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Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting

Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive

systems. The major cause of morbidity and mortality in CF is the respiratory disorder

caused by a vicious cycle of obstruction of the airways, inflammation and infection

that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over

the past decades, life expectancy of CF patients has increased due to early diagnosis

and improved treatments; however, these patients still present limited quality of life.

Many attempts have been made to rescue CF transmembrane conductance regulator

(CFTR) expression, function and stability, thereby overcoming the molecular basis of CF.

Gene and protein variances caused by CFTR mutants lead to different CF phenotypes,

which then require different treatments to quell the patients’ debilitating symptoms. In

order to seek better approaches to treat CF patients and maximize therapeutic effects,

CFTR mutants have been stratified into six groups (although several of these mutations

present pleiotropic defects). The research with CFTR modulators (read-through agents,

correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress,

and these drugs are translating into pharmaceuticals and personalized treatments for

CF patients. This review summarizes the main molecular and clinical features of CF,

emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular

mechanisms underlying these new and emerging treatments, and discusses the major

breakthroughs and challenges to treating all CF patients.

Keywords: CFTR, cystic fibrosis, protein misfolding, intracellular trafficking, proteostasis network, personalized

medicine, ABC transporters

Abbreviations: ABC, ATP-binding cassette; AHSA1, activator of 90 kDa Hsp ATPase homolog 1; ATP, adenosine
triphosphate; cAMP, cyclic adenosine monophosphate; CAL, CFTR-associated ligand; CF, cystic fibrosis; CFBE, CF bronchial
epithelial; CFTR, CF transmembrane conductance regulator; CHIP, carboxyl terminus of Hsc70-interacting protein; EPAC,
exchange protein directly activated by cAMP; ER, endoplasmic reticulum; EMA, European Medicines Agency; ENaC,
epithelial Na+ channel; ERAD, ER-associated degradation; FDA, Food and Drug Administration; FEV1, forced expiratory
volume in 1 s; HBE, human bronchial epithelial; HDAC, histone deacetylase; HGF, hepatocyte growth factor; Hsc, heat shock
cognate; Hsp, heat shock protein; HTS, high-throughput screening; NBD, nucleotide-binding domain; NHERF-1, Na+/H+

exchanger regulatory factor; PKA, protein kinase A; PKC, protein kinase C; PM, plasmamembrane; PPQC, peripheral protein
quality control; RD, regulatory domain; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor;
SUMO, small ubiquitin-like modifier; STX, syntaxin; TMD, transmembrane domain; VCP, vasolin-containing protein; VIP,
vasoactive intestinal peptide; wt, wild type.
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INTRODUCTION

Mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) gene cause cystic fibrosis (CF) – the most
common life-limiting autosomal recessive inherited disorder
in Caucasian people. The mutated gene translates into a
defective CFTR protein with loss-of-activity (Kerem et al.,
1989; Riordan et al., 1989). CFTR encodes an anion channel
expressed in several cell types that: (1) transports chloride across
the apical membrane; (2) modulates the activity of other ion
channels, thereby regulating fluid and electrolyte balance in
the mucosal membranes; and (3) secretes bicarbonate, which is
crucial for pH regulation, host defense and protection against
noxious stimuli (Gadsby et al., 2006; Gentzsch et al., 2010;
Gustafsson et al., 2012). As a protein of the ATP-binding
cassette (ABC) family, CFTR is comprised of two transmembrane
domains (TMDs), two nucleotide-binding domains (NBDs)
and a unique regulatory domain (RD) (Gadsby et al., 2006)
(Figure 1). Cyclic AMP (cAMP)-dependent protein kinase A
(PKA), protein kinase C (PKC) and ATP control its activity
(Winter and Welsh, 1997; Chappe et al., 2003). The most
prevalent CFTR mutation was discovered almost 30 years
ago; it was the deletion of a phenylalanine at position 508
(1F508) (Kerem et al., 1989; Riordan et al., 1989), which
affects ∼80% of CF patients worldwide (Bobadilla et al., 2002;
Sosnay et al., 2013). The mutation 1F508 reduces thermal and
kinetic stability of NBD1 and precludes interdomain interactions
(Serohijos et al., 2008; Mendoza et al., 2012). Hence, the
endoplasmic reticulum (ER) retains misfolded 1F508-CFTR,
which forms only a partially glycosylated protein, and the
proteasome promptly degrades it (Cheng et al., 1990; Jensen et al.,
1995).

CF is a systemic disease that affects ∼85,000 people and
presents heterogeneous distribution globally (Bobadilla et al.,
2002; Sosnay et al., 2013) (Figure 2, Table 1). According to
the latest registry reports, 38,985 CF patients are in Europe
(European Cystic Fibrosis Society [ECFS], 2016), 28,676 in the
United States (Cystic Fibrosis Foundation [CFF], 2015), 4,128
in Canada (Cystic Fibrosis Canada [CFC], 2016), 3,294 in
Australia (Cystic Fibrosis Federation Australia [CFFA], 2016)
and 3,511 in Brazil (Brazilian Cystic Fibrosis Study Group
[GBEFC], 2016) (Figure 3). The major cause of morbidity
and mortality in CF is the respiratory disorder caused by
the lack of CFTR at the plasma membrane (PM) (Moskowitz
et al., 2008), which decreases the anion permeability in airway
cells and leads to a progressive pathophysiological cascade
(Figure 4): (1) A faulty conductance of other ions, such
as excessive sodium transport mediated by epithelial Na+

channel (ENaC), since it is negatively regulated by CFTR
(Kunzelmann et al., 1995; Gentzsch et al., 2010). Controversially,
some reports have shown that CFTR loss-of-activity reduces
chloride conductance without increasing sodium absorption in
CF epithelia (Chen et al., 2010; Itani et al., 2011). (2) The
imbalance of ion regulation depletes water content and/or
decreases pH in the airway surface liquid (Tarran et al., 2005;
Tang et al., 2016). (3) Dehydration and/or acidification of
epithelial lining, as well as increased mucin polymer cross-links,

raise the amount and viscosity of mucus in gel phase (Tarran
et al., 2005; Yuan et al., 2015; Shah et al., 2016; Tang
et al., 2016), making the mucus tenacious and difficult to
remove by ciliary beating. (4) Accumulation of mucus leads
to obstruction of the airways, inflammation and bronchiectasis.
(5) Frequently, pathogens colonize the airways and increase
the recruitment of inflammatory cells (Lyczak et al., 2002;
Bhatt, 2013). Furthermore, oxygen depletion below the sputum-
air interface favors biofilm formation (Worlitzsch et al., 2002;
Cowley et al., 2015). (6) The destruction of airway and lung
parenchyma epithelial cells causes tissue remodeling, reduction
of gas exchange area and impairment of lung function. (7) As
the disease progresses, the patient succumbs to death due to
respiratory failure.

In addition to the substantial impact of CFTR dysfunction
in the upper and lower respiratory tract, CF patients also
experience clinical manifestations related to the reproductive,
gastrointestinal and glandular systems (Table 2). Male infertility
is present in 98% of cases, and about 85% of CF patients have
pancreatic insufficiency, often associated to malnutrition.

Salt loss syndrome also affects CF patients, since chloride
reabsorption via CFTR in the sweat glands is compromised,
increasing chloride elimination (>60 mmol.L−1), as well as of
other ions. In fact, the iontophoretic sweat test is considered
the ‘gold standard’ for the diagnosis of CF. It precedes only the
confirmation of a diagnosis by genetic testing (Lyczak et al.,
2002; Farrell et al., 2008; Castellani et al., 2016). In addition,
sweat chloride measurement is a biomarker of CFTR activity and
response for new treatments (Accurso et al., 2014; Collaco et al.,
2016).

LIFE EXPECTANCY IN CYSTIC FIBROSIS

Multifactorial improvements have increased the survival of
CF patients (Figure 5): early diagnosis, genotype–phenotype
detection, nutritional support, more efficient and effective
pulmonary interventions, multidisciplinary professional
monitoring, establishment of CF specialist centers and, most
recently, the development of precision medicine (Farrell et al.,
2008; Cohen-Cymberknoh et al., 2011; Smyth et al., 2014; Quon
and Rowe, 2016).

In the last decades, many countries have adopted newborn
screening programs. Newborns are diagnosed through the
measurement of immunoreactive trypsinogen. This early
diagnosis and the confirmation of the disease through the sweat
test are important for a better prognosis (Farrell et al., 2008;
Djik and Fitzgerald, 2012; Castellani et al., 2016). Thereafter,
identifying which are the mutations in the CFTR gene is crucial,
since different ethnic or regional populations can have a different
spectrum of CFTR variants, each leading to different degrees
of disease severity (Moskowitz et al., 2008; Pique et al., 2016;
Schrijver et al., 2016).

A multidisciplinary team of health professionals should
perform periodic monitoring of the disease progression
and make any necessary adjustments in treatments in
order for patients to achieve the best clinical outcomes
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FIGURE 1 | CFTR schematic structure – Cystic fibrosis transmembrane conductance regulator (CFTR) is a 1,480-amino acids protein inserted into the cell

surface. CFTR possesses five domains: two transmembrane domains (TMD1/2), containing six hydrophobic alpha-helices, which cross the cell surface lipid bilayer,

and are joined by two intracellular loops and three extracellular loops, and with glycosylated residues linked in the extracellular loop 4 (N894, N900); two

nucleotide-binding domains (NBD1/2) with highly conserved sequenced for ATP-binding, where occur hydrolysis; and one regulatory domain (RD) with multiple

phosphorylation sites. CFTR channel open when protein kinase A (PKA) and protein kinase C (PKC) phosphorylate RD and ATPs bind to side chain charged

amino acids in NBDs, thereby activating CFTR function. TMDs form the gate where occurs chloride conductance. The positions denoted into the boxes

correspond to the first and last amino acid of each fragment and CFTR sequence was obtained in the Cystic Fibrosis Mutation Database (CFTR1 database;

http://www.genet.sickkids.on.ca/Home.html).

FIGURE 2 | Estimated prevalence of cystic fibrosis per 100,000 habitants – Data compiled from the latest registry reports of Europe (European Cystic Fibrosis

Society [ECFS], 2016), United States (Cystic Fibrosis Foundation [CFF], 2015), Canada (Cystic Fibrosis Canada [CFC], 2016), Australia (Cystic Fibrosis Federation

Australia [CFFA], 2016) and Brazil (Brazilian Cystic Fibrosis Study Group [GBEFC], 2016).

