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Abstract In the framework of our model of soft interac-

tions at high energy based on the CGC/saturation approach,

we show that Bose–Einstein correlations of identical gluons

lead to large values of vn . We demonstrate how three dimen-

sional scales of high energy interactions, hadron radius, typ-

ical size of the wave function in diffractive production of

small masses (size of the constituent quark), and the satu-

ration momentum, influence the values of BE correlations,

and in particular, the values of vn . Our calculation shows

that the structure of the ‘dressed’ Pomeron leads to values of

vn which are close to experimental values for proton–proton

scattering, 20 % smaller than the observed values for proton–

lead collisions and close to lead–lead collisions for 0–10 %

centrality. Bearing this result in mind, we conclude that it

is premature to consider that the appearance of long range

rapidity azimuthal correlations are due only to the hydrody-

namical behaviour of the quark–gluon plasma.

1 Introduction

In Ref. [1] we showed that Bose–Einstein correlations lead to

strong azimuthal angle correlations, which do not depend on

the difference in rapidity of the two produced hadrons (long

range rapidity LRR correlations). The mechanism suggested

by us has a general origin, and thus manifests itself in hadron–

hadron, hadron–nucleus and nucleus–nucleus interactions,
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and it generates the correlation that has been observed exper-

imentally [2–25]. The fact that Bose–Einstein correlations

lead to strong LRR azimuthal angle correlations, was found

long ago in the framework of Gribov Pomeron calculus

[26,27], and it has been re-discovered recently in Refs. [28–

30] in the CGC/saturation approach [31]. In Ref. [1] it was

noticed that these correlations give rise to vn for odd and

even n, while all other mechanisms in the CGC/saturation

approach, including the correlations observed in [28–30],

generate only vn with even n.

The LRR correlations in the CGC/saturation approach

originate from the production of two parton showers (see

Fig. 1). The double inclusive cross section is described by

the Mueller diagram of Fig. 1b, in which the production of

gluons from the parton cascade is described by the exchange

of the BFKL Pomeron (wavy double line in Fig. 1b), while,

due to our poor theoretical knowledge of the confinement

of quarks and gluons, the upper and lower blobs in Fig. 1b

require modelling.

If the two produced gluons have the same quantum num-

bers, one can see that in addition to the Mueller diagram

for different gluons (see Fig. 1b), we need to take into

account a second Mueller diagram of Fig. 2b, in which two

gluons with (y1, pT 2) and (y2, pT 1) are produced. When

pT 1 → pT 2, the two production processes become identi-

cal, leading to the cross section σ (two identical gluons) =
2σ (two different gluons), as one expects. When | pT 2 −
pT 1| ≫ 1/R, where R is the size of the emitter [32], the

interference diagram becomes small and can be neglected.

The angular correlation emanates from the diagram of Fig.

2b, in which the upper BFKL Pomerons carry momentum

k − pT,12 with pT,12 = pT 1 − pT 2, while the lower BFKL

Pomerons have momenta k. The Mueller diagrams for the

correlation between two gluons are shown in Fig. 2.
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Fig. 1 Production of two

gluons with (y1, pT 1) and

(y2, pT 2) in two parton showers

(a). b The double inclusive cross

section in the Mueller diagram

technique [36]. The wavy lines

denote the BFKL Pomerons

[37–40]
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Fig. 2 Production of two identical gluons with (y1, pT 1) and (y2, pT 2) in two parton showers. The diagrams in the Mueller diagram technique

[36] are shown in a and b. The wavy lines denote the BFKL Pomerons [37–40]

After integration over kT , the sum of diagrams Fig. 2a and

b can be written as

d2σ

dy1 dy2d2 pT 1d2 pT 2
(identical gluons)

=
d2σ

dy1 dy2d2 pT 1d2 pT 2
(different gluons)

×
(
1 + C

(
R| pT 2 − pT 1|

))
; (1)

Eq. (1) coincides with the general formula for the Bose–

Einstein correlations [32–35]

d2σ

dy1 dy2d2 pT 1d2 pT 2
(identical gluons) ∝ 〈1 + eirμ Qμ〉 (2)

where averaging 〈· · · 〉 includes the integration over rμ =
r1,μ − r2,μ. There is only one difference: Qμ = p1.μ − p2,μ

degenerates to Q ≡ pT,12, due to the fact that the pro-

duction of two gluons from the two parton showers do not

depend on the rapidities. Note, that the contribution of Fig.

2b does not depend on the rapidity difference y1 − y2 nor

on y1 and y2. For y1 = y2 Eq. (1) follows directly from the

general Eq. (2), and the interference diagram of Fig. 3b leads

to Eq. (1), and allows us to calculate the typical correlation

radius and the correlation function C
(
R| pT 2 − pT 1|

)
. On

the other hand, for y1 �= y2 but for pT 1 = pT,2 Eq. (1),

gives a constant which does not depend on y1 and y2. How-

ever, in general case y1 �= y2 and pT 1 �= pT,2 the diagram

of Fig. 2b looks problematic,1 since it seems to describe the

interference between two different final states. In Appendix

A we demonstrate that the contribution of Fig. 2b does not

vanish even in this general case. Note that, for y1 = y2, the

sum of two Mueller diagrams, indeed, relates to the interfer-

ence between two diagrams, as is shown in Fig. 3a and b. For

1 We thank Alex Kovner for vigorous discussions on this subject.

these kinematics, as we have mentioned

C
(
R| pT 2 − pT 1|

)
= 〈ei rT · QT 〉 where QT = pT,12. (3)

For pT 1 = pT 2, the sum of two Mueller diagrams can also

be viewed as the interference of the two diagrams of Fig. 3c

and d, leading to

C (|0|) = 〈ei r+ Q− +i r− Q+〉 (4)

The calculation of the Mueller diagram shows that this aver-

age does not depend on y1 and y2.

Remembering that for two parton showers in each order

of perturbative QCD (or, in other words, at fixed multiplicity

of the produced gluons) the amplitude can be written in the

factorized form A = AL (r+, r−) AT (rT ) leading to

〈eirμ Qμ〉 = 〈ei rT · QT 〉︸ ︷︷ ︸
averaging over rT

× 〈ei r+ Q−+i r− Q+〉︸ ︷︷ ︸
averaging over r+,r−

. (5)

In our opinion, the above discussion shows that the Mueller

diagram of Fig. 2b does not characterize the interference

between two orthogonal state but is an economical way to

describe the independence of identical gluon production on

rapidities, providing the smooth analytical description of the

cross section from y1 = y2 to the general case y1 �= y2.

Since this point is not obvious we would like to recall the

main features of the leading log(1/x) approximation (LLA).

In the LLA we account for the following kinematic region

[37–40] for the production of two parton showers (see Fig.

4):

first parton shower → Y > · · · >

yi > · · · > yn1 > y1 > yn2 > · · · > yi > · · · > 0;
second parton shower → Y > · · · > yi > · · · >

yn3 > y2 > yn4 > · · · > yi > · · · > 0;
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Fig. 3 The interferences between two states for the production of two identical gluons in two specific cases: y1 = y2 (a, b) and pT 1 = pT 2 (c, d)
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Fig. 4 The amplitude of production of n = n1 +n2 +n3 +n4 particles,

Adifferent gluons
(
2 → n|{yi , pT i }; y1, pT 1; y2, pT 2

)
(see Eq. (7a))

parameters of LLA : ᾱS ≪ 1 ᾱS (yi+1 − yi ) ≥ 1;
ᾱS (Y − yi ) ≥ 1; ᾱS (yi − 0) ≥ 1; ᾱS (Y − y1) ≥ 1;
ᾱS (Y − y2) ≥ 1; ᾱS (y1 − 0) ≥ 1;
ᾱS (y2 − 0) ≥ 1; ᾱS (y1 − y2) ≥ 1. (6)

The cross sections of double inclusive productions can be

calculated in LLA for the production of two parton showers

in the following way:

d2σ different gluons

dy1 dy2d2 pT 1d2 pT 2

=
∞∑

n1+n2−2>2

∞∑

n3+n4−2>2

∫
d�

(1)
n1+n2

d�
(2)
n3+n4

×|Adifferent gluons ({yi , pT i }; y1, pT 1; y2, pT 2) |2

=
∞∑

n1+n2=n−2>2

n1∏

Y>yi >y1

∫ yi+1

yi−1

×dyi d
2 pT,i

n2∏

y1>yi >0

∫ yi+1

yi−1

dyi d
2 pT,i

×
∞∑

n3+n4=n′−2>2

n3∏

Y>yi >y2

∫ yi+1

yi−1

×dyi d
2 pT,i

n4∏

y2>yi >0

∫ yi+1

yi−1

dyi d
2 pT,i

×|Ŵ2 An1n2

(
2 → n|{yi , pT i }; y1, pT 1

)
An3n4

×
(
2 → n|{yi , pT i }; y2, pT 2

)
]2 (7a)

LLA−−→
∞∑

n1+n2=n−2>2

n1∏

Y>yi >y1

×
∫ yi+1

yi−1

dyi d
2 pT,i

n2∏

y1>yi >0

∫ yi+1

yi−1

dyi d
2 pT,i

×
∞∑

n3+n4=n′−2>2

n3∏

Y>yi >y2

∫ yi+1

yi−1

×dyi d
2 pT,i

n4∏

y2>yi >0

∫ yi+1

yi−1

dyi d
2 pT,i

×|Ŵ2 An1n2

(
2 → n|{yi = 0, pT i }; y1 = 0, pT 1

)

×An3n4

(
2 → n|{yi = 0, pT i }; y2 = 0, pT 2

)
|2 (7b)

where d�
(1)
n1+n2

and d�
(2)
n3+n4

are the phase spaces of the

produced gluons in the first and second parton show-

ers. Adifferent gluons ({yi , pT i }; y1, pT 1; y2, pT 2) = Ŵ2 An1n2(
2→n|{yi , pT i }; y1, pT 1

)
An3n4

(
2→n|{yi , pT i }; y2, pT 2

)

(see Fig. 4) and all other notations are shown in Fig. 4.
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The transition from Eq. (7a) to (7b), occurs due to the fact

that we want to obtain the log contribution ∝ (yi+1−yi−1) for

each dyi , These logarithms stem from the integration of the

phase space of produced particles, while we can neglect the

yi dependence of the production amplitude. In other words,

the production amplitudes are functions only of the transverse

momenta and Eq. (7b) shows that the longitudinal degrees of

freedom can be factorize out [37–40].

