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Abstract

Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of

healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastroin-

testinal (GI) disease, including GI inflammation and nutrient malabsorption. However,

whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in

CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the

relationships between CFTR dysfunction, microbes, and intestinal health, we established a

germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are suffi-

cient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that

colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells com-

pared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses.

Our findings demonstrate that CFTRmutations modulate both the host adaptive immune

response and the intestinal microbiome.

Author summary

It has been difficult to establish causal relationships between host genetics and the selec-

tion of the vast multitude of micro-organisms that live in and on us (i.e. the microbiota).

Cystic fibrosis has been shown to be associated with changes in the fecal microbiome (the

genetic constitution of the microbiota) although it was not evident whether mutation of

CFTR, the gene mutated in CF, could drive this selection or whether the frequent use of

antibiotics in this population was at fault. Here, by using a germfree (i.e. sterile, lacking all

microbiota) mouse model of CF we clearly demonstrate that mutated CFTR alone can

alter the microbiome. We also show an increase in an adaptive immune cell type (TH17

cells) in the mesenteric lymph nodes and spleens of CF mice compared to control mice.
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Our study provides new insights into the dominant role that CFTR plays in microbiome

determination and suggests that therapies restoring CFTR function could also correct the

microbial dysbiosis observed in CF.

Introduction

Cystic fibrosis (CF) is a genetic disorder caused by a mutation in the cystic fibrosis transmem-

brane conductance regulator (CFTR) gene [1–3]. CF is the most common autosomal recessive

disorder affecting Caucasians [4], currently affecting>30,000 patients in the US and>70,000

patients worldwide [4, 5] with approximately 1000 new cases diagnosed each year [5, 6]. The

CFTR gene encodes a cAMP-regulated anion channel [7, 8] and mutations in the CFTR gene

lead to ion imbalance and dysregulation of fluid secretions within a variety of organs including

lung, GI and reproductive tracts, pancreas, and skin [6, 9].

More than 2000 mutations of the CFTR gene have been identified that cause disease of vari-

able severity [6, 10]. While respiratory disease is a widely recognized source of morbidity, CF

patients also exhibit an array of GI symptoms. At birth, infants with CF can develop meco-

nium ileus, an intestinal obstruction that often has to be treated surgically. Distal intestinal

obstructive syndrome also occurs in older individuals. In addition, patients usually exhibit

destruction of the pancreas that begins in utero and progresses throughout life, leading to pan-

creatic exocrine insufficiency that requires lifelong pancreatic enzyme replacement therapy

[11]. All of these manifestations of disease are likely the result of the altered mucosal secretions

and physicochemical conditions that CFTR dysfunction produces [12–14].

Observational studies have identified a fecal dysbiosis in infants and children with CF com-

pared with those without CF. The childhood CF fecal dysbiosis is characterized by increased

relative abundances of Proteobacteria, especially E. coli, and decreased Clostridiales, compared

to infants without CF [15–17]. The magnitude of this dysbiosis correlates with a fecal measure

of intestinal inflammation, calprotectin, and also with fecal fat, which is malabsorbed due to

pancreatic insufficiency. However, while the CF GI dysbiosis could be caused by either inflam-

mation or pancreatic exocrine dysfunction, the GI microbiome could also contribute to these

problems. Therefore, whether and how the CF GI dysbiosis contributes to disease progression,

and the causes of the dysbiosis itself, are unclear [15, 18]. Furthermore, people with CF con-

sume more high-energy and high-fat diets compared to controls [19] and are frequently pre-

scribed antibiotics and antifungal drugs to treat their lung infections, therapies that likely

further disturb the gut microbiome in these patients. Additionally, as patients with CF live lon-

ger, they are at increased risk of developing cancers in the gastrointestinal tract, diseases with

known relationships with the GI microbiome and inflammation outside of CF [20–22].

The gut microbiome is now known to influence the development and severity of many dis-

eases within and distant to the GI tract. Given the evidence in CF, we sought to dissect the role

of the microbiome in CF gastrointestinal disease. To accomplish this goal, we generated germ-

free (GF) CF mice to eliminate the role of microbiota and to determine what phenotypes could

be attributed solely to CFTR dysfunction. To our knowledge, this is the first report of the estab-

lishment and characterization of a GF CF mouse model.