(Cohen-Cymberknoh et al., 2011; Smyth et al., 2014). CF patients
show weight loss and impaired growth due to pancreatic
insufficiency and intestinal malabsorption. Supplementations
with pancreatic enzymes and fat-soluble vitamins have improved

their nutritional status (Feranchak et al., 1999; Kalnins and
Wilschanski, 2012). Lung injuries are the most common clinical
characteristic due to mucociliary clearance impairment in the
airways. Production of very viscous mucus impairs the ciliary

Frontiers in Pharmacology | www.frontiersin.org 3 September 2016 | Volume 7 | Article 275

http://www.genet.sickkids.on.ca/Home.html
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lopes-Pacheco Personalized Treatments for Cystic Fibrosis

TABLE 1 | Top 10 countries with the highest number of CF patients.

Registered patients Per 100,000 habitants

1◦ United States Ireland

2◦ United Kingdom United Kingdom

3◦ France Australia

4◦ Germany Canada

5◦ Italy Belgium

6◦ Canada New Zealand

7◦ Brazil France

8◦ Australia United States

9◦ Russia Switzerland

10◦ Spain Denmark

beating, and treatments with mucolytic (e.g., dornase-alpha)
(Fuchs et al., 1994) or hydrator (e.g., mannitol, hypertonic saline)
(Elkins et al., 2006; Bilton et al., 2011) are helpful in eliminating
the retained mucus. Antibiotic therapy is also essential, since
the mucus becomes trapped in the respiratory tract, causing
recurrent and persistent infections by a group of opportunistic
pathogens: Burkholderia cepacia, Haemophilus influenzae,
Pseudomonas aeruginosa (hallmark of CF), Staphylococcus
aureus and Stenotrophomonas maltophilia (Lyczak et al., 2002;
Worlitzsch et al., 2002; Bonestroo et al., 2010; Bhatt, 2013). It is
noteworthy that during infection by P. aeruginosa, the bacterial
population can segregate and evolve differently according
to the lung microenvironment, leading to differences in the
bacterial characteristics, such as nutritional requirements,
defense and microbial resistance. This may explain, partly,
why this pathogen is so prevalent and difficult to eradicate
from CF patient lungs (Jorth et al., 2015; LaFayette et al.,
2015).

Non-pharmacological treatments, such as aerobic exercise,
physiotherapy, feeding and physiological supports, are also
important to high-quality care and better outcomes (Cohen-
Cymberknoh et al., 2011; Smyth et al., 2014). As the disease
progresses, patients require continuous therapy with oxygen,
and in the end-stage lung disease, the only alternative is lung
transplantation, which still presents a high risk of cellular
rejection (Adler et al., 2009; Calabrese et al., 2015).

Over the past decades, all the above-mentioned improvements
have lengthened the life expectancy of CF patients. In 1960, CF
patients only lived through childhood. Nowaday, they live to
see their forties (Figure 5), and those born more recently are
expected to make it to their fifties (Cohen-Cymberknoh et al.,
2011; MacKenzie et al., 2014; Burgel et al., 2015). However, CF
patients still present evenmore reduced life expectancy – between
20 and 30 years – in some regions of the world, including Brazil
and the African continent (Marson et al., 2015; Stewart and
Pepper, 2016).

Several new complications associated with increased survival
(Table 2), which were rare or not previously observed, pose
new challenges for CF scholars. CF-related diabetes, metabolic
bone disease and multidrug-resistant pulmonary pathogens are
some comorbidities in older CF patients (Plant et al., 2013).
Although still uncommon, adult CF patients have a higher

FIGURE 3 | Demography of cystic fibrosis in a sample of 78,627

patients in different countries or demographic regions – (A) Prevalence

by gender: average of 52% male and 48% female. (B) Within the sample

group, 86% have been genotyped and approximately 38% are

1F508-homozygous, 35% 1F508-heterozygous and 13% bearing other

CFTR (cystic fibrosis transmembrane conductance regulator) mutants in both

alleles. (C) About 50% of patients are under 18 years and 50% are 18 years

or older. Data compiled from the latest registry reports of Europe (EU;

European Cystic Fibrosis Society [ECFS], 2016), United States (US; Cystic

Fibrosis Foundation [CFF], 2015), Canada (CA; Cystic Fibrosis Canada [CFC],

2016), Australia (AU; Cystic Fibrosis Federation Australia [CFFA], 2016) and

Brazil (BR; Brazilian Cystic Fibrosis Study Group [GBEFC], 2016).

risk of gastrointestinal cancer compared to an age-matched
non-CF population (Maisonneuve et al., 2013), which may
be explained by the fact that CFTR is a tumor suppressor
gene (Than et al., 2016). Another severe complication is the
allergic bronchopulmonary aspergillosis, which is correlated
to accelerated decline of lung function in adult CF patients
(Armstead et al., 2014).
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FIGURE 4 | Pathophysiological cascade of respiratory disorder in cystic fibrosis – Cellular mechanism of cystic fibrosis begins with the defective CFTR

(cystic fibrosis transmembrane conductance regulator) gene and shortage of CFTR channel at the plasma membrane. A vicious cycle of airways obstruction,

inflammation and infection leads to epithelial damage, lung remodeling and end-stage lung disease. ENaC, epithelial Na+ channel; Aqp, aquaporin.

TABLE 2 | Approximate age of onset of CF clinical manifestations and comorbidities.

Upper and lower respiratory

tract

Gastrointestinal and

hepatobiliary systems

Endocrine and reproductive

systems

Salt-wasting syndrome and

others

Babyhood and

childhood

Chronic cough

Sputum overproduction

Tenacious mucus

Airway obstruction

Recurrent and persistent

pneumonia or lung infections

Bronchiectasis

Nasal polyps/sinus disease

Meconium ileus

Steatorrhea

Deficiency of fat-soluble

vitamins

Intussusception

Recurrent pancreatitis

Pancreatic insufficiency

Absence of the vas deferens

Impaired growth

Salty sweat

Mucosal dehydration

Hypochloremia

Hyponatremia

Hypokalemia

Digital clubbing

Adolescence and

adulthood

Atelectasis

Impaired pulmonary function

Hemoptysis

Chronic infection with

multidrug-resistant pathogens

Allergic bronchopulmonary

aspergillosis

Pneumothorax

Respiratory failure

Biliary fibrosis/cirrhosis

Hepatic steatosis

Gastroesophageal reflux

Distal intestinal obstruction

syndrome

Digestive tract cancer

Delayed puberty

Oligomenorrhea

Reduced fertility in women

Obstructive azoospermia in

males

CF-related diabetes mellitus

Reduced bone mineral

density/osteoporosis

Arthritis/vasculitis

Nephrolithiasis

Chronic kidney disease

Anxiety/depression

Please note that the clinical signs and symptoms in an approximate age of onset do not exclude the possibility of these arose from early or late manner.

Despite the increase in life expectancy, CF patients still present
a limited quality of life due to the high costs and the burden of
treatments needed. In particular, CF patients living in developing
countries tend to have worse clinical outcomes compared to those
who live in developed countries, since lower-income countries
have scarce financial resources to optimize therapies, including
the application of precision medicine (Cohen-Cymberknoh et al.,
2016). Precision medicine (or personalized treatment) is a new
approach that takes into account the genetic variances of each
individual. Therefore, CF patients with different CFTRmutations
may require different treatments to quell their debilitating
symptoms (Quon and Rowe, 2016). The knowledge obtained
about the molecular scenario in which CFTR mutants are
degraded has contributed to understanding the different defects
caused by different mutants, and thus to developing drugs that
rectify the primary defect of specific mutations.

A PROTEOSTASIS NETWORK ENGAGED
IN CFTR DEGRADATION

CFTR biogenesis is a cellular process that involves several
steps: post-transcriptional splicing, protein translation, folding
at the ER, glycosylation at the Golgi apparatus, trafficking to
the apical membrane, endosomal recycling and retrieval. The
cellular and transcellular protein trafficking involves multiple
quality control systems to compensate the limited fidelity of
each system. Therefore, a protein homeostasis (proteostasis)
network carefully checks CFTRmaturation pathway (Balch et al.,
2011). Among the quality control systems, ubiquitin-proteasome
pathway destroys the largest fraction of misfolded CFTR (Cheng
et al., 1990; Jensen et al., 1995), and aggresomes degrade by
autophagy CFTR molecules that proteasomes cannot degrade
(Kawaguchi et al., 2003; Luciani et al., 2010). In addition,
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FIGURE 5 | Effect of novel therapies on life expectancy of cystic

fibrosis patients – Schematic illustration of how the discovery and

introduction of novel cystic fibrosis (CF) treatments have influenced the

patients’ survival over the decades. HTS: high throughput screening, AZLI,

aztreonam for inhalation solution; TIP, tobramycin inhalation solution; KALY,

KalydecoTM; ORK, OrkambiTM. ∗enteric-coated pancreatic enzymes.

(Reproduced and adapted with permission of European Respiratory Society©:

The European Lung White Book Respiratory Health and Disease in Europe,

2nd Ed. © 2013 European Respiratory Society, Sheffield, UK. Print ISBN:

978-1-84984-042-2, Online ISBN: 978-1-84984-043-9).

lysosomes eliminate non-native CFTR that escapes from ER-
associated degradation (ERAD) (Sharma et al., 2004; Glozman
et al., 2009; Okiyoneda et al., 2010). The mutant 1F508 fails to
achieve the native conformation and ERAD machinery arrests
CFTR, thereby precluding the protein from being delivered to the
PM (Cheng et al., 1990; Jensen et al., 1995).

