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Abstract

Graph based multi-view clustering has been paid great at-
tention by exploring the neighborhood relationship among
data points from multiple views. Though achieving great suc-
cess in various applications, we observe that most of previous
methods learn a consensus graph by building certain data rep-
resentation models, which at least bears the following draw-
backs. First, their clustering performance highly depends on
the data representation capability of the model. Second, solv-
ing these resultant optimization models usually results in high
computational complexity. Third, there are often some hyper-
parameters in these models need to tune for obtaining the
optimal results. In this work, we propose a general, effec-
tive and parameter-free method with convergence guarantee
to learn a unified graph for multi-view data clustering via
cross-view graph diffusion (CGD), which is the first attempt
to employ diffusion process for multi-view clustering. The
proposed CGD takes the traditional predefined graph matrices
of different views as input, and learns an improved graph for
each single view via an iterative cross diffusion process by 1)
capturing the underlying manifold geometry structure of orig-
inal data points, and 2) leveraging the complementary infor-
mation among multiple graphs. The final unified graph used
for clustering is obtained by averaging the improved view as-
sociated graphs. Extensive experiments on several benchmark
datasets are conducted to demonstrate the effectiveness of the
proposed method in terms of seven clustering evaluation met-
rics.

Introduction
It is not uncommon that an object is usually described by
multi-view features. For example, in image/video process-
ing, different visual descriptors such as Local Binary Pat-
terns (LBP) (Ojala, Pietikainen, and Maenpaa 2002), Scale
Invariant Feature Transform (SIFT) (Lowe and Lowe 2004)
and Histogram of Oriented Gradient (HOG) (Dalal and
Triggs 2005) are often used to describe each image/video
frame from different views. In biomedical research, both the
chemical structure and chemical response in different cells
can be used to represent a certain drug, while the sequence
and gene expression values can represent a certain protein in
different aspects (Li 2014; Li and Cai 2017).
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Multi-view clustering (Tang et al. 2019c; Liu et al. 2018;
Zhang et al. 2019; Tang et al. 2019b; 2019a; 2019d), which
partitions these multi-view data into different groups by us-
ing the complementary information of multi-view feature
sets to ensure that highly similar instances are divided into
the same group, is an important branch of multi-view learn-
ing (Wang, Nie, and Huang 2013). In general, most of pre-
vious multi-view clustering methods employ graph-based
models since the similarity graph can characterize the data
structure effectively. These methods usually learn a common
sample similarity graph W firstly by deploying features of
different views (as shown by Fig. 1a), and then the cluster-
ing result is obtained by carrying out the spectral clustering
algorithm based on W (Cao et al. 2015; Wang et al. 2017;
Zhang et al. 2017; Tang et al. 2019c; Wang and Wu 2018;
Yang et al. 2017) or obtained directly from W without per-
forming any post-processing if W is constrained to be with
exactly k connected components, where k is the number of
clusters (Zhan et al. 2018; 2019; Wang, Yang, and Liu 2019;
Yang et al. 2019).

In recent years, numbers of graph learning based multi-
view clustering methods have been proposed. Due to the
page limitation, we just list a few of them here. By regard-
ing the subspace representation matrices of different views
as a tensor, Zhang et al. (Zhang et al. 2015) proposed low-
rank tensor constrained multi-view subspace clustering (LT-
MSC) to exploit the high order relation implied in multi-
view data. In LT-MSC, the low-rank constraint is applied
to the constructed tensor for capturing the cross-view infor-
mation and reducing the redundancy among different views.
In order to exploit the complementary information among
multiple feature views, Cao et al. (Cao et al. 2015) made
use of the Hilbert Schmidt Independence Criterion (HSIC)
to exploit the diversity of the new representations of different
views. Different from most of previous subspace clustering
methods which reconstruct data points using original fea-
tures, Zhang et al. (Zhang et al. 2017) proposed latent multi-
view subspace clustering which seeks the underlying latent
representation and assumes that all of different feature views
are projected from the learned latent feature space. The uni-
fied data representation matrix of different views is simulta-
neously learned from the latent space. Wang et al. (Wang et
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Figure 1: Traditional data representation learning based method (a) and our graph diffusion based method (b). In data repre-
sentation learning based method, a common similarity graph is learned by using original data. In our CGD method, we aim to
directly learn a unified graph from different pre-defined view-specific graphs.

