trained on top of word embeddings
for sarcasm classification in conversation.

BiGRU [71] leverages a bidirectional GRU network for
learning utterance representations and then uses a classification
layer to make prediction of sarcasm.775

MHA-BiLSTM [36] extracts the most significant features
and builds a multi-head attention-based bidirectional long-short
memory network to detect sarcastic utterances.

Contextual LSTM [72] first uses the CNN to extract
context-independent textual features and thus feeds them780

into the LSTM network to obtain context-sensitive feature
representations and sarcasm labels for each utterance.

RCNN-RoBERTa [6] utilizes pre-trained RoBERTa vectors
combined with a RCNN in order to capture contextual
information for sarcasm classification.785

C-Net [73] uses BERT and simple exponential smoothing
to represent each utterance in conversation thread, and takes
contextual information of a sentence in a sequential manner to
classify it as sarcastic or non-sarcastic.

MTL framework [5] proposes two attention mechanisms,790

i.e., inter- and intra-segment inter-modal attentions, to learn the
relationship between the different segments and the relationship
within the same segment. Representations from both the

attentions are concatenated for sentiment and sarcasm analysis.
In this paper, we only use bimodal information (e.g., texts and 795

images).

C. Results and Analysis on MUStARD

The experimental results are summarized in Table II. Since
the sample size of MUStARD is relatively small, we will
pay more attention to F1 score and sensitivity here. We could 800

notice that those approaches including SVM+BERT, BiGRU,
MHA-BiLSTM, Contextual LSTM, RCNN-RoBERTa, C-Net,
MTL and CFN are all superior than CNN. Because all of
them deal with the contextual information, which highlights
the importance of modeling the contextual information in 805

SDC. Among all baseline approaches, SVM+BERT achieves
a higher F1 score than three LSTM variants (i.e., BiGRU,
MHA-BiLSTM and Contextual LSTM). The reason is that the
pre-trained textual features provided by BERT have stronger
discrimination ability. By integrating the contextual information 810

into the final features, SVM+BERT (+context) have obtained
a slight improvement. Among three LSTM variants, BiGRU
and Contextual LSTM get comparable F1 score, while MHA-
BiLSTM performs worst. But MHA-BiLSTM has higher recall
and sensitivity scores, which shows that MHA-BiLSTM could 815

classify more true samples. Contextual LSTM gets the highest
specificity scores among all baselines, which implies that
Contextual LSTM tends to identify negative (e.g., non-sarcastic)
samples. This shows that: (1) preserving the sequential order of
utterances is insufficient to effectively model the conversation 820

context; (2) the attention mechanism does not show obvious
effects on improving performance on this dataset.

Through presenting improved modifications for training
BERT models, RCNN-RoBERTa outperforms SVM+BERT
in term of F1. But it achieves lower sensitivity and specificity 825

scores than SVM+BERT. The possible reason is that RCNN-
RoBERTa is less sensitive to sarcastic utterances than SVM
classifier. As a state-of-the-art conversational sarcasm detection
baselines, C-Net leverages inter-speaker dependency of the
speakers to model conversational context. It performs very well 830

in SDC. MTL framework achieves the best classification results
among all baselines. Compared with C-Net, the sensitivity,
f1 and accuracy results increase by 1.9%, 1.8% and 1.7%,
respectively. The reason is that it designs a multi-task learning
framework for multi-modal sarcasm, sentiment analysis. It 835

leverage the utility of sentiment and emotion of the speaker
to predict sarcasm, based on textual and visual modalities.
Finally, CFN outperforms the state-of-the-art method MTL
by margins of 8.0%, 8.0% and 8.0%. CFN achieves best
scores over almost all evaluation metrics, showing that our 840

model could not only distinguish sarcastic utterances from
all testing samples, but also retrieve more sarcastic utterances
from all sarcastic samples. CFN introduces complex-valued
utterance embedding, where the amplitude is analogous to
the semantic knowledge, while the phase is linked to the 845

subjective information. CFN brings the semantic and subjective
information together by using this representation, which can
improve the description of the sarcastic information. This
explains its higher sensitivity when compared to previous
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Dataset Method
Evaluation metrics

