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1. Introduction

We have learned in recent years that it is fruitful to study singular limits of string

compactifications. In this paper, we consider theories with four supercharges in four,

three, and two dimensions, constructed by considering F -theory, M -theory, and Type

IIA string theory on a Calabi-Yau four-fold with an isolated complex singularity. We

can connect these theories to each other by circle compactifications from four to three to

two dimensions. In addition to the choice of singularity, the description of these theories

depends on certain additional data involving the four-form flux and membrane charge in

M -theory (and related objects in the other theories).

We will analyze the vacuum structure of these theories and the domain walls connect-

ing the possible vacua. We argue that in many cases, the nonperturbative physics near

a singularity generates massless chiral superfields with a superpotential, leading in many

instances, especially in two dimensions or in three dimensions with large membrane charge,

to an infrared flow to a nontrivial conformal field theory. In some cases, we can identify

the theories in question with known superconformal models; for example, Type IIA at a

four-fold An singularity gives an N = 2 Kazama-Suzuki model in two dimensions, as we

argue using the vacuum and soliton structure. More generally, from the A-D-E four-fold

hypersurface singularities with appropriate fluxes, we obtain all the N = 2 Kazama-Suzuki

models [1] at level one. This is a large list of exactly solvable conformal theories, which

includes the N = 2 unitary minimal models. It is quite satisfying that strings in the

presence of singularities captures such a large class of known conformal theories in two

dimensions, and suggests that maybe even in higher dimensions, strings propagating in

singular geometries yield an equally large subspace of conformal theories. Moreover, since

the Kazama-Suzuki models are exactly solvable conformal theories in two dimensions, it

would be interesting to see to what extent its known spectrum and correlation functions

can be extracted from string theory. This would be a natural testing grounds in view

of potential application to higher dimensions where the conformal theories are less well

understood.

Our result gives a relation between singularity theory, as in the Landau-Ginzburg

approach to conformal theories in two dimensions [2-4], and the singularity of internal

compactification geometry. This relation may well extend to non-supersymmetric exam-

ples; it would certainly be interesting to explore this.

In section 2, we analyze the fluxes, branes, and vacuum states near a four-fold singu-

larity. In section 3, we show how to compute the spectrum of domain walls (which can
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also be viewed as strings and kinks in the three and two-dimensional cases) for a special

class of singularities. In section 4, we identify the models derived from A-D-E singularities

with Kazama-Suzuki models at level 1. In section 5, we discuss some additional classes of

singularities on four-folds, and in section 6, we discuss the reinterpretation of some of our

results in terms of branes.

2. Classification Of Vacua

2.1. The G-Field And Domain Walls

For our starting point, we take M -theory on R3 × Y , where Y is a compact eight-

manifold. Soon, we will specialize to the case that Y is a Calabi-Yau four-fold, so as to

achieve supersymmetry. We also will note in section 2.5 the generalization of our remarks

to Type IIA or F -theory compactification on Y .

To fully specify a vacuum on Y , one must specify not just Y but also the topological

class of the three-form potential C of M -theory, whose field strength is G = dC. Roughly

speaking, C-fields are classified topologically by a characteristic class ξ ∈ H4(Y ;Z). At

the level of de Rham cohomology, ξ is measured by the differential form G/2π, and we

sometimes write it informally as ξ = [G/2π]. 1

Without breaking the three-dimensional Poincaré symmetries, this model can be gen-

eralized by picking N points Pi ∈ Y and including N membranes with world-volumes of

the form R3×Pi. More generally, we include both membranes and antimembranes and let

N be the difference between the number of membranes and antimembranes; thus it can be

a positive or negative integer. With Y being compact, the net source of the C-field must

vanish; this gives a relation [6,5]

N =
χ

24
− 1

2

∫

Y

G ∧G
(2π)2

. (2.1)

1 The assertion that ξ takes values in H4(Y ;Z) is a bit imprecise, since in general [5] the G-field

is shifted from standard Dirac quantization and ξ is not an element of H4(Y ;Z). But the difference

between two C-fields is always measured by a difference ξ− ξ′ ∈ H4(Y ;Z). ξ itself takes values in

a “principal homogeneous space” Λ for the group H4(Y ;Z); the relation between H4(Y ;Z) and

Λ is just analogous to the relation between H2(Y ;Z) and the set of Spin
c

structures on Y . The

shift in the quantization law of G arises precisely when the intersection form on H4(Y ;Z) is not

even. In our examples, this will occur only in section 5, and we will ignore this issue until that

point.
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If G obeys the shifted quantization condition mentioned in the last footnote, then the right

hand side of (2.1) is always integral [5].

In this construction, models defined using the same Y but different ξ are actually

different states of the same model.2 To show this, it suffices to describe a domain wall

interpolating between models with the same Y and with C-fields of arbitrary characteristic

classes ξ1 and ξ2. By Poincaré duality, H4(Y ;Z) = H4(Y ;Z). Hence, there is a four-cycle

S ⊂ Y , representing an element of H4(Y ;Z), such that if [S] ∈ H4(Y,Z) is the class that

is Poincaré dual to S, then ξ2 − ξ1 = [S]. Now, consider a fivebrane in R3 × Y whose

worldvolume is W = R2 × S, with R2 a linear subspace of R3. Being of codimension one

in spacetime, this fivebrane looks macroscopically like a domain wall. Moreover, because

the fivebrane is a magnetic source of G, the characteristic class ξ = [G/2π] jumps by [S]

in crossing this domain wall. Hence if it equals ξ1 on one side, then it equals ξ2 = ξ1 + [S]

on the other side.

Equation (2.1) implies that if ξ jumps in crossing a domain wall, then N must also

jump. Let us see how this comes about. The key is that there is a self-dual three-form T

on the fivebrane with a relation

dT = G|W − 2πδ(∂M). (2.2)

where G|W is the restriction of the G-field to the world-volume W , ∂M is the union of all

boundaries of membrane worldvolumes that terminate on W , and δ(∂M) is a four-form

with delta function support on ∂M . Because the G-field actually jumps in crossing the

fivebrane, it is not completely obvious how to interpret the term G|W . We will assume

that this should be understood as the average of the G-field on the two sides: G|W =

(G1 +G2)/2. Since the left hand side of (2.2) is zero in cohomology, we get a relation in

cohomology

[∂M ] =
G1 +G2

2(2π)
(2.3)

where [∂M ] is the cohomology class dual to ∂M . We are interested in the case that the

membrane worldvolumes are of the form R3×Pi, so that their boundaries on W are of the

form R2 × Pi. In evaluating (2.3), we can suppress the common R2 factor, and integrate

over S to get a cohomology relation. The integration converts [∂M ] into N1 − N2, the

2 This may also be true of models with different Y – as suggested by results of [7] in the

threefold case – but this issue is much harder to explore.
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change in N in crossing the domain wall or in other words the net number of membranes

whose boundary is on the fivebrane. So

N1 −N2 =
1

2

∫

S

G1 +G2

2π
= −1

2

∫

Y

G2
1 −G2

2

(2π)2
. (2.4)

Here we have used the fact that [S] = [(G2 −G1)/2π] to convert an integral over S to one

over Y . Clearly, (2.4) is compatible with the requirement that (2.1) should hold on both

sides of the domain wall.

Incorporation Of Supersymmetry

Now we wish to specialize to the case that Y is a Calabi-Yau four-fold and to look for

vacua with unbroken supersymmetry.

For this, several restrictions must be imposed. The requirements for G, assuming that

one wants unbroken supersymmetry with zero cosmological constant, have been obtained

in an elegant computation [8]. The result is that G must be of type (2, 2) and must be

primitive, that is, it must obey

K ∧G = 0, (2.5)

where K is the Kähler form. We will analyze this condition in Appendix I, but for now

we note that it implies that G is self-dual and hence in particular that

∫

Y

G ∧G
(2π)2

≥ 0, (2.6)

with equality only if G = 0.

The second basic consequence of supersymmetry is that N must be positive. Only

membranes and not anti-membranes on R3 ×Pi preserve the same supersymmetry that is

preserved by the compactification on the complex four-fold Y .

Given that N must be positive, the relation (2.1) implies that

∫

Y

G ∧G
(2π)2

≤ χ

12
. (2.7)

This inequality together with self-duality implies that, for compact Y , there are only

finitely many choices of G that are compatible with unbroken supersymmetry. For χ

negative, there are none at all.

Energetic Considerations
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There is another way to understand the result that Φ = N + 1
8π2

∫
G ∧ G should

not change in crossing the domain wall. This is based on a finite energy condition. The

condition that the domain wall be flat and have finite tension requires that the energy

density on the two sides of the domain wall should be equal far away from the domain

wall. The energy density in the bulk gets contribution from the G flux given by 1
8π2

∫
G∧∗G

and from the membranes by N . For the supersymmetric situation we are considering, G

is self-dual (as explained in Appendix I), i.e., G = ∗G so the energy density is given by

N + 1
8π2

∫
G ∧G, and so its constancy across a domain wall is a consequence of the finite

energy of the domain wall. This is also important in our applications later, as we will

use a BPS formula for the mass of domain walls. Due to boundary terms at infinity,

such formulas are generally not valid for objects of very low codimension in space (the

codimension is one in our case). The cancellation of the boundary terms in question in

our case is again precisely the condition of constancy of Φ across the domain wall.

2.2. Behavior Near A Singularity

So far we have considered the case of a compact smooth manifold Y . Our main interest

in the present paper, however, is to study the behavior as Y develops a singularity. For

practical purposes, it is convenient then to omit the part of Y that is far from the singularity

and to consider a complete but not compact Calabi-Yau four-fold that is developing a

singularity. In fact, some of the singularities we will study – like the An singularities of a

complex surface for very large n – probably cannot be embedded in a compact Calabi-Yau

manifold. Our discussion will apply directly to an isolated singularity of a non-compact

variety.

Hypersurface singularities are an important example and will be our focus in this

paper except in section 5. For example, one of our important applications will be to quasi-

homogeneous hypersurface singularities. In this case, we begin with five complex variables

za, a = 1, . . . , 5 of degree ra > 0 and a polynomial F (z1, . . . , z5) that is homogeneous of

degree 1. We assume that F is such that the hypersurface F = 0 is smooth except for an

isolated singularity at z1 = . . . = z5 = 0. Then we let X be a smooth deformation of this

singular hypersurface such as

F (z1, . . . , z5) = ǫ (2.8)

with ǫ a constant, or more generally

F (z1, . . . , z5) =
∑

i

tiAi(z1, . . . , z5), (2.9)
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with complex parameters ti and polynomials Ai that describe relevant perturbations of

the singularity F = 0. The singular hypersurface F = 0 admits the U(1) symmetry group

za → eiθraza. (2.10)

Under this transformation, the holomorphic four-form

Ω =
dz2 ∧ dz3 ∧ dz4 ∧ dz5

∂F/∂z1
(2.11)

has charge

rΩ =
∑

a

ra − 1. (2.12)

The U(1) symmetry in (2.10) is an R-symmetry group if rΩ 6= 0. If the model is to

flow in the infrared to a superconformal field theory, an R-symmetry must appear in the

superconformal algebra; we propose that it is the symmetry just identified. If the Ai have

degrees ri, then the dimensions of the corresponding operators are proportional to ri/rΩ

(in other words, the R-charges normalized so that Ω has R-charge 1). Since the ri are

positive, requiring that the dimensions be positive gives a condition rΩ > 0:

∑

a

ra > 1. (2.13)

We will see the importance of this condition from several points of view.

In what sense is such an X a Calabi-Yau manifold? The holomorphic four-form Ω

defined in (2.11) has no zeroes or poles on X , though it has in a certain sense (using the

compactification described in the next paragraph) a pole at infinity. A theorem of Tian

and Yau [9] asserts, assuming (2.13), that there is a Calabi-Yau metric on X with volume

form

|Ω ∧ Ω|, (2.14)

and moreover (see the precise statement in eqn. (2.3) of [9]) this metric is asymptotically

conical, that is it looks near infinity like

ds2 = dr2 + r2ds2⊥. (2.15)

Here ds⊥ is an “angular” metric, and r is a “radial” coordinate near infinity which scales

under za → λraza as r → λ(Σara−1)/4r. This exponent ensures that the volume form

derived from (2.15) scales like |Ω|2.
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To apply the Tian-Yau theorem to the hypersurface X and deduce the statements

in the last paragraph, one writes ra = ba/d with ba relatively prime integers and d a

positive integer. Then one introduces another complex variable w of degree 1/d, and one

compactifies X to the compact variety Y ′ defined by the equation F (zi) − ǫwd = 0 in

a weighted projective space. The discussion of [9] applies to this situation, with D the

divisor w = 0, and identifies r with a fractional power of |w|.
It is very plausible that if a compact Calabi-Yau manifold Y develops an isolated

hypersurface singularity that is at finite distance on the moduli space, then the Calabi-

Yau metric on Y looks locally like the conelike metric that we have just described on the

hypersurface X .3 For our purposes, we do not strictly need to know that this is true, but

the physical applications are certainly rather natural if it is.