al. 2017) combined subspace learning and spectral cluster-
ing together and introduced a novel exclusivity-consistency
regularized multi-view subspace clustering model, which si-
multaneously encourages the representation exclusivity as
well as the indicator consistency. In (Zhan et al. 2018; 2019;
Wang, Yang, and Liu 2019), a unified graph with an rank
constraint on its Laplacian matrix is learned from different
views, then the cluster indicators are obtained directly from
the global graph without performing any graph cut technique
or the k-means clustering.

Although promising results have been attained by previ-
ous graph learning based multi-view clustering methods in
various applications, their clustering performance highly de-
pends on the quality of graph learning models, and solv-
ing these learning models usually results in high computa-
tional complexity. In addition, there are often some hyper-
parameters in these models need to tune for obtaining the
optimal results. In this work, we attempt to learn a unified
graph for multi-view data clustering via cross-view graph
diffusion (CGD). Instead of learning a consensus graph
from original multi-view features, CGD takes the traditional
predefined graph matrices of different views as input, and
learns an improved graph for each single view via an iter-
ative cross diffusion process. Compared to previous meth-
ods which learn the consensus graph from original features,
CGD directly learns the unified graph from multiple prede-
fined graphs, it has three advantages: 1) CGD can captures
the underlying manifold geometry structure of original data
points from different views, and 2) leverage the complemen-
tary information among multiple graphs instead of original
multi-view data, which is more intuitive since the multiple
graphs directly characterize the relationship of data points
in different aspects, and 3) it is parameter-free when the pre-
defined view-specific graphs are given. Fig. 1b gives a brief
outline of our proposed method.

In brief, the main contributions of this work can be sum-
marized as follows:

• We design a general and effective unified graph learn-
ing method with proven convergence for multi-view clus-
tering via cross-view graph diffusion, which can intu-
itively capture the complementary information from mul-
tiple predefined view-specific graphs. As far as we know,
our work is the first attempt to employ diffusion process

for multi-view data clustering;

• Our proposed method is parameter-free when the prede-
fined view-specific graphs are given, i.e., no parameter
need to tune for obtaining the final optimal results;

• Extensive experiments on both toy datasets and real-world
datasets are conducted to validate the superiority of our
proposed method in terms of different clustering evalua-
tion metrics.

The Proposed CGD Method

Notations and Problem Definition

Throughout this paper, boldface capital letters denote matri-
ces. Given an arbitrary matrix M ∈ R

m×n, Mij or M(i, j)

denotes its (i, j)-th entry. MT is the transpose of M. Im rep-
resents an m×m identity matrix (abbreviated as I if the size
is obviously known).

Suppose we have N data instances captured from V dif-
ferent views. X = [X1;X2; · · · ;XV ] ∈ R

D×N is the multi-
view data matrix which consists of V different views, where
Xv ∈ R

Dv×N represents the v-th view and Dv represents its

feature dimension with
∑V

i=1 Dv = D. The aim of multi-
view clustering is to classify these data points into differ-
ent groups by using the multi-view information. For the v-th
view, we generate a weighted graph Gv = (Xv,Wv), where
Wv is the graph adjacency matrix which is calculated by us-
ing certain distance metric such as the Gaussian kernel func-
tion and cos similarity. CGD aims to generate a unified graph
G = (X,W) for multi-view clustering by using the comple-
mentarity among multiple graphs Gv, v = 1, 2, · · · , V .

Diffusion Process Revisiting

Given a weighted graph G = (X,W), diffusion process aims
to learn a more faithful similarity matrix A. Motivated by the
manifold ranking model (Zhou et al. 2004), Bai et al. (Bai et
al. 2017) proposed a regularized diffusion process (RDP) for
visual retrieval, which obtains the new similarity measure
A as the closed-form solution of the following optimization
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where µ > 0 is a regularization parameter. F ∈ R

N×N rep-
resents the initial affinity values of W. D is a diagonal matrix

with elements Dii =
∑N

j=1 Wij .

