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Abstract

Albeit convolutional neural network (CNN) has
shown promising capacity in many computer vision
tasks, applying it to visual tracking is yet far from
solved. Existing methods either employ a large ex-
ternal dataset to undertake exhaustive pre-training
or suffer from less satisfactory results in terms of
accuracy and robustness. To track single target in
a wide range of videos, we present a novel Corre-
lation Filter Neural Network architecture, as well
as a complete visual tracking pipeline, The pro-
posed approach is a special case of CNN, whose
initialization does not need any pre-training on
the external dataset. The initialization of network
enjoys the merits of cyclic sampling to achieve
the appealing discriminative capability, while the
network updating scheme adopts advantages from
back-propagation in order to capture new appear-
ance variations. The tracking pipeline integrates
both aspects well by making them complementary
to each other. We validate our tracker on OTB-
2013 benchmark. The proposed tracker obtains the
promising results compared to most of existing rep-
resentative trackers.

1 Introduction

Although visual tracking plays a fundamental role in com-
puter vision community, it is not yet a well-solved problem
due to many challenges. One difficulty is the diversity of tar-
gets to be tracked in videos. While some methods [Nguyen
et al., 2002; Zhou et al., 2007] focus on certain tracking situ-
ations, a generally applicable approach could be more useful
considering the emergence of different kinds of videos from
real world. Another main challenge is the appearance vari-
ations of the targets. Due to illumination changes and scale
variations, out-of-plane rotation, occlusion and deformation,
it could be cumbersome to track the specific object through a
long video sequence according to ground truth in a frame.

∗Equal contributions. This work was done when Mr. Zhan Xu
was a visiting student at Zhejiang University.

†Corresponding author.

Recently, correlation filter-based methods [Bolme et al.,
2010; Henriques et al., 2015; Li and Zhu, 2014; Danell-
jan et al., 2014; Liu et al., 2015; Zhang et al., 2014] have
shown high robustness in tracking different types of tar-
gets. They usually learn filters to regress a Gaussian map
in Fourier domain, in which the process can be extremely
efficient through the given video. To solve the problem of
appearance variations, they employ a linear combination of
the learned model in current frame and the ones from pre-
vious frames with corresponding weights. The most com-
mon weights used in the literature [Bolme et al., 2010;
Danelljan et al., 2014] are exponentially decaying, which is
quite straightforwad in implementation. However, it does not
integrate the most important information, e.g. hard negative
samples, from all frames in a reasonable manner.

On the other hand, deep learning has achieved remark-
able performance in many computer vision tasks such as im-
age classification [Krizhevsky et al., 2012]. More and more
works start to focus on employing Convolution Neural Net-
work (CNN) in visual object tracking [Wang and Yeung,
2013; Li et al., 2016; Wang et al., 2015; Nam and Han, 2016;
Zhang et al., 2015; Held et al., 2016; Tao et al., 2016;
Bertinetto et al., 2016; Danelljan et al., 2016]. To obtain bet-
ter generalization capability, many previous approaches such
as [Nam and Han, 2016; Held et al., 2016] try to train their
models with a tremendous amount of videos (sometimes also
use images), which leads to heavy computational workload.
Collecting enough labeled samples is difficult, and training a
model with them usually needs much time and careful tuning
in order to achieve satisfactory performance.

With observation of the similarity between correlation filter
operation and deep learning convolutional operation, we be-
lieve that there is an implicit relationship between correlation
filter and CNN, since they both concentrate on finding good
filters to distinguish foreground object from background. One
merit of correlation filter-based method is to quickly learn a
model from single frame without the need of training on ex-
tra dataset, which can be used as a beneficial complement for
CNN-based approach.