Results

Establishment of a germ-free CF mouse model

To determine the contribution of the microbiota to CF disease phenotypes, we established a

GF CF mouse model at the University of Washington Gnotobiotic Animal Core (GNAC). The
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GF CF mouse model was generated and maintained through breeding of heterozygous male

and female mice. Similar to what has been previously reported [23], we found a lower than

expected proportion of CFTR knockout (CF) mice that were successfully weaned from hetero-

zygote mating for both GF and specific pathogen free (SPF) mice (Table 1). Because CFTR

mutations have been associated with stunted growth in both humans and in animal models

[18, 24–27], we evaluated the growth rates of both GF and SPF CF and non-CF mice over

time. Consistent with previous findings [23], we found that both male and female SPF CF

mice had significantly lower body weights compared to non-CF controls from weaning

through ~8 weeks of age, although this phenotype was lost with age in male SPF mice but not

female mice (Fig 1A). Similarly, GF male and female CF mice had significantly lower body

weights compared to age matched GF non-CF mice for the duration of the study (Fig 1B).

GF CFmice demonstrate similar histopathologic findings compared to SPF
CF mice

In order to further characterize the GF CF mouse model, we performed gross necropsies on

GF CF and GF non-CF mice as well as SPF CF and non-CF mice. Tissues were evaluated histo-

logically by a board-certified veterinary pathologist masked to genotype. No significant lesions

were appreciated on gross examination in any of the mice. All GF mice, regardless of genotype,

had markedly dilated ceca with liquid ingesta which is a well characterized finding in GF mice

[28], and could account in part for differences observed in body weight between GF and SPF

animals (Fig 1A and 1B). The histologic findings in GF CF mice were consistent with those

that we observed in SPF mice and that have been previously reported in this model [23, 29].

Compared with non-CF mice (Fig 2A–2D), both GF and SPF CF mice demonstrated signifi-

cant dilation of the Brunner’s glands within the proximal small intestine (Fig 2E and 2F) and

retention of Paneth cell contents in the deep intestinal crypts (Fig 2G and 2H). In addition,

mucus retention within the goblet cells was apparent throughout the intestinal tract. SPF CF

mice had protozoal blooms within the luminal contents of the cecum that were not observed

in non-CF controls. Similar to previous reports, we did not observe consistent lesions within

the lung or pancreas of GF or SPF CF mice.

CF genotype significantly influences the gut microbiota

Once the GF CF mouse model was established, we sought to determine the influence of the

host CFTR mutation on shaping the gut microbiome. To accomplish this goal, we performed a

series of fecal microbiota transplant (FMT) experiments in which GF CF and non-CF mice

were housed separately by genotype and colonized with fecal inoculum from SPF C57BL/6J

mice. After allowing sufficient time for the microbiome to stabilize following the FMT [28], we

Table 1. Proportion of CF animals produced.

SPF GF

Total Number of Litters Evaluated 123 124

Total Number of Pups Weaned 562 496

Number of CFTR wildtype (% of total) 169 (30.1%) 127 (25.6%)

Males / female 81 / 88 68 / 59

Number of CFTR heterozygous (% of total) 329 (58.5%) 304 (61.3%)

Males / female 171 / 158 159 / 145

Number of CFTR knockouts (% of total) 64 (11.4%) 64 (12.9%)

Males / female 30 / 34 33 / 31

https://doi.org/10.1371/journal.ppat.1008251.t001
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examined the microbial composition of the feces and cecal material of CF and non-CF animals

by 16S rRNA gene sequencing. Alpha diversity was greatest in the inoculum and was reduced

in both fecal and cecal samples collected from CF compared to non-CF mice (S1 Fig). Hierar-

chical clustering of samples by their relative species abundance revealed a clear separation

based on CFTR genotype (Fig 3A) demonstrating that CFTR dysfunction alone is sufficient to

modulate the gut microbiome. Principal coordinate analysis (PCoA) of the community com-

position similarly indicated that the samples significantly (PERMANOVA, p<0.05) diverged

based on CFTR genotype (Fig 3B). Furthermore, samples diverged from the starting inoculum

with non-CF recipients showing clustering of cecal content and fecal content within a given

experiment for 3 of the 4 experiments unlike CF recipients that overall seemed to cluster more

closely together (Fig 3A and 3B). Surprisingly, when CF cecal content was used as the donor

sample, the microbiome reverted to non-CF-like in the non-CF mice (recipients marked with

X or Y in Fig 3A and Fig 3B), further suggesting the important role of CFTR function in GI

microbiota composition. Genera that showed significant (White’s non-parametric t-test,

p< 0.05) enrichment or depletion in CF compared to non-CF mice are shown in Fig 3C.