Precision Recall F1 Accuracy Sensitivity Specificity

MUStARD

SVM+BERT 0.651 0.646 0.647 0.646 0.646 0.643
SVM+BERT (+context) 0.655 0.651 0.650 0.651 0.651 0.650

CNN 0.579 0.569 0.571 0.589 0.569 0.533
BiGRU 0.631 0.643 0.624 0.656 0.643 0.579

MHA-BiLSTM 0.673 0.652 0.614 0.668 0.652 0.644
Contextual LSTM 0.642 0.627 0.620 0.662 0.627 0.740
RCNN-RoBERTa 0.687 0.643 0.651 0.671 0.643 0.511

C-Net 0.679 0.683 0.681 0.683 0.683 0.678
MTL 0.694 0.694 0.693 0.695 0.694 0.690
CFN 0.753 0.755 0.754 0.754 0.755 0.701

(+8.0%) (+8.0%) (+8.0%) (+8.0%) (+8.0%) (+1.4%)

TABLE II: Performance of all baselines on MUStARD. The best performing system is indicated in bold. Numbers in parentheses
indicate relative improvement over the MTL framework.

models. CFN obtains the second highest specificity score among850

all methods, showing that discovering non-sarcastic utterances
is the weak point. We attribute the main improvements to both
the complex valued embedding and the fuzzy composition
mechanism, which ensures that CFN could preserve semantic
and sentiment information, capture the figurative language’s855

vagueness and model the previous speaker’s influence.

D. Results and Analysis on the Reddit track

Table III presets the performance comparison of CFN with
the baselines on the Reddit track. Compared with MUStARD,
the Reddit track involves longer utterances and only contains860

textual modality and sarcasm label.
From Table III, we can first notice the poor performance

of BiGRU and Contextual LSTM. They get the worst and the
second worst sensitivity and F1 scores. This phenomenon may
be because the long range of contextual utterances makes it865

difficult for them to record useful information into the memory
unit. Contextual LSTM gets a higher specificity scores over
BiGRU, showing that Contextual LSTM tends to identify
negative (e.g., non-sarcastic) samples. By introducing the
attention mechanism to assign greater weights to important870

contexts, MHA-BiLSTM outperforms BiGRU and Contextual
LSTM. Compared with MHA-BiLSTM, CNN gets comparable
F1 score, cause that CNN may find relatively good local
optima. But CNN achieves lower sensitivity result than MHA-
BiLSTM. The reason is that MHA-BiLSTM may focus on875

the sarcastic information by using the attention mechanism,
which recognizes more sarcastic utterances and leads to a better
sensitivity than CNN. Similarly, SVM+BERT overcomes the
aforementioned baselines in terms of almost all evaluation
metrics. This shows the fact again that the pre-trained textual880

features provided by BERT have great discrimination ability.
The reason is that BERT’s word vector output encodes syntax
trees in the word embeddings it outputs for a sentence, and
encodes syntactic and semantic features in word vectors in
complementary subspaces. Further, SVM+BERT (+context)885

performs better than SVM+BERT, by considering the contextual
features, which implies that the important role of contexts.

RCNN-RoBERTa achieves the best classification perfor-
mance among all approaches, whose sensitivity, F1 and
accuracy scores exceed 70%. Because RCNN-RoBERTa is890

trained with dynamic masking, sentences without next sentence
prediction loss, larger batches, and a larger byte-level BSE. It
is based on a hybrid deep neural architecture that utilizes pre-
trained transformer models and feeds the hidden representations
of the transformer into a recurrent convolutional neural network, 895

which can capture unbiased recurrent informative relationships
within text. It is more suitable for applying to large size dataset.
This can explain its main achievement on f1 and sensitivity
results. C-Net is superior than SVM+BERT (+context) but it
is weaker than RCNN-RoBERTa. This may indicate RoBERTa 900

performs better than BERT (base-uncased) on this track.
Through combining both textual and visual modalities, MTL
outperforms C-Net but it is still not suppress RCNN-RoBERTa.
MTL does not perform well in uncovering non-sarcastic
utterances. Because MTL is designed for multi-task learning 905

problems, which has considered mutual assistance between the
two tasks. The generalization ability of MTL is insufficient
to deal with various single task learning problems. RCNN-
RoBERTa outperforms MTL by margins of 6.0%. From an
overall perspective, it seems that the baselines that have used 910