CFTR folding is facilitated by many molecular chaperones
and co-chaperones, which form a CFTR interactome; however,
unstable and misfolded CFTR remains bound to chaperones,
promoting premature degradation of CFTR (Balch et al., 2011;
Amaral and Farinha, 2013; Kim et al., 2013; Pankow et al., 2015)
(Figure 6). The heat shock protein (Hsp)27 (or HspB1) binds
1F508 with small ubiquitin-like modifier (SUMO)-2, directing
it to be degraded via SUMOylation (Ahner et al., 2013; Gong
et al., 2016). Hsp27 also prevents protein aggregation during
stress (Ahner et al., 2007). Hsp40 (or DnaJ) sequesters misfolded
CFTR for ERAD and it works as a co-chaperone for Hsp70
(Meacham et al., 1999; Farinha et al., 2002; Kakoi et al., 2013).
Hsp70 is a core ER chaperone and its prolonged association with
CFTR mutant results in CFTR ubiquitination and degradation
by the 26S proteasome (Yang et al., 1993; Jensen et al., 1995;
Meacham et al., 2001; Sun et al., 2006). Hsp70 connects to
heat shock cognate (Hsc)70, forming the first ER checkpoint
that retains the mutant 1F508. Hsc70 couples to its co-
chaperone, the carboxyl terminus of Hsc70-interacting protein
(CHIP), and leads CFTR mutant to degradation (Meacham
et al., 1999, 2001; Farinha and Amaral, 2005). Hsp90 helps
wild type (wt)-CFTR to achieve the complete folding, but it
also forms a ‘chaperones trap’ with Hsp40/Hsp70 that targets
1F508 for proteasome degradation (Wang et al., 2006; Ahner

et al., 2007; Koulov et al., 2010; Coppinger et al., 2012). The
ATPase activity of Hsp90 is regulated by its co-chaperone,
the activator of 90kDa Hsp APTase homolog 1 (AHSA1 or
Aha1) (Wang et al., 2006; Koulov et al., 2010). Calnexin is an
ER transmembrane chaperone that acts as second checkpoint,
assessing CFTR folding status and sending the misfolded protein
for degradation (Farinha and Amaral, 2005; Okiyoneda et al.,
2008).

In addition to the molecular chaperones, inhibition of the
histone deacetylase (HDAC) (Hutt et al., 2010; Pankow et al.,
2015) or the vasolin-containing protein (VCP or p97) (Vij et al.,
2006) rescues the trafficking and gating of 1F508-CFTR. VCP
(Boyault et al., 2006) and HDAC6 (Kawaguchi et al., 2003)
translocate misfolded proteins to proteasomes and aggresomes,
respectively. VCP is associated to ubiquitinated CFTR, whereas
derlin-1 recognizes misfolded, non-ubiquitinated CFTR and
initiates its dislocation and degradation in the early course of
CFTR biogenesis (Sun et al., 2006). The CFTR-associated ligand
(CAL) is a PDZ domain-containing protein, located primarily at
Golgi apparatus, which modulates surface expression of CFTR
(Cheng et al., 2002). CAL forms a complex with syntaxin
(STX)6 that promotes CFTR degradation in lysosomes (Cheng
et al., 2010; Cheng and Guggino, 2013). STX8 is an endosomal
protein that impairs CFTR trafficking and inhibits its chloride
channel activity by soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) machinery (Bilan et al.,
2004). Vasoactive intestinal peptide (VIP) is a neuropeptide that
promotes interaction between CFTR and Na+/H+ exchanger
regulatory factor 1 (NHERF-1) (Alshafie et al., 2014). NHERF-
1 is a CFTR-binding protein that regulates CFTR distribution
and function at the PM (Guerra et al., 2005; Kwon et al.,
2007; Favia et al., 2010). Moreover, a system of peripheral
proteins quality control (PPQC) removes CFTR from the PM
if that is recognized as improperly folded (Okiyoneda et al.,
2010).

In healthy conditions, the proteostasis network maintains
a healthful proteome by integrating transcription, translation,
folding and trafficking systems. However, a decline in the cellular
proteostasis capacity occurs with aging, as well as protein
misfolding/aggregation disorders cause an imbalance in the
expression and/or binding of proteostasis components with client
proteins, which accentuates the importance of a healthy quality
control system (Balch et al., 2011; Kim et al., 2013; Villella
et al., 2013). CFTR protein must fold into well-defined three-
dimensional structure to attain stability and functionality (Balch
et al., 2011; Kim et al., 2013). The protein lack or its incorrect
folding prevents CFTR from performing its normal function
and cells may respond to that by maintaining an activated heat
shock response and leading to a maladaptive stress response.
This effort to neutralize misfolding protein accumulation causes
an additional stress to cells that may result in the exacerbation
of disease symptoms. These findings were observed in cell lines
and primary epithelium from CF and other misfolding protein
diseases: alpha-1-antitrypsin, Alzheimer’s disease and Niemann-
Pick type C1 disease (Roth et al., 2014). Another important
determinant in inherited disorders is that the disease severity
depends of the genetic background of each individual and not
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FIGURE 6 | A subset of proteostasis network engaged to CFTR degradation – CFTR interactome involves several quality control proteins that directly or

indirectly target CFTR to degradation. Proteasomes and aggresomes eliminate CFTR that fails in acquire the native conformation. Lysosomes degrade CFTR

removed from the cell surface during the recycling. The black lines denoted the interaction between CFTR and proteostasis components. AHSA1, activator of

90 kDA Hsp ATPase homolog 1; CAL, CFTR-associated ligand; CHIP, carboxyl terminus of Hsc70-interacting protein; CFTR, cystic fibrosis transmembrane

conductance regulator; HDAC, histone deacetylase; Hsc, heat-shock cognate; Hsp, heat-shock protein; NHERF, Na+/H+ exchanger regulatory factor; SUMO, small

ubiquitin-like modifier; STX, syntaxin; Ub, ubiquitin; and VCP, vasolin-containing protein.

solely on the defect of a particular gene (Vu et al., 2015). CFTR
gene is located at the chr7q31.2 and a genome-wide association
analysis identified five loci that display significant relevance in
the variable manifestation and progression of lung disease in CF
(chr3q29, chr5p15.3, chr6p21.3, chr11p12-p13 and chrXq22-q23)
(Corvol et al., 2015; Dang et al., 2016).

CLASSES OF CFTR MUTATIONS AND
CFTR MODULATORS

The 1F508 is the most prevalent CFTR mutation with about
60% of CF patients’ chromosomes worldwide presenting this
mutant (Bobadilla et al., 2002; Sosnay et al., 2013) (Figure 3).
The remaining 40% present other CFTR mutations and there
have been nearby 2,000 mutations reported in the Cystic Fibrosis
Mutation Database (CFTR1 database)1. CFTR mutants can
reduce protein expression, function, stability or a combination
of these, and to help in understanding the nature of such gene
and protein variability, CFTR defects have been classified into six
classes (Amaral and Farinha, 2013; Quon and Rowe, 2016; Veit
et al., 2016a) (Figure 7).

Distribution of CFTR mutants into classes may contribute
to the application of precision medicine, since similar strategies
might rescue CFTR from similar defects. However, the
classification has a few caveats: (1) Numerous mutations have

1http://www.genet.sickkids.on.ca/Home.html

not been characterized, with respect to which group they should
be allocated. The mutations’ characteristics for a subset of
known mutations can be found at the Clinical and Functional
Translation of CFTR (CFTR2 database)2. (2) At first glance,
CFTR mutations in the same group show similar characteristics,
but they may respond differently to the same treatment. (3)
Several mutations (e.g., 1F508) present pleiotropic defects,
which means they could fit in more than one class. The major
characteristic of 1F508 is the incomplete folding of the protein
caused by NBD1 instability (class II) (Cheng et al., 1990; Jensen
et al., 1995; Lukacs and Verkman, 2012), but this mutation also
affects channel gating (class III) (Dalemans et al., 1991; Serohijos
et al., 2008; Mendoza et al., 2012) and cell surface residence
time (class VI) (Sharma et al., 2004; Swiatecka-Urban et al.,
2005; Okiyoneda et al., 2010). Based on this limitation, new
classifications are under debate, including a scheme that would
be composed of the traditional classes I, II, III/IV, V, VI and their
26 combinations, totaling 31 CFTR mutations classes (Veit et al.,
2016a).

Monotherapies could be efficient in overcoming the molecular
defect of some CFTR mutations; however, given the complexity
of pleiotropic CFTR variants, combination of treatments may
be required to rectify their defects and thus achieve therapeutic
levels in the patients (Amaral and Farinha, 2013; Quon and
Rowe, 2016; Veit et al., 2016a). Libraries of compounds have been
screened by high-throughput screening (HTS) to identify more

2http://cftr2.org/
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FIGURE 7 | Classes of CFTR mutations – Distribution of CFTR mutations into six functional classes according to the primary molecular defect: Class I mutants

are no protein synthesis, since the presence of premature stop codons (class Ia) or frameshifts for deletions or insertions (class Ib) preclude translation of full-length

CFTR. Class II mutants are impaired trafficking protein, since CFTR fails to acquire complete folding and ER-associated degradation (ERAD) machinery eliminate the

protein. Class III mutants are defective channel gating, since CFTR reach the cell surface, but it does not exhibit channel gating due to diminished ATP binding and

hydrolysis. Class IV mutants are less functional proteins, since channel amount that achieve the plasma membrane could be similar to wt-CFTR, but it presents

reduced chloride conductance. Class V mutants are less protein maturation caused by amino acid substitution or alternative splicing, since the protein amount that

reaches the cell surface is reduced and it also leads to loss of chloride transport due to reduction in the quantity of CFTR channels. Class VI mutants are less stable

protein, since CFTR at the plasma membrane is removed during the recycling and it is sent for lysosome degradation. wt, wild type; CFTR, cystic fibrosis

transmembrane conductance regulator; r1F508, rescued 1F508 by low-temperature incubation; and ER, endoplasmic reticulum.

efficacious and non-cytotoxic drugs for application of precision
medicine. Among these new pharmacological treatments, ‘CFTR
modulators’ are small molecules that target specific defects caused
by mutations in the CFTR gene and they are classified into
five main groups: read-through agents, correctors, potentiators,
stabilizers and amplifiers.