Equation (7a), after integrations over yi , can be re-written

in a more efficacious form, viz.

d2σ

dy1 dy2d2 pT 1d2 pT 2
=

∞∑

n1+n2=n−2>2

∞∑

n1+n2=n′−2>2

×
1

n1!
(Y − y1)

n1
1

n2!
(y1 − 0)n2

1

n3!
(Y − y2)

n3
1

n4!
(y2 − 0)n4

︸ ︷︷ ︸
integral over the longitudinal phase space

×
∫ ∏

i

d2 pT i |Ŵ2 An1n2

(
2 → n|{yi = 0, pT i }; y1 = 0, pT 1

)

×An3n4

(
2 → n|{yi = 0, pT i }; y2 = 0, pT 2

)
|2. (8)

Summing over ni we obtain the Mueller diagram of Fig. 1.

For identical particles we need to replace

Adifferent gluons ({yi = 0, pT i }; y1 = 0, pT 1; y2 = 0, pT 2)

= Ŵ2 An1n2

(
2 → n|{yi = 0, pT i }; y1 = 0, pT 1

)

×An3n4

(
2 → n|{yi = 0, pT i }; y2 = 0, pT 2

)

→ Aidentical gluons ({yi = 0, pT i }; y1 = 0, pT 1; y2 = 0, pT 2)

= Adifferent gluons ({0, pT i }; y1 = 0, pT 1; y2 = 0, pT 2)

+ Adifferent gluons ({0, pT i }; y2 = 0, pT 2; y1 = 0, pT 1)

= Ŵ2 An1,n2

(
2 → n|{yi = 0, pT i }; y1 = 0, pT 1

)

×An3n4

(
2 → n|{yi = 0, pT i }; y2 = 0, pT 2

)

+ Ŵ2 An1n2

(
2 → n|{yi = 0, pT i }; y2 = 0, pT 2

)

×An3n4

(
2 → n|{yi = 0, pT i }; y1 = 0. pT 1

)
(9)

We wish to stress that in Eq. (9) we use the Bose–Einstein

symmetry for the production amplitudes, which are only

functions of the transverse momenta of produced particles.

Such a replacement leads to the sum of the diagrams of

Fig. 2a and b.

The goal of this paper is to calculate the function

C
(
R| pT 2 − pT 1|

)
, which tends to 1 at pT 2 → pT 1, and

vanishes for R| pT 2 − pT 1| ≫ 1. To estimate C
(
R| pT 2

− pT 1|
)
, it is sufficient to know the double inclusive cross

section for y1 = y2, where Fig. 2b contributes significantly.

To obtain the double inclusive cross section, we need to

add the cross section for two different gluon production,

which has the form

d2σ

dy1 dy2d2 pT 1d2 pT 2
=

d2σ

dy1 dy2d2 pT 1d2 pT 2

(different gluons)

×
(

1 +
1

N 2
c − 1

C
(
R| pT 2 − pT 1|

))
. (10)

In Eq. (10) we take into account that we have N 2
c − 1 pairs

of the identical gluons, where Nc is the number of colours,

and that the polarizations of the identical gluons should be

the same. The latter leads to a suppression of 1
2

of the second

term in Eq. (10). Using Eq. (10) we can find vn , since

d2σ

dy1 dy2d2 pT 1d2 pT 2
∝ 1

+ 2
∑

n

Vn� (pT 1, pT 2) cos (�ϕ) (11)

where �ϕ is the angle between pT 1 and pT 2. vn is deter-

mined from Vn� (pT 1, pT 2):

1. vn (pT ) =
√

Vn� (pT , pT );

2. vn (pT ) =
Vn�

(
pT , pRef

T

)
√

Vn�

(
pRef

T , pRef
T

) ; (12)

Eqs. (12)-1 and (12)-2 depict two methods of how the

values of vn have been extracted from the experimentally

measured Vn� (pT 1, pT 2). pRef
T denotes the momentum of

the reference trigger. These two definitions are equivalent

if Vn� (pT 1, pT 2) can be factorized as Vn� (pT 1, pT 2) =
vn (pT 1) vn (pT 2). We will show below that in our approach

this is the case for the restricted kinematic region R pT i ≪ 1.

The first problem that we face in calculating C(
R| pT 2 − pT 1|

)
, is to estimate the value of R, which

increases with energy (see for example LHC data of Refs.

[41–44]). On the other hand, the BFKL Pomeron [37–40]

does not lead to the shrinkage of the diffraction peak, as it has

no slope for the Pomeron trajectory. The only way to obtain

a size which increases with energy is to use the unitarity con-

straints, ABFKL (Y, b) ∝ e�BFKL Y a(b) < 1 [45,46], where

�BFKL is the intercept of the BFKL Pomeron and b is the

impact factor. However, in QCD a (b) decreases as a power

of b and the unitarity constraints lead to R ∝ exp (�BFKL Y )

[28]. Therefore, to obtain the energy behaviour of R, we

need to introduce a non-perturbative correction at large b,

which ensures a(b) ∝ exp (−μsoftb), and we also to take

into account the multi Pomeron interactions which satisfy

the unitarity constraints. Fortunately, the second part of the

problem has been solved in the CGC/saturation approach

[31], but the first needs modelling of the unknown confine-

ment of quarks and gluons. Hence, we are doomed to build a

model which includes everything that we know theoretically

regarding the CGC/saturation approach, but in addition, one

needs to introduce some phenomenological descriptions of
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Fig. 5 The structure of

NPh

(
k2

T

)
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N( k  )T =
Mnn

+

kT
k
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g
Pn

M  < M

k
T

k
T

g
Ph

G3P

M  > Mn 0

+

the hadron structure, and the large b behaviour of the BFKL

Pomeron.

Such a model for hadron–hadron interactions at high

energy has been developed in Refs. [49–52], and it success-

fully describes the experimental data on total, inelastic and

diffractive cross sections, as well as the inclusive production

and LRR correlations. The goal of this paper is to show that

the structure of the ‘dressed’ Pomeron in this model leads to

strong BE correlations, and generates vn both for even and

odd n, in hadron and nucleus interactions. In the next section

we consider the contribution to C(R| pT 2 − pT 1|) from the

first Mueller diagram, and discuss the different sources of BE

correlations. In Sect. 3 we give a brief review of the struc-

ture of the Pomeron in our model, in which we incorporate

the solution to the CGC/saturation equations with additional

non-perturbative assumptions: the large b behaviour for the

saturation momentum, and the structure of the hadrons. It has

been known for a long time [26,27,53–55] in the framework

of Gribov Pomeron calculus and has been re-considered in

the CGC/saturation approach [56,56–63] that the LRR cor-

relations stem from the production of gluon jets from two

different parton showers (see Fig. 1). In Sect. 4 we evaluate

the BE correlations that result from the dressed Pomeron of

our model, and show that they are able to describe the main

features of the experimental data.

2 Calculation of the first diagram

2.1 Proton–proton scattering

The first Mueller diagram which contributes to C(R| pT 2 −
pT 1|), and which we need to calculate, is shown in Fig. 2e

and can be written in the form [64]:

d2σ

dy1 dy2d2 pT 1d2 pT 2

=
d2σ

dy1 dy2d2 pT 1d2 pT 2
(different gluons)

×
(

1

N 2
c − 1

C
(
R| pT 2 − pT 1|

))

=
(

ᾱS CF

2π

)2 ∫
d2kT NPh

(
k2

T

)

×NPh

((
kT + pT,12

)2
) dσ

dy1d2 pT 1

×
(
kT , |kT + pT,12|

) dσ

dy2d2 pT 2

(
kT , |kT + pT,12|

)
(13)

where pT,12 = pT 1 − pT 2 and

dσ

dy1d2 pT 1

(
kT , |kT + pT,12|

)

=
∫

d2qT φBFKL
(
qT , kT − qT

)
Ŵμ (qT , pT 1)

×Ŵμ

(
kT − qT , pT 2

)
φBFKL

(
qT , kT + pT,12 − qT

)

(14)

In Eq. (14) φBFKL denotes the parton density of the BFKL

Pomeron, with momentum transferred by the Pomeron kT

or kT + pT,12. The Lipatov vertex Ŵμ, as well as the equa-

tions for φBFKL will be discussed in Appendix A. Generally

speaking, NPh has a structure which is shown in Fig. 5:

NPh

(
k2

T

)
=

M0∑

Mn

g2
Pn

(
k2

T

)
δ

(
M2 − M2

n

)

+ gPh (0) G3P

(
k2

T

)
e�BFKLY (15)

where Mn denotes the mass of the resonances, �BFKL the

intercept of the BFKL Pomeron, and G3P the triple Pomeron

vertex. Considering the contribution of the first term to NPh ,

we can neglect, in the first approximation, the dependence

of φBFKL on the momentum transferred, since QT turns out

to be of the order of the saturation momentum Qs ≫ 1/Rh ,

where Rh is the hadron size incorporated in NPh .

This is not the case for the second term in Eq. (15), which

has QT ∼ Qs . It leads to the BFKL Pomeron calculus which

takes the Pomeron interactions into account. We will discuss

this contribution in Sects. 3 and 4. In this section we restrict

ourselves to the first term in the sum in Eq. (5). Collecting

all formulae, we find that in the first diagram

C
(
R| pT 2 − pT 1|

)
∝

∫
d2kT g2

P,pr

(
k2

T

)
g2

P,tr

((
k − pT,12

)2
)/

×
∫

d2kT g2
P,pr

(
k2

T

)
g2

P,tr

(
k2

T

)
. (16)

To obtain the first estimates for the vertices of the soft

Pomeron interaction with the projectile and target, we use

the following parameterizations:

gpr(k
2) = g0

pr e− 1
2 Bpr k2

T ; gtr(k
2) = g0

tr e− 1
2 Btr k2

T . (17)

For proton–proton collisions we take Bpr = Btr = B.
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(a) (b) (c)

Fig. 6 vn versus pT for proton–proton scattering at W = 13 TeV, using Eqs. (12) and (19). a vn that stem from Eq. (12)-1. In b the estimates from

Eq. (12)-2 for pRef
T = 2 GeV are plotted. c The same vn as in b, where pRef

T is taken in the interval 0.5–5 GeV, as is measured in Ref. [21]

In this case [1,26,27]

C
(
R| pT 2 − pT 1|

)

= exp
(
−BR

(
p2

T 1 − 2pT 1 pT 2 cos (�ϕ) + p2
T 2

))
(18)

with BR = Bpr Btr/
(
Bpr + Btr

)
. BR = 1

2
B for proton–

proton scattering.