Flux At Infinity

Noncompactness of X leads to several important novelties in the specification of the

model. First of all, flux can escape to infinity, and hence (2.1) no longer holds. Rather, an

extra term appears in (2.1), namely the flux Φ measured at infinity. This flux is a constant

of the motion, invariant under the dynamics which occurs in the “interior” of X . If we

absorb the constant χ/24 in the definition of Φ,4 then we can write the conserved quantity

as

Φ = N +
1

2

∫

X

G ∧G
(2π)2

. (2.16)

We can think of Φ as a constant that must be specified (in addition to giving X) in order

to determine the model. A model with given Φ has various vacuum states, determined by

the values of N and G. For unbroken supersymmetry, both terms on the right hand side

of (2.16) are positive (for the same reasons as in the case of compact X), so there are only

finitely many possible choices of N and G for fixed Φ.

In addition to Φ, there is another quantity that characterizes the definition of the

model – and commutes with the dynamics. For finiteness of the energy, it is reasonable

to require that the flux G vanishes if restricted to ∂X , the region near infinity in X . This

3 There is no claim here that X can be globally embedded in Y , only that the behavior of Y

near its singularity can be modeled by X. Note that the variety Y ′ used in the last paragraph in

relation to the Tian-Yau theorem is not a Calabi-Yau manifold.
4 When X is not compact, χ must in any event be defined by a curvature integral and need

not coincide with the topological Euler characteristic.
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does not imply that the cohomology class ξ vanishes if restricted to ∂X , but only that its

restriction is a torsion class. Thus, the C-field at infinity is flat, but perhaps topologically

non-trivial. Local dynamics cannot change the behavior at infinity, so the restriction of

ξ to ∂X is another invariant of the local dynamics, which must be specified in defining a

model.

There is another way to see more explicitly how this invariant comes about. For

this, we have to look at precisely what Poincaré duality says in the case of a noncompact

manifold X . Domain walls of the type introduced in section 2.1 are classified by H4(X ;Z),

which classifies the cycles S on which a fivebrane can wrap to make a domain wall. Poincaré

duality says that this is the same as H4
cpct(X ;Z) (where H4

cpct denotes cohomology with

compact support), 5 the rough idea being that if S is a four-cycle determining an element

of H4(X ;Z) (so in particular S is by definition compact), then the Poincaré dual class

[S] is represented by a delta function δ(S) that has compact support. C-fields on X are

classified topologically by ξ ∈ H4(X ;Z). The groups H4(X ;Z) and H4
cpct(X ;Z) that

classify, respectively, topological classes of C-fields and of changes in C-fields in crossing

domain walls are in general different for non-compact X . However, there is always a

natural map

i : H4
cpct(X ;Z) → H4(X ;Z) (2.17)

(by “forgetting” that a class has compact support). Moreover, for hypersurface singu-

larities, H4
cpct(X ;Z) and H4(X ;Z) are lattices, which we will call Γ and Γ∗ respectively.

Poincaré duality in the noncompact case says that Γ and Γ∗ are dual lattices. When the

intersection form on H4
cpct(X ;Z) has no null vectors, the map i is an embedding, and Γ

can be regarded as a sublattice of its dual lattice Γ∗. This makes things very simple.

The lattice Γ can actually be described rather simply. In fact, topologically, the

hypersurface X is homotopic to a “bouquet” of four-spheres. 6 H4(X ;Z) is a lattice Γ

with one generator for every four-sphere in the bouquet.

5 The cohomology of X with compact support is generated by closed forms β on X with

compact support, subject to the equivalence relation that β ∼= β + dǫ if ǫ has compact support.
6 Such a bouquet is, by definition, associated with a tree diagram in which the vertices represent

four-spheres and two vertices are connected by a line if and only if the corresponding four-spheres

intersect. Such a diagram has the form of a simply-laced Dynkin diagram (with vertices for four-

spheres and lines for intersections of them), except that the Cartan matrix may not be positive

definite and thus one is not restricted to the A-D-E case.
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In crossing a domain wall, ξ cannot change by an arbitrary amount, but only by

something of the form i([S]) where [S] is a class with compact support. The possible

values of ξ modulo changes due to the dynamics, that is due to crossing domain walls, are

thus classified by

H4(X ;Z)/i(H4
cpct(X ;Z)) = Γ∗/Γ. (2.18)

This can be reinterpreted as follows. The exact sequence of the pair (X, ∂X) reads in

part

. . .H4(X, ∂X ;Z) i−→H4(X ;Z)
j−→H4(∂X ;Z) → H5(X, ∂X ;Z) → . . . . (2.19)

Here Hi(X, ∂X ;Z) is the same as Hi
cpct(X ;Z). By Poincaré duality, H5(X, ∂X ;Z) =

H3(X ;Z), and this is zero on dimensional grounds for a bouquet of four-spheres. So the

exact sequence implies that

H4(∂X ;Z) = H4(X ;Z)/i(H4
cpct(X ;Z)) = Γ∗/Γ. (2.20)

Thus the value of ξ modulo changes in crossing domain walls (the right hand side of (2.20))

can be identified with the restriction of ξ to ∂X (the left hand side).

If the intersection pairing onH4(X ;Z) is degenerate, then we should define Γ to be the

quotient of H4(X, ∂X ;Z) by the group of null vectors (which can be shown to be precisely

the image in H4(X, ∂X ;Z) of H3(∂X ;Z)). The dual Γ∗ is the subgroup of H4(X ;Z)

consisting of elements whose restriction to ∂X is torsion. With these definitions of Γ and

Γ∗, everything that we have described above carries over (i embeds Γ as a finite index

sublattice of Γ∗; the G-fields, with appropriate boundary conditions, take values in Γ∗,

and jump in crossing a domain wall by elements of Γ).

Examples

We will now illustrate these perhaps slightly abstract ideas with examples that will

be important later.

Consider first the simple case that X is a deformation of a quadric singularity:

5∑

a=1

z2
a = ǫ. (2.21)

If we assume that ǫ is real and write za = xa+ iya, we get ~x2−~y2 = ǫ and ~x ·~y = 0. Setting

~u = ~x/
√
ǫ+ ~y2, we see that ~u is a unit vector. The subset of X with ~y = 0 is a four-sphere

9



S; since ~y · ~u = 0, X is the cotangent bundle of S. In particular, X is homotopic to the

four-sphere S. This is the case in which the bouquet of spheres is made from just a single

sphere. The self-intersection number of S is S · S = 2.7 The lattice Γ = H4
cpct(X ;Z) is

generated by [S], but the dual lattice Γ∗ = H4(X ;Z) is generated by 1
2
[S] (whose scalar

product with S is 1). So H4(∂X ;Z) = H4(X ;Z)/H4
cpct(X ;Z) = 1

2Γ/Γ = Z2.

A somewhat more sophisticated example is the An−1 singularity in complex dimension

four:

Pn(z1) +
5∑

a=2

z2
a = 0. (2.22)

Here Pn(z1) is a polynomial of degree n. For simplicity we take

Pn(z1) =
n∏

i=1

(z1 − bi) (2.23)

with real bi, b1 < b2 < . . . < bn. For i = 1, . . . , n−1, we define a four-sphere Si by requiring

that z1 is real with bi < z1 < bi+1, and that the zj for j > 1 are all real or all imaginary

depending on the value of i modulo two. The Si generate the lattice Γ = H4
cpct(X ;Z).

The intersection numbers of the Si are S2
i = 2, Si · Si+1 = 1, with others vanishing. (Si

intersects Si+1 at the single point z1 = bi+1, zj = 0 for j > 1; Si does not intersect Sj if

|j − i| > 1.) Endowed with this intersection form, Γ is the root lattice of the Lie group

An−1 = SU(n), while the dual lattice Γ∗ = H4(X ;Z) is the weight lattice. The quotient

is H4(∂X ;Z) = Γ∗/Γ = Zn. It can be shown that X is homotopic to the union of the Si,

which form a “bouquet.” In this case, the bouquet is associated with the Dynkin diagram

of An.

More generally, if H(z1, z2, z3) is a polynomial in three complex variables that de-

scribes a deformation of an A-D-E surface singularity, we can consider the corresponding

surface singularity in complex dimension four:

H(z1, z2, z3) + z2
4 + z2

5 = 0. (2.24)

The case just considered, with H(z1, z2, z3) = Pn(z1)+z2
2 +z2

3 , corresponds to An−1. (The

appropriate H’s for the other cases are written at the end of section 2.5.) For any of the

7 To compute this, deform S to the four-sphere S′ defined by y1 = u2, y2 = −u1, y3 = u4,

y4 = −u3, y5 = 0. Then S′ intersects S at the two points u1 = . . . = u4 = 0, u5 = ±1, and each

point contributes +1 to the intersection number. Hence S · S = S · S′ = 2.

10



A-D-E examples, Γ is the root lattice of the appropriate simply-connected A-D-E group

G, Γ∗ is the weight lattice of G, and the quotient H4(∂X ;Z) = Γ∗/Γ is isomorphic to the

center of G. One approach to proving these assertions is to show that they are true for

the middle-dimensional cohomology of the surface H(z1, z2, z3) = 0, and are unaffected

by “stabilizing” the singularity by adding two more variables with the quadratic terms

z2
4 + z2

5 .

2.3. Distance To Singularity And Hodge Structure Of Cohomology

In the present subsection, we return to the case of a compact Calabi-Yau four-fold Y .

We suppose that, when some complex parameters ti are varied, Y develops a singularity

that looks like a quasihomogeneous hypersurface singularity F (z1, . . . , z5) = 0, where the

za have degrees ra > 0 and F is of degree 1. Upon varying the complex structure of Y ,

the hypersurface is deformed to a smooth one which looks locally like

F (z1, . . . , z5) +
∑

i

tiAi(z1, . . . , z5) = 0. (2.25)

Here the ti are complex parameters, and the Ai are perturbations of the equation.

The first question to examine is whether the singularity at ti = 0 can arise at finite

distance in Calabi-Yau moduli space. The Kähler form on the parameter space is

ω = dtidt
j ∂2

∂ti∂t
j
K, (2.26)

where K is the Kähler potential K. On the parameter space of a compact Calabi-Yau

manifold, the Kähler potential of the Weil-Peterson metric is8

K = − ln

∫

Y

Ω ∧ Ω. (2.27)

We want to analyze a possible singularity of this integral near za = 0 in the limit that the

ti go to zero. If and only if there is such a singularity, the distance to ti = 0 will be infinite

in the metric (2.26). For analyzing this question, the large za behavior, which depends on

how the singularity is embedded in a compact variety Y , is immaterial (as long as there

is some cutoff to avoid a divergence at large za); we can, for instance, replace Y by the

hypersurface in (2.25) and restrict the integral to the region |za| < 1.

8 The derivation of this formula is just as in the three-fold case; see [10] for an exposition.
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To determine the small za behavior of the integral, we use a simple scaling. Under

za → λraza, Ω scales like λΣara−1 and so the integral in (2.27) scales like |λ|2Σara−2. Small

za corresponds to small λ. Hence the condition that the integral converges at small za is

∑

a

ra − 1 > 0. (2.28)

This is a satisfying result, in that this is the same condition that was needed to get an

R-symmetry with positive charges and to apply the Tian-Yau theorem on existence of

asymptotically cone-like Calabi-Yau metrics.

We will now apply this kind of reasoning to address the following question, whose

importance will become clear: As Y becomes singular, what is the Hodge type of the

“vanishing cohomology,” that is, of the part of the cohomology that “disappears” at the

singularity? We only have to look at middle dimensional cohomology, because the defor-

mation of a hypersurface singularity has cohomology only in the middle dimension.

First let us ask if there is vanishing cohomology of type (4, 0). For this, we normalize

the holomorphic (4, 0)-form Ω of Y in such a way that far from za = 0 it has a limit as

ti → 0. Then we ask if the integral ∫

Y

Ω ∧ Ω (2.29)

converges as ti → 0. If the answer is no, then to make the integral converge as ti → 0, we

would have to rescale Ω so that in the limit it vanishes pointwise away from the singularity.

Then in the limit ti → 0, Ω would be a closed four-form that is non-zero but vanishes away

from the singularity. There would thus be vanishing cohomology of type (4, 0). If the

answer is yes, there is no vanishing cohomology of type (4, 0).

We have already seen that convergence of the integral in (2.29) is the condition that

the singularity is at finite distance in moduli space. Hence, singularities that can arise

in the dynamics of a compact Calabi-Yau four-fold have no vanishing cohomology of type

(4, 0).