Rescuing the Protein Synthesis
Read-through agents could benefit CF patients bearing class
I mutations, since the presence of a premature stop codon
(class Ia) precludes protein synthesis of full-length CFTR
(Quon and Rowe, 2016). Class Ia mutations represent about
9% of the mutants causing CF and they are present in
more than 50% of Israeli CF patients (Kerem et al., 1997;
Bobadilla et al., 2002). In this line, ribosomal ‘over-reading’
of a premature stop codon should permit the continuing
translation to the normal end of the transcript. This read-
through effect was first observed with aminoglycoside antibiotics,
such as gentamicin and tobramycin, which are commonly used
for eradication of P. aeruginosa. Both antibiotics promoted
expression of full-length CFTR at the PM and restored
partially its chloride secretion in cell lines and transgenic
mice (Howard et al., 1996; Du et al., 2002; Wilschanski
et al., 2003). Despite these preclinical results, CF patients

bearing nonsense mutations did not present CFTR activity
after nasal application of aminoglycosides (Clancy et al.,
2007). Furthermore, high systemic levels or long-term use of
gentamycin has potential toxic effects in CF patients (Prayle et al.,
2010).

Ataluren (formerly PTC124) is among the new drugs
discovered by HTS. This drug suppressed the human G542X
nonsense mutant in transgenic mice, restoring CFTR functional
expression at the PM (Du et al., 2008). Thereafter, this drug
resulted in some improvement in forced expiratory volume
in 1 s (FEV1) of CF patients bearing nonsense mutations in
phase II trials (Kerem et al., 2008; Sermet-Gaudelus et al.,
2010; Wilschanski et al., 2011). However, these findings were
inconclusive in the first long-term phase III trial, with only a
subgroup of patients who were not receiving chronic inhaled
aminoglycosides presenting a slight effect in FEV1 (Kerem
et al., 2014). Ataluren has also shown limited premature stop
codon suppression in CF rectal organoids (Zomer-van Ommen
et al., 2016). Moreover, other read-through agents have shown
promising results in preclinical experiments, including synthetic
aminoglycosides (Rowe et al., 2011; Xue et al., 2014), ataluren
derivatives (Pibiri et al., 2015, 2016), and the US Food and Drug
Administration (FDA)-approved herbal agent, escin (Mutyam
et al., 2016).
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For other class I mutations (class Ib), such as frameshifts
caused by small deletions or insertions during protein synthesis,
very little has been achieved in treatments yet.

Rescuing the Protein Folding and
Trafficking
Correctors are small-molecules that enhance the conformational
stability of CFTR, resulting in greater efficacy of protein folding
and rescuing the trafficking of the mature CFTR to the PM
(Pedemonte et al., 2005; Okiyoneda et al., 2013; Lopes-Pacheco
et al., 2015; Quon and Rowe, 2016). CF patients bearing class
II mutations, including 1F508, could benefit from correctors
treatment, since these CFTR mutants fail to reach complete
folding and the ER machinery targets the protein to be degraded
(Van Goor et al., 2006; Atawade et al., 2015; Rapino et al., 2015;
Lopes-Pacheco et al., 2016).

New treatments may target the defective CFTR structure
directly by binding to the mutated protein (pharmacological
chaperone) and/or indirectly by modulating CFTR interactome
(proteostasis regulator). Some reports have shown that correctors
act either as pharmacological chaperones (Wang et al., 2007a;
Sampson et al., 2011; Eckford et al., 2014; Sinha et al., 2015)
or as proteostasis regulators (Hegde et al., 2015; Lopes-Pacheco
et al., 2015, 2016; Rapino et al., 2015). Based on the possible
mechanism of action as pharmacological chaperones, correctors
have been classified into three groups: 1) correctors that stabilize
the interactions between NBD1 and intracellular loops 1 and
4 (e.g., C3, C18 and VX-809); 2) correctors that restore NBD2
stability and its interfaces with other CFTR domains (e.g., C4);
and 3) correctors that directly stabilize NBD1 (Okiyoneda et al.,
2013).

Lumacaftor (formerly VX-809) restored 1F508-CFTR
expression and function in human bronchial epithelial (HBE)
cells (Van Goor et al., 2011). The higher efficacy of lumacaftor,
compared to other correctors (C3 and C4), seems to be
due to its effect on the early CFTR synthesis (Farinha et al.,
2015). Despite progress in vitro, lumacaftor treatment by
itself showed a significant decrease only in sweat chloride
levels and no improvements in FEV1 in a phase II trial with
1F508-homozygous patients (Clancy et al., 2012). Lumacaftor
presented the most variable effects in primary HBE cells and
rectal organoids bearing 1F508 in only one allele or other
CFTR mutants in both alleles, with some mutants being ‘un-
rescuable’ (e.g., N1303K) (Atawade et al., 2015; Dekkers et al.,
2016a,b). Furthermore, a synonymous mutation changing
ATC to ATT at position 507 (I507) alters mRNA and protein
structure (Lazrak et al., 2013), consequently, affecting the efficacy
of correctors to rescue 1F508-CFTR (Bali et al., 2016a,b).
Aiming at greater effects, combinations of correctors have been
evaluated and have been shown to enhance the rescue of CFTR
bearing 1F508, as well as other class II mutants, compared
to monotherapies (Okiyoneda et al., 2013; Phuan et al., 2014;
Hegde et al., 2015; Lopes-Pacheco et al., 2015, 2016; Rapino et al.,
2015). Some correctors could also increase CFTR maturation
of class V mutants caused by amino acid substitution, such as
A455E (Dekkers et al., 2016a,b; Lopes-Pacheco et al., 2016). In

addition, VIP rescued functional expression of 1F508-CFTR by
stimulating both PKA- and PKC-dependent pathways in nasal
and bronchial epithelial cells (Rafferty et al., 2009; Alcolado
et al., 2011). Many newly discovered correctors are being
investigated, including VX-661 that presented more a favorable
pharmacokinetic profile than lumacaftor (Cholon et al., 2014;
Veit et al., 2014; Phuan et al., 2015) and is in phase III trials to
1F508-homozygous and -heterozygous patients (NCT02347657,
NCT02392234 and NCT02412111).

Besides the correctors, drugs that modulate proteostasis have
been evaluated to restore CFTR functional expression at the PM,
since wt-CFTR and 1F508 present a rather different interactome
during their processing and trafficking (Pankow et al., 2015).
Cysteamine, a proteostasis regulator approved by the FDA for
nephropathic cystinosis, has shown promise for treating CF.
Cysteamine (reduced form of cystamine), in association with
epigallocatechin gallate, restored beclin 1-dependent autophagy
protein levels and depleted sequestrosome 1/p62, thereby
correcting autophagy flux, and rescuing CFTR trafficking,
function and stability at the PM. These findings were observed
in lungs from Cftr1F508 mice, CFBE41o- cell line expressing
1F508-CFTR, and primary nasal epithelial cells freshly harvested
from 1F508-homozygous patients (Luciani et al., 2012; Villella
et al., 2013; De Stefano et al., 2014). Recently, a combination of
cysteamine and epigallocatechin gallate decreased sweat chloride
levels, as well as inflammatory biomarkers levels in the sputum,
and tended to improve FEV1 in 1F508-homozygous and -
heterozygous (with a class II mutant in the second allele) patients
in a phase II trial (Tosco et al., 2016). Several other proteostasis
regulators have been investigated to rescue CFTR, including
sildenafil analogs (Robert et al., 2008), oubain (Zhang et al., 2012),
roscovitine (Norez et al., 2014), suberoylanilide hydroxamic acid
(Hutt et al., 2010; Pankow et al., 2015) and latonduine analogs
(Carlile et al., 2016). Silencing of RPL12, a ribosomal stalk
protein, also rescued 1F508-CFTR and presented a synergistic
effect with lumacaftor, restoring the mutant function to about
50% of the wt-CFTR in primary HBE cells bearing1F508 in both
alleles (Veit et al., 2016b).

Restoring the Channel Conductance
Potentiators are drugs that increase channel open probability,
improving CFTR channel activity. Potentiators could benefit
CF patients bearing class III and IV mutations, since CFTR
is present at the PM, but it exhibits no gating or reduced
activity (Van Goor et al., 2006, 2009, 2014; Eckford et al., 2012).
Furthermore, patients bearing class I or II mutations for which
protein synthesis or trafficking were rescued, but not proper
channel activity, may benefit from this additional approach.

Ivacaftor (formerly VX-770) rescued CFTR channel gating
in HBE cells bearing G551D mutation (Van Goor et al.,
2009) through a nonconventional ATP-independent mechanism
(Eckford et al., 2012). Ivacaftor also potentiated channel activity
of CFTR bearing other class III or IV mutants in Fisher rat
thyroid cells (Yu et al., 2012; Van Goor et al., 2014) and
rescued forskolin-induced swelling in rectal organoids bearing
CFTR mutants with residual function (Dekkers et al., 2016a).
A subsequent series of phase II and III clinical trials showed that
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ivacaftor reduced sweat chloride levels and improved FEV1 in
CF patients bearing G551D (Accurso et al., 2010; Ramsey et al.,
2011; Davies et al., 2013a,b; McKone et al., 2014) or one of other
eight class III mutants (G178R, S549N, S549R, G551S, G1244E,
S1251N, S1255P, and G1349D) (De Boeck et al., 2014) in at
least one allele. For R117H, a residual function mutant, ivacaftor
decreased sweat chloride levels of all patients, but only individuals
older than 18 years and with a polythymidine tract variant of 5T
presented improvements in FEV1 (Carter et al., 2015; Moss et al.,
2015; Ronan et al., 2015). Currently, ivacaftor is available for CF
patients bearing the aforementioned mutations.

Monotherapy with ivacaftor (Flume et al., 2012) or lumacaftor
(Clancy et al., 2012) was unsuccessful in improving FEV1

of 1F508-homozygous patients in phase II trials. A closer
investigation of the pleiotropic defects caused by1F508 in CFTR
reveals that combinations of drugs with different mechanism
of actions will be required to obtain more efficient rescue of
the mutated protein that may ultimately result in therapeutic
levels in the patients (Okiyoneda et al., 2013; Phuan et al.,
2014; Lopes-Pacheco et al., 2015; Veit et al., 2016a). Toward
this goal, phase II and III trials tested the effects of co-
administration of lumacaftor/ivacaftor. This approach reduced
pulmonary exacerbations, slightly decreased sweat chloride levels
and induced significant, but modest, improvements in FEV1

of 1F508-homozygous patients (Boyle et al., 2014; Wainwright
et al., 2015; Elborn et al., 2016). Recently, co-administration
of lumacaftor/ivacaftor was licensed for 1F508-homozygous
patients.