In this paper, we present a novel Correlation Filter Neural
Network (CFNN) tracker with the advantages of both deep
learning methods and correlation filter-based methods. The
proposed approach follows the deep learning trackers’ frame-
work meanwhile does not need any pre-training. To this end,
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Figure 1: Pipeline of our proposed tracker. With ground truth in the first frame, we initialize a 2-layer CFNN. For each subsequent frame, we
apply forward-propagation to locate the target. Meanwhile, we collect a set of samples according to the tracking result, and employ them to
update the weights in CFNN at a certain interval.

we densely sample the first frame with circulant matrix, and
apply ridge regression to calculate an approximate model to
the proposed network. By integrating the model into a two-
layer CNN structure, our method can be initialized efficiently.
Secondly, the proposed network is designed to output a target
location probability map can be utilized to collect negative
samples easily. This gives the proposed method an ability to
update the model selectively. Finally, when reaching a certain
interval, we use the samples collected along the way to tune
the CFNN with back propagation, which updates its weights
adaptively to the variation of appearance. The experimental
results show that our method performs competitively com-
pared to other tracking methods.

The main contributions of this work are summarized as
follows: 1) A novel CFNN architecture for visual tracking.
Unlike traditional deep learning based trackers [Held et al.,
2016; Nam and Han, 2016] which regress the coordinates of
the object in the frame, the proposed network outputs a target
location probability map. The maximal value of this prob-
ability map indicates the new position of target; 2) A fast
approach for the initialization of the proposed CFNN. With
a quite simple architecture, our network can be constructed
without pre-training. This greatly alleviates the burden of
collecting a large set of external data and helps training the
model from scratch; 3) A complete tracking pipeline which
takes the feature map as input and a probability map as out-
put. During the process of tracking, the weights of CFNN are
also updated in this pipeline to adapt to new target’s appear-
ance; 4) The full implementation is publicly available1.

2 Related Work

In this section, we briefly review the most relevant visual
tracking methods including correlation filter-based trackers
and CNN-based methods.

2.1 Correlation Filter Tracker

[Bolme et al., 2010] formulate the filter learning as a regres-
sion problem which estimates the filter by minimizing overall

1https://github.com/enderhsu/CFNN

cost according to samples from the first frame. [Henriques
et al., 2015] suggest that surprisingly favorable results for
ridge regression can be achieved by sampling densely with
circulant matrix and utilizing features like Histogram of Ori-
ented Gradients (HOG) [Dalal and Triggs, 2005] using ker-
nel trick. Many extensions of correlation filter-based tracking
are proposed afterwards. For example, [Li and Zhu, 2014;
Danelljan et al., 2014] cope with scale estimation. More-
over, [Liu et al., 2015; Li et al., 2015] introduce the part-
based tracking strategy. [Danelljan et al., 2016] propose an
interpolation method to merge convolutional maps from mul-
tiple layers in order to obtain much reliable response map.

By taking advantage of the CNN method, the proposed ap-
proach avoids two defects of them. First, correlation filter-
based trackers employ dot-product in frequency domain to
obtain the correlation result, which is equivalent to corre-
lation in time domain with circulant padding around origi-
nal searching window. Since the template has the same size
as the searching window, a large area of circulant padding
may introduce the unnecessary boundary effects, as shown in
Fig. 3(a) and Fig. 3(b). Second, the updating strategy for most
of correlation filter-based trackers is relatively naı̈ve. Thus, it
may fail to grasp and integrate the most important informa-
tion from all the previous frames well. With different updat-
ing strategy, our approach introduces hard negative sampling
and achieves better results.

2.2 Convolutional Neural Network Tracker

Most of CNN-based methods focus on how to extract good
features with CNN to better represent the target. They train a
pre-built target model before the tracking. [Wang and Yeung,
2013] emphasize on feature representation with CNN. Dis-
crimination is performed by a classification layer. [Wang et
al., 2015] utilize two layers from VGG net, a lower layer and
a top layer, to represent the target from two aspects, which
employ a principled strategy to discard noisy or unrelated fea-
ture maps. [Zhang et al., 2015] propose a simple CNN to ex-
ploit local geometric information and distinguish background
patches from foreground ones. [Held et al., 2016] utilize a
large number of labeled videos as well as images from Ima-
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geNet [Deng et al., 2009] to train a network offline. Such a
network can be used to track various targets without the need
of online updating. Several approaches [Nam and Han, 2016;
Tao et al., 2016; Bertinetto et al., 2016] try to exploit the dif-
ferent CNN architecture for visual tracking. Multi-domain
learning algorithm in [Nam and Han, 2016] shares common
network layers at feature extraction with different videos and
proceeds their own fully-connected layers later. Moreover,
Siamese networks [Tao et al., 2016; Bertinetto et al., 2016]

seek the relationship between two sequential frames to locate
the target.