the transformer-architecture perform better than those baselines
that have used RNN-architecture. Transformer models are
essentially attention based models. They regard the sentence
as a whole unlike RNNs where the sentence is processed
sequentially, i.e., one word per time step. Transformer models 915

can capture long term dependencies very naturally given the at-
tention mechanism. These are the benefits of Transformers over
RNNs, showing the effectiveness of pre-trained transformer
model. The proposed CFN obtains comparable specificity,
sensitivity, F1 and accuracy scores against RCNN-RoBERTa, 920

which achieves the second best classification performance.
CFN brings the semantic and subjective information together
by using this representation, which can improve the description
of the sarcastic information. It encodes the contextual interac-
tions between adjacent utterances into a density matrix. This 925

explains its higher sensitivity when compared to other models.
Meanwhile, according to our preliminary analysis, the failure to
adopt the attention attention is one possible reason why CFN
obtains lower sensitivity and F1 results. But CFN involves
fewer parameters and simpler structures than RCNN-RoBERTa. 930

We argue that CFN strikes a balance between effectiveness and
efficiency.
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Dataset Method
Evaluation metrics

Precision Recall F1 Accuracy Sensitivity Specificity

Reddit track

SVM+BERT 0.640 0.642 0.638 0.640 0.642 0.647
SVM+BERT (+context) 0.649 0.647 0.643 0.651 0.647 0.659

CNN 0.631 0.623 0.629 0.623 0.623 0.611
BiGRU 0.600 0.599 0.600 0.600 0.599 0.561

MHA-BiLSTM 0.629 0.632 0.626 0.636 0.632 0.610
Contextual LSTM 0.613 0.609 0.610 0.615 0.609 0.658
RCNN-RoBERTa 0.708 0.708 0.708 0.708 0.708 0.682

C-Net 0.663 0.664 0.663 0.663 0.664 0.657
MTL 0.667 0.668 0.667 0.668 0.668 0.625
CFN 0.680 0.680 0.680 0.680 0.680 0.664

(+1.5%) (+1.5%) (+1.5%) (+1.5%) (+1.5%) (+6.2%)

TABLE III: Performance of all baselines on the Reddit track. The best performing system is indicated in bold. Numbers in
parentheses indicate relative improvement over the MTL framework.

E. Effect of Context Range

Dataset Context range
Metrics

F1 Accuracy

MUStARD

Zero 0.640 0.641
One 0.725 0.725
Two 0.699 0.699
All 0.754 0.754

Reddit

Zero 0.596 0.596
One 0.641 0.641
Two 0.617 0.617
All 0.680 0.680

TABLE IV: Effect of context range.

We report results for CFN in Tables IV with different context
scopes. Zero context means that we only use the complex-935

valued vector to represent the target utterance, ignoring the
contextual interaction. One context utterance denotes that we
use one history utterance before the target utterance to construct
the density matrix. Two contexts mean that we use the previous
two history utterances to construct the density matrix. From940

Table IV, we could observe that CFN with zero context range
expectedly performs worst on both MUStARD and the Reddit
track. Because it does not consider any contextual information.
This shows the important role of conversation contexts. Among
three methods, CFN with one context range gets the best F1945

scores of 72.5% and 64.1% on two datasets, which implies that
modeling the previous one history utterance is of great help to
improving performance. However, its performance is weaker
than the performance of CFN with all context utterances. It
shows that taking all conversation contexts into consideration950

may be the best way to reach optimal performance.

F. Ablation Study

In this subsection, we design a series of models to further
demonstrate the effectiveness of our proposed CFN model: (1)
CFN-Real that does not consider the complex embedding, i,e.,955

replacing utterance embeddings with their real counterparts;
(2) CFN-Speaker Independent model without modeling the
contextual interaction, which only uses the complex vector to
represent the target utterance; (3) CFN-CNN, which replaces the
quantum fuzzy measurement with the convolutional and pooling960

layers, to explore the significance of quantum measurement.