As demonstrated in (Bai et al. 2017), the closed-form so-
lution of the objective function in Eq. (1) is obtained as:

A∗ = (1− α)vec−1((I − αS)−1vec(F)), (2)

where α = 1
1+µ

. vec(·) is an operator which vectorizes an

input matrix by stacking its columns one after the next. The
corresponding inverse operator is denoted as vec(·)−1. S ∈

R
N2×N2

is the Kronecker product of S, i.e., S ⊗ S with S =

D− 1

2 WD− 1

2 .
Motivated by the iterative manner of previous works

(Donoser and Bischof 2013), the iteratively similarity prop-
agation can be formulated as follows:

A(t+1) = αSA(t)ST + (1− α)F, (3)

where t represents the t-th iteration time.
Although Eq. (3) can obtain good and stable results, it

updates the single graph corresponding to each view sep-
arately, the complementary information of multiple graphs
has not been fully utilized. In our CGD, we design a cross
graph diffusion strategy to improve each single graph by us-
ing the complementarity among multiple graphs.

Formulation of CGD

The critical point for improving multi-view clustering is how
to exploit the complementarity among different views. Most
of previous works build a certain data representation model
from original multi-view features to learn a consensus sim-
ilarity graph, their clustering performance differ with each
other due to the representation capability of the learning
models. In addition, solving these resultant learning models
usually results in high computational complexity. Instead of
learning the unified graph from original features, we attempt
to generate the final consensus graph from multiple prede-
fined graphs from different views, which is more intuitive
and efficient. For the similarity graph matrix Wv of the v-th
view, we design the cross-view diffusion process to update
Wv as follows:

W(t+1)
v = αSt

v ·

⎛

⎜

⎝

1

V − 1

V
∑

u=1

u �=v

W(t)
u

⎞

⎟

⎠
· (St

v)
T +(1−α)W0

v.

(4)
As can be seen from Eq. (4), the connection information in
different graphs has been interchanged iteratively to achieve
the final unified graph. On one hand, similarity values of

different graph matrices are propagated to other ones in each
iteration. On the other hand, the information from original
graph are partially preserved by the scalar parameter α. In
such a manner, the complementarity among multiple graphs
can be utilized to improve the diffusion process.

Note that we aim to fuse multiple similarity graph matri-
ces, we need to apply a normalization step to all graph ma-
trices to ensure them to be the same scale. For Wv , one can
use a simple way to perform the normalization as W̄v =
Wv/Dv , where Dv is a diagonal matrix with Dv(i, i) =
∑N

j=1 Wv(i, j). In such a manner,
∑N

j=1 W̄v(i, j) = 1 can

be ensured. However, since self-similarities in the diagonal
entries of Wv are used, this kind of normalization may not
be numerical stable (Tong et al. 2016). Here, we perform the
normalization over the similarity graph matrix Wv as fol-
lows:

W̄v(i, j) =

{

Wv(i,j)

2
∑

N
j=1

Wv(i,j)
, i �= j

1
2 , i = j.

(5)

By this way, we set the self-similarity in each row to 1/2 and
the sum of rest elements to 1/2 so that the sum of the whole

row
∑N

j=1 W̄v(i, j) = 1 still holds.

After T times of iteration, the final unified graph can be
obtained by

W̄ =
1

N

V
∑

v=1

W(T )
v , (6)

which is used for final clustering by performing Normalized
cuts (Shi and Malik 2000).

In Eq. (4), we need to set the value of α. Since α deter-
mines the proportion of the information from original graph
that should be preserved at each iteration time, we design an
adaptive manner to determine α for each dataset. For differ-
ent view-specific graphs, if the value of an edge is large in
all of different graphs, we call this edge as strong edge and it
should be obviously preserved in each graph during the dif-
fusion process. Therefore, the more strong edges in a graph,
the more information of original graph should be preserved.
To this end, we can use the Hadamard product H of different
graphs to calculate the number of strong edges as follows:

H =

V
∏

v=1

Wv, (7)

where
∏

denotes the Hadamard product of a sequence. By
using Eq. (7), Hij will be large if Wv(i, j) has large value in
all of the different view-specific graphs. Otherwise, Hij will

be close to 0. If the number of non-zero edges in H is Ñ , we

set α = 1 − Ñ/N2, i.e., larger Ñ will induce small α and
more strong edges in original graph can be preserved.