Now let us look for vanishing cohomology of type (3, 1). The (3, 1) cohomology is

generated by Ωi = DΩ/Dti, where D/Dti is the covariant derivative computed using the

Gauss-Manin connection. To determine if Ωi is a vanishing cycle, we need to examine the

integral ∫

Y

Ωi ∧ Ωi, (2.30)

and ask if it is finite as all tj → 0. If not, then to make the integral converge, we would

have to rescale Ωi by a function of the tj , and in the limit tj → 0, Ωi would represent a
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nonzero (3, 1) cohomology class that vanishes away from the singularity, or in other words

a piece of the vanishing cohomology of type (3, 1). The integral (2.30) is more conveniently

written as
∂2

∂ti∂ti

∫

Y

Ω ∧ Ω. (2.31)

Whether this integral converges can, again, be determined by scaling. If the function Ai

in (2.25) scales under za → λraza as λsi , then ti scales like λ1−si and (2.31) scales like

|λ|wi with

wi = 2

(
∑

a

ra + si − 2

)
. (2.32)

Vanishing (3, 1) cohomology arises when wi ≤ 0, so that the integral in (2.31) diverges

near z = 0. The most dangerous case is for Ai = 1, si = 0. The condition that wi > 0 for

all i, so that there is no vanishing (3, 1) cohomology, is thus

∑

a

ra > 2. (2.33)

We can classify the models that obey this condition. Consider a Landau-Ginzburg

model with chiral superfields Φa, a = 1, . . . , 5 and superpotential F (Φ1, . . . ,Φ5). If Φa have

degree ra and F has degree one, then the central charge of this model is ĉ =
∑5
a=1(1 −

2ra) = 5 − 2
∑
a ra. The condition (2.33) thus amounts to9

ĉ < 1. (2.34)

The singularities that obey this condition are the A-D-E singularities. They are given, in

a suitable set of coordinates, by

F (z1, . . . , z5) = H(z1, z2, z3) + z2
4 + z2

5 , (2.35)

where H(z1, z2, z3) = 0 is the equation of an A-D-E surface singularity.

Application To Hypersurface

We have developed this discussion for the case of a compact Calabi-Yau manifold Y

that develops a hypersurface singularity, but it is more in the spirit of the present paper

to decompactify Y and focus on the hypersurface itself, that is to consider M -theory on

9 Note that in terms of ĉ the condition that the local singularity of the fourfold be at finite

distance in moduli space (2.28) is that ĉ < 3, which generalizes for an n-fold singularity to ĉ < n−1.
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R3 ×X , where X is a hypersurface that develops the given singularity. This is the natural

framework for studying M -theory near a singularity, with extraneous degrees of freedom

decoupled. Let us therefore now explain the significance of the above results for this case.

If we work on the noncompact hypersurface, the condition that
∑
a ra+ si > 2, which

ensures that there is not a divergence of
∫
|Ωi|2 near za = 0, also ensures that there is

such a divergence near za = ∞. The large za divergence means that, in M -theory on

R3 × X , the modes that deform the singularity of X have divergent kinetic energy and

are not dynamical. They correspond, instead, to coupling constants of the theory near the

singularity; they can be specified externally as part of the definition of the problem.

In the A-D-E examples, the complex structure modes are all non-dynamical in this

sense. For other examples, positivity of (2.32) does not hold for all i, and therefore some of

the complex structure deformations of X are dynamical; they vary quantum mechanically

in the theory at the singularity. Only those modes for which wi > 0 can be specified

externally and represent coupling constants.

Now let us consider the Hodge type of the G-field in the hypersurface case. For

unbroken supersymmetry in flat spacetime, G must be a harmonic L2 form of type (2, 2)

[8]. It must, as well, be integral and “primitive.”

For hypersurface singularities with asymptotically conical metrics of the type predicted

by the Tian-Yau theorem, the condition that G be a harmonic L2 form is a mild one in

the following sense. For an asymptotically conical metric on a manifold X , one expects

the space of L2 harmonic forms of degree i to be isomorphic to the image of Hi
cpct(X ;R)

in Hi(X ;R). For hypersurface singularities of complex dimension four, there is only four-

dimensional cohomology, so we expect L2 harmonic forms of degree four only. Assuming

there are no null vectors in H4
cpct(X), the image of Hi

cpct(X ;R) in Hi(X ;R) is all of

Hi(X ;R), so one expects that all of the four-dimensional cohomology is realized by L2

harmonic forms.

What about the requirement that G be primitive? Primitiveness means that K ∧G =

0, where K is the Kähler form. If G is an L2 harmonic four-form on a manifold whose L2

harmonic forms are all four-forms, then K ∧G is automatically zero (if not zero, it would

be an L2 harmonic six-form). Thus, for singularities of this type, the condition that G
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should be primitive is automatically obeyed. 10 In section 5, we will examine a singularity

of a different sort for which primitiveness of G is an important constraint.

The remaining constraint that we have not examined yet is a severe constraint in the

case of hypersurface singularities. This is the condition that G should be of type (2, 2). For

A-D-E singularities, as we have seen above, the vanishing cohomology is all of type (2,2),

so the L2 harmonic forms have this property. For other singularities, with
∑
a ra < 2,

there is vanishing cohomology of types (3,1), (2,2), and (1,3). Under such conditions, it

is generically very hard to find a non-zero four-form that is of type (2,2) and integral.

Once an integral four-form G is picked, requiring that it be of type (2, 2) will generally put

restrictions on the complex structure of X . Since some of the complex structure modes

are dynamical whenever there is vanishing (3,1) cohomology, the restriction on complex

structure that is entailed in making G be of type (2,2) is likely to play an important role in

the dynamics of these models. In this paper, to avoid having to deal with the dynamical

complex structure modes and the Hodge structure of the singularity, we will study in detail

only the A-D-E singularities. (For fourfold examples where moduli are dynamically frozen

see [11].)

Here is another way to see the distinguished nature of the A-D-E singularities. As

we explain in Appendix I, the intersection form on H4(X,Z) is positive definite on the

primitive cohomology of type (2,2), and negative definite on the primitive cohomology of

types (3,1) and (1,3). Hence, in particular, having the primitive cohomology be entirely of

type (2,2) is equivalent to positive definiteness of the intersection form on H4(X ;Z). For

an intersection form specified by a bouquet of spheres to be positive definite is a condition

that singles out the A-D-E Dynkin diagrams, so again we see that the A-D-E singularities

are the ones with vanishing cohomology that is entirely of type (2,2).

2.4. Interpretation Of Constraints On G

Since the constraints on G found in [8] have played an important role in this discussion,

we will pause here to attempt to gain a better understanding of these constraints.

We consider compactification of M -theory on a compact four-fold Y . We first suppose

that G is zero. Variations of the Calabi-Yau metric of Y arise either from variations of

10 A different explanation of this is as follows. In section 2.2, we compactified X to a complete

but non-Calabi-Yau variety Y ′ by adding a divisor D at infinity. D is an ample divisor, and the

“primitive” cohomology in this situation is the cohomology that vanishes when restricted to D.

This is certainly so for the vanishing cohomology, whose support is far from D.
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the complex structure or variations of the Kähler structure. The variations of the complex

structure are parametrized classically by complex parameters ti, which we promote to chiral

superfields Ti. If hp,q is the dimension of the Hodge group Hp,q(Y ), then the number of

Ti is h3,1. The Kähler structure is parametrized classically by h1,1 real parameters ki.

Compactification of the C-field on Y gives rise to h1,1 U(1) gauge fields ai on R3 whose

duals are scalars φi that combine with the ki to make h1,1 chiral superfields that we may

call Ki.

If G = 0, the expectation values of the Ti and Ki are arbitrary, in the supergravity

approximation to M -theory. (Instantons can lift this degeneracy [12].) For non-zero G,

this is not so. After picking an integral four-form G (which must be such that
∫
X
G∧G > 0

or the equations we are about to write will have no solutions), we must adjust the complex

structure of X so that

G0,4 = G1,3 = 0, (2.36)

and the Kähler structure of X so that

G ∧K = 0. (2.37)

In (2.36), Gp,q denotes the (p, q) part of G.

We want to describe an effective action for the Ti and Kj that accounts for (2.36)

and (2.37). Since supersymmetric actions of the general kind
∫
d4θ(. . .) do not lift vacuum

degeneracies, we look for F-term interactions. Thus, we want a superpotential W (Ti)

that will account for (2.36), and an analog of a superpotential W̃ (Kj) that will account

for (2.37). In three dimensions, the fields Kj are in vector multiplets, and the function

W̃ (Kj) is related by supersymmetry to Chern-Simons couplings for those multiplets. We

will not try to work out the full details of this here. Upon dimensional reduction to two

dimensions, theKj become twisted chiral multiplets and W̃ (Kj) becomes the twisted chiral

superpotential. Therefore, we will somewhen loosely call W̃ a superpotential.

To obtain (2.36), we propose to let Ω be a holomorphic four-form on Y , and take

W (Ti) =
1

2π

∫

Y

Ω ∧G. (2.38)

This object is not, strictly speaking, a function of the Ti but a section of a line bundle over

the moduli space M of complex structures on Y (on which the Ti are coordinates), since
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it is proportional to the choice of Ω. Let L be the line bundle over M whose fiber is the

space of holomorphic four-forms on Y . The Kähler form of M can be written

ω = −∂∂ln

∫

Y

Ω ∧ Ω, (2.39)

in other words it is ∂∂ ln |Ω|2 for Ω any section of L, and this means [13] that W should

be a section of L. Thus, the linear dependence on Ω in (2.38) is the right behavior

of a superpotential. In supergravity with four supercharges, the condition for unbroken

supersymmetry in flat space is W = dW = 0. With W as in (2.38), the condition W = 0 is

that G0,4 = 0. Also, since the objects dΩ/dti generate H3,1(Y ), the condition dW = 0 is

that G1,3 = 0. So we have found the supersymmetric interaction that accounts for (2.36).

Another way to justify (2.38) is to consider supersymmetric domain walls. The tension

of a domain wall obtained by wrapping a brane on a four-cycle S is the absolute value of
∫
S

Ω. If G changes from G1 to G2 in crossing the domain wall, then G2 −G1 = 2π[S], so

this integral is
1

2π

∫

X

Ω ∧ (G2 −G1). (2.40)

In a theory with four supercharges, the tension of a supersymmetric domain wall is the

absolute value of the change in the superpotential W . So (2.40) should be the change in

W in crossing the domain wall, a statement that is clearly compatible with (2.38).

In a similar spirit, one can readily guess the interaction responsible for (2.37):

W̃ (Ki) =

∫

X

K ∧ K ∧G. (2.41)

Here K is a complexified Kähler class whose real part is the ordinary Kähler class K. The

condition dW̃ = 0 is K∧G = 0, whose real part is (2.37). W̃ = 0 is a consequence of this,

and imposes no further condition.

In M -theory on a compact Calabi-Yau four-fold Y , near a hypersurface singular-

ity, the relation of the change in the superpotential in crossing a domain wall to (2.40)

shows that W cannot vanish in all vacua. In the first version of the present paper it

was conjectured that vacua with non-zero W correspond to supersymmetric AdS com-

pactifications. However, a more careful analysis in the revised Appendix II (triggered by

comments of J. Polchinski) shows that four-fold compactifications with G0,4 6= 0 lead to
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non-supersymmetric theories which are classically scale invariant11, the so-called “no-scale

models”. In fact, since the supersymmetry conditions (2.36) and (2.37) are invariant un-

der overall rescaling of the metric on Y , this conclusion is needed for the superpotential

W (Ti, Kj) = W (Ti) + W̃ (Kj) to describe correctly the effective dynamics of M-theory on

a Calabi-Yau four-fold with a G-flux. Going to a non-compact manifold has the effect of

decoupling gravity and allows us to avoid this problem in the present discussion.

Going back to supersymmetric compactifications to R3, it is interesting to compactify

one of the directions in R3 on a circle and consider Type IIA on R2 × Y . The above

analysis carries over immediately for supersymmetric vacua with a nonzero value of the

Ramond-Ramond four-form G. However, in Type IIA string theory, in view of mirror

symmetry and other T -dualities, one naturally thinks that one should construct a more

general effective superpotential to incorporate the possibility of turning on a full set of

Ramond-Ramond fields, and not just the four-form. Indeed, the mirror of G0,4 would be

the RR zero-form (responsible [14] for the massive deformation of Type IIA supergravity),

and the mirror of G1,3 would be the RR two-form. This is under investigation [15].

Physical Interpretation

We will now discuss the physical interpretation of the superpotentials that we have

computed.

We have computed the superpotential as a function of the superfields Ti and Kj with

all other degrees of freedom integrated out. For Y a large, smooth Calabi-Yau four-fold,

this is a very natural thing to do, since the superfields Ti and Kj are massless if G = 0,

while other superfields are massive. However, we have argued that as one approaches

a singularity, there are different vacuum states in the theory at the singularity that are

specified by different choices of the G-field. We will interpret the theory near the singularity

as a theory of dynamical chiral fields Φα such that the critical points of the superpotential

as a function of Φα are given by the possible choices of G-field. Thus, a more complete

description of the theory would involve a superpotential function Ŵ (Φα;Ti, Kj), such that

the function W (Ti, Kj) = W (Ti) + W̃ (Kj) is obtained by extremizing Ŵ with respect

to the Φα. For fixed choices of Ti and Kj, the extremization with respect to Φα has

11 In general, quantum corrections presumably break the classical scale invariance which changes

the normalization of the Lagrangian. For instance, five-brane instantons are expected to modify

the effective superpotential and cause the model to roll down to a supersymmetric vacuum with

negative cosmological constant.

18



different solutions, corresponding to the different choices of G. It is very difficult to see

the superfields Φα explicitly, but for suitable examples we will identify the superpotential

function Ŵ (Φα;Ti, Kj) in section 3 by studying the soliton structure.

2.5. Analogs For Type IIA And F -Theory

We have formulated the discussion so far in terms of M -theory on R3 × Y , with Y

a Calabi-Yau four-fold, but there are close analogs for Type IIA on R2 × Y and (if Y is

elliptically fibered) for F -theory on R4 × Y .