Dataset Models
Metrics

F1 Accuracy

MUStARD

CFN-Real 0.644 0.645
CFN-Speaker Independent 0.640 0.641

CFN-CNN 0.740 0.740
CFN 0.754 0.754

Reddit

CFN-Real 0.627 0.626
CFN-Speaker Independent 0.596 0.596

CFN-CNN 0.675 0.675
CFN 0.680 0.680

TABLE V: Ablated CFN for both MUStARD and Reddit
datasets.

In Table V, we observe that CFN-CNN and CFN get the
best performance among these models. CFN-Real performs
worse but still outperforms BiGRU and MHA-BiLSTM. This
is because the fuzzy composition mechanism could incorporate 965

rich interactive information into an unified density matrix.
CFN-Speaker Independent under-performs CFN-Real, showing
that the effectiveness of complex-valued representation and
the key role of conversation contexts. Because complex-
valued representation might encode non-linear semantic and 970

sentiment compositionality. Finally, CFN-CNN, which replaces
the quantum fuzzy measurement with the convolutional and
pooling layers, obtains better results than CFN-Real and
CFN-Speaker Independent, showing that the complex-valued
embedding and fuzzy composition mechanism play the most 975

important role in improving classification performance. CFN-

CNN gets comparable resutls against CFN. However, CFN is
theoretically more principled. Hence, these experimental results
verify the effectiveness of CFN.

G. Sensitivity Study 980

In order to understand the relationships between inputs and
outputs and study how the uncertainty in the output of the CFN
model, we conduct the sensitivity analysis. In order to explore
how much each input parameter is contributing to the output
uncertainty, we choose one at a time (OAT) strategy, which 985

is a common and effective sensitivity analysis method. We
modify one input parameter and keep others at their original
values. Then we repeat for each of the other parameters in the
same way, to see the changes in the output.
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No. Utterances
Sarcasm

Actual CFN
1 Good idea, sit with her. Hold her, comfort her. And if the moment feels right, see if you can cop a feel. S NS
2 Just the latest copy of Applied Particle Physics quarterly. S NS
3 but but..she did them herself, so that’s like, original and so edgy! S NS
4 I’m sorry, I am not going back to the Renaissance fair. NS S
5 Nah, they’re too afraid of a lawsuit and bad press. NS S

TABLE VI: Few error cases for CFN.
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Fig. 3: Sensitivity study.

Due to the large amounts of parameters in deep neural990

networks, we mainly discuss five key parameters, which are
the coefficient of L2 normalization (denoted as C), the dropout
rate (denoted as D), the learning rate (denoted as L), batch
size (denoted as B) and the number of measurement operators
(denoted as M). Fig.3 shows the average change in the output995

value of the CFN framework.
From Fig.3, we notice that the CFN framework is the

most sensitive to the number of measurement operators. The
average change in in the output value has reached about 17%.
The second is learning rate L, where the average change is1000

7%. Then, the coefficient of L2 normalization, batch size
and the dropout rate may lead to a slight change. These
results indicate that we may pay more attention to tuning the
learning rate L and the number of measurement operators
M. There are two possible explanations: (1) the number1005

of measurement operators determines the dimensionality of
sarcastic feature space, which directly influences captured
information. Intuitively, the more the number of measurement
operators, the greater the performance of the CFN model; (2)
the learning rate has been consider as the most important1010

hyperparameter in neural network. A learning rate that is
too large can cause the model to converge too quickly to
a suboptimal solution, whereas a learning rate that is too small
can cause the process to get stuck.

H. Error Analysis1015

We have analyzed the prediction sarcasm labels and found
that misclassification often happens in the situation where the
speaker uses a few positive words to express his/her sarcastic
attitude. In this case, the speaker is happy and comfortable
literally, while s/he is angry and aggressive actually. We take1020

an sarcastic utterance as an example, e.g., “Good idea, sit

with her. Hold her, comfort her. And if the moment feels right,

see if you can cop a feel.”. CFN first mistakenly treats it
as a positive sentiment utterance, and thus feeds this wrong
sentiment identification into the complex-valued embedding, 1025

then makes a wrong decision to regard it as a non-sarcastic
utterance. Further, we also notice that a small amount of errors
occur when an utterance expresses very negative sentiment.
CFN may mix negative sentiment up with sarcasm polarity.
This is due to the subtle difference between sentiment and 1030

sarcasm analysis. Discriminating irony attitude from negative
sentiment is a tricky and complex problem, which is an open
area of research. Table VI shows a few misclassification cases.