Some flavonoids also increase channel open probability of
CFTR mutants (Galietta et al., 2001; Pyle et al., 2010; Yu et al.,
2011). In particular, genistein and curcumin have shown synergy
with lumacaftor to enhance forskolin-induced swelling in rectal
organoids bearing CFTR mutants 1F508, G551D and S1251N
(Dekkers et al., 2016c). Ivacaftor has shown clinical benefits when
administered by itself, but its effects could be even greater when
used with other compounds for CFTR bearing G551D or R117H
(Gentzsch et al., 2016; Lin et al., 2016; Yu et al., 2016). In addition,
new potentiators are under investigation to restore channel
activity of CFTR mutants, including QBW251 (NCT02190604)
and GLPG1837 (NCT02690519 and NCT02707562), as well
as dual activity compounds that act as both correctors and
potentiators, such as aminoarylthiazoles (Pedemonte et al., 2011;
Pesce et al., 2015) and rattlesnake phospholipase A2 (Faure et al.,
2016).

Stabilizing the Protein at the Cell Surface
Stabilizers are agents that anchor CFTR channel at the PM
and decrease protein degradation rate, thereby correcting the
instability of class VI mutants. Low-temperature incubation of
cells bearing 1F508 rescue CFTR to the PM (r1F508) (Sharma
et al., 2001); however, the protein still presents reduced half-life
due to both increased endocytosis (Swiatecka-Urban et al., 2005)
and decreased recycling (Sharma et al., 2004). Lumacaftor also
did not confer long-term stability of wt-CFTR for the mutant
1F508 (He et al., 2013).

New treatments must rectify the intrinsic protein instability
to rescue the steady state levels and augment CFTR residence

time at the PM. In this line, hepatocyte growth factor (HGF)
activated Rac1 signaling and promoted 1F508 stabilization
favoring interaction of CFTR and NHERF-1 (Moniz et al., 2013).
Lumacaftor also promoted interaction of CFTR and NHERF-1
(Arora et al., 2014), but co-administration of HGF/lumacaftor
further increased the rescue of 1F508-CFTR and enhanced
protein anchoring at the PM, compared to lumacaftor alone
(Loureiro et al., 2015). Administration of VIP (Rafferty et al.,
2009; Alshafie et al., 2014) or activation of EPAC1, an exchange
protein directly activated by cAMP (Lobo et al., 2016), also
stabilized CFTR at the PM by promoting its interaction with
NHERF-1 and by decreasing its endocytosis rate.

In addition, inhibition of S-nitrosoglutathione reductase
enhanced 1F508 maturation and stability by preventing
interaction of CFTR with Hsp70/Hsp90 organizing protein
(Marozkina et al., 2010; Zaman et al., 2016). Cavosonstat
(formerly N91115) increased S-nitrosoglutathione levels in pre-
clinical studies and it is the first CFTR stabilizer in phase II
trials being evaluated for 1F508-homozygous patients using
the combination lumacaftor/ivacaftor (NCT02589236) or for
those patients bearing gating mutants and receiving ivacaftor
(NCT02724527).

Correcting the Splicing
Antisense oligonucleotides-based therapy is an emerging
approach to correct class V mutations caused by alternative
splicing that generate aberrant mRNA variants. About 11%
of mutations-causing CF occur by incorrect splicing and this
approach has shown to modulate the splicing and restore normal
full-length CFTR transcript, as well as rescue functional CFTR
protein (Bonini et al., 2015; Igreja et al., 2016).

A synthetic RNA oligonucleotide, QR-010, is being evaluated
in two phase I trials to assess: (1) the effects of inhaled single and
multiple doses in 1F508-homozygous patients (NCT02532764),
and (2) the effects of intranasal administration in 1F508-
homozygous and -heterozygous patients (NCT02564354).

PRECISION MEDICINE:
BREAKTHROUGHS AND CHALLENGES
TO TREATING ALL CF PATIENTS

From the first pathological description of the disease until
the discovery of the CFTR gene and its correlation with CF,
therapeutic interventions were only aimed at reducing clinical
symptoms and end-organ complications. Nowadays, based on the
accumulated knowledge about CFTR protein (synthesis, folding,
trafficking and degradation), many studies have sought more
specific treatments to restore expression, function and stability
of CFTR mutants, thereby overcoming the primary molecular
defect that causes CF. As such, CFTR modulators provided new
perspectives and advances in the treatment of patients bearing
common and rare CFTR mutations.

Many clinical trials have completed the tests of safety and
efficacy of CFTR modulators (Table 3). The first breakthrough in
personalizing CF treatments came with the approval of ivacaftor
(KalydecoTM from Vertex Pharmaceuticals) for patients bearing
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TABLE 3 | Completed clinical trials of CFTR modulators in CF patients.

ClinicalTrials.gov ID

(formerly name)

Phase Subjects Age

(years)

Drug(s) Follow up Reference(s)

NCT00237380 2 Nonsense mutationsa,b
≥18 Ataluren 56 days Kerem et al., 2008

NCT00351078 2 Nonsense mutationsa,b
≥18 Ataluren 112 days Wilschanski et al., 2011

NCT00457821 2 G551D-homozygous

and -heterozygous

≥18 Ivacaftor 28 days Accurso et al., 2010, 2014

NCT00458341 2 Nonsense

mutationsa,c,d

6–18 Ataluren 28 days Sermet-Gaudelus et al., 2010

NCT00803205 3 Nonsense mutationsa,c
≥6 Ataluren 48 weeks Kerem et al., 2014

NCT00865904 2 1F508-homozygous ≥18 Lumacaftor 28 days Clancy et al., 2012

NCT00909532

(STRIVE)

3 G551D-homozygous

and -heterozygous

≥12 Ivacaftor 48 weeks Ramsey et al., 2011; Quittner

et al., 2015

NCT00953706

(DISCOVER)

2 1F508-homozygous ≥12 Ivacaftor 16 weeks Flume et al., 2012

NCT01117012

(PERSIST)

3 G551D-homozygous

and -heterozygous

≥6 Ivacaftor 96 weeks McKone et al., 2014

NCT01225211 2 1F508-homozygous

and -heterozygous

≥18 Lumacaftor

and

Ivacaftor

56 days Boyle et al., 2014

NCT01262352

(ENVISION)

2 G551D-homozygous

and -heterozygous

≥6 Ivacaftor 48 weeks Davies et al., 2013a,b

NCT01521338 (GOAL) 4 G551D-homozygous

and -heterozygous

≥6 Ivacaftor 6 months Rowe et al., 2014; O’Connor

and Seegmiller, 2016

NCT01531673 2 1F508-homozygous

and -heterozygous

≥12 VX-661

and/or

Ivacaftor

28 days ∗∗∗

NCT01614457

(KONDUCT)

3 R117H-homozygous

and -heterozygous

≥6 Ivacaftor 24 weeks Moss et al., 2015

NCT01614470

(KONNECTION)

3 Non-G551D gating

mutations in at least

one allelee

≥6 Ivacaftor 24 weeks De Boeck et al., 2014

NCT01685801 2 R117H and/or CFTR

mutations with residual

function in at least one

allele b,f, G551D and/or

other gating mutations

in at least one allelee

≥12 Ivacaftor 24 weeks ∗∗∗

NCT01705045 (KIWI) 3 G551D-homozygous

and heterozygous

2–5 Ivacaftor 24 weeks Davies et al., 2016

NCT01707290 3 Non-G551D gating or

residual

function mutations in at

least one alleleb,e,f

≥6 Ivacaftor 24 weeks ∗∗∗

NCT01807923

(TRAFFIC)

3 1F508-homozygous ≥12 Lumacaftor

and

Ivacaftor

24 weeks Wainwright et al., 2015; Elborn

et al., 2016

NCT01807949

(TRANSPORT)

3 1F508-homozygous ≥12 Lumacaftor

and

Ivacaftor

24 weeks Wainwright et al., 2015; Elborn

et al., 2016

NCT01897233 3 1F508-homozygous 6–11 Lumacaftor

and

Ivacaftor

24 weeks ∗∗∗

NCT01931839 3 1F508-homozygous ≥12 Lumacaftor

and

Ivacaftor

96 weeks ∗∗∗

aG542X, W1282X; b3849 + 10 kbC→T; CR553X, R1162X; dQ492X, E1104X, W846X, W882X, Q1313X; eG178R, S549N, S549R, G551S, G970R, G1244E, S1251N,

S1255P, G1349D; fR117H, E56K, P67L, D110E, D110H, R117C, R347H, R352Q, A455E, D579G, S945L, L206W, R1070W, F1074L, D1152H, S1235R, D1270N,

2789 + 5G→A, 3272-26A→G, 711 + 5G→A, 3120G→A, 1811 + 1.6 kbA- > G, 711 + 3A→G, 1898 + 3A→G, 1898 + lG→A, 1717-lG→A, 1717-8G→A, 1342-

2A→C, 405 + 3A→C, 1716G/A 1811 + lG→C, 1898 + 5G→T, 3850-3T→G, IVS14b + 5G→A, 1898 + lG→T, 4005 + 2T→C, 621 + 3A→G, 621 + lG→T.
∗∗∗Manuscript not available yet.
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G551D-CFTR in at least one allele, initially licensed by the
FDA and later by the European Medicines Agency (EMA).
Clinical studies showed that ivacaftor treatment improves FEV1

and almost normalizes sweat chloride levels (Accurso et al.,
2010; Ramsey et al., 2011; Davies et al., 2013a,b), as well
as reduces frequency of infections caused by P. aeruginosa
(Rowe et al., 2014), enhances nutritional status (Borowitz et al.,
2016), insulin secretion (Bellin et al., 2013) and quality of
life (Quittner et al., 2015). Acute administration of ivacaftor
also corrects smooth muscle abnormalities, improving airway
distensibility and vascular tone (Adam et al., 2016). Clinical
benefits obtained by ivacaftor treatment have proven durable
effects, with no new safety concerns (Sawicki et al., 2015).
Ivacaftor was later licensed for patients bearing one of the
other eight gating mutations (De Boeck et al., 2014) and a
mutant with residual function in at least one allele (Moss et al.,
2015), increasing to 5–7% the number of individuals worldwide
who may benefit from this pharmaceutical treatment. Despite
these optimistic results, patients using ivacaftor should continue
with conventional therapies, which have also been optimized,
to prevent pulmonary exacerbations and complications (Smyth
et al., 2014).