Theoretical Analysis

In this subsection, we give the computational complexity
and theoretical convergence analysis of our CGD model.

Computational Complexity As can be seen from Eq. (4),
after we obtain the predefined similarity graph matrices of
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different views, the major computational cost of each diffu-
sion iteration lies in the matrix multiplication operation with
N ×N size, of which the computational time complexity is
O(N3). Therefore, the whole computational time complex-
ity of our CGD is O(TN3), where T is the final iteration
times.

Theoretical Convergence Guarantee Similar to (Bai et
al. 2017), the theoretical convergence of the iteration process
of our CGD can be also guaranteed. Before we present the
proof, we first give Lemma 1.

Lemma 1. Given three matrices A, B and C with appropri-

ate sizes, then vec(ABC
T ) = (C ⊗ A)vec(B).

By applying vec(·) to both sides of Eq. (4), we have

vec(W
(t+1)
v ) = αSvec(Z

(t)
v ) + (1− α)vec(W

(1)
v )

= (αS)tvec(Z
(1)
v ) + (1− α)

t−1∑

k=0

(αS)kvec(W
(1)
v )

(8)

where Z(t)
v = 1

V−1

V
∑

u=1,u �=v

W(t)
u .

Since the spectral radius of S is no larger than 1, according
to the properties of Kronecker product, the eigenvalues of
S = S ⊗ S are also in [−1, 1]. Since 0 < α < 1, we have
⎧

⎪

⎨

⎪

⎩

lim
t→∞

(αS)tvec(Z(1)
v ) = 0

lim
t→∞

t−1
∑

k=0

(αS)
k
vec(W(1)

v ) = (I − αS)−1vec(W(1)
v ).

(9)
Therefore, when t → ∞, Eq. (8) converges as

lim
t→∞

vec(W(t+1)
v ) = (1− α)(I − αS)−1vec(W(1)

v ). (10)

By applying vec−1 to both sides of Eq. (10), the iteration
converges to exactly the same solution in Eq. (2).

Experiments

In this section, we present the experimental results of CGD
on ten datasets (including two toy datasets and eight real-
world datasets) and compare CGD with some with state-of-
the-art methods.

Datasets

Toy Datasets In order to give a intuitive visual illustra-
tion of the capability of CGD, we generated two toy datasets
for testing. The first toy dataset consists of two views and
200 sample points, named RandomGaussian dataset, which
is shown in Fig. 2a and Fig. 2f. Each view is generated from
multivariate normal distribution with 2 × 2 covariance ma-

trix

[

0.1 0
0 5

]

. The first view with 100 point are generated

with mean vector [0, 1], and the second view with 100 point
are generated with mean vector [−1, 0]. The points in the left
part (yellow) and right part (green) are two clusters, respec-
tively. The second toy dataset named TwoMoon also consists
of two views and 200 sample points, but with a moon pat-
tern, as shown in Fig. 3a and Fig. 3f. Each view is generated

with 0.15 percentage of random Gaussian noise adding. The
upper moon (yellow) and the lower moon (green) are two
clusters, respectively. Each cluster has 100 sample points.

Real-World Datasets Six real-world benchmark datasets
are used to evaluate the performance of our CGD. They are
as follows:
BBCSport consists of documents of sport news correspond-
ing to 5 topics, where for each document two different
types of features are extracted (Xia et al. 2014); MSRCV1
consists of 210 images from 7 classes. There are 6 types
of features extracted: CENT, CMT, GIST, HOG, LBP, and
SIFT (Xu, Han, and Nie 2016); 100leaves consists of 1600
samples from each of one hundred plant species. For each
sample, shape descriptor, fine scale margin and texture
histogram are extracted1; 3sources consists of 169 news,
which were reported by three news organizations, i.e., BBC,
Reuters, and The Guardian2; Scene-15 consists of 15 scene
categories with both indoor and outdoor environments, 4485
images in total. Three features including GIST, PHOG, and
LBP are extracted (Li and Perona 2005); Reuters consists
of 18758 samples with 5 types of languages and the doc-
uments are represented as a bag of words using a TFIDF-
based weighting scheme (Amini, Usunier, and Goutte 2009).
The detailed information of the datasets are summarized in
Table 1, in which N , V , C and dv denote the number of in-
stances, views, clusters, and the dimension of features in the
v-th view, respectively.