In Ref. [1] it is shown that Eq. (18) leads to V�n of Eq.

(11) which is equal to

V� n = In (2BR pT 1 pT 2)

×
e−BR

(
p2

T 1+p2
T 2

)

N 2
C − 1 + I0 (2BR pT 1 pT 2) e−BR

(
p2

T 1+p2
T 2

) (19)

where In is the modified Bessel function of the first kind.

In Fig. 6 taking BR = 5 GeV−2, we plot the prediction for

vn using Eqs. (12) and (19). This value of BR corresponds

to the slope of the elastic cross section for proton–proton

scattering at W = 13 GeV. One can see that Eq. (12)-1 and

(12)-2 give different predictions, demonstrating that we do

not have factorization Vn� (pT 1, pT 2) �= vn (pT 1) vn (pT 2).

Fig. 6c shows vn for pmin
T ≤ pT 2 = pRef

T ≤ pmax
T with

pmin
T = 0.5 GeV and pmax

T = 5 GeV, as done in Ref. [21].

To calculate such a vn , we need to know the dependence of

the cross section on pT 2. Indeed, we need to take Eq. (10)

and integrate it over pT 2: viz.

H (pT 1,�ϕ) =
∫ pmax

T 2

pmin
T 2

d p2
T 2

d2σ(Eq.(10))

dy1 dy2d2 pT 1d2 pT 2

∝ 1 + 2
∑

n

Vn� (pT 1) cos (�ϕ) . (20)

For Fig. 6c, we need to know the behaviour of the dou-

ble inclusive cross section on pT 1 and pT 2. We assume

that d2σ

dy1 dy2 d2 pT 1d2 pT 2
∝ 1/

(
p2

T 1 p2
T 2

)
for the cross sections

given by Fig. 1b and by Fig. 2c and d. In Appendix A we

show that the cross section for Fig. 2e d2σ

dy1 dy2 d2 pT 1d2 pT 2

((Fig.2-e)) ∝
(
1/p2

T 1 + 1/p2
T 2

)2
.

We took the energy dependence into account by calculat-

ing the BR from the slope of the elastic scattering at given

energy W , which was taken from Ref. [49].

One can see that the calculated values, as well as energy

dependence (Fig. 7) are close to the experimental data of Ref.

[21]. The main difference is in the pT dependence, which

suggests the necessity to include the diffractive dissociation

process or, in other words, the entire sum in Eq. (15), as well

as the enhanced diagrams that are generated by the BFKL

Pomeron calculus (see Fig. 5).

We can estimate the sum over resonances or, in other

words, the diffraction production of states with low mass,

by using our model (see Appendix B for necessary formu-

lae). In Fig. 8 we plot the correlation function C
(

pT,12

)
as

defined in Eq. (10) for | pT 1| = | pT 2|, which is the result

of these calculations. One can see that the effective pT,12

dependence of the slope, turns out to be much smaller than

our estimates from the first diagrams that we obtained above.

The slope that we used for the calculation shown in Fig. 6 was

estimated as 1
4

Bel, where Bel = 20 GeV−2 is the slope of the

elastic cross section at W = 13 TeV. We see two reasons for

such a drastic change in the pT,12 dependence: first, we took

into account the diffractive production processes which were

neglected in Fig. 6; and second, in our model the effective

shrinkage of the diffraction peak originates from the shad-

owing corrections, as the BFKL Pomeron has no inherent

shrinkage. Such corrections are stronger in net diagrams of

Fig. 14b that are responsible for elastic scattering than for the

fan diagrams of Fig. 25 that contribute to inclusive produc-

tion. Recall that Bshr ≈ 10 GeV−2 at W = 13 TeV, comes

from the shrinkage of the diffraction peak.

The calculation of vn are shown in Fig. 9. One can see

that we obtain large vn for both odd and even n. The value of

v2 from Fig. 9c is about 10 % larger, than the experimental

one from Ref. [21] (see Fig. 7b). However, our calculations

lead to narrower distributions in pT than the experimental

one. The factorization Vn� (pT 1, pT 2) = vn (pT 1) vn (pT 2)

is strongly violated, as in the case of estimates of the first

diagram.
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(b)(a)

Fig. 7 v2 versus pT for proton–proton scattering at W = 2.76 TeV and at W = 13 TeV. a vn that stem from Eq. (12)-2 for pRef
T , which is taken

in the interval 0.5–5 GeV, as is measured in Ref. [21]. b The experimental data taken from Ref. [21]

Fig. 8 Correlation function C
(

pT,12

)
as it is defined in Eq. (10), versus

pT,12 = | pT 1 − pT 2|. Dashed line corresponds to exp(−Bp2
T,12) with

B = 1.7 GeV−2, while the dotted line shows the dependence that we

used in Sect. 2 to calculate the first diagram: exp(−B p2
T,12) with B =

5 GeV−2

Figure 7 illustrates the energy dependence of vn for

proton–proton scattering, showing v2 for two energies W =
2.56 TeV and W = 13 TeV. Note that v2 does not depend on

energy, in accord with the experimental data of Ref. [21].

Therefore, we can conclude that the first term in Eq. (15)

leads to a value of vn , which is large and of the order of the

experimental one; the inclusion of diffraction in the region

of small mass (sum over resonances in Eq. (15) leads to a

decrease of the interaction volume, but cannot reproduce

the experimental pT distributions of vn , and BE correlations

show the experimentally observed independence on energy.

2.2 Hadron–nucleus and nucleus–nucleus interaction

For a nucleus we can simplify the calculation, considering

cylindrical nuclei which have a form factor

SA (kT ) =
RA

kT

J1 (kT RA) (21)

where J1 is the Bessel function. Taking Eq. (21) into account

one can see that

C p A

(
R| pT 2 − pT 1|

)
∝

∫
d2kT g2

P,tr

((
kT − pT,12

)2
)

S2
A

(
k2

T

) / ∫
d2kT g2

P,tr

((
k2

T

)2
)

S2
A

(
k2

T

)

=
∫

d2kT e
−B

(
k2

T +p2
T,12

)

I0

(
2B kT pT,12

)

S2
A

(
k2

T

) / ∫
d2kT e−Bk2

T S2
A

(
k2

T

)
. (22)

(b) (c)(a)

Fig. 9 vn versus pT for proton–proton scattering at W = 13 TeV, using Eqs. (B9) and (12). a vn that stem from Eq. (12)-1. In b the estimates

from Eq. (12)-2 for pRef
T = 2 GeV are plotted. b The same vn as in Fig. 6c but pRef

T is taken in the interval 0.5–5 GeV, as is measured in Ref. [21]
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(b)(a)

Fig. 10 a Comparison Eq. 22 with the same equation where S2
A(k2

T )

is replaced by δ(kT ). RA = 6.5 fm for gold. B = 10 GeV−2 for pro-

ton at W = 13 TeV. b Correlation function C(pT,12) for proton–lead

scattering at W = 5 TeV in our model (see Appendix C) as it is defined

in Eq. (10), versus pT,12 = | pT 1 − pT 2|. Dashed line corresponds

to exp(−Bp2
T,12) with B = 4.2 GeV−2, while the dotted line shows

the dependence that we used in Sect. 2 to calculate the first diagram:

exp(−B p2
T,12) with B = 10 GeV−2

(b) (c)(a)

(e) (f)(d)

Fig. 11 vn versus pT for proton–gold (a–c) scattering at W = 13 TeV

and proton–lead scattering at W = 5 TeV (c, d), using Eqs. (12) and

(19). a, d vn that stem from Eq. (12)-1. In b and e the estimates from

Eq. (12)-2 for pRef
T = 2 GeV are plotted. c, f The same vn as in Fig.

6c but pRef
T is taken in the interval 1–3 GeV as it is measured in Ref.

[22–25]

We expect that SA (kT ) leads to small kT ∼ 1/RA, since the

radius of nucleus is large. In Fig. 10a we compare Eq. (22)

with exp (−Bp2
T,12), which follows from Eq. (22), replacing

S2
A

(
k2

T

)
by δ (kT ). The agreement is impressive.

In Fig. 11 we plot the prediction for proton–gold scatter-

ing. One can see that the Bose–Einstein correlations generate

large vn for n ≥ 3. Actually, we have several mechanisms

(see, for example, review of Ref. [65]) for vn with even n,

therefore, it is instructive to note that the simple estimates

in this section lead to large v2n−1, larger than has been mea-

sured [22–25]. It should be stressed that using a more general

approach which includes the diffractive production of small

masses, as well as the shadowing corrections that lead to the

shrinkage of diffractive peak, we obtain the predictions (see

formulae in Appendix C) which repeat the main features of

our estimates in the simple model of Eq. (22). These calcu-

lations are plotted in Fig. 11d–f. In Fig. 10b estimates for

C(pT,12) in our model (see Appendix C) are shown. One

can see that C(pT,12) are different, and the model gives a

smaller interaction volume. However, all qualitative features

turn out to be the same: larger interaction volume than for

proton–proton scattering, v2 is much smaller than the exper-
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Fig. 12 vn versus pT for proton–lead scattering at W = 5 TeV measured by ATLAS collaboration [21] (Fig. 9 from this paper)

(b) (c) (d)(a)

Fig. 13 vn versus pT for gold–gold scattering at W = 13 TeV, using Eqs. (12) and (19). a vn that stem from Eq. (12)-1. In b the estimates from

Eq. (12)-2 for pRef
T = 2 GeV is plotted. c, d The difference between proton–gold and gold–gold interactions

imental value (see Fig. 12); v3, v4 and even v5 are close to

the experimental values; and the value of the typical pT is

about 1 GeV instead of pT = 3–4 GeV in the experimental

data.