Strikingly, we saw a significant enrichment in the proportion of Escherichia/Shigella (~250-

fold, though only at a low abundance of 1.01 ± 0.78% in CF compared to 0.004 ± 0.012% in

non-CF mice). In addition, we also saw a depletion of Lachnoclostridium (2.22 ± 0.66% in CF

compared to 13.5 ± 8.2% in non-CF mice) and Parabacteroides (4.83 ± 1.62 in CF compared to

15.1 ± 7.9% in non-CF). These results are consistent with observations in pediatric human CF

fecal microbiome studies [15, 17, 30].

Fig 1. CF mice have significantly lower body weights compared to age matched non-CFmice. Body weight was
measured at multiple ages in male and female SPF (A) and GF (B) mice. Number of mice per group (N) is indicated
along the X axis for each time point. Body weight (grams) is plotted for each animal and mean weight and SEM for
each group is indicated. Data were analyzed by two-way ANOVAwith the Bonferroni correction for multiple
comparisons (P values).

https://doi.org/10.1371/journal.ppat.1008251.g001
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CF genotype influences the TH17 immune response in mice

The host immune system plays an important role in shaping the gut microbiome, and con-

versely the gut microbiome can significantly modulate the host immune system. The literature

suggests that CF patients with a TH17 biased T cell immune response may have poorer disease

outcomes [31, 32]. We therefore sought to determine if there were any changes in the adaptive

immune cell populations between CF and non-CF mice prior to and following colonization.

We first evaluated total cellularity of the spleen and mesenteric lymph nodes (MLN) of unma-

nipulated GF CF and non-CF mice using flow cytometric analysis (Fig 4). CF mice demon-

strated a higher total cell count as well as a higher number of CD3+ T cells in the MLN

compared to non-CF controls, although no significant differences were observed in the spleen

(Fig 4B). Additionally, no difference in total number of B cells (CD19+) was observed in the

MLN or the spleen (Fig 4B). To further assess T helper cell differentiation, we stimulated

whole splenocytes or MLN with phorbol 12-myristate 13-acetate (PMA) and ionomycin and

stained for intracellular cytokine production in CD4+ T-cells (Fig 4C). We found an increase

in TH17 cells in the MLN in the CF mice compared to the non-CF controls following PMA /

ionomycin stimulation in 4 of 11 mice tested (Fig 4E). In addition, the MLN already showed

Fig 2. GF CF mice recapitulate common histologic findings observed in SPF CF mice. Representative H&E stained
sections from non-CF (A-D) and CF (E-H)mice. Microbiological status as indicated, germ-free (GF); specific
pathogen free (SPF). (A, B & E, F)- Brunner’s glands. (C,D & G, H)- Small intestine. The non-CF tissues are within
normal or anticipated limits for SPF-colonized (minimal to mild enteritis) or GF mice. In contrast, the CF mice have
dilated Brunner’s glands [� in (E and F)] and retention of Paneth cell contents on the deep intestinal crypts [arrows in
(G and H)]. These changes are present in SPF and GF CF mice to equal measure. SPF animals of both genotypes have
mild proliferative enteritis as compared to GF animals. Scale bars~100um.

https://doi.org/10.1371/journal.ppat.1008251.g002
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an increase in intracellular IL-17A, the cytokine produced by TH17 cells, even in the absence

of stimulation, although the number of cells was low (median of 7.8 x 10e2 in CF vs 2.1 x 10e2

in non-CF). No significant differences in TH17+ cells were observed in the spleen. Addition-

ally, there were no differences in TH1 cells in the MLN or spleen (Fig 4D).