Compared with CNN-based trackers, the proposed CFNN
emphasizing on discriminative classification without pre-
training on external dataset. With the particular two-layer
CNN architecture, our model can be trained efficiently with a
few samples. In addition, conventional CNN-based trackers
need the fixed size input and output coordinates of a single
location which is inefficient. Our approach is able to extend
the searching area to arbitrary size easily and effectively.

3 Proposed Method

3.1 Architecture of Proposed Neural Network

In contrast to the traditional CNN-based tracking approaches,
our presented CFNN focuses only on how to identify the tar-
get from background area. We find that a lightweight two-
layer architecture is sufficient for this purpose. Such two-
layer architecture shrinks the volume of our tracker while re-
leasing the burden for large-scale initialization. Mathemati-
cally, our tracking process takes the following form:

P (x) = f2 ◦ f1(F (x)) (1)

where x is an image patch and F (·) represents features ex-
traction operator. We use f1, f2 to denote the first and second
layer of our network, respectively. The output P (x) is the
response map of the input image patch. Each value in P (x)
denotes the probability of that position being the center of the
target.

The first layer f1 obtains the response maps with multi-
ple filters. Suppose each F (x) ∈ R

H×W×D contains D
channels. In this layer, we construct D′ filters, denoted by

w1 = w1

1
,w2

1
, ...wD′

1
, to perform convolution with the in-

put feature. Suppose w1 ∈ R
h1×w1×D×D′

where h1 × w1

is the kernel size. After the convolution operation, we have

first-layer output map y1 = f1(F (x)) ∈ R
H′

×W ′
×D′

where
the i-th channel yi

1
= f i

1
= σ(F (x) ⊗ wi

1
+ b1). ⊗ indi-

cates the convolutional operator and σ(·) is a ReLU activation
function.

The second layer f2 merges response maps yi
1

from the
first layer in a reasonable way, and exploits the deconvolu-
tion to raise the resolution of final response map. Suppose

w2 ∈ R
h2×w2×D′

×1 with a fractional stride, deconvolu-
tion is performed by f2 yields y2 ∈ R

H′′
×W ′′

×1 (H ′′ >
H ′,W ′′ > W ′), which is the final probability map from
CFNN. The overall structure of our proposed CFNN is illus-
trated in Fig. 1.

We aim to train the weights in both layers based on training
samples sj . The samples sj = F (xj) consist of feature maps

of the cropped patches from frames in the same sequence.
The loss of our CFNN is defined as follows:

L(w) =
1

M

M
∑

i=1

(‖f2 ◦ f1(si)− ti‖
2
) + λ‖w‖2 (2)

where M is the total number of samples and w = [w1,w2]
denotes all parameters in the network. ti represents the de-
sired probabilty map. It is generated with a Gaussian-like
distribution indicating the position of the target in the origi-
nal image. λ is a weight parameter to prevent overfitting.

3.2 Weights Initialization

In terms of tracking, it is impractical to train a CNN from
scratch due to the relative small number of available samples
extracted from a single frame.

We address such a problem by taking a more controllable
route. For notation simplicity, we suppose there is only single
filter in the first layer. We temporally ignore the second layer
for fast computation, i.e. f2(x) = x. Also, we will focus on
single-channel input feature map, which will be extended to
multiple channels later. This simplifies our whole model into
a convolution operator in 2D. Then, Eq. 2 can be rewritten
into the following form:

L∗(w1) =
1

M

M
∑

i=1

‖f1(si)− ti‖
2
+ λ‖w1‖

2

=
1

M

M
∑

i=1

‖σ(si ⊗w1 + b1)− ti‖
2
+ λ‖w1‖

2

(3)
where b1 is a small bias in the first layer. We intend to find
the optimal w1 that minimizes the above equation. Because
of non-linear operation σ(·), the Eq.3 is not easy to be opti-
mized. Instead, we solve the following minimization equa-
tion:

argmin
w1

L∗
≈ argmin

w1

∑

i

‖si ⊗w1 − t′i‖
2
+Mλ‖w1‖

2

= argmin
w1

∑

i

∥

∥

∥

∥

∥

∑

k

ski ⋆ w̃k
1
− t′i

∥

∥

∥

∥

∥

2

+ λ′‖w̃1‖
2

(4)
Where t′i = ti−b1 and ⋆ indicates the correlation operation.
w̃1 is the flipping verison of w1 because of the slight differ-
ence of correlation and convolution. According to the defi-
nition, ReLu(x) = max(0, x), ReLu(x) = x when x > 0.
We assume si ⊗ w1 + b1 > 0, since Eq. 3 is regressed to
a Gaussian like response map and the negative value is use-
less. As we only need a rough initialization of w1 and ReLU
is ReLu(x) = x when x >= 0, such approximation is rea-
sonable. Following [Kiani et al., 2013], we formulate the
calculation of w1 in Fourier domain, where w1 can be easily
calculated in the closed-form:

ŵ1 = (
∑

i

ŜT
i Ŝi + λ′I)−1

∑

i

ŜT
i T̂i (5)
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(a) (b) (c)

Figure 2: Three sampling approaches we tested. (a) Uniformly sam-
pling with fixed interval. (b) Random sampling according to the
normal distribution. (c) Random sampling according to the uniform
distribution. Approach (c) obtains the best results.

where matrix Ŝi = [dv(̂s1i )
T , dv(̂s2i )

T , ..., dv(̂sDi )T ] and
dv(·) = diag(vec(·)). ·̂ is the Discrete Fourier transform.
I represents an identity matrix.

As shown in [Henriques et al., 2015], when dealing with
one image frame, the weights w1 in Fourier domain can be
calculated efficiently with cyclic shift and convolution theo-
rem as below:

ŵ1 =
ŝ∗
0
⊙ t̂′

0

ŝ∗
0
⊙ ŝ0 + λ′

(6)

where s0 is the feature map extracted from the image patch.
We follow [Henriques et al., 2015] for the optimization.

Parameter λ′ controls the importance of regularization im-
posed on the regression. Selecting different λ′ has effects
on performance of the calculated filter w1. To make our
tracker more robust, we employ a set of different λ′ in our
model. Then, w1 becomes an array of multiple kernels

w1

1
,w2

1
, ...wD′

1
. Accordingly, the depth of y1 also increases

to D′, where each channel is a response map obtained by ker-
nel wi

1
.

So far we have omitted the second layer by assuming
f2(x) = x. When we extract feature map from the origi-
nal image patch, the resolution always falls due to local con-
text summarization (HOG) or pooling (CNN). This losses the
pixel-wise accuracy during tracking. To alleviate this prob-
lem, we further extend the receptive field of w2 (7 × 7 in
our experiment) to make the second layer of our CFNN into
a deconvolutional layer. By this means, f2 not only merges
yi
1
, but also raises the resolution of our final response map.

Each channel of w2 is initialized according to a Gaussian
distribution with a maximal value 1/D′ in the center. Small
random number is also added to each weight of w2 to in-
troduce randomness for weights adjustment. Positions with
larger distance to the center have less weights. Thus, each
final response is made of multiple responses from y1 while
emphasizing on those with better correspondence.

3.3 Weights Updating

After the initialization, we adopt the conventional back-
propagation to update the weights during the tracking process
and enrich our sample pool by applying hard negative mining
method [Sung and Poggio, 1998] to take in more challenging
samples. According to a normal distribution with large stan-
dard deviation, we collect a few sample patches in a wider
range. By adopting forward propagation, we can obtain the
final probability maps for these patches. Comparing them
with the tracking result, we discard half of sample patches

with relatively small resulting deviations, and put the other
half into our sample pool as hard samples.