Ataluren (TranslarnaTM from PTC Therapeutics) was
approved by the EMA for individuals who have Duchenne
muscular dystrophy caused by nonsense mutation. After the
inconclusive results from the first phase III trial, a second one is
ongoing to evaluate the effects of ataluren in CF patients bearing
nonsense mutations and not receiving inhaled aminoglycosides
(NCT02139306).

Recently, the FDA and the EMA licensed the combination
lumacaftor/ivacaftor (OrkambiTM from Vertex Pharmaceuticals)
for 1F508-homozygous patients, adding a new pharmaceutical
treatment to 40–45% of CF patients worldwide. Results from a
phase II trial evaluating this combination in 1F508-homozygous
patients (Boyle et al., 2014) encouraged the pursuance of two
long-term phase III trials (24 weeks) involving more than
1,100 people. Co-administration of lumacaftor/ivacaftor proved
clinical effectiveness, despite fairly small improvement in FEV1

(Wainwright et al., 2015; Elborn et al., 2016). A longer-term
(96 weeks) phase III trial showed that co-administration of
lumacaftor/ivacaftor presents sustained benefit with decreased
pulmonary exacerbations, reduced rate of lung function decline
and improved nutritional status of 1F508-homozygous patients
(Konstan et al., 2016). Although it is still a glimmer of light at
the end of the tunnel, this combination provides proof of concept
that pleiotropic CFTR mutants can be rescued at therapeutic
levels, representing a new hope to restore a healthy life to
patients.

Intriguingly, studies using cell lines bearing 1F508-CFTR
showed that: (1) Chronic ivacaftor exposure (>1 µM) reduced
CFTR correction obtained by lumacaftor treatment (Cholon
et al., 2014; Veit et al., 2014); however, exposure to a lower
concentration (<1 µM) of ivacaftor did not inhibit the
functional correction obtained by lumacaftor (Matthes et al.,
2016). Therefore, co-administration of lumacaftor/ivacaftor may
present a dose-dependent inhibitory effect. Addition of C4 also
reversed the negative effects of ivacaftor on lumacaftor-corrected

CFTR (Bali et al., 2016b). (2) P. aeruginosa infection reduces
CFTR chloride secretion stimulated by lumacaftor and/or
ivacaftor treatments (Stanton et al., 2015). (3) In cells previously
treated with lumacaftor, the PPQC system still recognizes the
CFTR delivered at the PM as improperly folded and removes
the protein from the cell surface (Loureiro et al., 2015). Taken
together, the experimental results indeed may explain the modest
findings in the clinical trials and highlight the importance of
better evaluating drug-drug and drug-protein interactions for
future drug combinations.

The introduction of KalydecoTM and OrkambiTM to the
market add feasible treatment for about 50% of all CF patients
worldwide (Table 4). Unfortunately, there is still an unmet
need for the other half of the CF population, who are 1F508-
heterozygous and bear a wide range of other variants (so-called
orphan mutants). The patient registries and the clinical studies
network have optimized the clinical phase of drug development
due to heterogeneous distribution of CFTR variants (De Boeck
et al., 2011; Rowe et al., 2012). Randomized controlled trials are
suitable for common mutations, but many CFTR mutants are
rare or even unique, requiring different approaches. As such,
modified single-patient (‘N-of-1’) is an alternative trial design in
which single patients serve as their own control by measuring
outcome parameters after multiple cycles of on-off treatment
(Zucker et al., 2010; Duan et al., 2013).

Rectal organoids have also shown to be a good model
for identifying drug-responsive individuals with rare CFTR
genotypes (Dekkers et al., 2016a; Vijftigschild et al., 2016). In
addition, both KalydecoTM and OrkambiTM are in ongoing
clinical trials to: (1) evaluate the longer-term safety and efficacy
of the treatments; (2) increase the panel of mutations that may
benefit from these drugs; and (3) evaluate the safety and efficacy
in younger patients. Since the progressive damage caused by CF

TABLE 4 | Summary of KalydecoTM and OrkambiTM approval for CF

patients’ treatment.

Pharmaceutical

treatment

CFTR mutations Jurisdiction

approved

Age group

licensed

KalydecoTM G551D∗ United States,

Europe and

Canada

>2 years

Australia and

New Zealand

>6 years

G178R, S549N,

S549R, G551S,

G1244E, S1251N,

S1255P, G1349D∗

United States,

Europe and

Canada

>2 years

Australia >6 years

R117H∗ United States >2 years

Europe and

Canada

>18 years

OrkambiTM 1F508-

homozygous

United States,

Europe and

Canada

>12 years

∗Mutation in at least one allele.
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starts during babyhood, earlier treatments are critical to offering
the best chances of improving long-term outcomes.

In an attempt to achieve greater clinical outcomes, two
new classes of CFTR modulators are under investigation
in association with OrkambiTM: (1) PTI-428 is an
amplifier that doubled the activity of the combination
lumacaftor/ivacaftor in HBE cells bearing 1F508-CFTR
in both alleles (Proteostasis Therapeutics, 2016); and (2)
cavosonstat is a stabilizer that improved 1F508-CFTR stability
at the PM after co-administration of lumacaftor/ivacaftor
(Nivalis Therapeutics, 2016). Moreover, other correctors
and potentiators are advancing in triple combination for
treatment of 1F508-homozygous and -heterozygous patients:
GLPG1837/GLPG2222/GLPG2665 (Galapagos, 2015), VX-
152/VX-661/ivacaftor and VX-440/VX-661/ivacaftor (Vertex
Pharmaceuticals, 2015).

An important limitation that has to be addressed regarding
these new pharmaceutical treatments is the high cost (over
US$250,000 per patient per year), which renders difficult their
acquisition for CF patients living in low-income countries.
Investments in the identification of drugs already available
and able to overcome the primary molecular defect of
CF could be another way, cheaper and fast, to optimize
treatments.

Soon after the CFTR gene was discovered and cloned (Kerem
et al., 1989; Riordan et al., 1989), gene therapy was proposed
to cure lung disease in CF. The idea of introducing a copy
of wt-CFTR in airway cells to re-establish the production of
functional protein seemed graceful and ‘simple’. Although CF
is a ‘simple’ monogenic disorder, most approaches (viral and
non-viral) failed to cross the trapped mucus, thereby resulting
in inefficient transduction of CFTR gene, and some of them
promoting immune response activation (Di Gioia et al., 2015;
Quon and Rowe, 2016). Nevertheless, researchers have sought
more efficient gene delivery systems. Poly (β-amino esters)-
based biodegradable polymers were able to deliver a plasmid that
encodes full-length CFTR in murine lungs and CFBE41o- cell
lines expressing wt-CFTR or 1F508 (Suk et al., 2014), as well
as to penetrate in freshly expectorated mucus from CF patients
(Mastorakos et al., 2015). Furthermore, repeated nebulization of
pGM169/GL67A, a gene-liposome complex, showed feasible, safe
and reproducible results in murine lungs (Alton et al., 2014), as
well as stabilized lung function of CF patients, thereby presenting
a significant, albeit modest, benefit in FEV1 in a phase II trial
(NCT01621867) (Alton et al., 2015). These systems may also be
an interesting approach to delivery of CFTRmodulators, bringing
some benefits in usefully exploited patients’ treatment: (1) non-
invasive administration route by inhalation/nebulization; (2)
delivering directly to a specific lung region or defined cell
type; (3) reduced systemic side effects and no serum proteins
sequestered; and (4) sustained release, which decrease times
and dose of therapies to maintain the beneficial effects (Vij
et al., 2010; Suk et al., 2014; Alton et al., 2015; Kim et al.,
2015).

CFTR MODULATORS RESCUING
MUTANTS IN OTHER ABC
TRANSPORTERS

Plasma membrane proteins belong to some of the largest
families, encoding ion channels, transporters, aquaporins and
ATP-powered pumps. Forty-nine proteins constitute the ABC
transporters family in the human genome (Loo and Clarke, 2008;
Vasiliou et al., 2009) and among these proteins, CFTR is unique in
possessing a RD and in functioning as a chloride channel (Winter
and Welsh, 1997; Gadsby et al., 2006; Serohijos et al., 2008).
Mutations in ABC transporters have been linked to diseases and,
since these transporters share a similar domain organization and
structure, some CFTR modulators have been evaluated to rescue
protein trafficking and function of other ABC transporters. Here
are some examples: ABCA4 (Sabirzhanova et al., 2015), ABCB1
(or P-glycoprotein) (Wang et al., 2007b), ABCC6 (or multidrug
resistance-associated protein 6) (Zhou et al., 2013), ABCC8 (or
SUR1) (Sampson et al., 2013), and ABCG2 (Woodward et al.,
2013). These findings show that CFTR modulators could be a
promising treatment for several diseases caused by mutations in
other ABC transporters.