We next sought to determine if the increased TH17 response observed in the GF CF mice

was altered by the presence of a diverse GI microbiome. We evaluated the adaptive immune

cell populations between CF and non-CF mice in our SPF colony (Fig 5A) and following colo-

nization after FMT (Fig 5B). Similar to what was observed in the GF CF mice, SPF CF mice

Fig 3. Mutations in CFTR gene influence the composition of the gut microbiota. The composition of the fecal and cecal microbiota were assessed in CF and non-CF
GF recipient mice 1–3 months following FMT with SPF C57BL/6J feces by sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. See also S1 Fig. (A) Bar
graph represents the relative abundances of major genera identified within each sample. Hierarchical clustering was performed based on Bray-Curtis distance, according
to ASV distribution at the genus level. The experiment was repeated four times over the course of a year and the numbers (and colors) at the bottom of each column
(Red, Brown, Blue, Orange) correspond to an experimental cohort. Fecal and cecal contents were pooled at equal volumes for pair-housed, age, sex, and genotype
matched mice within a study prior to DNA extraction (N = 2 mice per genotype per experiment). Black X and Y samples indicate samples from two experiments that
used the equivalent of the CF cecal sample of experiment 4 as donor material for the FMT. (B)Multidimensional scaling by ASV’s abundance demonstrate significant
clustering by genotype (PERMANOVA, p<0.05, with R2 = 0.55). Red circles represent CF whereas black squares represent non-CF samples. Blue triangles are
inoculum samples of SPF C57BL6/J mice bred inhouse. (C)Genera significantly enriched or depleted in CF mice and associated q-values from experiments 1–4 (i.e.
excluding the X and Y samples) as determined byWhite’s non-parametric t-test; CI method: Welch’s inverted; multiple test correction method: Benjamini & Hochberg.

https://doi.org/10.1371/journal.ppat.1008251.g003
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Fig 4. GF CF mice exhibit elevated TH17 cells in the MLN compared to non-CF controls. (A)Gating strategy used to enumerate cell
numbers (B) of T (CD3+) and B (CD19+) cells in the Spleen and MLN from GF CF and non-CF mice (N = 11 mice per genotype). (C)Gating
strategy to identify IFNgamma+ or IL-17A+ CD4+ T-cells following ~5 hours of stimulation in the presence of PMA / Ionomycin. Note that
the gating strategy in this figure (including Panel (A)) comes from an FMTmouse to show IL-17A production. (D) Cell counts per mouse
(N = 11 mice per genotype, and N = 8 MLN and N = 10 Spleen samples that were also stained with isotype control antibodies in parallel). (E)

CFTR determines microbiome
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had a significantly higher total cell count and a larger number of T cells in the MLN compared

to non-CF mice, whereas CF and non-CF FMT mice had equivalent counts (S2 Fig). SPF CF

mice also had increased B cells in the MLN, but there were no significant differences in the

number of T or B cells present in the spleen (S2 Fig). Intriguingly, the SPF and FMT-colonized

CF animals exhibited increased TH17 cell populations compared to non-CF controls in both

the spleen and the MLN (Fig 5) with no differences observed in the number of TH1 cells pres-

ent. Together these data demonstrate that CFTR dysregulation modulates the host immune

system, leading to an increase in TH17 cells, an immune phenotype associated with worse out-

comes in CF.

Discussion

Both pediatric and adult CF patients have a significantly altered fecal microbiome compared

to healthy controls, and it has been suggested that GI dysbiosis may be associated with

increased morbidity in CF patients. However, it is difficult within a human population to

determine both the causes and consequences of the CF fecal dysbiosis for clinical disease due

to the large number of confounding variables such as antibiotic use, diet, and other underlying

genetic and environmental influences that are present within a diverse human population.

Gnotobiotic animal models provide an opportunity to directly evaluate the effects of the gut

microbiome on health and disease. We therefore sought to establish a gnotobiotic mouse

model of CF that could be used to dissect the complex interactions between CFTR dysregula-

tion and the gut microbiome. We rederived and established a breeding colony of CFTR S489X

mice. Using these animals, we found that GF CF mice demonstrated histopathologic changes

within the GI tract similar to those previously reported in SPF CF animals, including dilatation

of the Brunner’s glands in the proximal small intestine, retention of mucus within the intesti-

nal goblet cells and retention of the Paneth cell contents within the intestinal crypts. While the

intestinal histopathologic changes associated with CFTR dysregulation are understudied,

inspissated eosinophilic mucus within the goblet cells and intestinal crypts is a characteristic

finding in human CF patients as well [33, 34]. Intriguingly, we found that, similar to SPF ani-

mals, GF CF mice had decreased body weights compared to age and sex matched non-CF con-

trols even when maintained on a nutritionally dense diet. Inadequate growth is common in

human CF patients as well as multiple animal models of CF [18, 24–27]. Our findings suggest

that reduced body weight in mice with CF is not driven by the presence of gut microbes.