For the nucleus–nucleus interaction CAA

(
R| pT 2 − pT 1|

)

takes the form

CAA

(
R| pT 2 − pT 1|

)
∝

∫
d2kT S2

A

((
kT − pT,12

)2
)

×S2
A

(
k2

T

)/ ∫
d2kT S2

A

((
k2

T

)2
)

S2
A

(
k2

T

)
; (23)

Fig. 13 shows vn for gold–gold scattering. One can see three

major differences: vn values turns out to be smaller than for

proton–nucleus scattering, especially when pT 2 = pRef
T dif-

fers from pT 1; the momentum distribution is much narrower

than for p A scattering, and vn are the same for all n.

Comparing Figs. 6, 11 and 13 we can conclude that the

simplest estimates lead to sufficiently large vn for both even

and odd n, which are similar to those obtained in proton–

proton and proton–nucleus collisions, but they are consider-

ably smaller for the nucleus–nucleus case. Comparing these

predictions with the experimental data of Refs. [2–25] we

see that the BE correlations should be taken into account in

all three reactions, since they give sizable contributions.

3 A brief review of our model

In this section we will give a brief review of our model which

has been developed in Refs. [49,50]. The advantage of the

model is that it describes the experimental data on diffractive

and elastic production [49]; the inclusive production [51] and

large rapidity range (LRR) correlations [52].

As has been mentioned we need to build a model which

incorporates at least two non-perturbative phenomena: the

correct large b behaviour of the amplitude (see Refs. [47,48])
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(a)

= = Y’

(b) (c)

Fig. 14 a The set of the diagrams in the BFKL Pomeron calculus that

produce the resulting (dressed) Green function of the Pomeron in the

framework of high energy QCD. The red blobs denote the amplitude of

dipole–dipole interaction at low energy. In b the net diagrams, which

include the interaction of the BFKL Pomerons with colliding hadrons,

are shown. The sum of the diagrams after integration over positions of

G3P in rapidity, reduces to c

and the hadron structure. These need to be incorporated so

as to reproduce in the framework of one approach, the main

features of the experimental data, such as the increase of

the interaction radius with energy, a sufficiently large cross

section of diffraction production, as well as energy and mul-

tiplicity dependence of inclusive cross sections and two par-

ticle correlations. On the other hand, we wish to include as

much information as possible from a theoretical approach

based on QCD.

3.1 Theoretical input and ‘dressed’ Pomeron Green

function

At the moment, the effective theory for QCD at high ener-

gies exists in two different formulations: the CGC/saturation

approach [66–82], and the BFKL Pomeron calculus [37,

38,83–105]. In building our model we rely on the BFKL

Pomeron calculus, since the relation to diffractive physics is

more evident in this approach. However, we are aware that

the CGC/saturation approach gives a more general pattern

[101–104]. In Refs. [103,104] it was proven that these two

approaches are equivalent for

Y ≤
2

�BFKL
ln

(
1

�2
BFKL

)
(24)

where �BFKL denotes the intercept of the BFKL Pomeron.

As we will see, in our model �BFKL ≈ 0.2–0.25 leading

to Ymax = 20–30, which covers all accessible energies. In

addition in Refs. [103,104] it is shown that for such Y , we can

safely use the Mueller–Patel–Salam–Iancu (MPSI) approach

[106–109], which allows us to calculate the contribution to

the resulting BFKL Pomeron Green function (see Fig. 14a):

Gdressed
P

(Y, r, R; b)

=
∫ ∏

i=1

d2ri d2bi d2r ′
i d2b′

i N
(
Y − Y ′, r, {ri , b − bi }

)

×ABA
dipole−dipole

(
ri , r ′

i , bi − b′
i

)
N

(
Y ′, R, {r ′

i , b′
i }

)

(25)

where AB A
dipole−dipole is the dipole–dipole scattering amplitude

in the Born approximation of perturbative QCD, and is shown

in Fig. 14a by the red circles.

We need to find the amplitude for the production of dipoles

of size ri at impact parameters bi . This amplitude can be

written as (see Fig. 14c)

N
(
Y − Y ′, r, {ri , bi }

)

=
∞∑

n=1

(− 1)n+1 C̃n (φ0, r)

n∏

i=1

GP

(
Y − Y ′; r, ri , bi

)

=
∞∑

n=1

(− 1)n+1 C̃n (φ0, r)

n∏

i=1

GP (z − zi ) . (26)

C̃n (φ0, r) is shown as the multi-Pomeron amplitudes (pink

ovals) in Fig. 14c.

The solution to the non-linear equation is of the following

general form:

N (GP (φ0, z)) =
∞∑

n=1

(− 1)n+1 Cn (φ0) Gn
P

(φ0, z) . (27)

Comparing Eq. (26) with Eq. (27) we see

C̃n (φ0, r) = Cn (φ0) . (28)

The coefficients Cn can be found from the solution to

the Balitsky–Kovchegov equation [72–74] in the saturation

region (see Ref. [105]);

N BK (GP (φ0, z)) = a (1 − exp (−GP (φ0, z)))

+ (1 − a)
GP (φ0, z)

1 + GP (φ0, z)
, (29)

with a = 0.65. Equation (29) is a convenient parameterization

of the numerical solution within accuracy better than 5 %.

Having Cn we can calculate the Green function of the dressed

BFKL Pomeron using Eq. (25) and the property of the BFKL

Pomeron exchange:
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α2
S

4π
GP (Y − 0, r, R; b)

=
∫

d2r ′d2b′ d2r ′′ d2b′′ GP

(
Y − Y ′, r, r ′, b − b

′)

× GP

(
Y ′r ′′, R, b

′′)
ABA

dipole−dipole

(
r ′, r ′′, b′′ − b′

)
.

(30)

Carrying out the integrations in Eq. (25), we obtain the

Green function of the dressed Pomeron in the following form:

Gdressed (T ) = a2(1 − exp (−T ))

+ 2a(1 − a)
T

1 + T
+ (1 − a)2G (T )

with G (T ) = 1 −
1

T
exp

(
1

T

)
Ŵ

(
0,

1

T

)
(31)

where Ŵ (s, z) is the upper incomplete gamma function (see

Ref. [139] formula 8.35) and T is the BFKL Pomeron in the

vicinity of the saturation scale

T (r⊥, s, b) = φ0

(
r2
⊥Q2

s (Y, b)

)γ̄

(32)

3.2 Phenomenological assumptions and phenomenological

parameters

The first phenomenological idea, is to fix the large impact

parameter behaviour by assuming that the saturation momen-

tum depends on b in the following way:

Q2
s (b, Y ) = Q2

0s (b, Y0) eλ (Y−Y0) (33)

with

Q2
0s (b, Y0) =

(
m2

)1−1/γ̄

(S (b, m))1/γ̄

S (b, m) =
m2

2π
e−mb and γ̄ = 0.63. (34)

We have introduced a new phenomenological parame-

ter m to describe the large b behaviour (see Refs. [47,48]).

The Y dependence as well as r2 dependence, can be found

from CGC/saturation approach [31], since φ0 and λ can be

calculated in the leading order of perturbative QCD. How-

ever, since the higher order corrections turn out to be large

[110,111] we treat them as parameters to be fitted. m is non-

perturbative parameter which determines the typical sizes of

dipoles inside hadrons. As one can see from Table 1 from

the fit m = 5.25 GeV, supporting our main assumption that

we can apply the BFKL Pomeron calculus, based on pertur-

bative QCD, to the soft interaction since m ≫ μsoft where

μsoft is the scale of soft interaction, which is of the order of

the mass of pion or QCD.

Unfortunately, since the confinement problem is far

from being solved, we have to assume a phenomenologi-

cal approach for the structure of the colliding hadrons. We

use a two channel model, which allows us to calculate the

diffractive production in the region of small masses. In this

model, we replace the rich structure of the diffractively pro-

duced states, by a single state with the wave function ψD , a

la Good and Walker [112]. The observed physical hadronic

and diffractive states are written in the form

ψh = α �1 + β �2; ψD = −β �1 + α �2;
where α2 + β2 = 1; (35)

Functions ψ1 and ψ2 form a complete set of orthogonal func-

tions {ψi } which diagonalize the interaction matrix T

Ai ′k′
i,k = 〈ψi ψk |T|ψi ′ ψk′〉 = Ai,k δi,i ′ δk,k′ . (36)

The unitarity constraints take the form

2 Im Ai,k (s, b) = |Ai,k (s, b) |2 + Gin
i,k(s, b), (37)

where Gin
i,k denotes the contribution of all non-diffractive

inelastic processes, i.e. it is the summed probability for these

final states to be produced in the scattering of a state i off a

state k. In Eq. (37)
√

s = W denotes the energy of the collid-

ing hadrons, and b the impact parameter. A simple solution

to Eq. (37) at high energies has the eikonal form with an

arbitrary opacity �ik , where the real part of the amplitude is

much smaller than the imaginary part. We have

Ai,k(s, b) = i
(
1 − exp

(
−�i,k(s, b)

))
, (38)

Gin
i,k(s, b) = 1 − exp

(
−2 �i,k(s, b)

)
. (39)

Equation (39) implies that P S
i,k = exp

(
−2 �i,k(s, b)

)
, is the

probability that the initial projectiles (i, k) reach the final

state interaction unchanged, regardless of the initial state re-

scatterings.

3.3 Small parameters from the fit and the scattering

amplitude

The first approach is to use the eikonal approximation for �

in which

Table 1 Fitted parameters of the model. The values are taken from Ref. [49]

Model λ φ0 (GeV−2) g1 (GeV−1) g2 (GeV−1) m (GeV) m1 (GeV) m2 (GeV) β aPP

2 channel 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58 0.21
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�i,k(r⊥, Y − Y0, b)

=
∫

d2b′ d2b′′ gi

(
b′) Gdressed

(
T

(
r⊥, Y − Y0, b′′))

× gk

(
b − b′ − b′′) (40)

We propose a more general approach, which takes into

account new small parameters, which come from the fit to

the experimental data (see Table 1 and Fig. 14 for notations):

G3P/gi (b = 0) ≪ 1; m ≫ m1 and m2. (41)

The second equation in Eq. (41) leads to the fact that b′′ in

Eq. (40) is much smaller than b and b′, therefore, Eq. (40)

can be re-written in a simpler form:

�i,k(r⊥, Y − Y0, b) =
( ∫

d2b′′ Gdressed
(
T

(
r⊥, Y − Y0, b′′))

)

×
∫

d2b′gi

(
b′) gk

(
b − b′)

= G̃dressed (r⊥, Y − Y0)

∫
d2b′gi

(
b′) gk

(
b − b′) (42)

Using the first small parameter of Eq. (41), we can see that the

main contribution stems from the net diagrams shown in Fig.