VI. Conclusions and Future Work

Sarcasm detection in conversation is an interesting and 1035

challenging AI task. In this paper, we introduce quantum theory
and complex world into classical sarcasm detection. We propose
a complex-valued fuzzy network to capture both the vagueness
and uncertainty of human language in sarcastic expression. The
main idea is to treat the utterance as a quantum superposition 1040

of a set of separate words, use the complex-valued vector to
represent it. The contextual dependency among utterances is
described as the interaction between a quantum system and its
surrounding environment, which can be computed by the tensor
product of individual utterance. Then, the speaker’s sarcastic 1045

attitude is viewed as a quantum mixed system composed of
composite systems, which is mathematically encapsulated in a
density matrix. A fuzzy quantum measurement is performed
on the density matrix of each target utterance to yield the
probabilistic outcomes. The experimental results show that our 1050

proposed CFN model largely outperforms a number of strong
sarcasm detection methods. To the best of our knowledge, this
work is the first that brings together quantum theory and fuzzy
logic for SDC.

Fuzzy logic provides us with a means to deal with vagueness 1055

and uncertainty, and quantum logic may give us more insights
into the semantics behind the fuzzy norms algebraic product and
algebraic sum. Since there are closely relationships between
quantum theory and fuzzy logic, Future works will bridge
them together and design a quantum fuzzy neural network 1060

for sarcasm detection. We also plan to provide a description
of quantum mechanics in terms of a deterministic fuzziness
using quantum fuzzy model. Moreover, since human language
usually involves multimodal records, e.g., image, video, audio,
etc., future works will also focus on incorporating multimodal 1065

information into the CFN model and designing a multimodal
sarcasm detection model based on fuzzy logic and quantum
theory. At the heart of this multimodal model is how to use
fuzzy logic to represent visual and acoustic features.
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[33] T. Ptáček, I. Habernal, and J. Hong, “Sarcasm detection on czech and
english twitter,” in Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics: Technical Papers, 2014, pp. 1185

213–223.
[34] S. Mukherjee and P. K. Bala, “Sarcasm detection in microblogs using

naïve bayes and fuzzy clustering,” Technology in Society, vol. 48, pp.
19–27, 2017.

[35] A. Kumar and H. Sharma, “Prod: A potential rumour origin detection 1190

model using supervised machine learning,” in International Conference

on Intelligent Computing and Smart Communication 2019. Springer,
2020, pp. 1269–1276.

[36] A. Kumar, V. T. Narapareddy, V. A. Srikanth, A. Malapati, and L. B. M.
Neti, “Sarcasm detection using multi-head attention based bidirectional 1195

lstm,” IEEE Access, vol. 8, pp. 6388–6397, 2020.
[37] A. Rajadesingan, R. Zafarani, and H. Liu, “Sarcasm detection on twitter:

A behavioral modeling approach,” in Proceedings of the eighth ACM

international conference on web search and data mining, 2015, pp.
97–106. 1200

[38] A. Joshi, V. Tripathi, P. Bhattacharyya, and M. Carman, “Harnessing
sequence labeling for sarcasm detection in dialogue from tv series
‘friends’,” in Proceedings of The 20th SIGNLL Conference on Com-

putational Natural Language Learning, 2016, pp. 146–155.
[39] S. Belen and C. Pearce, “Rumours with general initial conditions,” The 1205

ANZIAM Journal, vol. 45, no. 3, pp. 393–400, 2004.
[40] S. Belen, C. Y. Kaya, and C. Pearce, “Impulsive control of rumours

with two broadcasts,” The ANZIAM Journal, vol. 46, no. 3, pp. 379–391,
2005.

[41] S. Belen, T. Langtry, and S. A. UTS, “Computational and numerical 1210

aspects of repeated rumours,” pp. 1339–1348, 2003.
[42] S. Belen, E. Kropat, and G.-W. Weber, “On the classical maki–thompson

rumour model in continuous time,” Central European Journal of

Operations Research, vol. 19, no. 1, pp. 1–17, 2011.
[43] G.-W. Weber, B. Gürbüz, H. Mawengkang, and I. Husein, “Numerical 1215

approach for rumor propagation model,” pp. 339–348, 08 2019.
[44] ——, “Rumor propagation model: Or and numerical approach,” pp.