By using the same donor microbiota to colonize CF and non-CF mice under identical hous-

ing conditions, our results demonstrate that CFTR dysfunction actively modulates the gut

microbiome and selects for a community with features that are conserved between mice and

humans. We found an increase in Escherichia, though at a lower abundance than that observed

in human infants, where E. coli exhibits unique traits to grow in the CF intestinal environment

[16]. In addition, as in the children studied by Manor et al. [17], we found an increase in the

relative abundance of Bifidobacterium in CF mouse samples. In contrast, while human CF

samples exhibited lower overall relative abundances of Firmicutes, only two Firmicute genera

(Lachnoclostridium and Lachnospiraceae_UCG-006) exhibited a significant depletion in CF

versus non-CF samples (the other three Firmicutes found in murine GI microbiota, Lactobacil-

lus, Blautia, and Anaerostipes, were enriched in CF samples). These differences may be attrib-

utable to specific features of the murine GI lumen, or perhaps to the specific diets and

Data from (D) but showing IL-17A production linking Unstim to PMA/Ionomycin stimulation for each mouse. Data were analyzed by
pairwise comparison between CF and non-CF animals within a group by Mann-Whitney U test.

https://doi.org/10.1371/journal.ppat.1008251.g004
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therapies that children with CF receive, which are therefore important confounders in human

studies [17].

As further evidence of the importance of CFTR function as a selective force in the mouse

GI lumen, we showed that when non-CF mice are colonized with CF-selected microbiota, they

revert to a non-CF microbiota. There are multiple potential mechanisms by which CFTR dys-

regulation could modulate the gut microbiome. First, the nutrient availability impacted by

Fig 5. SPF and FMT-colonized CFmice exhibit elevated TH17 cells in the spleen andMLN compared to non-CF
controls.Number of CD4+ T-cells producing IFNgamma or IL-17A in the spleen or MLN of SPF [(A)N = 7–8 mice
per genotype] or B6-FMT [(B)N = 6 mice per genotype, not performed in 1st FMT experiment] mice. Data were
analyzed by pairwise comparison between CF and non-CF animals within a group by Mann-Whitney U test. See also
S2 Fig.

https://doi.org/10.1371/journal.ppat.1008251.g005
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CFTR function, such as altered mucus abundance or composition, or malabsorbed dietary

nutrients [15, 17], could contribute to this selection. Second, altered pH due to decreased

bicarbonate secretion could directly (through direct effects on microbiota) or indirectly (by

impacting the activity of another factor, such as antimicrobial peptides) alter microbiota com-

position. Third, Paneth cells secrete a variety of MyD88-dependent antimicrobial compounds

that protect the epithelium [35–37], and trapping of the Paneth cell granules in the crypts

could alter their antimicrobial activity in the CF gut. Future studies will be required to differ-

entiate between these mechanisms.

Finally, we observed increased TH17 responses in the spleen and MLN of CF mice upon GI

microbial colonization. Increased intestinal permeability has been demonstrated in human CF

[38, 39] and could account for increased bacteremia leading to increased systemic TH17 cells.

Alternatively, differences in specific taxa such as increased Escherichia, could be the driver of

these immune responses, though these hypotheses will require further testing. It has been

reported that CF patients exhibit a skewed T cell mediated immune response with a bias

towards a TH2 or TH17 response [40–42]. In addition, increased TH17 responses were associ-

ated with decreased lung function [31]. Interestingly, Kushwah et al. demonstrated that naïve

T cells isolated from peripheral blood of human CF patients exhibit TH17-skewed responses

[40]. However, these studies could not establish whether this skewed inflammatory response

was secondary to environmental antigen exposures or a direct result of CFTR dysfunction.