The updating process will stop once a maximal number of
iteration is reached. Moreover, we adopt an early-stop strat-
egy, which aims to accelerate the tuning process by omit-
ting unnecessary iterations. To this end, we record the cost
from all iterations, denoted as L1,L2, ...,Ln, where n is the
current iteration. If the following two conditions are both
met, we immediately terminate the updating process without
reaching the maximal iteration number: 1) reach 3/4 of the

maximal number of iteration; 2)
n
∑

i=n−r

Li

/

n−r
∑

i=n−2r

Li > θ. r

is a testing interval length (typically 4). θ is the ratio thresh-
old to determine whether the last few times of iteration are
important and whether we need more iteration. We set it to
0.98 empirically.

We employ an automatic adjustment measure to handle the
exception during updating. Generally, the exception during
updating can be detected when the cost defined in Eq. 2 from
two sequential iterations increases dramatically. After each
tuning iteration, we calculate the cost for the current network,
and compare it with the cost from last iteration. If the ratio
between these two costs is larger than a threshold, we regard it
as an exception and launch the handling measure: 1) discard
all the weights modification during this iteration and reset the
status of all layers to that from last iteration; 2) decrease the
learning rate to half of the original one to avoid network col-
lapse raised by large learning rate. Once the learning rate is
reduced, we start to increase it in a tender manner. We raise it
1.07 times larger at each iteration until reaching the original
learning rate. Keeping the learning rate dynamic and flexible
ensures the updating process to be robust to various scenarios.

3.4 Tracking Framework

For our proposed two-layer CNN tracking scheme, the tar-
get is localized by maximizing the confidence score with the
probability maps. Formally, the center location of the target
is determined as follows:

z = argmax
z̃∈x

P (z̃|c) (7)

where z denotes the location of the target in a query frame.
P (z̃) denotes the probability map which indicates the proba-
bility that each point is the target center. x defines a searching
space with potential candidates. c is the prior constraint ex-
tracted from all the previous frames.

In our tracking system, priori constraint c is embedded in
the weights of our network since samples from each previous
frames are used to adjust the weights. With the learnt CNN,
tracking process is formulated as forward propagation. For
any position in a searching window, the probability of this
position being the target’s center can be obtained by passing
its surrounding patch into our system as Eq. 2.

Specifically, we crop a search window to locate the target
before tracking around the bounding box of the target from
the previous frame. Then, we generate the feature map from
the search window by extracting proper features, and multi-
ply a Hann window with it. We employ such manipulated
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Figure 3: Difference between conventional correlation filter-based
approaches and our approach. Conventional approaches compute
dot-product in Fourier domain (a), which is equivalent to convolu-
tion between circulant-padded patch and filter (b). Our approach
crops larger searching window (c), thus conserves true content from
original image compared with (b).

feature map as the input of our two-layer convolutional neu-
ral network. Our CFNN tracker performs tracking for the
subsequent frames by forward propagation, and predicts the
position of the target. During the tracking process, we collect
a set of samples from the each frame, and generate their cor-
responding labels based on prediction as well. We adjust the
weights of the CNN every update interval frames to take
new appearance variation into account. The whole algorithm
is illustrated in Algorithm 1.

4 Experiments

In this section, we give the details on our implementation and
perform comparisons with other trackers on the benchmark.

4.1 Experimental Setup

We implement our proposed CFNN tracker in Matlab without
further optimization. The CNN part is built on MatConvNet
toolkit [Vedaldi and Lenc, 2015]. We conduct all the exper-
iments on a PC with Intel(R) core(TM) i7-4790K 4.00GHz
CPU, 32G RAM and a NVIDIA GTX TITAN graphics card.

Feature Selection: In our work, we adopt two kinds of
handcrafted features to represent the target, HOG [Felzen-
szwalb et al., 2010] and color naming [Van De Weijer et al.,
2009]. These two features are concatenated together to form
a high-dimensional feature map.

Feature extraction is not presented as a layer in our con-
volutional neural network. Theoretically, we can employ any
type of feature as long as it can represent the image context.
We notice that some CNN-based trackers [Wang and Yeung,
2013; Danelljan et al., 2016; 2015] employ convolutional fea-
ture for tracking. Such a feature extraction can be used as
input to our CFNN alternatively, which can be achieved by
putting additional convolutional layers ahead of our CFNN
and concatenate them together. However, as we mentioned,
such convolutional feature more or less involves pre-training
on external data.