120–126, 2019.
[45] B. Gürbüz and G.-W. Weber, “A numerical scheme for solving a rumor

propagation model,” pp. 30–36, 06 2019. 1220



IEEE TRANSACTIONS ON FUZZY SYSTEMS, XX-XX 15

[46] S. Poria, E. Cambria, D. Hazarika, and P. Vij, “A deeper look into
sarcastic tweets using deep convolutional neural networks,” arXiv preprint

arXiv:1610.08815, 2016.
[47] M. Zhang, Y. Zhang, and G. Fu, “Tweet sarcasm detection using deep

neural network,” in Proceedings of COLING 2016, The 26th International1225

Conference on Computational Linguistics: Technical Papers, 2016, pp.
2449–2460.

[48] I. Chaturvedi, R. Satapathy, S. Cavallari, and E. Cambria, “Fuzzy
commonsense reasoning for multimodal sentiment analysis,” Pattern

Recognition Letters, vol. 125, pp. 264–270, 2019.1230

[49] S. Vashishtha and S. Susan, “Fuzzy rule based unsupervised sentiment
analysis from social media posts,” Expert Systems with Applications, vol.
138, p. 112834, 2019.

[50] N. Chatterjee, T. Aggarwal, and R. Maheshwari, “Sarcasm detection using
deep learning-based techniques,” in Deep Learning-Based Approaches1235

for Sentiment Analysis. Springer, 2020, pp. 237–258.
[51] L. Liu, J. L. Priestley, Y. Zhou, H. E. Ray, and M. Han, “A2text-net: A

novel deep neural network for sarcasm detection,” in 2019 IEEE First

International Conference on Cognitive Machine Intelligence (CogMI).
IEEE, 2019, pp. 118–126.1240

[52] N. Jaiswal, “Neural sarcasm detection using conversation context,” in
Proceedings of the Second Workshop on Figurative Language Processing,
2020, pp. 77–82.

[53] D. Ghosh, A. R. Fabbri, and S. Muresan, “The role of conversation
context for sarcasm detection in online interactions.” in Proceedings of1245

the 18th Annual SIGdial Meeting on Discourse and Dialogue, 2017, pp.
186–196.

[54] N. Majumder, S. Poria, H. Peng, N. Chhaya, E. Cambria, and A. Gelbukh,
“Sentiment and sarcasm classification with multitask learning,” IEEE

Intelligent Systems, vol. 34, no. 3, pp. 38–43, 2019.1250

[55] A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam, and A. Sadegheih,
“Multiobjective fuzzy mathematical model for a financially constrained
closed-loop supply chain with labor employment,” Computational

Intelligence, vol. 36, no. 1, pp. 4–34, 2020.
[56] A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam, and A. Sadeghieh,1255

“Hybrid artificial intelligence and robust optimization for a multi-objective
product portfolio problem case study: The dairy products industry,”
Computers & industrial engineering, vol. 137, p. 106090, 2019.

[57] E. Kropat, G.-W. Weber, and B. Akteke, “Eco-finance networks under
uncertainty,” International Conference on Engineering Optimization, pp.1260

1–13, 2008.
[58] E. Kropat, G.-W. Weber, and C. S. Pedamallu, “Regulatory networks

under ellipsoidal uncertainty–data analysis and prediction by optimization
theory and dynamical systems,” in Data Mining: Foundations and

Intelligent Paradigms. Springer, 2012, pp. 27–56.1265

[59] E. Kropat, G.-W. Weber, and J.-J. Rückmann, “Regression analysis for
clusters in gene-environment networks based on ellipsoidal calculus and
optimization,” Dynamics of Continuous, Discrete and Impulsive Systems,

Series B: Applications & Algorithms, vol. 17, no. 5, pp. 639–657, 2010.
[60] E. Kropat, A. Özmen, G.-W. Weber, S. Meyer-Nieberg, and O. Defterli,1270

“Fuzzy prediction strategies for gene-environment networks–fuzzy re-
gression analysis for two-modal regulatory systems,” RAIRO-Operations