The analysis of [8] carries over to Type IIA, with G now understood as the Ramond-

Ramond four-form field. Our analysis of the vacuum structure also carries over readily to

this case. One obvious change is that domain walls are now constructed from four-branes

(with world-volume R × S ⊂ R2 × Y ). Another obvious change is that, in Type IIA, the

space-filling membranes that contribute to the formula (2.16) for the flux at infinity are

replaced by space-filling fundamental strings. Also, in the Type IIA case, alongside the

Ramond-Ramond four-form, one would want to incorporate the Ramond-Ramond zero-

form and two-form, as we have discussed briefly in section 2.4.

In going to F -theory, the space-filling membranes that contribute to the flux Φ at

infinity are replaced by space-filling threebranes. Also we need to discuss the F -theory

analog of the G-field. Let Y be a four-fold that is elliptically fibered over a base B. Let θi,

i = 1, 2, be a basis of integral harmonic one-forms on the fibers, and let χ be an integral

two-form generating the two-dimensional cohomology of the fibers. Then a four-form G

on Y has at the level of cohomology an expansion

G = g + p ∧ χ+
∑

i

Hi ∧ θi, (2.42)

where g, p, and Hi are respectively forms of degree 4, 2, and 3 on B. (Hi is a three-form on

B with values in the one-dimensional cohomology of the fibers, while g and p are ordinary

four- and two-forms on B.) If G is primitive, then it is in particular self-dual (see Appendix

I). For G to be integral, g and p must be integral. Self-duality of G gives a relation between

g and p which, in the limit that the area of the fibers of Y → B is very small, is impossible

to obey if g and p are non-zero and integral. Hence, the surviving part of G in the F -theory

limit is contained in the Hi, which are interpreted physically as the Neveu-Schwarz and

Ramond-Ramond three-form field strengths of Type IIB superstrings. With g = p = 0, G
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is an element of the primitive cohomology of Y that is odd under the involution that acts

as −1 on the elliptic fibers and trivially on the base.

In terms of a Type IIB description, we have the following structure. Let HNS , HR

denote the NS and Ramond three-form field strengths. Let B denote the base of F-theory

“visible” to type IIB. Consider

H+ = HR − τHNS

H− = HR − τHNS

We view τ as varying over B with monodromies around the loci of seven-branes by SL(2,Z)

transformations

τ → aτ + b

cτ + d

Under such transformations

H+ → (cτ + d)−1H+

H− → (cτ + d)−1H−

A supersymmetric configuration in this context is obtained by choosing an integral (1, 2)

form on the base, H, well defined modulo transformation by (cτ + d)−1 around the 7-

branes. Alternatively, H is a section of Ω1,2 ⊗ L where L is a line bundle over B whose

first chern class is c1(L) = −12c1(B). Then we identify

H+ = H, H− = H

Moreover we require that H ∧ k = 0 where k denotes the Kähler class of B. In this case a

given model is specified by fixing

Φ = N +
1

4π2

∫

B

1

τ2
H ∧H

where N denotes the number of D3 branes.

To describe the domain walls, recall that one can interpret F -theory on R4 × Y in

terms of Type IIB on R4 × B with (p, q)-sevenbranes on a certain locus L ⊂ B. Domain

walls across which the Hi jump are described by a five-brane wrapped on R3×V ⊂ R4×B
with V a three-cycle in B. The (p, q) type of the five-brane varies as V wraps around the

discriminant locus in B.
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This is a rather complicated structure in general, but to study the local behavior

near a singularity, it simplifies considerably. One reason for this is that near an isolated

singularity, one can replace B by C3. If we pick coordinates z1, z2, z3 on C3, then the

elliptic fibration over C3 can be described very explicitly by a Weierstrass equation for

additional complex variables x, y:

y2 = x3 + f(z1, z2, z3)x+ g(z1, z2, z3). (2.43)

The fibers degenerate over a singular locus L which is the discriminant of the cubic, given

by ∆ = 0, where

∆ = 4f3(z1, z2, z3) + 27g2(z1, z2, z3). (2.44)

A singular behavior of the elliptic fibration Y just corresponds in this language to a sin-

gularity of the hypersurface L ⊂ C3. We are interested in a singular point of L at which

4f3 + 27g2 = 0 but f and g are not both zero.12 Near such a singular point, the detailed

construction of ∆ in terms of f and g is irrelevant, and and one can regard L as a fairly

generic deformation of a hypersurface singularity ∆ = 0.

Actually, the full structure of (p, q) sevenbranes also simplifies in this situation. The

deformation of an isolated surface singularity is topologically a bouquet of two-spheres,

and in particular simply-connected. Hence, there is no monodromy around which the type

of brane can change; the (p, q) type of the sevenbrane is fixed, and one can think of it (for

example) as a D7-brane. Thus, the F -theory analog of a Calabi-Yau fourfold singularity is

a more elementary-sounding problem: the study of a D7-brane in R10 = R4 × C3 whose

worldvolume is R4 × L, where L ⊂ C3 is developing a singularity.

Now, let us describe the vacuum states and domain walls in this context. The D7-brane

supports a U(1) gauge field, whose first Chern class is an element of H2(L;Z). This group

is a lattice Γ∗, whose rank is the number of two-spheres in the bouquet. A D5-brane can

end on a D7-brane; its boundary couples magnetically to the gauge field on the D7-brane.

Hence the domain walls across which the first Chern class jumps are built from fivebranes of

topology R3×V , where V is a three-manifold in C3 whose boundary lies in L. In crossing

such a domain wall, the first Chern class jumps by the cohomology class [∂V ], which is

an element of Γ = H2(L;Z) = H2
cpct(L;Z). Poincaré duality for noncompact manifolds

12 Singularities with f and g both zero are composite 7-branes of various types (the order of

vanishing of discriminant would be bigger than 1). For such cases the simplifications described in

the text do not arise and the full structure of (p, q) sevenbranes is relevant.
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asserts that Γ and Γ∗ are dual, and13 the natural map i : H2
cpct(L;Z) → H2(L;Z) gives

an embedding of Γ in Γ∗. Thus we have a familiar situation: the vacuum is determined

by a point in a lattice Γ∗, and in crossing a domain wall it can jump by an element of a

sublattice Γ. Γ is endowed with an integral quadratic form (the intersection pairing), and

as the notation suggests, Γ∗ is the dual lattice of Γ with respect to this pairing.

The A-D-E singularities will furnish important examples in the present paper, for

reasons that we have already explained. Thus, let us explain how they arise in the F -

theory context. An example of an elliptic four-fold fibration Y with an isolated singularity

is given by the following Weierstrass equation:

y2 = x3 − 3a2x+ (H(z1, z2, z3) + 2a3). (2.45)

Here a is an arbitrary non-zero constant, and H is a quasihomogeneous polynomial de-

scribing a singularity in three variables at z1 = z2 = z3 = 0. If we shift x to x + a, the

equation becomes

y2 = x3 + 3ax2 +H(z1, z2, z3), (2.46)

and this makes it obvious that the singularity of the elliptic fibration is obtained by “sta-

bilizing” the surface singularity H = 0 by adding the quadratic terms 3a2x2 − y2 (the

x3 term is irrelevant near the singularity, which is at x = y = 0). The equation for the

discriminant locus L ⊂ C3 reduces to H = 0 (plus higher order terms that are irrelevant

near the singularity). So the singularity of the elliptic four-fold is just the “stabilization”

of the singularity L. To obtain the A-D-E singularities, for both the surface L and the

four-fold Y , we need only select the appropriate H:

H = zn1 + z2
2 + z2

3 An−1

H = zn1 + z1z
2
2 + z2

3 Dn+1

H = z3
1 + z4

2 + z2
3 E6

H = z3
1 + z1z

3
2 + z2

3 E7

H = z3
1 + z5

2 + z2
3 E8.

(2.47)

13 If there are null vectors in Γ, there is a slightly more elaborate story as mentioned in section

2.2.
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2.6. Conformal Field Theory: First Results

Given Type IIA, M -theory, or F -theory on a singular geometry, one natural question

is whether a non-trivial conformal field theory arises in the infrared.

In one situation, an affirmative answer to this question is strongly suggested by recent

literature. This is the case of M -theory at a quasihomogeneous four-fold singularity (for

the present discussion this need not be a hypersurface singularity) with a large value of

the conserved quantity Φ that was introduced in section 2.2:

Φ = N +
1

2

∫

X

G ∧G
(2π)2

. (2.48)

We suppose that the four-fold X is a cone over a seven-manifold Q. Consider M -theory

on R3×X , with a specified (flat) C-field at infinity that we call C∞, and with a very large

number of membranes near the singularity, such that the total membrane charge (including

the contribution of the C-field) is Φ. This system is believed [16-18] to be described

in the infrared by a conformal field theory that is dual to M -theory on AdS4 × Q, with

a constant curvature (but topologically trivial) C-field on AdS4 that depends on Φ, and

a flat but topologically nontrivial C-field on Q that is equal to C∞. For a special case in

which the role of C∞ has been analyzed (for Q = RP7) see [19].

The AdS4 dual of this CFT depends only on what one can measure on Q, that is

C∞ and Φ, and not the detailed way of decomposing Φ in terms of N and G as in (2.48).

That decomposition arises if one makes a deformation of the theory, deforming X to a

smooth hypersurface. M -theory on R3 ×X with X such a smooth hypersurface has vacua

corresponding to all choices of N and G obeying (2.48). When X develops a singularity,

the G-field apparently “disappears” at the singularity, and the decomposition of Φ into

membrane and G-field terms is lost.

Note that the vacua withN 6= 0 do not have a mass gap even after deforming to smooth

X . There are at least massless modes associated with the motion of the membranes on X .

To get a theory that after deformation of the parameters flows in the infrared to massive

vacua only, one must set Φ to the smallest possible value for a given value of C∞, so that

after deforming to a smooth X , N will be zero for all vacua. We recall that C∞ determines

a coset in Γ∗/Γ. To get a massive theory, Φ must equal the minimum of

1
2

∫

X

G ∧G
(2π)2

, (2.49)
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with G running over the elements of the coset of Γ∗/Γ determined by C∞; the massive

vacua are in correspondence with the choices of G that achieve the minimum.

Our goal in the next two sections will be to analyze, for the A-D-E singularities, the

“massive” models just described. The analysis will be made by analyzing the domain wall

structure, or, as it is usually called in two dimensions, the soliton structure. To justify the

analysis, we need to know that there are no quantum corrections to the classical geometry

(which we will use to find the solitons). Such corrections would come from appropriate

instantons. For example, for Type IIA on a Calabi-Yau threefold near the conifold singular-

ity, the Euclidean D2 brane instantons wrapped around the S3 in the conifold smooth out

the singular classical geometry [20-22]. Likewise, in M -theory compactifications on suit-

able Calabi-Yau four-folds, a superpotential is generated by wrapped Euclidean fivebranes

[12]. Such effects, however, are absent in the examples we are considering. For example, in

the F -theory, we are really studying, as we have explained above, a sevenbrane on L ⊂ C3.

Since the C3 has no non-trivial cycles, the relevant instantons will have to end on L, in

order to have finite action. For the instanton to affect the quantum moduli space it has to

be BPS, which in particular requires that the boundary of the instanton be a non-trivial

compact cycle in L. In Type IIB string theory the only possible candidate instantons

which could end on a sevenbrane are fivebranes and onebranes (of appropriate (p, q) type).

Viewing them as instantons, their boundaries would be five- and one-dimensional respec-

tively. So if L has no non-trivial compact five- or one-dimensional cycles, then there are no

instantons, and quantum corrections do not modify the singular classical geometry. In our

case, L, whose compact geometry consists of a bouquet of two-spheres, has only two-cycles,

so there are no instantons. This is to be contrasted with the seemingly similar problem of

F -theory on a Calabi-Yau threefold. In that case, L is a complex curve, with non-trivial

one-cycles; instanton one-branes can and do modify the classical geometry. This is in fact

the F -theory version of the description of the corrections to conifold geometry in Type

IIA compactification (and reduces to it upon compactification on T2). For F -theory on a

four-fold, if the singularity of the surface L is not isolated, then it would generically also

have non-trivial one-cycles and would thus receive corrections.

For M -theory or Type IIA near a four-fold hypersurface singularity, a similar state-

ment holds. In this case, the local geometry of the deformed singularity has non-trivial

four-cycles only. Thus there is no room for instantons, i.e. wrapped Euclidean M2- or

M5-branes, which would require non-trivial three or six-cycles on X . Thus the classical

singularity survives quantum corrections.
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Thus, to analyze the small Φ theories, we will look for supersymmetric domain walls

using the classical geometry near the singularity. The domain walls are constructed from

branes whose volumes vanish as the hypersurface X becomes singular, so their tensions go

to zero. Thus one can reasonably hope to get a description in terms of an effective theory

that contains only light degrees of freedom and generates these domain walls. In fact,

for the massive models derived from A-D-E singularities, we will propose a description in

terms of an effective superpotential for a certain set of chiral superfields that generate the

same soliton structure. This description will make clear that one should expect flow to a

non-trivial IR conformal field theory in the two-dimensional cases, and in a few cases in

three dimensions.