14b. The sum of these diagrams [49] leads to the following

expression for �i,k(s, b):

�(r⊥, Y − Y0; b) =
∫

d2b′

×
gi

(
b′) gk

(
b − b′) G̃dressed (r⊥, Y − Y0)

1 + G3P G̃dressed (r⊥, Y − Y0)
[
gi

(
b′) + gk

(
b − b′)] ;

(43)

gi (b) = gi Sp (b; mi ) ; (44)

where

Sp (b, mi ) =
1

4π
m3

i b K1 (mi b) (45)

G̃dressed (r⊥, Y − Y0)=
∫

d2b Gdressed (T (r⊥, Y −Y0, b))

(46)

where T (r⊥, Y − Y0, b) is given by Eq. (32).

Note that G̃dressed (Y − Y0) does not depend on b. In all

previous formulae, the value of the triple BFKL Pomeron

vertex is known: G3P = 1.29 GeV−1.

To simplify further discussion, we introduce the notation

N BK
(

Gi
P

(r⊥, Y, b)

)
= a

(
1 − exp

(
−Gi

P
(r⊥, Y, b)

))

+ (1 − a)
Gi

P
(r⊥, Y, b)

1 + Gi
P

(r⊥, Y, b)
, (47)

with a = 0.65. Equation (47) is an analytical approxima-

tion to the numerical solution for the BK equation [105].

Gi
P

(r⊥, Y ; b) = gi (b) G̃dressed (r⊥, Y − Y0). We recall that

the BK equation sums the ‘fan’ diagrams.

For the elastic amplitude we have

ael(b) =
(
α4 A1,1 + 2α2 β2 A1,2 + β4 A2,2

)
. (48)

We will discuss the inclusive production as well as LRR

correlations in Appendix B.

4 Azimuthal angle correlation and the structure of the

‘dressed’ Pomeron

As has been discussed, our model includes three dimen-

sional scales: m, m1 and m2. m1 and m2 describe two typical

sizes in the proton wave function, which could be associated

with the distance between constituent quarks (size of proton)

Rp ∼ 1/m1 and the size of the constituent quark Rq ∼ 1/m2

in the framework of the constituent quark model [117–

123]. The third scale: m, characterizes the impact parameter

behaviour of the saturation scale, and is intimately related to

the structure of the dressed Pomeron in our model. In Sect.

2 we discussed how two scales in the proton wave function

arise in the BE correlations. Here, we would like to show that

the third scale leads to the BE correlations which can explain

the values of vn observed experimentally.

As we have discussed in Sect. 3.1, the dressed Pomeron

is the sum of enhanced diagrams (see Fig. 14a), which is

given by Eq. (31). Therefore, the exchange of the dressed

Pomeron generates the production of an infinite number of

the parton showers and, in particular, two parton showers

which generate the BE correlations as is shown in Fig. 15.

Integration over rapidities of triple Pomeron vertices [100]

reduces the diagrams of Fig. 15a and b to the diagrams of Fig.

15c and d. We can calculate the probability to find two parton

showers (P2) inside of the dressed Pomeron expanding Eq.

(31):

P2 = (2 − 2a + a2/3) = 0.91 for a = 0.65 (49)

and the contribution of two parton showers production to the

double inclusive cross section for the diagrams of Fig. 15a,

is equal to

d2σ

dy1 dy2d2 pT 1d2 pT 2

= a2
PP

P2
2

∫
d2kT T (kT , Y − y1) T (kT , Y − y2)

×T (kT , y1) T (kT , y2) (50)

where aPP denotes the Mueller vertex of gluon emission (see

Fig. 15). In our estimates for the calculation of vn , we do not

need to know the probability P2, as well as the vertex aPP,

assuming that aPP is the same in Fig. 15a and b. In Eq. (50)

all rapidities are in the laboratory frame.
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Fig. 15 The Mueller diagrams for the BE correlation for the ‘dressed’ Pomeron. A blob denotes the vertex for gluon emission aPP (see Eq. (50))

Yproton

A

( y , p  )
1 T1

( y , p  )
2 T2

Fig. 16 The Mueller diagrams for the BE correlation for the ‘dressed’

Pomeron for proton–nucleus scattering. Black blob denotes the vertex

for gluon emission aPP (see Eq. (41), the grey blob stands for the triple

Pomeron vertex

T (kT , y) is the Fourier image of T (b, y) defined in Eqs.

(32)–(34) and it takes the form

T (kT , y) = φ0
1

(
1 + k2

T

m2

)3/2
eλ γ̄ (Y−Y0). (51)

For the interaction with nuclei, we need to take into

account the interaction of the Pomeron with the nucleons

inside the nucleus, as shown in Fig. 16. The equation for the

resulting TA (y, kT ) takes the form (see Fig. 17a)

TA (y, kT ) = T (y, kT ) − Ŵ3P

×
∫ y

0

dy′ T
(
y − y′, kT

)

×
∫

d2k′
T G A

(
y′, k − k′) TA

(
y′, k′

T

)
. (52)

The triple Pomeron vertexŴ3P will be calculated in our model

below.

The typical |k − k′| ∼ 1/RA ≪ 1/m and, therefore,

we can replace G A(y′, k − k′) by G̃ A(y′)δ(2)(k − k′). Note

that the normalization is such that the first diagram for G̃ A =
SA(b = 0)T (y, kT = 0), where SA(b) is defined in Eq. (C4).

After integration over k′
T , Eq. (52) reduces to the following

equation:

TA (y, kT ) = T (y, kT ) − Ŵ3P

×
∫ y

0

dy′ T
(
y − y′, kT

)
G̃ A

(
y′) TA

(
y′, k′

T

)
. (53)

For G̃ A we have the equation of Fig. 17b, which has the

following analytical form:

G̃ A (y) = SA (b = 0) T (y, kT = 0)

−Ŵ3P

∫ y

0

dy′ T
(
y − y′, kT

)
G̃2

A

(
y′) (54)

The solution to these two equations (Eqs. (53) and (54))

can be written as follows:

TA (y, kT ) =
T (y, kT )

1 + Ŵ̃3P SA (b = 0) T (y, kT )
(55)

where Ŵ̃3P = Ŵ3P/ (λ γ̄ ) = P2.

T (y, kT ) has a physical meaning, of the BFKL ampli-

tude in the vicinity of the saturation scale, where it has a

geometric scaling behaviour [124–127], and it depends on

one variable z = ln
(
r2 Q2

s (Y )
)
. For diagrams of Fig. 15 typ-

ically r ∼ 1/mi and z → λY . It is well known that the

main contribution to the inclusive cross section stems from

vicinity of the saturation scale, since this cross section is

proportional to ∇2
r N (r, b; Y ), which tends to zero inside the

saturation domain (see Eq. (A9)). N is the scattering ampli-

tude of the dipole with size r . The fact that we are dealing

with the amplitude in the region where it has geometric scal-

ing behaviour, is the reason why a non-linear equation of the

BK type [72–74] is degenerate to one dimensional equations

(see Eqs. (53)–(55)).

Using Eq. (50) we can calculate C(| pT 1 − pT 2|) for

proton–proton scattering, given by Eq. (1) which is equal

to
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Fig. 17 Graphic form of

equation for TA (y, kT ). The

wavy double lines denote

T (Y, kT ) of Eq. (51), while the

wavy lines stand for

TA (y, kT = 0)

= + − −

(Y,k )T

G
G =

G

(Y’,k’ )T

k   − k’ T T

(Y,k  =0)T (Y,k  =0)T

T (Y,k )TA

=

(Y,k )T

G

(Y,k )T

(Y’,k’ )T

k   − k’ T T

T (Y,k )TA

_

_

(a)

(b)

Cpp

(
| pT 1 − pT 2|

)
=

1

N 2
c − 1

∫
d2kT T (kT , Y − y1) T (kT , Y − y2) T

(
kT − pT,12, y1

)
T

(
kT − pT,12, y2

)
∫

d2kT T (kT , Y − y1) T (kT , Y − y2) T (kT , y1) T (kT , y2)
. (56)

For proton–nucleus scattering we have

CpA

(
| pT 1 − pT 2|

)
=

1

N 2
c − 1

∫
d2kT TA (kT , Y − y1) TA (kT , Y − y2) T

(
kT − pT,12, y1

)
T

(
kT − pT,12, y2

)
∫

d2kT T (kT , Y − y1) T (kT , Y − y2) T (kT , y1) T (kT , y2)
(57)

and for nucleus–nucleus CAA has the form

CAA

(
| pT 1 − pT 2|

)
=

1

N 2
c − 1

∫
d2kT TA (kT , Y − y1) TA (kT , Y − y2) TA

(
kT − pT,12, y1

)
TA

(
kT − pT,12, y2

)
∫

d2kT T (kT , Y − y1) T (kT , Y − y2) T (kT , y1) T (kT , y2)
. (58)

The results of calculations for C
(
Rcor pT,12

)
using Eqs.

(56)–(58) are plotted in Fig. 18, One can see that the radius

of correlations (R2
cor = B) turns out to be very small in

comparison with the same radius in Figs. 8 and 10.

From C(Rcor pT,12) we can calculate vn using Eqs. (11)

and (12)-1. However, C(Rcor pT,12) shown in Fig. 18, are cal-

culated for the production of gluon jets, while experimentally

vn are measured for a hadron. Following Refs. [128–130] we

explore the local parton–hadron duality(LPHD) suggested in

Refs. [131–133].