Other Parameters: We employ the same parameters
as [Henriques et al., 2015] in feature extraction. For each
input patch, we can get a 31-channel feature map whose size
is about 1/4 of the original patch. Thus, h1 and w1 is also 1/4
of the original patch. To extract color naming feature with the
same spatial size, we first resize the image patch into the same
size as the HOG feature map, and then convert it into color
space. Thus, both feature maps can be concatenated together.
For color image, we eventually obtain a 42-channel feature

Algorithm 1 CFNN: the Correlation Filter Neural Network
tracker

Require:
Ground truth z0 at the first frame;

Ensure:
The CFNN model f2 ◦ f1(F (x)) for tracked target;
The new target state, zk (k = 1, 2, ...);

1: Initialize weights in f1 according to Eq. 6 based on x0 and put
small Gaussian filters in f2;

2: for every sub-sequential observation xk do
3: Generate observation x

i

k at several different scales;
4: Perform forward propagation with x

i

k to get P (xi

k) = f2 ◦

f1(F (xi

k));
5: Determine zk according to Eq. 7;
6: Randomly select samples si in the same frame around zk and

generate ideal convolutional target ti;
7: if k%update interval == 0 then
8: while less than max iter and not reach early-stop condi-

tions do
9: Update the model with si and ti according to Eq. 2;

10: Discard current si, ti;
11: end while
12: end if
13: end for

and D = 42. For gray image, we get a 33-channel one and
D = 33. Accordingly, the second layer of our CFNN tracker
has filter size h2×w2×D′×1 = 7×7×5×1 with a stride of
1/4, which will raise the resolution back to the original level.

Both the input patch for initializing weights and the rect-
angular searching area are set 2.5 times as large as the target
bounding box with the same height-width proportions. The
standard derivation of Gaussian distribution used for gener-
ating convolutional target is determined by the size of target
in the response map. That is, we re-scale the original image
patch to have the same resolution with its feature map, and
multiply the scaled target size with a fixed factor (0.1 in this
work) to get the standard derivation.

The first layer of CFNN has multiple filters generated from
different λ′. In our experience, we sample five λ′ as [0.25 0.5
1 2 4]×1e-4. In addition, we apply a multiple scale search
strategy as [Li and Zhu, 2014] with scaling pool, [0.985 0.99
0.995 1 1.005 1.01 1.015]. For sample collection, we select
80 samples per frame including 65 regular samples and 15
hard negative samples. For weights updating, we perform
tuning every 15 frames during the first 160 frames and every
20 frames during later frames. The learning rate is set to 3e-4.
Batch size is set to 80, and the maximal iteration number is set
to 20. We also set a momentum of 0.8 in order to accelerate
the convergence. All parameters are chosen empirically and
our matlab code runs at 1 fps. Please note the implementation
is quite naive. A multi-thread version can be easily achieved
and runs much faster.

4.2 Experiment on OTB-2013

We evaluate the performance of the proposed approach on
OTB-2013 [Wu et al., 2013] which consists of 50 sequences
with different attributes, such as illumination variation, out-
of-plane rotation, blur, occlusion and deformation. Since
OTB-2013 is regarded as the most representative indicator
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Figure 4: The OTB-2013 benchmark overall plot of the seven repre-
sentative trackers. (a) VOR plot. (b) CLE plot.

of tracking performance, we conduct comparison with some
state-of-the-art trackers including SAMF [Li and Zhu, 2014],
DSST [Danelljan et al., 2014], KCF [Henriques et al., 2015],
DLT [Wang and Yeung, 2013] and TGPR [Gao et al., 2014]

as well as all the 29 trackers contained in the tracking bench-
mark toolkit2. The results of additional trackers are either
provided by the authors on their websites or obtained with
their raw codes with the default setting.