The basic strategy for identifying a supersymmetric theory based on its BPS soliton

structure is the classification approach of [23] to N = 2 supersymmetric theories in two

dimensions. Consider a theory with N = 2 supersymmetry in two dimensions with k

vacua, and consider the integral k × k matrix S given by

S = 1 −A (2.50)

where 1 represents the identity matrix and A is a strictly upper triangular matrix whose

Aij entry for i < j is the number of nearly massless BPS solitons interpolating between

the i-th sector and the j-th sector weighted with the index (−1)FF [24], i.e.

Aij = Trij−solitons(−1)FF.

It was argued that this massive deformation comes from a CFT in the UV limit with

central charge ĉ and k chiral fields with R-charges qi which satisfy

Eigenvalues(S−tS) = exp[2πi(qi − 1
2 ĉ)]

(even the integral part of qi can be determined from Aij [23]). This is a strong restriction,

and in case of deformations of minimal models, the solitons completely characterize the

conformal theory. In other words, any theory which upon mass deformation has the same

solitonic structure as that for a massive deformation of a minimal model is equivalent to

it! For non-minimal models, the relation above between the spectrum of the solitons and

the charges of chiral fields is still a very powerful connection and in particular fixes the

central charge of the corresponding conformal theory.
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Above two dimensions, the domain wall or soliton analysis still identifies an effective

superpotential, but it is less common for a theory with a given superpotential to flow to a

nontrivial IR conformal field theory. For instance, a theory with a single chiral superfield

Φ and superpotential W = Φn is believed to flow to a nontrivial CFT in two dimensions

for all n > 2, while in three dimensions this is expected only for n = 3 [25], and in four

dimensions, it is believed to flow to a trivial IR theory for all n. In any event, our analysis

will identify the nonperturbative massless fields and superpotential near the singularity

also in three and four dimensions. Also, even in four dimensions, a Φn superpotential can

become relevant as a perturbation to certain fixed points [26], so with some modification

of our construction, the superpotential we find may eventually be important in analyzing

four dimensional CFT’s that arise from string theory.

The soliton analysis will give detailed information about the behavior for small mem-

brane charge, which is the opposite limit from the AdS description discussed above that

governs the large charge behavior at least for the M -theory compactifications. For the

Type IIA and F -theory compactifications, the description of the large charge behavior

appears to be less simple.

3. Geometry of Domain Walls

As explained in section 2.6, our task now is to analyze the soliton structure for cer-

tain hypersurface singularities. In fact, we will consider the Ak singularities which were

introduced in section 2.2.

Instead of specializing to four-folds, it proves insightful to consider the more general

problem of identifying BPS states of wrapped n-branes in a Calabi-Yau n-fold near an

isolated singularity. To study the behavior near an Ak singularity, we consider a local

model for a Calabi-Yau n-fold given by

−Pm(z1) + z2
2 + ...+ z2

n+1 = 0

where Pm(z1) is a polynomial of degree m = k + 1 in z1. When Pm has two equal roots,

we get a singular geometry. The most singular gemetry arises when Pm(z1) = zm1 . For

a generic polynomial Pm(z1), the geometry is not singular and the compact homology of

this manifold has a basis made of m − 1 spheres of real dimension n intersecting each

other according to the Am−1 Dynkin diagram. For a particular choice of Pm, we explained

how to construct these spheres in section 2.2. The intersection form on the compact
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homology is symmetric if n is even and antisymmetric if n is odd. We would like to

consider minimal wrapped n-branes, i.e. minimal supersymmetric cycles, in this geometry.

A supersymmetric cycle is a Lagrangian submanifold (that is, the Kähler form vanishes on

it). Moreover, on a minimal supersymmetric n-cycle the holomorphic n-form Ω of Calabi-

Yau is real (with a suitably chosen overall phase) and gives the volume of the n-brane. For

a minimal supersymmetric cycle the quantity

V =

∫

C

|Ω|

which is the volume of cycle C, is minimized and is given by

V = α

∫

C

Ω

for some choice of phase α. Or stated equivalently, the condition is that

∫

C

|Ω| =

∣∣∣∣
∫

C

Ω

∣∣∣∣ .

which is the condition for minimizing the volume of C among the Lagrangian submanifolds

in a given homology class.

The holomorphic n-form Ω, up to an overall complex scale factor, is given by

Ω =
dz1...dzn
zn+1

=
idz1...dzn√

z2
2 + ...+ z2

n − Pm(z1)

We would like to minimize the volume form given by |Ω|. To count the minimal supersym-

metric cycles, we follow the strategy in [27] and decompose the geometry to the “fiber and

the base” as follows. Suppose C is a supersymmetric minimal cycle. Consider the image

of C on z1. This is a one-dimensional subspace, because for a fixed z1, the manifold (being

defined by
∑
j>1 z

2
j = Pm(z1)) has for its only nontrivial cycle a sphere Sn−1

z1
. Note that

the radius of this sphere is |Pm(z1)|1/2, from which one can deduce by scaling that

∣∣∣∣∣

∫

S
n−1

z1

dz2 ∧ . . . ∧ dzn−1

zn

∣∣∣∣∣ = |Pm(z1)|(n−2)/2 (3.1)

up to an irrelevant multiplicative constant. The inverse image of C over a point in the z1

plane must, if not empty, be a minimal cycle, and so must be n − 1-dimensional; hence

the image of C in the z1 plane must be one-dimensional. The minimization of |Ω| will be

done in two steps: We first consider Lagrangian submanifolds Cf (z1) for a fixed z1 which
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minimize the
∫
Cf (z1)

|Ω| and next consider the minimization of the volume interval over an

interval I in z1. In this way we get using (3.1)

∫

Cf (z1)×I

|Ω| =

∫

I

∣∣∣∣∣

∫

Sn−1(z1)

Ω

∣∣∣∣∣ =
∫

I

|Pm(z1)|
n−2

2 dz1. (3.2)

We now minimize the volume of the supersymmetric n-cycle with respect to the choice of

the one-dimensional line segment I representing the image of the supersymmetric cycle on

the z1 plane. One can allow the line segment to end at some special points on z1 where

Pm(z1) = 0, and these are the only allowed boundaries. In fact, precisely if the line segment

terminates at zeroes of Pm, the D-brane worldvolume is closed and smooth. Indeed the

topology of the cycle is an Sn which can be viewed as an Sn−1 sphere fibered over the

interval, where at the boundaries of the interval the radius of Sn−1 vanishes. The expression

(3.2) is minimized if along the segment on z1 plane the condition |Pm(z)| = αPm(z) is

satisfied for some z-independent phase α. Let us define a function W with

dW = P
n−2

2

m dz1 (3.3)

In terms of W , the condition for minimal volume is that the image of the curve in the W

plane be a straight line along the direction specified by α−1. Moreover, the end-points of

the segment in the z1 plane correspond to critical points in W , i.e., dW = 0 (for n = 2 the

endpoints are defined by the condition that Pm(z1) = 0). These conditions are identical

[28] for finding solitons in an N = 2 Landau-Ginzburg theory in two dimension (or more

generally, BPS domain walls in theories with four supercharges in dimensions two, three,

or four) with superpotential given by W ! If n is even, (3.3) corresponds to a well defined

function of z1. If n is odd, it gives rise to a well defined (meromorphic) one-form on a

hyperelliptic cover of the z1 plane, branched over the zeroes of Pm(z1).

Strictly speaking we have constructed the supersymmetric cycle by assuming that the

condition that the cycle Cf be Lagrangian is the same as being Lagrangian relative to the

Kähler form induced on the fiber. This is not necessarily true. For example if the Kähler

form has a piece of the form

k = ...+ fidz1 ∧ dz∗i + ...

the condition of Lagrangian gets modified. In special cases, like when the polynomial Pm

has real coefficient one can use a Z2 antiholomorphic involution to argue that the cycles
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we constructed are both Lagrangian and supersymmetric. In the more general case we

proceed as follows: Consider a generic

Pm(z1) =
∏

i

(z1 − ai)

Consider a one parameter family of Calabi-Yau metrics where

ai(t) = tai.

Note that the BPS states will be the same for all t, because the condition of the BPS

charges getting aligned does not change as we change t (the BPS charges only receive an

overall rescaling). However to construct the Kähler metric as a function of t we note that

it can be mapped to the previous metric by defining

z̃1 = tz1

z̃i = tn/2zi for i 6= 1

Thus we use the z variables but rescale the Kähler form accordingly. In this way as

t → ∞ the mixed terms in the Kähler form are dominated by the terms purely in the

fiber direction (for n > 2 which is the case of main interest). Therefore in this limit the

condition of Lagrangian submanifold in the fiber that we have used becomes accurate.

Let us consider some special cases. The cases for a K3 surface and for a Calabi-Yau

threefold have already been considered in [27] (see also [29,30]), and will be reviewed below.

Solitons for K3

In the case n = 2, the above geometry is the complex deformation of the Am−1

singularity. For any choice of the polynomial Pm(z1), we expect m(m− 1)/2 solitons (up

to the choice of orientation) to complete the adjoint representation of U(1)m−1 to the

SU(m) gauge multiplet. From (3.3), we see that in this case W = z1. There are m roots

for Pm(z), and the solitons correspond to straight lines between the roots. Note that this

gives m(m− 1)/2 solitons up to the choice of the orientation, as was anticipated.

Solitons for CY3

For the case of Calabi-Yau threefolds, n = 3. In this case W is defined by

dW = Pm(z1)
1

2 dz1.
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Here dW can be viewed as a meromorphic one-form on a hyperelliptic Riemann surface

over z1 branched over the roots of Pm(z1). The geometry of these solitons for this class

of conformal theories would correspond to straight lines on the Jacobian of this surface

defined by the integrals dW and is presently under study [31].

Solitons for CY4

For the case of four-folds, which are of course our main focus in the present paper,

the definition of W in (3.3) shows that W is a polynomial of degree m+ 1 in the z1 plane.

We have already shown that the conditions for finding the solitons in this geometry are

the same as those in an LG theory with the superpotential W . In this case, however, if

we use our four-fold in Type IIA superstring theory, the analogy becomes more precise:

compactification on the four-fold leads to a theory in two dimensions with N = 2, and it

is natural to identify the corresponding W with the superpotential of an N = 2 Landau-

Ginzburg theory. We will indeed argue that for a certain choice of the membrane charge,

the Type IIA on a deformed A1 singularity leads to an N = 2 theory with the same W

for its superpotential. For more general choices of the membrane charge, we find closely

related Kazama-Suzuki coset models at level 1.

Before we discuss these subtleties, note that even though we have m critical points, it

is no longer true in general that we have m(m− 1)/2 solitons. In general the pre-image of

a straight line connecting the images of critical points in the W plane will not connect the

critical points in the z1 space. In fact as we change the polynomial Pm(z1), it is known

that the number of BPS states jumps [24]. For some choices of Pm(z1) we do have exactly

the same number of solitons as in the K3 case. For example, it has been shown [28] that

for

Pm(z1) = zm1 − µn

for any constant µ, there is one soliton for each pair of m critical points z1 = ωµ with

ωm = 1, though, unlike the K3 case the image in the z1 plane is not a straight line.

It would be interesting to compare the formula for W that we have deduced from

the soliton structure to the analysis of section 2.4. Although this is guaranteed to work,

because both capture the mass of the BPS soliton, we have not attempted to check this

correspondence explicitly.
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4. Identifications With Kazama-Suzuki Models

Let us consider in more detail Type IIA strings propagating on a smooth hypersurface

X obtained by deforming the Am−1 singularity:

−Pm(z1) + z2
2 + z2

3 + z2
4 + z2

5 = 0.

As explained in section 2, in order to specify the problem fully, we must fix the value C∞

of the C-field at infinity and also the flux

Φ = N + 1
2ξ

2, (4.1)

where ξ = [G/2π] is the characteristic class of the C-field.

As we explained in section 2.2, ξ is restricted to a fixed coset in Γ∗/Γ, where Γ and Γ∗

are the root and weight lattices of the Lie group SU(m). The coset in which ξ takes values

is determined by C∞. For the theory to have a mass gap, as discussed in section 2.6, we

set Φ equal to the minimum value of 1
2ξ

2 (for all ξ in the given coset), so that N = 0 for

all vacua.

This can be made very explicit in the case of the Am−1 singularity. C∞ takes values in

Γ∗/Γ, which is isomorphic to the center of SU(m), or Zm. For k = 0, . . . , m−1, if C∞ = k,

then to minimize ξ2, ξ must be a weight of the k-fold antisymmetric tensor product of the

fundamental representation of SU(m). We denote that representation as Rk. The number

of choices of ξ is the dimension of Rk or m!/k!(m − k)!. This is the number of vacuum

states of the kth model, if Pm is such that the hypersurface X is smooth.

For k = 0, there is only one vacuum (ξ = 0), and the theory is trivial and massive.