Research, vol. 50, no. 2, pp. 413–435, 2016.
[61] A. Özmen, E. Kropat, and G.-W. Weber, “Spline regression models for

complex multi-modal regulatory networks,” Optimization Methods and1275

Software, vol. 29, no. 3, pp. 515–534, 2014.
[62] E. Kropat and G. W. Weber, “Fuzzy target-environment networks and

fuzzy-regression approaches,” Numerical Algebra, Control & Optimiza-

tion, vol. 8, no. 2, p. 135, 2018.
[63] J. Li, Z. Wang, Y. Shen, and Y. Wang, “Interval observer design for1280

discrete-time uncertain takagi–sugeno fuzzy systems,” IEEE Transactions

on Fuzzy Systems, vol. 27, no. 4, pp. 816–823, 2019.
[64] G. Cattaneo, M. L. D. Chiara, and R. Giuntini, “Fuzzy intuitionistic

quantum logics,” Studia Logica, vol. 52, no. 3, pp. 419–442, 1993.
[65] A. Granik and H. J. Caulfield, “Fuzziness in quantum mechanics,” Physics1285

Essays, vol. 9, no. 3, pp. 496–505, 1996.
[66] B. Wang, Q. Li, M. Melucci, and D. Song, “Semantic hilbert space for

text representation learning,” in The World Wide Web Conference, 2019,
pp. 3293–3299.

[67] L. Masanes and M. P. Müller, “A derivation of quantum theory from1290

physical requirements,” New Journal of Physics, vol. 13, no. 6, p. 63001,
2011.

[68] D. Ghosh, A. Vajpayee, and S. Muresan, “A report on the 2020 sarcasm
detection shared task.” in Proceedings of the Second Workshop on

Figurative Language Processing, 2020, pp. 1–11.1295

[69] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-

HLT 2019: Annual Conference of the North American Chapter of the

Association for Computational Linguistics, 2019, pp. 4171–4186.
[70] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv 1300

preprint arXiv:1408.5882, 2014.
[71] Y. Zhang, Q. Li, D. Song, P. Zhang, and P. Wang, “Quantum-

inspired interactive networks for conversational sentiment analysis,”
in IJCAI2019, 2019, pp. 5436–5442. [Online]. Available: https:
//academic.microsoft.com/paper/2963533390 1305

[72] S. Poria, E. Cambria, D. Hazarika, N. Majumder, A. Zadeh, and
L.-P. Morency, “Context-dependent sentiment analysis in user-generated
videos,” in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, Jul. 2017, pp. 873–883. 1310

[Online]. Available: https://www.aclweb.org/anthology/P17-1081
[73] A. Kumar Jena, A. Sinha, and R. Agarwal, “C-net: Contextual

network for sarcasm detection,” in Proceedings of the Second

Workshop on Figurative Language Processing. Online: Association for
Computational Linguistics, Jul. 2020, pp. 61–66. [Online]. Available: 1315

https://www.aclweb.org/anthology/2020.figlang-1.8

https://academic.microsoft.com/paper/2963533390
https://academic.microsoft.com/paper/2963533390
https://academic.microsoft.com/paper/2963533390
https://www.aclweb.org/anthology/P17-1081
https://www.aclweb.org/anthology/2020.figlang-1.8

	Introduction
	Related Work
	Sarcasm Analysis
	Fuzzy Logic based Models

	Preliminaries of Quantum Theory and Fuzzy Logic
	Quantum Theory Preliminaries
	Basic Notations and Concepts in Fuzzy Logic
	The Relations between QT and Fuzzy Logic
	How to Apply Key Notations to Our Approach

	Complex-valued Fuzzy Network
	Problem Formulation and Overall Framework
	Theoretical Advantages of Our CFN Framework
	Complex-valued Utterance Embedding
	Learning Contextual Interaction with The Fuzzy Composition Layer
	Quantum Fuzzy Measurement
	Dense Layer
	Classification

	Experiments
	Experimental Settings
	Comparative Models
	Results and Analysis on MUStARD
	Results and Analysis on the Reddit track
	Effect of Context Range
	Ablation Study
	Sensitivity Study
	Error Analysis

	Conclusions and Future Work
	References