Fig. 4 shows the overall VOR and CLE curves. To make
it clear, we only show the top ten trackers. With both met-
rics, our proposed tracker achieves the best performance with
a score of 0.595 on success plot and 0.803 on precision plot.
Specifically, our proposed tracker outperforms DLT at a large
margin. Note that DLT is the representative approach for
CNN-based tracking, who can only achieves 0.436 and 0.587
on both plots. On the other hand, our approach achieves 4%
to 10% performance improvement over baseline KCF and its
variants. This indicates that our approach does not lose fine
properties from conventional correlation filter-based trackers.
The proposed CFNN framework with the weights updating
strategy, prominently improves the previous methods.

Fig. 5(a) shows the comparison plot of different network
architecture on OTB-2013 dataset to illustrate the effect of
each layer in our CFNN tracker. The first network, denoted
as cfnn no2layer, only has the first layer of our CFNN (in-
cluding ReLU layer). This layer consists of a single filter
(with λ′ = 0.0001) to ensure the output has single chan-
nel. cfnn no2layer can be viewd as a CF based tracker with
a back-propagation updating strategy. The second network,
denoted as cfnn noDeconv, is slightly improved by adding a
second layer. This enables us to put multiple filters in the first
layer with different λ′. However, w2 is a 1 × 1 × D′ filter
and each value is assigned as 1/D′. This means we omit de-
convolution with cfnn noDeconv. Intuitively, cfnn noDeconv
can be viewed as a fusion of different CF based trackers with
different λ settings and back-propagation updating strategy.
CFNN is the comphrensive version of our proposed method.
Please note that all parameters are same thorough these three
architectures. From these experimental results, we can see
that multiple filters performs better than single filter in the
first layer, and the deconvolution helps to improve the perfor-
mance of our tracker.

Sampling is performed after the target position is con-
firmed in each frame. We first pick some sample seeds ran-

2http://cvlab.hanyang.ac.kr/tracker benchmark
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Figure 5: (a) Comparison among different CNN architectures.
cfnn no2layer has a single layer. cfnn noDeconv has multiple filters
in the first layer and single value per channel as weight in the second
layer. CFNN is our complete tracker. (b) Comparison among dif-
ferent sampling strategies. cfnn stgy1 is sampling at fixed interval.
cfnn stgy2 is sampling according to normal distribution. cfnn stgy3
is sampling according to uniform distribution.

domly around the predicted target position. We tried three
sampling methods as illustrated in Fig. 2, and the best per-
formance is achieved when all sample seeds obey uniform
distribution. Fig. 5(b) is the comparison plot among different
sampling strategy, as mentioned in Fig. 2. cfnn stgy1 sam-
ples with uniform interval (Fig. 2(a)). cfnn stgy2 samples
according to normal distribution with target’s center as mean
position (Fig. 2(b)). cfnn stgy3 samples according to uniform
distribution (Fig. 2(c)). We can see that cfnn stgy3 performs
slightly better than cfnn stgy2, while both works obviously
better than cfnn stgy1. We employ cfnn stgy3 in all the ex-
periments.

4.3 Experiment on More Sequences

In this experiment, we evaluate our proposed tracker on a cer-
tain type of sequences – those who have dramatic target or
camera movement. Such type of videos are very challeng-
ing for tracking as they always demonstrate strong motion
blur, in-plane and out-of-plane rotation and large-margin po-
sition changes. It occurs extensively when video is captured
by handheld devices or at sports events.

Our proposed tracker can handle such type of sequences
much better than existing approaches, which has been par-
tially proved in the last experiment. This is mainly because
the proposed CFNN framework is able to adjust the layer
weights to better distinguish foreground from background,
and emphasize on the most decisive response maps. Besides,
forward convolution in our CFNN enables valid tracking in a
larger area without introducing boundary interference.

We select 10 sequences from previous study [Kristan et al.,
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Figure 6: Ten challenging sequences employed in the second experiments. The results from each tracker are illustrated by bounding boxes
with different colors.

Table 1: Mean VOR score and mean CEL error on each sequence for eight trackers.

mean

VOR

crossing biker girl ball pedestrian dog blurCar human2 handball man avg.