In our approach the hadrons originate from the decay of a

gluon jet, and their transverse momenta are

phadron, T = z pjet, T + pintristic, T (59)

where z is the fraction of energy of the jet, carried by the

hadron. pintristic, T is the transverse momentum of the hadron

in the mini-jet that has only longitudinal momentum. From

Eq. (59) we find that the average pT of hadrons is equal to

〈phadron, T〉 =
√

z2 p2
jet, T + p2

intristic, T. (60)

In Refs. [128–130] we found that we need to take z = 0.5 and

pintristic, T = mπ to describe the inclusive spectra of hadron

at the LHC. Using Eq. (60) we recalculate vn for a gluon jet

Fig. 18 C(| pT 1− pT 2| = pT,12), calculated using Eqs. (56)–(58), ver-

sus pT,12 for three reactions: proton–proton, proton–lead and lead–lead

collisions at energy W = 13 TeV. The long dashed curves correspond

to exp(−B p2
T,12) with Bpp = 0.035 GeV−2, BpA = 0.027 Ge4V−2

and BAA = 0.022 GeV−2
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(a) (b) (c)

Fig. 19 vn versus pT at W = 13 TeV for proton–proton (a), proton–lead (b) and lead–lead (c) scatterings, using Eqs. (11) and (12)-1
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Fig. 20 vn versus pT for lead–lead collisions. a and b are taken from Refs. [25] and [13], respectively

to vn for hadrons, as shown in Fig. 19. Comparing with the

experimental data [2–25], and Figs. 7b and 12, we see that

we describe the proton–proton scattering rather well, while

for proton–nucleus scattering we obtain v2 which is smaller

by 15–20 %.

The data are given for different multiplicities of the pro-

duced particles. As suggested in Ref. [116], we do not expect

that the our predictions will depend on these multiplicities.

We wish to stress that this is our initial basic approach, and

needs to be developed in more detail, to enable us to dis-

cuss multiplicity and centrality for the hadron–nucleus and

nucleus interactions. We plan to generalize our model for the

interactions with nuclei in the near future.

Comparing our estimates of Fig. 19c for lead–lead colli-

sions with the experimental data (see Fig. 20), one can see

that the value of v2 is half of the experimental value [13,25].
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Fig. 21 v2 versus pT at

W = 13 TeV for proton–proton

(a) and proton–lead (b) for the

sum of two contributions: the

‘dressed’ Pomeron structure and

the diffractive production,

discussed in Sect. 2. The

percents indicate the fraction of

diffractive production in the

Pomeron structure

(a) (b)

(a) (b) (c) (d)

Fig. 22 The ratio rn versus pT at W = 5 TeV for proton–lead collisions

However, for central events with centrality 5–10 % the mea-

sured v2, is very close to our estimates. For centrality 0–5 %,

vn with n ≥ 3, are in good agreement with the experimental

data. A further shortcoming of our present approach, is that it

lacks the theoretical basis to predict the centrality dependence

of the values of vn . We also intend studying this problem in

the near future. The weak energy dependence of vn stems

from the general properties of the two parton shower pro-

duction (see Fig. 7a for illustration), and it is clearly seen in

the experimental data (see Fig. 20b and Ref. [13]). We wish

to remind the reader that, for v2n , Bose–Einstein correlations

give one of the many contributions in the framework of per-

turbative QCD [56–65,116], while for vn with odd n (v2n−1),

this mechanism is unique. For this reason, it is important to

stress that we are successful in describing the values of v2n−1.

In particular, we are successful in reproducing v3 and v5 for

centrality 5–10 % (see Fig. 20a and Ref. [25]).

In general the pT distribution is wider than the experimen-

tal one. The LPHD approach and Eq. (60) are very approxi-

mate, and we need to use a more advanced jet fragmentation

function. Second, we need to add together the two mech-

anisms: one discussed in this section and one discussed in

Sect. 2. We need to include a more advanced fragmentation

function, together with more careful accounting of the emis-

sion vertex in QCD (see Appendix A). We will consider these

in a future publication.

The estimates from our model show that the mechanism

that has been discussed in Sect. 2 yields about 10–20 % of

the contribution which we now consider. In Fig. 21 one can

see how the sum of two mechanism occur in v2. One can see

that the sum has a wider pT distribution and a smaller max-

imal value. For proton–proton collisions both effects make

predictions closer to the experimentally observed values of

v2 [21]. Figure 21 shows that the Bose–Einstein correlations

in our approach cannot be characterized by one correlation

radius. We need to introduce at least two radii: the size of the

hadron and the typical size of the BFKL Pomeron, which in

our approach is the saturation scale. Hence we confirm the

structure of the Bose–Einstein correlation suggested in Refs.

[134,135].

One of the properties that has been violated in the esti-

mates in Sect. 2, was the factorization rn = 1 where

rn =
Vn� (pT 1, pT 2)√

Vn� (pT 1, pT 1) Vn� (pT 2, pT 2)
= 1. (61)

Figure 22 shows that Eq. (61) holds at least for pT ≤ 4 GeV

in accordance with the experimental data (see Refs. [22–25]).

5 Conclusions

In this paper we showed how three different dimensional

scales in high energy scattering, arise in the Bose–Einstein

correlations that generates vn , for even and odd n. The first

two scales are intimately related to the structure of the wave

function of the hadron, and have an interpretation in the con-

stituent quark model, as the distance between the constituent

quarks and the size of the quark. In a more formal way they

characterize the size of the vertex of the BFKL Pomeron

interaction with the hadron, and the typical size of the same

vertex for the diffraction production, in the region of small
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mass. We demonstrated that these sizes lead to BE correla-

tions which are large, but narrowly distributed in pT .

The third size is the value of the saturation momentum in

the CGC/saturation approach and has been used in the con-

struction of our model for the high energy soft interactions.

This size is incorporated in the structure of the ‘dressed’

Pomeron in our model. It turns out that this size leads to

values of vn which are close to the experimental values

both for even and odd n, and they are broadly distributed

in pT . In proton–proton scattering this mechanism is able

to describe the experimental data both for even and odd vn ,

while for proton–nucleus and nucleus-nucleus collisions we

obtain smaller values of v2: 20–30 % smaller for proton–lead

scattering, and two times smaller for lead–lead collisions.

However, we would like to stress that, for centrality 0–10 %,

the structure of the Pomeron gives values of vn which are

very close to the experimentally observed ones.

We would like to emphasize that the main result of this

paper is the observation that Bose–Einstein correlations in

perturbative QCD, generate vn for odd values of n (v2n−1),

while other mechanisms for the azimuthal angle correlations

in the framework of perturbative QCD lead only to vn with

even n (see Refs. [56–65]). The fact that our estimates give

v2n−1 that are close to the experimental data is encouraging

and supports our plan for more precise estimates of the Bose–

Einstein correlation, based on a more general basis than our

particular model for high energy interactions.

Regarding Ref. [116], in which we calculated the value

of v2, in the framework of the density variation mechanism

proposed in Ref. [64]. The sources of the azimuthal angle

correlations considered in this paper are quite different from

the Bose–Einstein correlations and, therefore, one should add

this mechanism for v2 estimated in Ref. [116] to the Bose–

Einstein correlations discussed in this paper.

All estimates were made in the framework of our model

for soft interactions which is based on the CGC/saturation

approach, but introduces non-perturbative parameters which

describe the wave function of the hadron, and the large

impact parameter behaviour of the saturation momentum.

We describe in this model the total, elastic and diffractive

cross sections as well as the inclusive production and long

range rapidity correlations, and therefore we trust that we

can rely on the model when discussing the azimuthal angle

correlations.

We demonstrated in this paper that BE correlations in the

framework of CGC/saturation approach are able to explain

a substantial part if not the entire, experimental values of

vn for both even and odd n. Therefore, we believe that it is

premature to conclude that the origin of the observed long

range rapidity correlations are only due to elliptic flow.
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Appendix A: BFKL contribution for the interference dia-

gram

In this appendix we derive the BFKL contribution (see Fig.

23) to dσ

dy1d2 pT 1

(
kT , |kT + pT,12|

)
given by Eq. (14).

The Lipatov vertices Ŵμ(qT , pT 1) and Ŵμ(qT 1, pT 2) have

the form (see Ref. [31] for example):

Ŵμ (qT , pT 1) =
1

p2
T 1

(
q2

T pT 1 − qT p2
T 1

)
;

Ŵμ (qT 1, pT 2) =
1

p2
T 2

(
q2

T 1 pT 2 − qT 1 p2
T 2

)
; (A1)

and

Ŵμ (qT , pT 1) Ŵμ (qT 1, pT 2) =
q2

T 1

(
qT − pT 2

)2

p2
T 2

+
q2

T

(
qT 1 − pT 1

)2

p2
T 1

− k2
T − p2

T,12

q2
T q2

T 1

p2
T 1 p2

T 2

(A2)

where pT,12 = pT 1 − pT 2, q
′
T = qT − pT 1, q

′
T 1 = qT 1 −

pT 2, and qT 1 = qT − kT . Equation (A2) can be re-written

as

Ŵμ (qT , pT 1) Ŵμ (qT 1, pT 2)

=
q2

T 1

(
q

′
T + pT,12

)2

p2
T 2

+
q2

T

(
q

′
T 1 − pT,12

)2

p2
T 1

− k2
T − p2

T,12

q2
T q2

T 1

p2
T 1 p2

T 2

(A3)

φBFKL satisfies the following equation:

∂φBFKL (Y ; qT , kT )

∂ Y

= ᾱS

∫
d2q ′

T

π
K

(
kT , q ′

T

)
φBFKL

(
Y ; q ′

T , kT

)
(A4)

where

K
(
kT , q ′

T

)

=
(

q2
T 1 q ′2

T

p2
T

+
q2

T q ′2
T 1

p2
T

− k2
T

)
1

q ′2
T q ′2

T 1
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−
{

q2
T

∫
d2 pT

p2
T

(
qT − pT

)2
+ q ′2

T

∫
d2 pT

p2
T

(
q

′
T − pT

)2

}

× δ(2)
(

q
′
t − qT

)
. (A5)

Equation (A4) is the BFKL equation in the momentum rep-

resentation, which has the following form in the coordinate

representation [39,40,70,71]:

∂ N BFKL (Y ; x12, b)

∂ Y

= ᾱS

∫
d2x3

π

x2
12

x2
13 x2

23

{
N

(
Y ; x13, b −

1

2
x23

)

+ N

(
Y ; x23, b −

1

2
x13

)
− N (Y ; x13, b)

}
(A6)

where [31,113]

1
(
qT + 1

2
kT

)2 (
1
2

kT − qT

)2
φBFKL (qT , kT )

=
2 CF

ᾱS(2π)3

∫
d2b d2x12 eiqT ·x12+i kT ·b N BFKL (Y ; x12, b)

(A7)