Let us consider the next simplest case, where k = 1 and ξ is a weight of the fundamental

representation of SU(m). In this case, we have m vacua. To find the degeneracy of

the solitons between these vacua, we use the analysis of section 3. We found that the

solitons are exactly the same as those for an N = 2 LG theory with a chiral field Φ and

a superpotential W obeying dW/dΦ = Pm(Φ). In fact we can identify the m vacua with

the m critical points of Pm, and as we found in section 3, the condition for the existence

of a soliton in the LG theory is exactly the same as the condition for a BPS wrapped four-

brane in Type IIA near the Am−1 singularity. In this case the soliton data are enough to

determine the theory [23] as discussed at the end of section 2; the two-dimensional theory

with superpotential W is the Am minimal model [3,4]. So the Type IIA theory near an
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Am−1 four-fold singularity is governed by the Am N = 2 minimal model. This model can

also be viewed as an N = 2 Kazama-Suzuki coset model at level one, of the form

SU(m)

SU(m− 1) × U(1)

For the M -theory or F -theory near an Am−1 four-fold singularity, we still get a descrip-

tion in terms of a chiral field with the same superpotential, but in most instances (the

exception being Φ3 in three dimensions), a theory in three or four dimensions with a Φm+1

superpotential is believed to flow to a free theory in the infrared.

We now consider the other choices of C∞, so that ξ is a weight of the k-fold anti-

symmetric product of the fundamental representation of SU(m) with some k > 1. We

argue that it has exactly the same solitonic spectrum as a deformation of the following LG

theory, which we will call the k-fold symmetric combination of the k = 1 model. Consider

the function of k variables

W (z1, . . . , zk) = zm+1
1 + zm+1

2 + ...+ zm+1
k .

It is invariant under permutations of the zi, and so can be expressed as a polynomial in

the elementary symmetric functions

xl =
∑

i1<...<il

zi1 ...zil .

The superpotential we consider is thus

W (x1, . . . , xk) = W (z1) + . . .+W (zk). (4.2)

The LG model with superpotential (4.2) has been conjectured in [32] to be equivalent to

the following Kazama-Suzuki coset model at level 1:

SU(m)

SU(m− k) × SU(k) × U(1)

For the deformed singularity, with ∂W = Pm, we claim that the deformed LG superpo-

tential is given by

W (x1, ..., xk) = W (z1) + ...+W (zk)

where again what we mean by this expression is that the superpotential is W (z1) + . . .+

W (zk) regarded as a polynomial in the elementary symmetric functions x1, . . . , xk. Let us
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see why this LG superpotential has exactly the same solitonic spectrum that we get for

Type IIA at an Am−1 four-fold singularity with C∞ = k mod m. It is not too difficult to

show [23,33] that the set of vacua of a LG theory made of a k-fold symmetric combination

of a given LG theory (in the sense introduced above) can be identified with the k-fold

antisymmetric tensor product of the space of vacua of the original LG theory.14 As we

already discussed, the k = 1 model has a one-variable superpotential W (z), and its vacua

correspond to the fundamental weights of the SU(m) lattice. Thus we can identify the

vacua of the k-fold symmetric combination of the k = 1 model with the weights of the

k-fold anti-symmetric tensor representation Rk. As far as the allowed solitons, on the LG

side, they can be constructed in the decoupled theory with superpotential W (z1, . . . , zk) =

W (z1) + . . .+W (zk) before re-expressing this in terms of the symmetric functions xi. In

this description, it is clear that soliton states are just the products of soliton states in the

individual one-variable theories, and that irreducible solitons (which cannot break up into

several widely separated mutually BPS solitons) are solitons in just one of the variables zi.

So if we label the vacua by |i1, ..., ik〉, with is denoting a vacuum in the sth one-particle

theory, then the allowed solitons only change one vacuum index at a time. So the solitons

of a LG theory that is constructed as a k-fold symmetric combination of a one-variable

theory are in natural correspondence with the solitons of the one-variable theory. This is

the same result that we get from Type IIA near the Am−1 singularity with C∞ = k mod m.

Indeed, for this model, the solitons are constructed by finding supersymmetric four-cycles.

The analysis of those cycles in section 3 depends only on the geometry of the hypersurface

and makes no reference to C∞. Hence the solitons for any k are in a natural sense the

same as the solitons of the k = 1 model.

In other words the solitons are in 1-1 correspondence with those roots of SU(m)

that appear as solitons for the one-variable LG superpotential given by W . Whichever

roots appear act in the natural way on the weights of the representation Rk. In the

case W = zm+1 − az, all the roots appear with multiplicity 1. This structure for the

solitons of the deformed Kazama-Suzuki model was suggested in [34] where it was argued

to correspond (with a specific choice of Kähler potential) to an integrable model.

14 The main point that must be shown is that the vacua in the different factors must be distinct.

To illustrate why, it suffices to consider the case that k = 2 and that each individual model has

only one vacuum. So we start with m = 2: W (z) = z2. Then we write W (z1, z2) = z2

1 + z2

2 in

terms of the symmetric functions x1 = z1 + z2, x2 = z1z2, getting W (x1, x2) = x2

1 − 2x2. This

function has no critical points, so the combined model has no supersymmetric vacua, as expected.
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4.1. Other A-D-E Singularities

So far we have mainly considered the local singularity to be

H(z1, z2, z3) + z2
4 + z2

5 = 0

with H being an Am−1 singularity. Here we would like to generalize this to the case where

H determines a D or E type singularity.

The general structure is quite like what we have seen for Am−1. C∞ takes values in

Γ∗/Γ, where Γ is the root lattice of the appropriate simply-connected A-D-E group G, and

Γ∗ is the weight lattice of G. The quotient Γ∗/Γ is isomorphic to the center of G.

Just as in the SU(m) case, to make possible a deformation to a massive theory, we

need to pick Φ so that ξ ranges over the weights of the smallest representation with a given

non-trivial action of the center of G. (If we pick the trivial action of the center, we will

get the trivial representation and a massive free theory.) The appropriate representations

are the representations with Dynkin label 1. In the Dn case, the relevant choices are the

vector and spinor representations. For D2n, there are two different spinor representations,

but they differ by an outer automorphism of D2n and give equivalent theories. So there are

essentially two choices of C∞ leading to massive theories based on the Dn singularity. For

the E6 theory, there is only the fundamental 27 dimensional representation (and its con-

jugate, which gives an equivalent theory); for E7 there is the fundamental 56 dimensional

representation. So E6 and E7 lead to one massive theory each. E8 is simply-connected with

trivial center, so we cannot use it to get a conformal theory with a massive deformation.

The distinguished representations that we have described are in one-to-one correspon-

dence with nodes of index 1 on the A-D-E Dynkin diagram and thence with Hermitian

symmetric spaces G/H (where H is obtained by omitting the given node from the Dynkin

diagram). Apart from the Grassmannians SU(m)/SU(k) × SU(m − k) × U(1) that we

have already encountered, these Hermitian symmetric spaces are as follows. For the Dn

case, there are two inequivalent choices, given by

SO(2n)

SO(2n− 2) × SO(2)
for fundamental rep.

SO(2n)

U(n)
for spinor rep.,
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and for the E6 and E7 cases one has

E6

SO(10) × U(1)
for fundamental rep.

E7

E6 × U(1)
for fundamental rep.

Such a Hermitian symmetric space determines a series of N = 2 Kazama-Suzuki models

(at level 1, 2, 3 . . .). It is natural to conjecture that, as we have found for Am−1, the massive

models obtained from Type IIA at an A-D-E singularity are the massive deformations of

the corresponding level 1 Kazama-Suzuki (or KS) models. As a first check, it is known that

for a level one G/H KS model, the dimension of the chiral ring is equal to the dimension

of the corresponding representation of G. This in turn is equal to the dimension of the

cohomology of G/H and it was conjectured in [32] that the chiral ring is isomorphic to

the cohomology ring, which in turn was shown to arise from the ring of an LG theory.

Thus the G/H theories at level 1 were identified with specific LG models.15 Moreover, the

structure of the solitons for a special (integrable) deformation of the KS model at level 1

was studied in [34] and it was conjectured that the solitons exist precisely for each allowed

single root acting on the corresponding weight diagram. Though we have not analyzed the

BPS spectrum of the D4-branes in this case to find the multiplicity of the solitons for each

root, it is natural to expect that at least for specific deformations, just as in the Am−1

case, the solitons are given by the root lattice of the corresponding group with multiplicity

1. In this case we would reproduce the solitonic structure anticipated in [34]. It is quite

satisfying that we apparently get all the Hermitian symmetric space KS models at level 1

in such a uniform way from considering singularities of CY four-folds.

5. Other Types Of Singularity

The only four-fold singularities that we have so far considered in any detail are hyper-

surface singularities. A Calabi-Yau four-fold can, however, develop singularities of many

different types. We cannot offer any sort of overview of the possibilities, but will briefly

analyze two cases in the present section.

15 The higher level KS models do not generally admit an LG description.
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5.1. Hyper-Kähler Singularities

First we will consider what one might call hyper-Kähler singularities – singularities

near which Y admits a hyper-Kähler structure, though Y may not be globally a hyper-

Kähler manifold. An important fact here is that M -theory compactification on R3 × Y

with Y hyper-Kähler has N = 3 supersymmetry in three dimensions, because the space of

covariantly constant spinors on a hyper-Kähler eight-manifold is three-dimensional.

To isolate the behavior near the singularity, we replace Y by an asymptotically conical

hyper-Kähler manifold X that is developing a singularity. We will focus on a very concrete

example, with X = T ∗CP2, the cotangent bundle of complex projective two-space. This

hyper-Kähler manifold is conveniently obtained by considering a U(1) gauge theory with

eight supercharges, and three hypermultiplets Ai, i = 1, 2, 3, of charge 1. 16 There is an

SU(3) global symmetry group, with the Ai transforming as the 3. There is also an SU(2)

R-symmetry group, and it is possible to add an SU(2) triplet of Fayet-Iliopoulos terms ~d

to the D-flatness equations. A manifestly SU(2)-invariant way to exhibit the D-flatness

equations is as follows. The bosonic parts of the Ai can be regarded as a complex field

Aiα, α = 1, 2, transforming as (3, 2) under SU(3) × SU(2)R. The D-flatness condition is

∑

i

AiαA
β

i = ~d · ~σβα, (5.1)

with ~σ the traceless 2× 2 Pauli matrices. The moduli space X of zero energy states of the

classical gauge theory is the space of solutions of (5.1) divided by the action of the gauge

theory. In this description, it is manifest that if ~d = 0, then X has an SU(3) × SU(2)R

symmetry, broken if ~d 6= 0 to SU(3) × U(1)R. The SU(3) preserves the hyper-Kähler

structure, and SU(2)R rotates the three complex structures on X . If ~d = 0, X is a cone

over a seven-manifold Q described by

∑

i

AiαA
β

i = δβα. (5.2)

It is fairly easy to see that this manifold is a copy of SU(3)/U(1), where the U(1) acts by

right multiplication by

diag(eiθ, eiθ, e−2iθ). (5.3)

16 We will present this gauge theory as a formal device, but it may have a physical interpretation

in terms of a membrane probe of the singularity.
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SU(3) acts on SU(3)/U(1) by left multiplication, and SU(2)R acts by right multiplication

by SU(3) elements that commute with (5.3). Even if ~d 6= 0, X is asymptotic to a cone

over Q at big distances. The R-symmetry group that acts faithfully on X is actually

SO(3)R = SU(2)R/Z2. That is because the center of SU(2)R is equivalent to a U(1)

gauge transformation. In M -theory on R3 × X , the three spacetime supersymmetries

transform as a vector of SO(3)R.

Now let us explain why for ~d 6= 0, X is equivalent to T ∗CP2. In terms of a description

that makes manifest only half the supersymmetry of the gauge theory, one can break

up the bosonic part of the Ai into pairs of complex fields Bi, Ci, transforming as 3

and 3 of an SU(3) symmetry group, and with charges 1 and −1 under the U(1) gauge

group. (Compared to the previous description, Bi = Ai1 and Ci = Ai 2.) This description

breaks SO(3)R to SO(2)R = U(1)R, with ~d splitting as a real component dR and complex

component dC. The D-flatness equations of the U(1) gauge theory are in this description

∑

i

|Bi|2 −
∑

j

|Cj|2 = dR

∑

i

BiCi = dC.
(5.4)

One must also divide by the action of U(1). By an SO(3)R rotation, one can set dC = 0

and dR > 0. The quantities B̃i = Bi/
√
dR +

∑
j |Cj |2 obey

∑
i |B̃i|2 = 1 and, after

dividing by the gauge group, define a point in CP2. With dC = 0, the second equation

in (5.4) can be interpreted to mean that Ci lies in the cotangent space to CP2, at the

point determined by the B̃i. Thus X is isomorphic to T ∗CP2. For any manifold W ,

regarded as the zero section of T ∗W , the self-intersection number W ·W is equal to the

Euler characteristic of W . The Euler characteristic of CP2 is 3, so in our example

W ·W = 3 (5.5)

with W = [CP2].

Though turning on ~d breaks the SO(3)R symmetry of X to SO(2), it preserves the

hyper-Kähler structure and all of the supersymmetry of M -theory on R3 ×X .