TGPR 0.5385 0.2855 0.0571 0.8034 0.3245 0.6498 0.7501 0.1950 0.0687 0.2785 0.3951

KCF 0.5132 0.2495 0.1060 0.4705 0.1659 0.5632 0.8107 0.1766 0.1456 0.8312 0.4032

DSST 0.7109 0.2745 0.0952 0.3892 0.1904 0.0650 0.8418 0.4144 0.0626 0.8430 0.3887

ASLA 0.3848 0.3851 0.0663 0.1066 0.7240 0.7526 0.1859 0.6658 0.1035 0.8256 0.4200

SAMF 0.6416 0.2456 0.6180 0.8319 0.1741 0.6838 0.8465 0.6666 0.0694 0.8558 0.5633

DLT 0.6785 0.5211 0.0621 0.1858 0.1672 0.0482 0.1124 0.7495 0.0245 0.7725 0.3322

Struck 0.4988 0.4990 0.1712 0.4637 0.3001 0.3531 0.3126 0.6808 0.1347 0.8895 0.4304

CFNN 0.6425 0.3527 0.6529 0.8388 0.3621 0.7066 0.8279 0.7034 0.2441 0.8790 0.6210

mean

CEL

TGPR 20.2208 99.5222 291.2551 4.0798 4.1192 4.2658 8.3578 123.6110 73.3868 17.4529 64.6271

KCF 14.7956 71.1610 140.2529 53.4102 242.7280 8.0368 4.1388 107.4042 30.7153 2.2557 67.4899

DSST 8.7464 69.0021 128.3205 79.5626 234.1737 272.3239 3.2676 102.4550 60.9645 1.5111 96.0327

ASLA 43.6852 78.9530 328.4980 95.4083 4.2541 6.1981 71.1535 21.4405 27.8917 1.7759 67.9258

SAMF 12.2718 74.6270 38.9573 3.4618 227.2136 5.7376 3.5831 21.9038 75.7324 1.8067 46.5295

DLT 15.6529 10.7380 290.8835 185.0039 250.4971 331.3163 141.2786 19.7233 59.6693 1.5132 130.6276

Struck 19.3409 4.3421 137.4185 63.1518 6.0217 7.4616 50.4882 23.9734 18.8602 1.7304 33.2789

CFNN 6.1341 60.6947 33.4082 3.0803 9.5459 4.7049 3.5332 19.4547 34.4594 1.3718 17.6387

2015] and [Wu et al., 2013]. All these sequences are dif-
ferent from those in OTB-2013, and all contain the dramatic
movement. We also choose another 8 trackers ranking among
top-10 (in terms of AUC score) in last experiment for com-
parison. As illustrated in Fig. 6, such challenge makes many
previous methods drift away. On the contrary, our tracker
sticks at those targets firmly and shows quite robust perfor-
mance against frame shaking and blur.

Specifically, the focal length of the camera change in Girls,
bringing blur in some frames. Besides, the target girl moves
extensively in the sequence, and is occluded by other peo-
ple several times. KCF, Struck and DSST fail to locate the
target in such situation and drift away. In BlurCar, the cam-
era shakes which makes the capturing angle changes dramat-
ically and bring blur. In Human, target moves and demon-
strates much deformation. These cause failure for other track-
ers while our tracker successfully tracks the target.

Table 1 lists the the mean VOR score and the mean CEL
error of each sequences obtained by different approaches. On
such type of sequences, our tracker shows great potential by
improving conventional tracking results at a large margin.

5 Conclusion and Future Work

In this paper, we propose a correlation filter neural network
tracking approach, which enjoys the merits of both correla-
tion filter and deep learning. Our presented approach does
not need pre-training on the external dataset. All weights in
CFNN are initialized by calculating a ridge regression merely
according to the ground truth in the first frame. Hence, the
architecture of the CFNN is simple while retaining the ad-
vantage of correlation filter-based trackers. Under the pro-
posed CFNN framework, we introduce a complete tracking
pipeline, which continuously collects samples and updates all
weights to adapt to the new appearance variation. We eval-
uate our tracking approach on OTB-2013 dataset and some
other challenging sequences, as well as comparing with some
representative trackers. Experiments show that our tracking
approach achieves comparable and promising results. We be-
lieve our proposed approach can be a beneficial complement
for the visual tracking community.
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