Our results suggest that TH17-skewed T-cell differentiation in CF is not entirely dependent

upon the composition of the gut microbiome, as we found a small number of IL-17A-produc-

ing CD4+ T-cells in the MLN of a subset of GF CF mice. While our data are intriguing, addi-

tional studies are required to determine whether these cells are indeed TH17 cells and what

factors are driving their differentiation in the absence of gut bacteria, such as exposure to envi-

ronmental or food antigens, or T-cell intrinsic factors. Together, our data demonstrate that

CFTR dysfunction modulates the adaptive immune response and the gut microbiome suggest-

ing that restoring CFTR function through CFTR modulators could result in the added benefit

of the reversion of the gut microbiota towards that found in healthy, non-CF people, and such

findings were recently described in a small prospective observational study where ivacaftor

treatment resulted in altered gut microbiota and decreased intestinal inflammation [43].

Materials andmethods

Animals

Male and female CFTR S489X (B6.Cftrtm1Unc/+)[23] mice were obtained from Dr. Mitchell

Drumm at Case Western Reserve University and bred at the University of Washington to gen-

erate homozygous mutant (CF), heterozygous and wildtype mice. A combination of heterozy-

gous and wildtype animals were used as non-CF experimental controls throughout this

manuscript. C56BL/6J mice, originally obtained from Jackson Laboratories, were bred and

maintained at the University of Washington. Specific pathogen free (SPF) mice were group

housed (2–5 mice per cage) in autoclaved, individually ventilated cages (Thoren, Hazleton, PA

or Allentown, Allentown, NJ) with autoclaved corncob bedding (The Andersons, Maumee,

OH). Mice were fed an irradiated chow diet (Rodent Diet 5053, Lab Diet, St. Louis, MO for

C57BL/6J mice and Rodent Diet 7960, Harlan Teklad, Madison, WI for CF mice) ad libitum,

provided acidified (pH 2.5–3), autoclaved, reverse osmosis purified water in bottles, and main-

tained in rooms with a 12/12 or 14/10 hour light / dark cycle. Mice were screened for rodent

pathogens by either monitoring of sentinel mice (Crl:CD1[ICR]; Charles River, Wilmington,

MA) or exhaust air duct PCR testing to ensure exclusion of the following agents: mouse hepati-

tis virus, mouse parvovirus, epizootic diarrhea of infant mice virus, minute virus of mice,
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pneumonia virus of mice, Reovirus type 3, Sendai virus, Theiler’s murine encephalomyelitis

virus, lymphocytic choriomeningitis virus, Ectromelia virus, Mycoplasma pulmonis, pin-

worms and fur mites.

In order to assess the role of the microbiome in the CFTR intestinal phenotype, CFTR

S489X mice were rederived germ-free (GF) via caesarian section in the Gnotobiotic Animal

Core (GNAC) Facility at the University of Washington. A breeding colony of GF CF mice was

maintained by breeding heterozygous carriers in a flexible film isolator (CBC, Madison, WI)

in open top cages. Experimental mice were transferred into ISOcage P cages (Tecniplast, West

Chester, PA) prior to colonization, and the GF status of animals was determined by 16S rRNA

PCR on pooled cage feces [28]. Handling of mice in ISOcage P cages was performed in a bio-

safety cabinet as previously described [28]. Gnotobiotic mice were all housed within rooms in

the GNAC facility at the University of Washington with a 12/12 or 14/10 hour light / dark

cycle. Mice were housed on Enrich-n’Pure bedding (The Andersons), fed autoclaved chow

diet (Rodent Diet 5021, Lab Diet, St. Louis, MO) ad libitum, and provided reverse-osmosis

purified autoclaved water in bottles.

All experimental animals, regardless of genotype or colonization status were maintained on

laxative water upon weaning. Laxative solution consisted of 50% Gavilyte-C solution prepared

in animal’s respective colony water. Body weight was assessed weekly in experimental animals.

Ethics statement

All animal procedures were approved by the Institutional Animal Care and Use Committee of

the University of Washington (UW protocols 4230–01 and 4420–02) in accordance with the

recommendations in the Guide for the Care and use of Laboratory Animals, 8th Edition, by the

National Research Council of the National Academies (US). The UW Public Health Service

Assurance Number by the Office of Laboratory Animal Welfare is D16-00292 (A3464-01).