CONCLUSION

Since the discovery that CFTR loss-of-activity causes CF, the
biological understanding of CFTR processing has advanced
steadily and opened new perspectives for more sophisticated
treatments, which act directly on the molecular defect that causes
the disease. The presence of CFTR modulators in the market
has affected positively the clinical outcomes of CF patients,
representing a new dawn in their lives. Although there is still a
long way to go in completely restoring a healthy life for all CF
patients, research from the bench to the clinic is moving forward
at an accelerated pace toward precision medicines, which would
enable “the highest attainable standard of health,” as enshrined in
the constitution of the World Health Organization.
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et al. (2011). A CFTR potentiator in patients with cystic fibrosis and the
G551D mutation. N. Engl. J. Med. 365, 1663–1672. doi: 10.1056/NEJMoa
1105185

Rapino, D., Sabirzhanova, I., Lopes-Pacheco, M., Grover, R., Guggino, W. B., and
Cebotaru, L. (2015). Rescue of NBD2mutants N1303K and S1235R of CFTR by
small-molecule correctors and transcomplementation. PLoS ONE 10:e0119796.
doi: 10.1371/journal.pone.0119796

Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R.,
Grzelczak, Z., et al. (1989). Identification of the cystic fibrosis gene: cloning
and characterization of complementary DNA. Science 245, 1066–1073. doi:
10.1126/science.2475911

Robert, R., Carlile, G. W., Pavel, C., Liu, N., Anjos, S. M., Liao, J., et al.
(2008). Structural analog of sildenafil identified as a novel corrector of
the F508del-CFTR trafficking defect. Mol. Pharmacol. 73, 478–489. doi:
10.1124/mol.107.040725

Ronan, N. J., Fleming, C., O’Callaghan, G., Maher, M. M., Murphy, D. M., and
Plant, B. J. (2015). The role of ivacaftor in severe cystic fibrosis in a patient with
the R117H mutation. Chest 148, e72–e75. doi: 10.1378/chest.14-3215

Roth, D. M., Hutt, D. M., Tong, J., Bouchecareih, M., Wang, N., Seeley, T.,
et al. (2014). Modulation of the maladaptive stress responde to manage
diseases of protein folding. PLoS Biol. 12:e1001998. doi: 10.1371/journal.pbio.
1001998

Rowe, S. M., Borowitz, D. S., Burns, J. L., Clancy, J. P., Donaldson,
S. H., Retsch-Bogart, G., et al. (2012). Progress in cystic fibrosis and
the CF Therapeutics Development Network. Thorax 67, 882–890. doi:
10.1136/thoraxjnl-2012.202550

Rowe, S. M., Heltshe, S. L., Gonska, T., Donaldson, S. H., Borowitz, D., Gelfond, D.,
et al. (2014). Clinical mechanism of cystic fibrosis transmembrane conductance
regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir.

Crit. Care Med. 190, 175–184. doi: 10.1164/rccm.201404-0703OC
Rowe, S. M., Sloane, P., Tang, L. P., Backer, K., Mazur, M., Buckley-Lanier, J.,

et al. (2011). Suppression of CFTR premature termination codons and rescue
of CFTR protein and function by the synthetic aminoglycoside NB54. J. Mol.

Med. 89, 1149–1161. doi: 10.1007/s00109-011-0787-6
Sabirzhanova, I., Lopes-Pacheco, M., Rapino, D., Grover, R., Handa, J. T., Guggino,

W. B., et al. (2015). Rescuing trafficking mutants of the ATP-binding cassette
protein, ABCA4, with small molecule correctors as a treatment for Stargardt
eye disease. J. Biol. Chem. 290, 19743–19755. doi: 10.1074/jbc.M115.647685

Sampson, H. M., Lam, H., Chen, P. C., Zhang, D., Mottillo, C., Mirza, M., et al.
(2013). Compounds that correct F508del-CFTR trafficking can also correct
other protein trafficking diseases: an in vitro study using cell lines. Orphanet
J. Rare Dis. 8, 11. doi: 10.1186/1750-1172-8-11

Sampson, H. M., Robert, R., Liao, J., Matthes, E., Carlile, G. W., Hanrahan, J. W.,
et al. (2011). Identification of a NBD1-binding pharmacological chaperone that
corrects the trafficking defect of F508del-CFTR. Chem. Biol. 18, 231–242. doi:
10.1016/j.chembiol.2010.11.016

Sawicki, G. S., McKone, E. F., Pasta, D. J., Millar, S. J., Wagener, J. S., Johnson,
C. A., et al. (2015). Sustained benefit from ivacaftor demonstrated by combining
clinical trial and cystic fibrosis patient registry data. Am. J. Respir. Crit. Care

Med. 192, 836–842. doi: 10.1164/rccm.201503-0578OC
Schrijver, I., Pique, L., Graham, S., Pearl, M., Cherry, A., and Kharrazi, M.

(2016). The spectrum of CFTR variants in nonwhite cystic fibrosis patients:
implication for molecular diagnostic testing. J. Mol. Diagn. 18, 39–50. doi:
10.1016/j.jmoldx.2015.07.005

Sermet-Gaudelus, I., Boeck, K. D., Casimir, G. J., Vermeulen, F., Leal, T.,
Mogenet, A., et al. (2010). Ataluren (PTC124) induces cystic fibrosis
transmembrane conductance regulator protein expression and activity in
children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med.

182, 1262–1272. doi: 10.1164/rccm.201001-0137OC
Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokhokyan,

N. V., et al. (2008). Phynyalanine-508 mediates a cytoplasmic-membrane
domain contact in the CFTR 3D structure crucial to assembly and
channel function. Proc. Natl. Acad. Sci. U.S.A. 105, 3256–3261. doi:
10.1073/pnas.0800254105

Shah, V. S., Meyerholz, D. K., Tang, X. X., Reznikov, L., Abou Alaiwa, M., Ernst,
S. E., et al. (2016). Airway acidification initiates host defense abnormalities in
cystic fibrosis mice. Science 351, 503–507. doi: 10.1126/science.aadd5589

Sharma, M., Benharouga, M., Hu, W., and Lukacs, G. L. (2001). Conformational
and temperature-sensitive satibility defects of the delta F508 cystic fibrosis
transmembrane conductance regulator in post-endoplasmic reticulum
compartments. J. Biol. Chem. 276, 8942–8950. doi: 10.1074/jbc.M009172200

Frontiers in Pharmacology | www.frontiersin.org 18 September 2016 | Volume 7 | Article 275

http://ir.proteostasis.com/phoenix.zhtml?c=254052&p=irol-newsArticle&ID=2151856
http://ir.proteostasis.com/phoenix.zhtml?c=254052&p=irol-newsArticle&ID=2151856
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lopes-Pacheco Personalized Treatments for Cystic Fibrosis

Sharma, M., Pampinella, F., Nemes, C., Benharouga, M., So, J., Du, K., et al. (2004).
Misfolding diverts CFTR from recycling to degradation: quality controla t early
endosomes. J. Cell Biol. 164, 923–933. doi: 10.1083/jcb.200312018

Sinha, C., Zhang, W., Moon, C. S., Actis, M., Yarlagadda, S., Arora, K., et al.
(2015). Capturing the direct binding of CFTR correctors to CFTR by using click
chemistry. Chembiochem 16, 2017–2022. doi: 10.1002/cbic.201500123

Smyth, A. R., Bell, S. C., Bojcin, S., Bryon, M., Duff, A., Flume, P., et al. (2014).
European cystic fibrosis society standards of care: best practice guidelines.
J. Cyst. Fibros. 13 (Suppl. 1), S23–S42. doi: 10.1016/j.jcf.2014.03.010

Sosnay, P. R., Siklosi, K. R., Van Goor, F., Kaniecki, K., Yu, H., Sharma, N.,
et al. (2013). Defining the disease liability of variants in the cystic fibrosis
transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167. doi:
10.1038/ng.2745

Stanton, B. A., Coutermarsh, B., Barnaby, R., and Hogan, D. (2015).
Pseudomonas aeruginosa reduces VX-809 stimulated F508del-CFTR
chloride secretion by airway epithelial cells. PLoS ONE 10:e0127742. doi:
10.1371/journal.pone.0127742

Stewart, C., and Pepper, M. S. (2016). Cystic fibrosis on the African continent.
Genet. Med. 18, 653–662. doi: 10.1038/gim.2015.157

Suk, J. S., Kim, A. J., Trehan, K., Schneider, C. S., Cebotaru, L., Woodward,
O. M., et al. (2014). Lung gene therapy with highly compacted DNA
nanoparticles that overcome the mucus barrier. J. Control Release 178, 8–17.
doi: 10.1016/j.jconrel.2014.01.007

Sun, F., Zhang, R., Gong, X., Geng, X., Drain, P. F., and Frizzell, R. A. (2006).
Derlin-1 promotes the efficient degradation if the cystic fibrosis transmembrane
conductance regulator (CFTR) and CFTR folding mutants. J. Biol. Chem. 281,
36856–36863. doi: 10.1074/jbc.M607085200

Swiatecka-Urban, A., Brown, A., Moreau-Marquis, S., Renuka, J., Coutermarsh, B.,
Barnaby, R., et al. (2005). The short apical membrane half-life of rescue
{Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR)
results from accelerated endocytosis of {Delta}F508-CFTR in polarized
human airway epithelial cells. J. Biol. Chem. 280, 36762–36772. doi:
10.1074/jbc.M508944200

Tang, X. X., Ostedgaard, L. S., Hoegger, M. J., Moninger, T. O., Karp, P. H.,
McMenimen, J. D., et al. (2016). Acidic pH increases airway surface liquid
viscosity in cystic fibrosis. J. Clin. Invest. 126, 879–891. doi: 10.1172/JCI83922

Tarran, R., Button, B., Picher, M., Paradiso, A. M., Ribeiro, C. M., Lazarowski,
E. R., et al. (2005). Normal and cystic fibrosis airway surface liquid homeostasis.
The effects of phasic shear stress and viral infections. J. Biol. Chem. 280,
35751–35759. doi: 10.1074/jbc.M505832200

Than, B. L., Linnekamp, J. F., Starr, T. K., Largaespada, D. A., Rod, A., Zhang, Y.,
et al. (2016). CFTR is a tumor suppressor gene in murine and human intestinal
cancer. Oncogene 35, 4179–4187. doi: 10.1038/onc.2015.483

Tosco, A., De Gregorio, F., Esposito, S., De Stefano, D., Sana, I., Ferrari, E., et al.
(2016). A novel treatment of cystic fibrosis acting on-target: cysteamine plus
epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated
CFTR. Cell Death Differ. 23, 1380–1393. doi: 10.1038/cdd.2016.22

Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Cao, D., Neuberger, T.,
et al. (2009). Rescue of CF airway cell function in vitro by a CFTR
potentiator, VX-770. Proc. Natl. Acad. Sci. U.S.A. 106, 18825–18830. doi:
10.1073/pnas.0904709106

Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Stack, J. H., Straley,
K. S., et al. (2011). Correction of the F508del-CFTR protein processing defect
in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. U.S.A. 108,
18843–18848. doi: 10.1073/pnas.1105787108

Van Goor, F., Straley, K. S., Cao, D., González, J., Hadida, S., Hazlewood, A.,
et al. (2006). Rescue of deltaF508-CFTR trafficking and gating in human cystic
fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung. Cell