The appearance of an SO(3)R symmetry at ~d = 0 is a hint that M -theory on R3 ×X

flows to a superconformal field theory in the infrared as ~d→ 0. Indeed, in three spacetime

dimensions with N supercharges, the superconformal algebra contains an SO(N )R R-

symmetry group.
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To get more insight, let us now analyze the possible G-fields on the smooth manifold

X with ~d 6= 0. Since X is contractible to CP2, one has H4(X ;R) = H4(CP2;R). The

non-zero Betti numbers are h0 = h2 = h4 = 1. The cohomology with compact support

is, by Poincaré duality, the dual of this, so the non-zero Betti numbers with compact

support are h4
cpct = h6

cpct = h8
cpct. Hence, just on dimensional grounds, the natural map

i : Hk
cpct(X ;R) → Hk(X ;R) is zero except for k = 4. For k = 4, H4

cpct(X ;R) is generated

by the class [W ] = [CP2], and the nonzero intersection number (5.5) implies that i 6= 0.

For an asymptotically conical manifold, one expects the space of L2 harmonic forms to

coincide with the image of i, so in the present example we expect precisely one L2 harmonic

form α, in dimension four. α is necessarily primitive with respect to all of the complex

structures, since if K is any of the Kähler forms, then α ∧K, if not zero, would be an L2

harmonic six-form.

Hence, turning on a nonzero G-field, proportional to α, preserves all of the super-

symmetries. In fact, we must turn on such a G-field, for the following reason. According

to [5], on a spacetime X , the general flux quantization law for G is not that G/2π has

integral periods but that the periods of G/2π coincide with the periods of c2(X)/2 mod

integers. (There is a slightly more general formulation if X is not a complex manifold.) In

our situation, the integral of c2(X)/2 over CP2 is a half-integer,17 so we need

∫

CP2

G

2π
∈ Z +

1

2
, (5.6)

and in particular G cannot be zero.

If we normalize the four-form α to represent the class [CP2], then α generates

H4
cpct(X ;Z) (or rather its image in real cohomology). Also, α · α = 3, so the dual lat-

tice H4(X ;Z) is generated by α/3. Hence, we require

[
G

2π

]
=
α

3

(
k + 1

2

)
with k ∈ Z. (5.7)

One also has H4(Q;Z) = H4(X ;Z)/H4
cpct(X ;Z) = Z3. The different possibilities for the

restriction of the C-field to ∂X = Q are determined by the value of k modulo three.

17 Let the total Chern class of the tangent bundle of CP
2 be 1 + c1 + c2. The total Chern class

of the cotangent bundle of CP
2 is then 1 − c1 + c2. The total Chern class of T ∗

CP
2, restricted

to CP
2
⊂ T ∗

CP
2, is hence (1 − c1 + c2)(1 + c1 + c2) = 1 − c2

1 + 2c2, so c2(T
∗
CP

2) = −c2

1 + 2c2.

Since
∫
CP2 c2

1 = 9, which is odd, the claim follows.
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In the presence of N membranes and a G-field, the membrane flux at infinity is

Φ = N +
1

2

∫

X

G ∧G
(2π)2

= N +
(k + 1

2 )2

6
. (5.8)

In evaluating the integral, we used (5.7) and the fact that α · α = 3. A check on (5.8)

is that if k is shifted by an integer multiple of 3 (the 3 is needed so as to leave fixed the

restriction of G to Q), Φ changes by an integer. According to the discussion in section 2,

a model is specified by fixing the value of Φ and also by fixing the value of k modulo 3. A

supersymmetric vacuum is then found by finding a nonnegative N and an integer k in the

given mod 3 coset such that (5.8) is obeyed. There is precisely one case of a model having

more than one vacuum, with all vacua having N = 0. This arises for Φ = 3/8, with k = 1

and k = −2. We do not know a Landau-Ginzburg or other semiclassical description for

this N = 3 model with two vacua (but see below).

For sufficiently large Φ, this model (at ~d = 0) is expected to flow to a nontrivial

superconformal field theory in the infrared. Indeed, the standard conjectures would suggest

that the SCFT in question is dual to M -theory on AdS3 ×Q, with the C-field on Q being

determined by the value of k modulo three. We have no good way at present to determine

if the model flows to a nontrivial SCFT also for small Φ.

We expect that instead of T ∗CP2, one could in a similar way analyze T ∗F , where F

is a two-dimensional Fano surface. One can also consider a collection of intersecting CP2’s

(with a suitable normal bundle over it) and carry out a similar analysis.

Physical Interpretation Of Gauge Theory?

So far the U(1) gauge theory with three charged hypermultiplets has been considered

just as a mathematical device. It is natural to wonder whether, in fact, this gauge theory

can be interpreted physically as the long wavelength theory of a membrane probe of the

R3 × T ∗CP2 solution of M -theory. More generally, we would like to find an effective

action for N membranes probing the R3 × T ∗CP2 singularity (in the limit that CP2 is

“blown down”) that will give a gauge theory dual ofM -theory on AdS4×Q. In the spirit of

[17,18], such a description might be roughly as follows. Consider an N = 4 supersymmetric

gauge theory in three dimensions with gauge group S(U(N)×U(N)) and hypermultiplets

consisting of three copies of (N,N). Break N = 4 to N = 3 with some Chern-Simons

interaction, determined by the C-field. (Gauge theories with Chern-Simons interactions

are essentially the only known classical field theories in three spacetime dimensions without

gravity with N = 3 supersymmetry. For a study of their dynamics in the abelian case, see

[35].) Such a model might have roughly the right properties.
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5.2. Blowup Of Orbifold Singularity

The other kind of singularity that we will briefly examine is a simple orbifold singular-

ity. We begin with C4, with complex coordinates z1, . . . , z4, and consider the Z4 symmetry

za → iza. The quotient C4/Z4 is a Calabi-Yau orbifold.

If one analyzes this type of orbifold in Type IIA string theory, one finds that there

is one blow-up mode and no complex structure deformation. The blow-up corresponds to

a very simple resolution of the singularity, in which it is replaced by the total space W

of a line bundle L = O(−4) over CP3. Thus, CP3 is embedded in W as an exceptional

divisor, the “zero section” of L. W admits a Calabi-Yau metric, asymptotic in closed form

to the flat metric on C4/Z4; because of the SU(4) symmetry of W , it is actually possible

to describe this metric by quadrature, though we will not do so here.

One might at first think that one could approach the C4/Z4 orbifold singularity in

M -theory by a motion in Kähler moduli space, leading to a blow-down of the exceptional

divisor CP3 ⊂ W . However, since the Hodge numbers hi,0(CP3) are zero for i > 0,

fivebrane wrapping on CP3 will produce a superpotential [12], proportional roughly to

e−V with V the volume of CP3. Moreover, though the multiple cover formula for multiple

fivebrane wrapping in M -theory is not known, analogy with other multiple cover formulas

(such as the formula for multiple covers by fundamental strings [36,37]) suggests that the

sum over multiple covers of CP3 will produce a pole at V = 0. If this is so, there will

not be interesting long distance physics associated with the behavior of M -theory near a

C4/Z4 singularity. At any rate, one certainly cannot expect to study M -theory on C4/Z4

while ignoring the superpotential.

Is it possible to include a G-field on W while preserving supersymmetry? If so, then

since the G-field must vanish in cohomology on a fivebrane worldvolume (because of the

existence of a field T on the fivebrane with dT = G), in the presence of the G-field

the superpotential would be absent, and the question of the behavior near the C4/Z4

singularity would be restored.

The answer to the question of whether a supersymmetric G-field is possible turns out,

however, to be “no,” in the following interesting way. First of all, W is contractible to

CP3, so its nonzero Betti numbers are h0 = h2 = h4 = h6 = 1. For cohomology with

compact support, one has the dual Betti numbers h2
cpct = h4

cpct = h6
cpct = h8

cpct = 1.

This suggests that the map i : Hk
cpct(W ;R) → Hk(W ;R) may be nonzero for k = 2, 4,

and 6. A topological analysis, using the fact that c1(L)3|W 6= 0, shows that this is so.
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Consequently, given the asymptotically conical nature of the Calabi-Yau metric on W , we

expect the space of L2 harmonic forms on W to be three-dimensional, with one class each

in dimension 2, 4, and 6. Given this, there is only one option for how the SU(2) group

R that acts on the cohomology of a Kähler manifold (see Appendix I) can act on the L2

harmonic forms on W : they transform with spin 1. Hence, though there is an L2 harmonic

four-form on W , it is not primitive, and one cannot turn on a G-field without breaking

supersymmetry.

6. Brane Perspective

We will conclude this paper by pointing out a reinterpretation of the problem in terms

of singularities of branes. We already explained in section 2.6 that F -theory on a four-

fold singularity can be reinterpreted as Type IIB with a D7-brane that has a world-volume

R4×L, where L ⊂ C3 is a singular complex surface. By successive circle compactifications,

it follows that M -theory or Type IIA at a four-fold singularity can be described by Type

IIA with a singular sixbrane R3 × L, or Type IIB with a singular fivebrane R2 × L.

Analogous phenomena have been noted in the past in the context of N = 2 conformal

theories with NS or M5-branes worldvolumes with singular geometry R4 × Σ where Σ

is a Riemann surface which develops a singularity, say of the form y2 = xn locally (for

n > 2). These give models for studying Type II strings at a Calabi-Yau threefold singularity

capturing Argyres-Douglas points of N = 2 conformal theories [38] and are presently under

study [31].

As we discussed in section 2.6, it is important that in the cases that we have looked

at, there are no corrections to the classical Rn × L geometry. Let us raise the general

question of this sort. Suppose we have a p-brane of some kind, with worldvolume

Rn ×Xp+1−n

embedded in R10 or R11 depending on whether we are dealing with string theory or M -

theory. We assume that this geometry preserves some number of supersymmetries in Rn.

Let us assume X develops a singularity. Is this singular geometry smoothed out in the

quantum theory? A necessary condition for that is the existence of instantons which end

on X . So if q-branes can end on this particular p-brane, the condition is the absence of

compact q-cycles in X . So for Dp-branes in Type IIA or IIB string theory, since D(p− 2)-

branes and fundamental one-branes can end on them, the condition is the absence of

topologically non-trivial compact one-cycles and p − 2-cycles in the geometry of X . For

M5-branes, the condition is the absence of compact two-cycles in X .
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Appendix I. Primitive Forms

The de Rham cohomology of a compact Kähler manifold X , or the space of L2 har-

monic forms on any Kähler manifold, admits an SU(2) action which is as follows. (See [39],

pp. 122-6, for a mathematical introduction.) A diagonal generator J3 of SU(2) multiplies

a p-form by (n− p)/2, where n is the complex dimension of X . The lowering operator J−

acts by wedge product with the Kähler form K:

G→ K ∧G. (I.1)

And the raising operator J+ is the adjoint operation of contraction with K:

Gi1i2...in → Ki1i2Gi1i2...in . (I.2)

Conceptually, this SU(2) action arises as follows. Begin with the supersymmetric

nonlinear sigma model in four dimensions with target space X , and dimensionally reduce

it to 0 + 1 dimensions. This gives a supersymmetric system in which the Hilbert space is

the space of differential forms on X , the four supercharges are are the ∂ and ∂ operators

and their adjoints, and there is an SU(2) symmetry that comes from rotations of the three

extra dimensions. From this point of view, the SU(2) arises as an R-symmetry group, so

we denote it as R.

Since an (n− p)-form has J3 eigenvalue (n− p)/2, it clearly transforms under R with

spin at least |n − p|/2. For n − p ≥ 0, we declare the primitive part of Hn−p(X ;R) to

consist of the harmonic forms that transform with spin precisely (n− p)/2. For a middle-

dimensional form, with p = n, this definition means that the primitive part of Hn(X ;R)

consists precisely of the R-invariants.

For a noncompact Kähler manifold X , if all of the L2 harmonic forms are in the

middle dimension, then they are all automatically primitive. For a middle-dimensional L2

harmonic form that is not R-invariant can be raised and lowered to make L2 harmonic

forms of other dimensions.

For a middle-dimensional L2 harmonic form G, such as the G-field on a Calabi-Yau

four-fold, primitiveness is equivalent to either 0 = J−G, which is the condition on G given

in [8], or 0 = J+G = K ∧G.

An important illustrative case is that of a complex surfaceW . The middle-dimensional

cohomology of W is two-dimensional and can be decomposed as follows. The space of self-

dual forms at a given point is three-dimensional; the self-dual forms are the (2, 0) and
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(0, 2) forms and the multiples of the Kähler class K. The (2, 0) and (0, 2) forms are clearly

primitive (the lowering operator would map them to (3, 1) and (1, 3)-forms) but the Kähler

class K is not (as K∧K 6= 0). The anti-self dual two-forms are of type (1, 1) and are of the

form α = aijdz
i∧dzj where aij is traceless. Tracelessness of a means that α is annihilated

by the raising and lowering operators and so is primitive. So for a complex surface, the

middle-dimensional primitive cohomology is of type (2, 0) or (0, 2) and self-dual, or of type

(1, 1) and anti-self-dual.

Closer to our needs in this paper is the case of a complex four-fold X . At any point

P ∈ X , the holonomy group U(4) acts on the differential forms at P . Since the generator

of the center of U(4) simply multiplies a (p, q) form by p−q, we focus on the SU(4) action.