Table 1: Details of the benchmark datasets

Datasets N V C d1 d2 d3 d4 d5 d6

BBCSport 544 2 5 3183 3203 – – – –
100leaves 1600 3 100 64 64 64 – – –
3sources 169 3 6 3560 3631 3068 – – –
Scene-15 4485 3 15 20 59 40 – – –
Reuters 18758 5 6 21531 24892 34251 15506 11547 –

MSRCV1 210 6 7 1302 48 512 100 256 210

Compared Baselines We compare our method with the
following ten baselines.
SPCBestSV: The standard spectral clustering (Ng, Jordan, and
Weiss 2001). We report the best results corresponding to a
certain single view. LRRBestSV: The standard LRR (Liu et
al. 2013). We also report the results of the best single view.
DiMSC (Cao et al. 2015): The method which uses the HSIC
criterion to enforce the diversity of different views (Gret-
ton et al. 2005), and then the clustering results are obtained
by using spectral clustering. AMGL (Nie, Li, and Li 2016):
A novel framework that automatically learns the affinity
graphs and weights for different views, it can perform both
multi-view clustering as well as other semi-supervised tasks.
MLAN (Nie, Cai, and Li 2017): An efficient model for both
clustering and semi-supervised classification, in which the
local structure of data is learned adaptively. ECMSC (Wang
et al. 2017): A novel multi-view clustering algorithm in
which the data representation exclusivity and indicator con-

1https://archive.ics.uci.edu/ml/datasets/One-
hundred+plant+species+leaves+data+set

2http://mlg.ucd.ie/datasets/3sources.html

5927



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Intuitive results on the RandomGaussian dataset. The first row is the first view. The second row is the second view.
(a) and (f) are the data points of the first view and the second view, respectively. (b) and (g) are the initial similarity graphs
calculated by using the Gaussian kernel function for the first view and the second view, respectively. (d) and (i) are the learned
similarity graphs after the diffusion process for the first view and the second view, respectively. (c) and (h) are the graph node
connections of the initial graphs for the first view and the second view, respectively. (e) and (j) are the graph node connections
of the learned graphs for the first view and the second view, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Intuitive results on the TwoMoon dataset. The notes are same to Fig. 2.
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Table 2: Clustering performance comparison of different methods (mean ± standard deviation)

Datasets Methods NMI ACC ARI F-score Precision Recall Purity

BBCSport

Single View
SPCBestSV 0.022±0.005 0.360±0.028 0.005±0.003 0.386±0.002 0.241±0.002 0.950±0.002 0.362±0.001
LRRBestSV 0.775±0.002 0.904±0.002 0.747±0.001 0.812±0.002 0.754±0.001 0.880±0.002 0.904±0.001

Multi-view

DiMSC 0.905±0.001 0.838±0.01 0.916±0.003 0.921±0.001 0.910±0.001 0.960±0.001 0.890±0.002
AMGL 0.030±0.000 0.364±0.000 0.011±0.000 0.381±0.000 0.243±0.000 0.887±0.000 0.794±0.000
MLAN 0.906±0.000 0.971±0.000 0.927±0.000 0.941±0.000 0.938±0.000 0.951±0.000 0.969±0.000

ECMSC 0.065±0.004 0.393±0.006 0.020±0.004 0.376±0.002 0.246±0.004 0.794±0.002 0.400±0.002
LMSC 0.842±0.006 0.923±0.007 0.875±0.002 0.905±0.008 0.899±0.004 0.911±0.006 0.923±0.005
MVGL 0.097±0.000 0.412±0.000 0.040±0.000 0.398±0.000 0.255±0.000 0.911±0.000 0.432±0.000
MCGC 0.112±0.000 0.421±0.000 0.049±0.000 0.401±0.000 0.258±0.000 0.899±0.000 0.444±0.000

GMC 0.705±0.000 0.739±0.000 0.601±0.000 0.721±0.000 0.573±0.000 0.971±0.000 0.763±0.000
CGD 0.910±0.003 0.974±0.004 0.931±0.002 0.947±0.001 0.943±0.003 0.952±0.004 0.974±0.002