Mol. Physiol. 290, L1117–L1130. doi: 10.1152/ajplung.00169.2005
Van Goor, R., Yu, H., Burton, B., and Hoffman, B. J. (2014). Effect of ivacaftor

on CFTR forms with missense mutations associated with defects in protein
processing or function. J. Cyst. Fibros. 13, 29–36. doi: 10.1016/j.jcf.2013.
06.008

Vasiliou, V., Vasiliou, K., and Nebert, D. W. (2009). Human ATP-binding cassette
(ABC) transporter family. Hum. Genomics 3, 281.290. doi: 10.1186/1479-7364-
3-3-281

Veit, G., Avramescu, R. G., Chiang, A. N., Houch, S. A., Cai, Z., Peters, K. W.,
et al. (2016a). From CFTR biology toward combinatorial pharmacotherapy:

expanded classification of cystic fibrosis mutations.Mol. Biol. Cell 27, 424–433.
doi: 10.1091/mbc.E14-04-0935

Veit, G., Avramescu, R. G., Perdomo, D., Phuan, P. W., Dagdany, M., Apaja,
P. M., et al. (2014). Some gating potentiators, including VX-770, diminish
1F508-CFTR functional expression. Sci. Transl. Med. 6, 246ra97. doi:
10.1126/scitranslmed.3008889

Veit, G., Oliver, K., Apaja, P. M., Perdomo, D., Bidaud-Meynard, A., Lin,
S. T., et al. (2016b). Ribosomal stalk protein silencing partially corrects
the 1F508-CFTR functional expression defect. PLoS Biol. 14:e1002462. doi:
10.1371/journal.pbio.1002462

Vertex Pharmaceuticals (2015). Vertex Announces Significant Progress in Its

Development Efforts to Treat the Cause of Cystic Fibrosis in the Vast Majority

of People with the Disease. Available at: http://investors.vrtx.com/releasedetail.c
fm?ReleaseID=935806 [accessed May 18, 2016].

Vij, N., Fang, S., and Zeitlin, P. L. (2006). Selective inhibition of endoplasmic
reticulum-associated degradation rescues deltaF508-cystic fibrosis
transmembrane regulator and suppresses interleukin-8 levels: therapeutic
implications. J. Biol. Chem. 281, 17369–17378. doi: 10.1074/jbc.M600509200

Vij, N., Min, T., Marasigan, R., Belcher, C. N., Mazur, S., Ding, H., et al. (2010).
Development of PEGylated PLGA nanoparticle for controlled and sustained
drug delivery in cystic fibrosis. J. Nanobiotechnology 8, 22. doi: 10.1186/1477-
3155-8-22

Vijftigschild, L. A., Berkers, G., Dekkers, J. F., Zomer-van Ommen, D. D.,
Matthes, E., Kruisselbrink, E., et al. (2016). β2-Adrenergic receptor agonists
activate CFTR in intestinal organoids and subjects with cystic fibrosis. Eur.
Respir. J. doi: 10.1183/13993003.01661-2015 [Epub ahead of print].

Villella, V. R., Esposito, S., Bruscia, E. M., Vicinanza, M., Cenci, S., Guido, S.,
et al. (2013). Disease relevant proteostasis regulation of cystic fibrosis
transmembrane conductance regulator. Cell Death. Differ. 80, 1101–1115. doi:
10.1038/cdd.2013.46

Vu, V., Verster, A. J., Schertzberg, M., Chuluunbaatar, T., Spensley, M., Pajkic, D.,
et al. (2015). Natural variation in gene expression modulates the severity of
mutant phenotypes. Cell 162, 391–402. doi: 10.1016/j.cell.2015.06.037

Wainwright, C. E., Elborn, J. S., Ramsey, B. W., Marigowda, G., Huang, X.,
Cipolli, M., et al. (2015). Lumacaftor-Ivacaftor in patients with cystic fibrosis
homozygous for phe508del CFTR. N. Engl. J. Med. 373, 220–231. doi:
10.1056/NEJMoa1409547

Wang, X., Venable, J., LaPointe, P., Hutt, D. M., Koulov, A. V., Coppinger, J.,
et al. (2006). Hsp90 cochaperone Aha1 downregulation rescues misfolding
of CFTR in cystic fibrosis. Cell 127, 803–812. doi: 10.1016/j.cell.2006.
09.043

Wang, Y., Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2007a). Correctors
promote maturation of cystic fibrosis transmembrane conductance regulator
(CFTR)-processing mutants by binding to the protein. J. Biol. Chem. 282,
33247–33251. doi: 10.1074/jbc.C700175200

Wang, Y., Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2007b). Modulating the
folding of P-glycoprotein and cystic fibrosis transmembrane conductance
regulator truncation mutants with pharmacological chaperones. Mol.

Pharmacol. 71, 751–758. doi: 10.1124/mol.106.029926
Wilschanski, M., Miller, L. L., Shoseyov, D., Blau, H., Rivlin, J., Aviram, M., et al.

(2011). Chronic ataluren (PTC124) treatment of nonsense mutation cystic
fibrosis. Eur. Respir. J. 38, 59–69. doi: 10.1183/09031936.00120910

Wilschanski, M., Yahav, Y., Yaacov, Y., Blau, H., Bentur, L., Rivlin, J., et al.
(2003). Gentamicin-induced correction of CFTR function in patients with
cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441. doi:
10.1056/NEJMoa022170

Winter, M. C., and Welsh, M. J. (1997). Stimulation of CFTR activity
by its phosphorylated R domain. Nature 389, 294–296. doi: 10.1038/
38514

Woodward, O. M., Tukayne, D. N., Cui, J., Greenwell, P., Constantoulakis,
L. M., and Parker, B. S. (2013). Gout-causing Q141K mutation in ABCG2
leads to instability of the nucleotide-binding domain and can be corrected
with small molecules. Proc. Natl. Acad. Sci. U.S.A. 110, 5223–5228. doi:
10.1073/pnas.1214530110

Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C.,
et al. (2002). Effects of reduced mucus oxygen concentration in airway
Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325.
doi: 10.1172/JCI13870

Frontiers in Pharmacology | www.frontiersin.org 19 September 2016 | Volume 7 | Article 275

http://investors.vrtx.com/releasedetail.cfm?ReleaseID=935806
http://investors.vrtx.com/releasedetail.cfm?ReleaseID=935806
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lopes-Pacheco Personalized Treatments for Cystic Fibrosis

Xue, X., Mutyam, V., Tang, L., Biswas, S., Du, M., Jackson, L. A., et al. (2014).
Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane
conductance regulator nonsense mutations and are enhanced by ivacaftor.
Am. J. Respir. Cell Mol. Biol. 50, 805–816. doi: 10.1165/rcmb.2013-
0282OC

Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993). The common variant
of cystic fibrosis transmembrane conductance regulator is recognized by hsp70
and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci.
U.S.A. 90, 9480–9484. doi: 10.1073/pnas.30.20.9480

Yu, H., Burton, B., Huang, C. J., Worley, J., Cao, D., Johnson, J. P. Jr., et al. (2012).
Ivacaftor potentiation ofmultiple CFTR channels with gatingmutations. J. Cyst.
Fibros. 11, 237–245. doi: 10.1016/j.jcf.2011.12.005

Yu, Y. C., Miki, H., Nakamura, Y., Hanyuda, A., Matsuzaki, Y., Abe, Y., et al. (2011).
Curcumin and genistein additively potentiate G551D-CFTR. J. Cystc. Fibros. 10,
243–252. doi: 10.1016/j.jcf.2011.03.001

Yu, Y. C., Sohma, Y., and Hwang, T. C. (2016). On the mechanism of gating
defects caused by the R117Hmutation in CFTR. J. Physiol. 594, 3227–3244. doi:
10.1113/JP271723

Yuan, S., Hollinger, M., Lachowicz-Scroggins, M. E., Kerr, S. C., Dunican,
E. M., Daniel, B. M., et al. (2015). Oxidation increases mucin polymer
cross-links to stiffen airway mucus gels. Sic. Transl. Med. 7, 276ra27. doi:
10.1126/scitranslmed.3010525

Zaman, K., Sawczak, V., Zaidi, A., Butler, M., Bennett, D., and Getsy, P.
(2016). Augmentation of CFTR maturation by S-nitroglutathione
reductase. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L263–L270. doi:
10.1152/ajplung.00269.2014

Zhang, D., Ciciriello, F., Anjos, S. M., Carissimo, A., Liao, J., Carlile, G. W., et al.
(2012). Ouabain mimics low temperature rescue of F508del-CFTR in cystic
fibrosis epithelial cells. Front. Pharmacol. 3:176. doi: 10.3389/fphar.2012.00176

Zhou, Y., Jiang, Q., Takahagi, S., Shao, C., and Uitto, J. (2013). Premature
termination codon read-through in the ABCC6 gene: potential treatment
for pseudoxanthoma elasticum. J. Invest. Dermatol. 133, 2672–2677. doi:
10.1038/jid.2013.234

Zomer-van Ommen, D. D., Vijftigschild, L. A., Kruisselbrink, E., Vonk, A. M.,
Dekkers, J. F., Janssens, H. M., et al. (2016). Limited premature termination
codon suppression by read-through agents in cystic fibrosis intestinal
organoids. J. Cyst. Fibros. 15, 158–162. doi: 10.1016/j.jcf.2015.07.007

Zucker, D. R., Ruthazer, R., and Schmid, C. H. (2010). Individual (N-of-1)
trials can be combined to give population comparative treatment effect
es: methodologic considerations. J. Clin. Epidemiol. 63, 1312–1323. doi:
10.1016/j.jclinepi.2010.04.020

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Lopes-Pacheco. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 20 September 2016 | Volume 7 | Article 275

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive

	CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis
	Introduction
	Life Expectancy In Cystic Fibrosis
	A Proteostasis Network Engaged In Cftr Degradation
	Classes Of Cftr Mutations And Cftr Modulators
	Rescuing the Protein Synthesis
	Rescuing the Protein Folding and Trafficking
	Restoring the Channel Conductance
	Stabilizing the Protein at the Cell Surface
	Correcting the Splicing

	Precision Medicine: Breakthroughs And Challenges To Treating All Cf Patients
	Cftr Modulators Rescuing Mutants In Other Abc Transporters
	Conclusion
	Author Contributions
	Acknowledgments
	References