Fecal microbiota transplantation (FMT)

Fresh fecal pellets from five cages of five SPF C57BL/6J mice were collected over the course of

five days and frozen at -80˚C. Each tube consisted of a single fecal pellet from one mouse from

each of the five cages thus containing a total of five pellets. Frozen fecal pellets were resus-

pended in PBS at 80–100 mg/mL, centrifuged at 27–100 rcf for 10 seconds, and 0.1 mL of the

supernatant was administered to each GF mouse by oral gavage at day 0, when the recipients

were 5–8 weeks of age. This experiment was repeated 4 times over the course of one year with

each experiment consisting of a cage of two CF mice and a cage of two non-CF mice. However,

one CF mouse was found dead 8 days after gavage in the first experiment. This animal was

excluded from study and therefore the total analyzed was 7 KO (4F/3M), 4WT (2M/2F), and 4

hets (2M/2F). The 1st 3 experiments extended to 3 months whereas the last one extended to 28

days. In addition, intracellular cytokine staining was only performed on the last 3 of the

experiments.

Tissue collection and histopathology

Mice were euthanized via CO2 asphyxiation or cervical dislocation. Spleen and mesenteric

lymph node (MLN) were collected for flow cytometric analysis from a subset of animals. Tis-

sues including spleen, liver, kidney, heart, lung, stomach, cecum, MLN with mesentery and

pancreas, colon and small intestine were immersion fixed in 10% neutral-buffered formalin,

embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues were evalu-

ated by a board-certified veterinary pathologist (PMT), masked to experimental genotype or

treatment.
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Flow cytometric analysis

Single cell suspensions of splenocytes were obtained by mechanical disruption of the spleen

between frosted glass slides in RBC-lysis solution followed by washing in medium (RPMI

+ Glutamax + beta mercapto ethanol + 10% FBS + Pen/Strep). MLN were dissociated in

medium by passing through a 40 μm filter using the plunger of a syringe. Cells were then cul-

tured for ~5 hr in the presence of 10 μg/mL brefeldin A (Sigma-Aldrich, St. Louis, MO) in

medium and stimulated with 10 ng/mL mL Phorbol 12-myristate 13-acetate (Sigma-Aldrich)

plus 2.8 μM Ionomycin (Sigma-Aldrich). Using a hemocytometer, live cells were counted (try-

pan blue exclusion) and a total cell count was obtained for each sample. Surface cell Fc recep-

tors were blocked with 2.4G2 antibody then cells were stained with combinations of

fluorescently labeled antibodies specific for (mouse) CD3, CD19, CD4, and CD8 (BD Biosci-

ences, San Jose, CA; eBioscience, San Diego, CA; or Biolegend, San Diego, CA). Cells were

washed and permeabilized with Cytofix/Cytoperm (BD Biosciences) according to the manu-

facturer’s instructions prior to intracellular cytokine staining using fluorescently labeled anti-

bodies specific for (mouse) IL-17A and IFN-gamma (BD Biosciences or Biolegend). Data were

collected on an LSRII cytometer (BD Bioscience) and analyzed using FlowJo version 9.9.6 soft-

ware (FlowJo LLC, Ashland OR). Percent of T and B cells were determined from a lympho-

cyte-size gate based on FSC-A vs. SSC-A and single cells determined by FSC-H vs FSC-W and

SSC-H vs SSC-W.

16S rRNA gene sequencing and analysis

Fecal and cecal contents were pooled at equal volumes for co-housed, age, sex, and genotype

matched mice within a study prior to DNA extraction. Genomic DNA was extracted from

mouse fecal and intestinal contents using ZR Fecal DNAMicroprep kit (Zymo Research,

Irvine, CA) following manufacturer’s protocol. Final DNA yield was quantified using a Qubit

fluorometer (ThermoFisher Scientific, Waltham, MA) before next generation sequencing

library construction.