MSRCV1

Single View
SPCBestSV 0.556±0.000 0.519±0.000 0.289±0.000 0.431±0.000 0.300±0.000 0.767±0.000 0.523±0.000
LRRBestSV 0.539±0.021 0.681±0.018 0.413±0.019 0.498±0.017 0.476±0.019 0.521±0.018 0.681±0.018

Multi-view

DiMSC 0.661±0.018 0.751±0.021 0.743±0.016 0.731±0.016 0.755±0.015 0.827±0.019 0.701±0.016
AMGL 0.743±0.000 0.738±0.000 0.618±0.000 0.675±0.000 0.626±0.000 0.732±0.000 0.728±0.000
MLAN 0.753±0.000 0.719±0.000 0.619±0.000 0.678±0.000 0.601±0.000 0.778±0.000 0.785±0.000

ECMSC 0.831±0.003 0.908±0.006 0.762±0.003 0.801±0.002 0.800±0.004 0.824±0.002 0.908±0.001
LMSC 0.718±0.013 0.838±0.015 0.667±0.016 0.714±0.015 0.703±0.014 0.725±0.017 0.838±0.018
MVGL 0.833±0.000 0.904±0.000 0.774±0.000 0.802±0.000 0.801±0.000 0.823±0.000 0.904±0.000
MCGC 0.692±0.000 0.776±0.000 0.630±0.000 0.685±0.000 0.640±0.000 0.737±0.000 0.785±0.000

GMC 0.816±0.000 0.895±0.000 0.767±0.000 0.799±0.000 0.786±0.000 0.814±0.000 0.895±0.000
CGD 0.842±0.004 0.910±0.006 0.790±0.003 0.819±0.004 0.804±0.005 0.836±0.005 0.910±0.005

100leaves

Single View
SPCBestSV 0.777±0.002 0.483±0.014 0.203±0.008 0.215±0.008 0.128±0.007 0.674±0.006 0.520±0.003
LRRBestSV 0.715±0.018 0.488±0.013 0.307±0.011 0.315±0.010 0.274±0.007 0.371±0.008 0.529±0.009

Multi-view

DiMSC 0.713±0.003 0.857±0.004 0.611±0.002 0.580±0.005 0.647±0.001 0.882±0.002 0.607±0.003
AMGL 0.889±0.000 0.775±0.000 0.563±0.000 0.568±0.000 0.431±0.000 0.834±0.000 0.815±0.000
MLAN 0.941±0.000 0.848±0.000 0.797±0.000 0.799±0.000 0.737±0.000 0.871±0.000 0.876±0.000

ECMSC 0.823±0.013 0.670±0.012 0.516±0.013 0.521±0.011 0.459±0.007 0.602±0.006 0.686±0.008
LMSC 0.869±0.009 0.738±0.017 0.645±0.012 0.649±0.013 0.608±0.011 0.695±0.012 0.758±0.009
MVGL 0.869±0.000 0.766±0.000 0.506±0.000 0.513±0.000 0.379±0.000 0.789±0.000 0.787±0.000
MCGC 0.834±0.000 0.727±0.000 0.410±0.000 0.418±0.000 0.290±0.000 0.745±0.000 0.747±0.000

GMC 0.902±0.000 0.824±0.000 0.497±0.000 0.504±0.000 0.352±0.000 0.881±0.000 0.851±0.000
CGD 0.943±0.007 0.859±0.005 0.821±0.006 0.823±0.004 0.770±0.006 0.884±0.004 0.881±0.005

3sources

Single View
SPCBestSV 0.054±0.014 0.331±0.015 0.011±0.012 0.362±0.011 0.228±0.008 0.879±0.009 0.349±0.013
LRRBestSV 0.525±0.016 0.627±0.009 0.351±0.011 0.555±0.012 0.411±0.013 0.853±0.013 0.668±0.008

Multi-view

DiMSC 0.684±0.011 0.749±0.007 0.608±0.005 0.703±0.007 0.644±0.006 0.882±0.008 0.680±0.003
AMGL 0.058±0.000 0.325±0.000 0.026±0.000 0.348±0.000 0.221±0.000 0.812±0.000 0.384±0.000
MLAN 0.548±0.000 0.680±0.000 0.365±0.000 0.553±0.000 0.434±0.000 0.762±0.000 0.716±0.000