For diagrams Fig. 2c and d p12 = 0 and plugging Eq. (A7)

into Eq. (14) we obtain that

dσ

dy1d2 pT 1
(kT , kT ) =

(
2 CF

ᾱS(2π)3

)2

×
∫

d2x12 d2b d2b′ ei pT 1·x12+i kT ·b

×
{

1

p2
T 1

(((
1

2
∇b + ∇x12

)2

N BFKL
(
Y − y; x12, b − b′)

)

×
((

1

2
∇b′ − ∇x12

)2

N BFKL
(
y; x12, b′)

)

+
((

1

2
∇b − ∇x12

)2

N BFKL
(
Y − y; x12, b − b′)

)

×
((

1

2
∇b′ + ∇x12

)2

N BFKL
(
y; x12, b′)

))

−
(
∇b N BFKL

(
Y − y; x12, b − b′))

×
(
∇b′ N BFKL

(
y; x12, b′))

}
. (A8)

Equation (A8) in the limit kT → 0 degenerates to the expres-

sion for the inclusive cross section which has the elegant form

derived in Ref. [113],

dσ

dy1d2 pT 1
(kT = 0, kT = 0) =

(
2 CF

ᾱS(2π)3

)2 1

p2
T 1

×
∫

d2x12 ei pT 1·x12

(
∇2

x12

∫
d2b N BFKL (Y − y; x12, b)

)

×
(

∇2
x12

∫
d2b′ N BFKL

(
y; x12, b′)

)
. (A9)

The interesting feature of Eqs. (A8) and (A9) is that they

remain correct, if we replace 2N BFKL by NG = 2 N − N 2,

where N is the solution of the Balitsky–Kovchegov equation

[72–74]. Inside the saturation domain where N → 1, both

equations lead to negligible contributions. In other words, in

both equations the main contributions stem from the vicinity

of the saturation scale, where x2
12 Q2

s ≈ 1.

The solution for the scattering amplitude of two dipoles

r1 and r2 to Eq. (A6) is well known [39,40]

NP (r1, r2; Y, b)

=
∞∑

n=0

∫
dγ

2 π i
φ

(n)
in

(γ ; r2) d2 R1 d2 R2

×δ(R1 − R2 − b) eω(γ,n) Y Eγ,n (r1, R1) E1−γ,n (r2, R2)

(A10)

where the functions φ
(n)
in (γ ; r2) are determined by the initial

conditions at low energies and

ω(γ, n) = ᾱSχ(γ, n)

= ᾱS (2ψ (1) − ψ (γ + |n|/2) − ψ (1 − γ + |n|/2))

(A11)

where ψ (γ ) = d ln Ŵ (γ ) /dγ and Ŵ (γ ) is Euler gamma

function. Functions En,γ (ρ1a, ρ2a) are given by the follow-

ing equations:

En,γ (ρ1a, ρ2a) =
(

ρ12

ρ1a ρ2a

)1−γ+n/2 (
ρ∗

12

ρ∗
1a ρ∗

2a

)1−γ−n/2

.

(A12)

In Eq. (A12) we use complex numbers to characterize the

point on the plane

ρi = xi,1 + i xi,2; ρ∗
i = xi,1 − i xi,2 (A13)

where the indices 1 and 2 denote two transverse axes. Note

that

ρ12 ρ∗
12 = r2

i ; ρ1a ρ∗
1a =

(
Ri −

1

2
r i

)2

ρ2a ρ∗
2a =

(
Ri +

1

2
r i

)2

. (A14)

At large values of Y , the main contribution stems from the

first term with n = 0. For this term, Eq. (A12) can be re-

written in the form

Eγ,0 (ri , Ri ) =
(

r2
i

(Ri + 1
2

r i )2 (Ri − 1
2

r i )2

)1−γ

. (A15)

The integrals over R1 and R2 were taken in Refs. [39,40,136–

138] and at n = 0 we have
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p
T1

p
T2

Y

y

0

kT

q

q’

q

q’
1

1

k
T
−p

T,12

BFKL

BFKL

Fig. 23 The graphical representation of Eq. (14)

Hγ
(
w, w∗)

≡
∫

d2 R1 Eγ,0 (r1, R1) E1−γ,0 (r2, R1 − b)

=
(γ − 1

2 )2

(γ (1 − γ ))2

{
bγ wγ w∗γ

F (γ, γ, 2γ,w) F
(
γ, γ, 2γ,w∗)

+b1−γ w1−γ w∗1−γ

F (1 − γ, 1 − γ, 2 − 2γ, w) F
(
1 − γ, 1 − γ, 2 − 2γ, w∗) }

b ≫ r1 and/or r2−−−−−−−−−−→
(γ − 1

2 )2

(γ (1 − γ ))2

{
bγ wγ w∗γ + b1−γ w1−γ w∗1−γ

}

=
(γ − 1

2 )2

(γ (1 − γ ))2

{
bγ

(
r2
1 r2

2

b4

)γ

+ b1−γ

(
r2
1 r2

2

b4

)1−γ }

(A16)

where F is the hypergeometric function [139]. In Eq. (A16)

w w∗ and bγ are equal,

w w∗ =
r2

1 r2
2(

b − 1
2

( r1 − r2)
)2 (

b + 1
2

( r1 − r2)
)2

;

bγ = π3 24(1/2−γ ) Ŵ (γ )

Ŵ (1/2 − γ )

Ŵ (1 − γ )

Ŵ (1/2 + γ )
. (A17)

Therefore, at large b, N BFKL decreases as a power of b, which

violates the Froissart theorem [28]. At present, as has been

mentioned above, we cannot suggest a modification of the

equation of the CGC/saturation approach in which the cor-

rect [45,46] exponential behaviour at large b would be incor-

porated. So we doomed to build a model. We discussed our

model in Sect. 3 (Fig. 23).

(y , p    )2 T1

(y , p    )1 T2

(y , p    )2 T2

q’= q − p

(y , p    )1 T1

T1

q k − q

k − q’ = k − p  − q
T,12

x1

R1

R2
x2

y1

y2

Fig. 24 The Born interference diagram for production of two identical

gluons with rapidities: y1 and y2 and transverse momenta pT 1 and pT 2.

Ri = 1
2
(xi + yi ), pT,12 = pT 1 − pT 2. Red rectangle shows function

�(k, pT 1, pT 2) (see text)

5.1 Born diagrams

The spirited discussions with our colleagues showed us that it

would be beneficial to add a general discussion of the BFKL

contribution, by calculating of the first Born diagrams for

the production of two identical gluons that have rapidities

y1 and y2, and carry momenta pT 1 and pT 2. These dia-

grams are shown in Fig. 24 for the scattering of the bound

states of two oniums (two dipoles). Such a model for the

scattering systems allows us to use the perturbative QCD

approach, and has the analogy in the simplest bound system:

deuteron.

The two onium bound state is described by the wave func-

tion � (R1 − R2), where Ri is the coordinate of the onium

which is equal Ri = 1
2
(xi + yi ) where xi and yi are coordi-

nates of quark and antiquark in the onium (see Fig. 24). We

introduce two new functions that describe the form factor of

our bound state (G (q)), and the interaction of two gluons

with the onium:

G (q) =
∫

d2 R |� (R) |2 ei q·R with R = R1 − R2;

φonium (q, k) = 2

∫
d2ri |ψonium (ri ) |2 ei 1

2 k·r i

(
1 + eiq·r i

)

with r i = xi − yi . (A18)

The contribution of the diagram of Fig. 24 can be written as2

σinterference ∝
∫

d2k

4π2
G (k) G

(
k + pT,12

)
I 2

(
k, pT 1, pT 2

)

(A19)

2 We omit all numerical factors as well as ᾱ6
S .
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where

I
(
k, pT 1, pT 2

)
∝

∫
d2q

4 π2
φonium (k, q) φonium

×
(
k − pT,12, q

)

×
{

1

q2 (k − q)2
Ŵμ (qT , pT 1) Ŵμ (qT 1, pT 2)

×
1

(
q − pT 1

)2 (
k − pT,12 − q

)2

}
(A20)

where Ŵμ (qT , pT 1) Ŵμ (qT 1, pT 2) is given by Eqs. (A2) and

(A3).

One can see from Eqs. (A19) and (3) that the typical q ≈
1/r , where r is he size of the onium, while the typical values

of k ∝ 1/R, where R is the size of the bound state. Assuming

that R ≫ r , we see that k ≪ q. Anticipating pT,12 ∝ 1/R,

we can reduce the contribution of the interference diagram

to the following form:

σinterference ∝
1

p2
T 1 p2

T,2

∫
d2k

4π2
G (k) G

(
k + pT,12

)

×
( ∫

d2q

4π2

1

q2
(
q − pT 1

)2

)2

. (A21)

In Eq. (A21) we assume that pT 1 ≈ pT 2 and one can

see that pT,12 from this equation is indeed of the order

of 1/R, being much smaller than pT i if they are of the

order of 1/r . For 1/R ≪ pT i ≪ 1/r we need to take

Ŵμ (qT , pT 1) Ŵμ (qT 1, pT 2) =
(

1

p2
T 1

+ 1

p2
T 2

)
1

q4 .

Appendix B: BE correlations in the model: diffractive

production in the small mass region

a. Inclusive production

The inclusive production in the framework of the

CGC/saturation approach comprises two stages: the gluon

mini-jet productions and the decay of this mini-jet into

hadrons. For mini-jet production, we use the kT factorization

formula, which has been proven in Ref. [113] in the frame-

work of the CGC/saturation approach (see the appendix for

details).

dσ

dy d2 pT

=
2πᾱS

CF

1

p2
T

∫
d2kT φ

h1

G (x1; kT ) φ
h2

G

(
x2; pT − kT

)

(B1)

where φ
hi

G denotes the probability to find a gluon that carries

the fraction xi of energy with kT transverse momentum, and

ᾱS = αS Nc/π , with the number of colours equal to Nc.
1
2

Y + y = ln(1/x1) and 1
2

Y − y = ln(1/x2). φ
hi

G is the

k T

Y/2

−Y/2

(a)

p , y
T

T

T T

2

1

Y/2

−Y/2

y
aPP

(b)
g  (b)(i)

Fig. 25 The graphic representation of Eq. (B1) (see a). For the sake of

simplicity all other indices in φ (x1, pT − kT ) and φ (x2, kT ) are omit-

ted. The wavy lines denote the BFKL Pomerons, while the helical lines

illustrate the gluons. In b the Mueller diagram for inclusive production

is shown

solution of the Balitsky–Kovchegov (BK) [72–74] non-linear

evolution equation, and can be viewed as the sum of ‘fan’

diagrams of the BFKL Pomeron interactions, shown in Fig.