16S rRNA gene amplicon libraries were prepared according to Illumina’s 16S metage-

nomics sequencing library protocol (Illumina Inc., San Diego, CA). Briefly, an approximate

460 bp region within the V3-V4 region of the 16S rRNA gene was amplified by PCR using the

forward primer S-D-Bact-0341-b-S-17 and reverse primer S-D-Bact-0785-a-A-21 [44] with

Illumina 5’ overhang adapter sequences: Forward: 5’-TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAGCCTACGGGNGGCWGCAG-3’ and Reverse: 5’-GTCTCGTGGGCTCGGAG

ATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’. Each sample was ampli-

fied in triplicate, pooled, and gel purified using the QIAquick Gel Extraction Kit (Qiagen,

Germantown, MD). The PCR amplicon was purified using Agencourt AMPure XP beads

(Beckman Coulter Genomics, Danvers, MA). Dual indices and Illumina sequencing adapters

were attached to the amplicon in a limited cycle PCR reaction using the Nextera XT Index Kit

(Illumina Inc.). Libraries were again purified using Agencourt AMPure XP beads. Final librar-

ies were quantified, pooled and denatured for sequencing on the Illumina MiSeq platform.

The MiSeq run generated an average of 220,000 paired 300 base pair reads per sample.

Microbiome analysis

Illumina reads were first trimmed using Cutadapt [45] to remove all primer and adapter

sequences. The resulting reads were then truncated to 260 bases for the forward read and 220

bases for the reverse read based on the observed quality scores. The DADA2 pipeline [46] was

then used to infer amplicon sequence variants (ASVs). Taxonomy was assigned to the ASVs

up to the genus level using the DADA2’s pre-compiled silva_nr_v128_train_set database.
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Community composition and statistical analyses were performed using the vegan (CRAN,

Community Ecology Package), microbiomeSeq (https://github.com/umerijaz/microbiomeSeq),

and Phyloseq [47] R packages. Raw and analyzed data were deposited in the European Nucleo-

tide Archive (accession number PRJEB32648).

Statistics

Statistical analyses for bodyweight, flow cytometric, and cell count data were performed using

Prism version 5 and 7 (GraphPad, San Diego, CA). For pairwise comparisons for flow cyto-

metric data and cell count data, the Mann-Whitney U test was used. Body weight was assessed

by a two-way ANOVA with Bonferroni’s multiple comparisons test to compare body weight at

each time point between sex and colonization status (GF versus SPF). Statistical analysis of the

gut microbial community was performed in R (R Core Team) and STAMP [48]. Multigroup

beta-dispersion analysis was done by Permutational Analysis of Variance (PERMANOVA,

Benjamini-Hochberg) to compare categorical and continuous variables using microbiomeSeq

(https://github.com/umerijaz/microbiomeSeq) software package in R. A two-sided White’s

non-parametric t-test (CI method: Welch’s inverted) was conducted to identify statistically dif-

ferent Genera and ASV’s with a Benjamini & Hochberg [49] correction for multiple testing.

Differences with a mean proportion of 0.2 and P value of 0.05 or less were considered

significant.

Supporting information

S1 Fig. Reduced alpha-diversity in CF mice. Alpha-diversity, measured by Simpson and

Shannon diversity indexes is plotted for fecal and cecal microbiome samples assessed in CF

(red) and non-CF (green) germ-free recipient mice 1–3 months following FMT with SPF

C57BL/6J feces as the inoculum (blue). Fecal and cecal contents were pooled at equal volumes

for pair-housed, age, sex, and genotype matched mice within a study prior to DNA extraction

(N = 2 mice per genotype per experiment, four separate experiments performed).The line

inside the box represents the median, while the whiskers represent the lowest and highest val-

ues within the 1.5 interquartile range (IQR). Pair-wise ANOVA of diversity measures was per-

formed between groups and values for each of the selected methods (observed values) were

plotted (annotated with significance labels:�p<0.05; ��p<0.01; ���p<0.001).

(TIF)

S2 Fig. SPF and colonized CF mice exhibit increased total cell counts as well as increased

numbers of B and T cells in the MLN. Total cell counts in addition to number of B cells

(CD19+) and T cells (CD3+) present in Spleen and MLN from CF and non-CF mice in SPF

[(A) N = 7–8 mice per genotype] or B6-FMTmice [(B) N = 6 mice per genotype, not per-

formed in 1st FMT experiment]. Data were analyzed by pairwise comparison between CF and

non-CF animals within a group by Mann-Whitney U test.

(TIF)

S1 Table. Flow cytometry antibodies and reagents.
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