We look first at the (p, p) forms for p = 0, 1, 2, . . ., since they are closed under the action

of R. The (0, 0) forms transform in the trivial representation 1 of SU(4). The (1, 1)-forms

aijdz
i∧dzj transform as 4⊗4 = 1⊕15, with 15 the adjoint representation. Since a (2, 0)

or (0, 2)-form hijdz
i ∧ dzj or h̃ijdz

i ∧ dzj transforms as the 6, the (2, 2)-forms transform

as 6 ⊗ 6 = 1 ⊕ 15 ⊕ 20. From this, it follows that (2, 2)-forms that transform as 20 of

SU(4) have R = 0, those that transform as 15 have R = 1, and those that transform as 1

have R = 2.

In particular, the primitive (2, 2)-forms transform in an irreducible representation of

SU(4). From this, it follows that they all transform with the same eigenvalue under the

Hodge ∗ operator. To determine the sign, it suffices to consider the case thatX = W1×W2,

with the Wi complex surfaces, and to consider on X the primitive (2, 2)-form G = α1∧α2,

where for i = 1, 2, αi is a primitive (1, 1)-form on Wi. Since the αi are anti-self-dual, G is

self-dual.

We can similarly analyze the primitive (3, 1) cohomology. The (2, 0)-forms transform

as 6 under SU(4), while the (3, 1)-forms transform as 6⊕ 10. (3, 1)-forms that transform

as 10 of SU(4) have R = 0 and so are primitive, while those that transform as 6 have

R = 1. Since the primitive (3, 1)-forms transform irreducibly under SU(4), they again

all have the same eigenvalue of ∗. Indeed, by considering the case G = α ∧ β, with α a

primitive (1, 1)-form on a surface W1 and β a primitive (2, 0)-form on another surface W2,

we learn that the primitive (3, 1) cohomology of a four-fold is anti-self-dual.

Finally, the (4, 0) cohomology of a four-fold transforms trivially under SU(4) and is

primitive. By setting G = β1 ∧ β2 with βi a (2, 0) form on Wi for i = 1, 2, we learn that

the (4, 0) cohomology on a four-fold is self-dual.

In sum, the Hodge ∗ operator acts on the primitive (p, 4−p) cohomology of a four-fold

as (−1)p. This type of argument can clearly be generalized to other dimensions.
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Appendix II. Supersymmetry Conditions in Eleven Dimensions

In this appendix we extend the analysis of [8] to compactifications of M-theory on

Calabi-Yau four-folds with general G-flux, allowing for the possibility that the three-

dimensional cosmological constant is non-zero. In the original version of this paper we

showed that turning on holomorphic G-flux of type (4, 0) induces a mass for the gravitino

fields, mψ ∼
∫
G ∧ Ω. In a supersymmetric situation masses of the bosonic modes of the

supergravity multiplet should be related to mψ in a supersymmetric fashion. In particular,

one should expect a non-zero cosmological constant Λ = −|mψ|2. However, it turns out

that compactification with a G4,0 flux leads to a solution with zero cosmological constant

and, therefore, implies broken supersymmetry, see below and [40].

We follow the notations of [8] where capital letters M , N , . . . run from 0 to 10 and

denote eleven-dimensional indices; m, n, . . . are real indices tangent to Y ; and Greek letters

µ, ν, . . . stand for the three-dimensional Lorentzian indices 0,1,2. Finally, lower case letters

a, b, . . . from the beginning of the alphabet denote holomorphic indices tangent to Y .

The bosonic part of the eleven-dimensional effective action, corrected by the σ-model

anomaly on the five-brane world-volume, has the following form:

S11 =
1

2

∫
d11x

√−gR − 1

2

∫ [1
2
G ∧ ∗G+

1

6
C ∧G ∧G− (2π)4C ∧ I8

]
(II.1)

The eight-form anomaly polynomial can be expressed in terms of the Riemann tensor [41]:

I8 =
1

(2π)4

(
− 1

768
(trR2)2 +

1

192
trR4

)
(II.2)

In these units the five-brane tension T6 = 1
(2π)3 . The field equation for G that follows from

the action (II.1) looks like:

d ∗G = −1

2
G ∧G+ (2π)4I8 −

N∑

i=1

δ8(xm − Pi) (II.3)

This equation is a macroscopic analog of the anomaly equation (2.1). In fact, the right-hand

side of (II.3) represents a local source for the field Gµνρm. For a compact Calabi-Yau space

Y , the G-flux has nowhere to go. Hence, the integral of the right-hand side of (II.3) has to

vanish, leading to the anomaly cancellation condition (2.1). In order to satisfy the equation

of motion (II.3) we take the following ansatz for the three-dimensional components of G:

Gµνρm = ǫµνρ∂mf(xm) (II.4)
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We also allow for arbitrary internal components Gmnpq , the form of which will be

fixed by the field equation and supersymmetry conditions. As we will see in a moment,

a maximally symmetric compactification on Y with nontrivial G-flux typically leads to

warped metric:

ds211 = ∆−1
(
ds23(x

µ) + ds28(x
m)
)

(II.5)

where we introduced the warp factor ∆(xm). For now, both ∆(xm) and f(xm) are scalar

functions of the coordinates on Y . Below we show that these two functions are related by

the supersymmetry conditions which we are going to analyze now.

Assuming that the gravitino, ψM , vanishes in the background, supersymmetry vari-

ations of the bosonic fields are all identically zero. So, we only have to check that the

variations of the gravitino also vanish for some Majorana spinor η:

δψM ≡ ∇Mη −
1

4
ΓM

N∂N (log ∆)η− (II.6)

− 1

288
∆3/2(ΓM

PQRS − 8δPMΓQRS)GPQRSη = 0

The first two terms in this expression come from the covariant derivative in the eleven-

dimensional metric (II.5).

Following [8], we make the 11=3+8 split:

Γµ = γµ ⊗ γ9, Γm = 1 ⊗ γm

where the eleven-dimensional gamma-matrices ΓM are hermitian for M = 1, . . . , 10 and

anti-hermitian for M = 0. They satisfy:

{ΓM ,ΓN} = 2gMN (II.7)

We use the standard notation

ΓM1...Mn
= Γ[M1

. . .ΓMn] (II.8)

for the antisymmetrized product of gamma-matrices. We decompose the supersymmetry

parameter as:

η = ǫ⊗ ξ + ǫ∗ ⊗ ξ∗ (II.9)

where ǫ is an anti-commuting Killing spinor in three dimensions:

∇µǫ = mψγµǫ
∗ (II.10)
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and ξ is a commuting eight-dimensional complex spinor of definite chirality. From the

commutation relation of ∇µ in anti-de Sitter space we find the usual relation between the

complex gravitino mass mψ and the value of the three-dimensional cosmological constant:

Λ = −|mψ|2 (II.11)

Without loss of generality we can take:

γ9ξ = ξ (II.12)

Here γ9 is the eight-dimensional chirality operator that anti-commutes with all the γm’s

and satisfies γ2
9 = 1. The sign in (II.12) determines whether it is space-filling membranes

or space-filling antimembranes that can be included without breaking supersymmetry. If

the sign is changed, the corresponding supersymmetric vacuum can be obtained from that

with γ9ξ = +ξ by changing the sign of the function f and the chirality of ǫ.

The µ-component of the supersymmetry condition (II.6) takes the form:

δψµ ≡ ∇µη −
1

4
∂n(log ∆)(γµ ⊗ γ9γ

n)η−

− 1

288
∆3/2(γµ ⊗ γ9γ

mnpq)Gmnpqη +
1

6
∆3/2(∂mf)(γµ ⊗ γm)η = 0

(II.13)

Substituting the decomposition (II.9) for η and using equations (II.10) and (II.12) we

obtain our first supersymmetry condition. Projecting the result onto subspaces of positive

and negative chirality, we actually get two conditions: one comes from the first and the

third term in (II.13); and the other one comes from the second and the fourth term.

Moreover, in a vacuum with N = 2 supersymmetry variations proportional to ǫ and ǫ∗

must vanish separately. Therefore, we find:

f = ∆−3/2, 288mψ∆−3/2ξ = /Gξ∗. (II.14)

Here we have written /G for the total contraction Gmnpqγ
mnpq. According to our ansatz

(II.4), the three-dimensional components of the four-form field strength:

Gµνρm = ǫµνρ∂m∆−3/2 (II.15)

have the form similar to the membrane solution with local “effective” membrane charge

density, as follows from the field equation (II.3) for the internal components. Note, that for
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a compact Y there is no global membrane charge. Substituting (II.15) into (II.3), we obtain

two additional equations. One equation uniquely determines G given its cohomology class:

∂m(∆−3/2Gmnpq) =
1

4!
(∂m∆−3/2)ǫmnpqrstuGrstu (II.16)

It is identically obeyed if G is self-dual (as we will find) and closed. The second equation

which follows from (II.3) determines the warp factor:

d ∗ d log∆3/2 =
1

2
G ∧G− (2π)4I8 +

N∑

i=1

δ8(xm − Pi) (II.17)

Now we return to the original supersymmetry condition (II.6) and consider its m-

component:

δψm ≡ ǫ⊗∇mξ −mψǫ⊗ γmξ
∗ +

1

24
∆3/2Gmnpqǫ⊗ γnpqξ+ (II.18)

+
1

4
∂m(log ∆)ǫ⊗ ξ − 3

8
∂n(log ∆)ǫ⊗ γm

nξ + c.c. = 0

where we used the explicit form of the solution (II.14) and standard properties of gamma-

matrices. Once again ǫ and ǫ∗ components of this equation must vanish separately. By

means of the rescaling transformations:

gmn → ∆3/2gmn
ξ → ∆−1/4ξ

the ǫ-component of (II.18) can be written in the following compact form:

∇mξ −mψ∆3/4γmξ
∗ +

1

24
∆−3/4Gmnpqγ

npqξ = 0 (II.19)

Then, following [8], we choose ξ to be a covariantly constant spinor of unit norm, and

use it to define the complex structure Jm
n = iξ†γm

nξ and the Kähler form Jab = igab.

Since the metric on Y is of type (1,1), it is convenient to think of ‘holomorphic’ gamma-

matrices γa and γa as creation and annihilation operators that satisfy the algebra:

{γa, γb} = {γa, γb} = 0, {γa, γb} = 2gab

Namely, γa and γa act on the Fock “vacuum” ξ as annihilation operators:

γaξ = 0, γaξ
∗ = 0, γaξ∗ = 0, γaξ = 0 (II.20)
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To obtain the algebraic constraints on the field G, we multiply the differential equation

(II.19) by γa which kills the first term in that equation:

24mψ∆3/2γaγmξ
∗ −Gmnpqγ

aγnpqξ = 0 (II.21)

Components of this equation with different gamma-matrix structure must vanish sepa-

rately. For example, if we choose m to be an anti-holomorphic index and use (II.20), we

find that G(1,3), the (1,3) piece of the field G, must be zero:

Gabcd = 0. (II.22)

Moreover, G(2,2) must be primitive:

GabcdJ
cd = 0 (II.23)

Finally, taking the trace over the holomorphic index ‘a’ in the main supersymmetry

condition (II.21), we can demonstrate that the (4,0) part of the G-flux breaks supersym-

metry, as we expected in section 2.4. Indeed, we get a relation between G4,0 and mψ of

the form (II.14), but with a different numerical coefficient:

96mψ∆3/2ξ∗ = Gabcdγ
abcdξ

Therefore, compactifications of M-theory on Calabi-Yau four-folds with G4,0 6= 0 lead

to three-dimensional vacua with broken supersymmetry, in accordance with the proposed

expressions (2.38) and (2.41) for the effective superpotential. Indeed, from (2.38) it follows

that (4,0) part of G contributes to the vacuum value of W . Now, in order to see that three-

dimensional vacua with W 6= 0 are not supersymmetric we must be careful and use the

appropriate covariant derivatives D/Dti and D/Dkj . Since the supersymmetry conditions

(2.36) and (2.37) are scale invariant, there is at least one massless vector multiplet in the

effective three-dimensional theory corresponding to the volume of Y . After this multiplet

is dualized to a massless chiral multiplet K0, one finds no-scale supergravity theory where

effective superpotential is independent on K0, see [40], for otherwise this multiplet had a

mass. Since ∂k0W = 0 but ∂k0K(ti, kj) 6= 0, where K(ti, kj) is the Kähler potential, it

follows that in a vacuum withW 6= 0 the covariant derivativeDW/Dk0 = ∂k0W+(∂k0K)W

does not vanish, and supersymmetry is broken.

Note, that both G4,0 and primitive G-flux of type (2, 2) are self-dual and, therefore,

obey equations of motion (II.16). As one can easily see, self-duality of G also implies

48



vanishing of the three-dimensional cosmological constant. Indeed, it follows from (2.1)

that 1
2

∫
G ∧∗ G − χ(X)/24 = 0, so that the positive vacuum energy due to the G-flux is

cancelled by the negative contribution of the R4 terms in the effective action of M theory.

In particular, it means that compactification with G-flux of type (4, 0) classically gives a

flat space solution with Λ = 0, cf. [42].
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[41] L. Alvarez-Gaumé and E. Witten, Nucl.Phys. B234 (1983) 269.

[42] M. Haack, J. Louis, “M-theory compactified on Calabi-Yau fourfolds with background

flux,” hep-th/0103068.

51

http://arXiv.org/abs/hep-th/9910182
http://arXiv.org/abs/hep-th/9910182
http://arXiv.org/abs/hep-th/9902033
http://arXiv.org/abs/hep-th/0103068