25.

In our model the sum of ‘fan’ diagrams is given by Eq.

(29). Assuming that the main contribution to

dσ

dy
=

∫
d2 pT

dσ

dy d2 pT

stems from pT ≤ Qs , we obtain the following formula:

dσ

dy
=

∫
d2 pT

dσ

dy d2 pT

= aPP ln (W/W0)

×
(

α2 In(1)

(
1

2
Y + y

)
+ β2 In(2)

(
1

2
Y + y

) )

×
(

α2 In(1)

(
1

2
Y − y

)
+ β2 I n(2)

(
1

2
Y − y

) )
(B2)

where

In(i) (y) =
∫

d2b N BK
(

g(i) S (mi , b) G̃P (y)

)
or

In(i) (y) = I BK
i (y, QT = 0) ; with I BK

i (y, QT )

=
∫

d2b ei b· QT N BK
(

g(i) S (mi , b) G̃P (y)

)
(B3)

where G̃P (y) and N BK have been defined in Eq. (46) and

in Eq. (29), respectively. Regarding the factor in front of

Eq. (B2) i.e. ln (W/W0), where W =
√

s is the energy of

collision in c.m. frame, and W0 is the value of energy from

which we start our approach. One can see that Eq. (B1) is

divergent in the region of small pT < Qs . Indeed, in this

region φ’s in Eq. (B1) do not depend on pT , since kT ≈
Qs > pT , and the integration over pT leads to ln(Q2

s /m2
soft),

where msoft is the non-perturbative scale, that includes the

confinement of quarks and gluons (msoft ∼ QCD).
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a   ln(W/W )PP 0

g   (b)(k)

G3P

Y

0

Y/2+ y1

Y/2+ y2

i

k

Y

0

Y/2+ y1

Y/2+ y2

i

k

(b)(a)

Fig. 26 The Mueller diagram for the rapidity correlation between two

particles produced in two parton showers. a The first Mueller diagram,

while b indicates the structure of general diagrams. The double wavy

lines describe the dressed BFKL Pomerons. The blobs stand for the

vertices as shown in the legend

b. LRR correlations

In Ref. [52], we showed that in the framework of our model

that has been described above, the main source of the long

range rapidity correlation, is the correlation between two par-

ton showers. In other words, it was shown that the contri-

bution to the correlation function from enhanced and semi-

enhanced diagrams, turns out to be negligibly small.

The appropriate Mueller diagrams are shown in Fig. 26.

Examining this diagram, we see that the contribution to the

double inclusive cross section, differs from the product of two

single inclusive cross sections. This difference generates the

rapidity correlation function, which is defined as

R (y1, y2) =
1

σin

d2σ
dy1 dy2

1
σin

dσ
dy1

1
σin

dσ
dy2

− 1. (B4)

There are two reasons for the difference between the dou-

ble inclusive cross section due to production of two parton

showers, and the products of inclusive cross sections: the

first, is that in the expression for the double inclusive cross

section, we integrate the product of the single inclusive cross

sections, over b or QT (see Fig. 25a and Eq. (13)). The sec-

ond, is that the summation over i and k for the product of

single inclusive cross sections, is for fixed i and k (see Fig.

25a).

Introducing the following new function enables us to write

the analytical expression for the double inclusive cross sec-

tion:

I (i,k) (y, b) = ãPP

∫
d2b′ N BK

(
g(i) S

(
mi , b′)

× G̃dressed

(
r⊥ = 1/m,

1

2
Y + y

) )

× N BK

(
g(k) S

(
mk , b − b

′)
G̃dressed

(
r⊥ = 1/m,

1

2
Y − y

))

(B5)

where ãPP = aPP ln (W/W0).

Using Eq. (B5) we can write the double inclusive cross

section in two equivalent forms

d2σ 2parton showers

dy1 dy2

=
∫

d2 p1T d2 p2T

d2σ 2parton showers

dy1 dy2 d2 p1T d2 p2T

=
∫

d2b

{
α4 I (1,1) (y1, b) I (1,1) (y2, b) + α2 β2

×
(

I (1,2) (y1, b) I (1,2) (y2, b)+, I (2,1) (y1, b) I (2,1) (y2, b)

)

+β4 I (2,2) (y1, b) I (2,2) (y2, b)

}
(B6)

=
ã2

PP

p2
T 1 p2

T 2

×
∫

d2 QT

(
α2 I BK

1

(
1

2
Y + y1; QT

)
I BK
1

(
1

2
Y + y2; QT

)

+β2 I BK
2

(
1

2
Y + y1; QT

)
I BK
2

(
1

2
Y + y2; QT

))

×
(

α2 I BK
1

(
1

2
Y − y1; QT

)
I BK
1

(
1

2
Y − y2; QT

)

+β2 I BK
2

(
1

2
Y − y1; QT

)
I BK
2

(
1

2
Y − y2; QT

))

≡
ã2

PP

p2
T 1 p2

T 2

×
∫

d2 QT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; QT

)

×FBK
12

(
1

2
Y − y1,

1

2
Y − y2; QT

)
(B7)

where FBK
12 is equal to

FBK
12 (Y1, Y2; QT ) = α2 I BK

1 (Y1; QT ) I BK
1 (Y2; QT )

+β2 I BK
2 (Y1; QT ) I BK

2 (Y2; QT ) (B8)

Recall that all rapidities are in the c.m. frame.

c. vn for proton–proton collisions

Using Eq. (B7), Eq. (10) can be re-written in the following

form:

d2σ

dy1 dy2d2 pT 1d2 pT 2
=

ã2
PP

p2
T 1 p2

T 2

×
∫

d2kT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; kT

)

123



607 Page 22 of 25 Eur. Phys. J. C (2016) 76 :607

×FBK
12

(
1

2
Y − y1,

1

2
Y − y2; kT

)

+
ã2

PP

N 2
c − 1

1

4

(
1

p2
T 1

+
1

p2
T 2

)2

×
∫

d2kT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; kT

)

× FBK
12

(
1

2
Y − y1,

1

2
Y − y2; kT + pT,12

)
. (B9)

In Eq. (B9) we neglected the contribution ∝ p2
T,12 in the ver-

tex of gluon emission in Fig. 23 (see Appendix A1), as well

as the dependence of the BFKL Pomeron on the momentum

transfer. The small size of both quantities stem from the fact

that in our model, kT dependence in Eq. (B9) is determined

by the proton structure and the typical kT ∼ m1 or m2 (see

Table 1), while typical transverse momentum in the BFKL

Pomeron is about Qs or m, and it is much larger than m1 or

m2.

Appendix C: Hadron–nucleus interaction in the model

In the case of the hadron–nucleus interaction the general for-

mula of Eq. (B7) can be re-written in the form [114]

d2σ 2parton showers

dy1 dy2
=

∫
d2 p1T d2 p2T

d2σ 2parton showers

dy1 dy2 d2 p1T d2 p2T

(C1)

=
ã2
PP

p2
T 1 p2

T 2

∫
d2 QT

×
(

α2 I BK
1

(
1

2
Y + y1; QT

)
I BK
1

(
1

2
Y + y2; QT

)
+ β2

×I BK
2

(
1

2
Y + y1; QT

)
I BK
2

(
1

2
Y + y2; QT

) )

× I BK
A

(
1

2
Y − y1; QT

)
I BK

A

(
1

2
Y − y2; QT

)

≡
ã2
PP

p2
T 1 p2

T 2

∫
d2 QT FBK

12

(
1

2
Y + y1,

1

2
Y + y2; QT

)

×FBK
A

(
1

2
Y − y1,

1

2
Y − y2; QT

)
(C2)

where

I BK
A (y, QT ) =

∫
d2bei b· QT N BK

×
((

α2 I n(1) (y) + β2 I n(2) (y)

)
SA (b)

)
(C3)

where In(i) are defined in Eq. (B3) and SA (b) is the nucleus

Wood–Saxon distribution [115] given by

SA (b) =
∫ ∞

−∞
dz

ρ0

1 + exp

(√
z2+b2−RA

h

)

where

∫
d2b SA (b) = A. (C4)

For gold we have RA = 6.38 fm and h = 0.535 fm, while

for lead we have RA = 6.68 fm and h = 0.546 fm [115].

In Eq. (C2) we have taken into account that the typical

impact parameters in the hadron–hadron interaction are much

smaller than the radius of nucleus (RA). Indeed, the typi-

cal b in hadron–hadron collisions are α′
eff Y or less, where

α′
eff is the effective slope of the BFKL Pomeron trajec-

tory, which occurs in our model as a result of shadowing

corrections.

Using Eq. (C2) we can re-write Eq. (B9) for proton–proton

in the following form for proton–nucleus scattering:

d2σ

dy1 dy2d2 pT 1d2 pT 2
=

ã2
PP

p2
T 1 p2

T 2

×
∫

d2kT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; kT

)

× FBK
A

(
1

2
Y − y1,

1

2
Y − y2; kT

)

+
ã2

PP

N 2
c − 1

1

4

(
1

p2
T 1

+
1

p2
T 2

)2

×
∫

d2kT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; kT + pT,12

)

× FBK
A

(
1

2
Y − y1,

1

2
Y − y2; kT

)
, (C5)

and for nucleus–nuclues scattering we have

d2σ

dy1 dy2d2 pT 1d2 pT 2
=

ã2
PP

p2
T 1 p2

T 2

×
∫

d2kT FBK
12

(
1

2
Y + y1,

1

2
Y + y2; kT

)
FBK

A

×
(

1

2
Y − y1,

1

2
Y − y2; kT

)

+
ã2

PP

N 2
c − 1

1

4

(
1

p2
T 1

+
1

p2
T 2

)2

×
∫

d2kT FBK
A

×
(

1

2
Y + y1,

1

2
Y + y2; kT + pT,12

)

×FBK
A

(
1

2
Y − y1,

1

2
Y − y2; kT

)
. (C6)
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