ECMSC 0.095±0.006 0.378±0.007 0.035±0.008 0.331±0.006 0.250±0.005 0.489±0.008 0.443±0.006
LMSC 0.671±0.012 0.721±0.009 0.567±0.005 0.656±0.006 0.744±0.007 0.589±0.004 0.816±0.008
MVGL 0.070±0.000 0.302±0.000 0.036±0.000 0.339±0.000 0.218±0.000 0.768±0.000 0.379±0.000
MCGC 0.075±0.000 0.301±0.000 0.037±0.000 0.337±0.000 0.216±0.000 0.756±0.000 0.384±0.000

GMC 0.548±0.000 0.692±0.000 0.443±0.000 0.605±0.000 0.484±0.000 0.804±0.000 0.746±0.000
CGD 0.695±0.005 0.781±0.006 0.611±0.005 0.709±0.006 0.651±0.007 0.889±0.006 0.828±0.003

scene-15

Single View
SPCBestSV 0.384±0.014 0.377±0.013 0.208±0.001 0.272±0.014 0.234±0.014 0.324±0.013 0.404±0.014
LRRBestSV 0.369±0.002 0.368±0.003 0.201±0.001 0.263±0.002 0.233±0.003 0.3022±0.001 0.395±0.001

Multi-view

DiMSC 0.138±0.003 0.204±0.002 0.059±0.001 0.125±0.002 0.123±0.003 0.126±0.001 0.203±0.002
AMGL 0.369±0.012 0.339±0.011 0.166±0.009 0.243±0.010 0.183±0.008 0.362±0.007 0.368±0.012
MLAN 0.177±0.001 0.157±0.002 0.015±0.001 0.14±0.001 0.076±0.001 0.325±0.002 0.171±0.001

ECMSC 0.297±0.011 0.307±0.012 0.154±0.011 0.214±0.011 0.209±0.009 0.218±0.008 0.380±0.007
LMSC 0.353±0.010 0.413±0.012 0.212±0.009 0.270±0.007 0.267±0.008 0.291±0.008 0.436±0.007
MVGL 0.378±0.000 0.369±0.000 0.216±0.000 0.283±0.000 0.226±0.000 0.329±0.000 0.398±0.000
MCGC 0.142±0.000 0.179±0.000 0.054±0.000 0.170±0.000 0.096±0.000 0.329±0.000 0.186±0.000

GMC 0.058±0.000 0.140±0.000 0.004±0.000 0.132±0.000 0.071±0.000 0.354±0.000 0.146±0.000
CGD 0.419±0.006 0.428±0.004 0.256±0.003 0.315±0.003 0.277±0.002 0.364±0.003 0.484±0.004

Reuters

Single View
SPCBestSV 0.112±0.012 0.296±0.008 0.059±0.000 0.378±0.007 0.238±0.009 0.912±0.006 0.329±0.007
LRRBestSV 0.206±0.006 0.397±0.003 0.064±0.005 0.324±0.004 0.240±0.005 0.899±0.004 0.294±0.005

Multi-view

DiMSC 0.182±0.003 0.401±0.011 0.071±0.007 0.285±0.004 0.255±0.008 0.901±0.006 0.338±0.007
AMGL 0.194±0.001 0.361±0.003 0.059±0.002 0.291±0.003 0.242±0.004 0.893±0.002 0.325±0.002
MLAN 0.225±0.002 0.359±0.003 0.063±0.002 0.323±0.003 0.218±0.002 0.890±0.003 0.331±0.002

ECMSC 0.267±0.004 0.384±0.006 0.065±0.004 0.301±0.003 0.239±0.005 0.873±0.003 0.314±0.003
LMSC 0.278±0.006 0.479±0.006 0.077±0.005 0.401±0.005 0.263±0.006 0.905±0.007 0.347±0.005
MVGL 0.271±0.000 0.461±0.000 0.075±0.000 0.394±0.000 0.243±0.000 0.898±0.000 0.352±0.000
MCGC 0.263±0.000 0.439±0.000 0.072±0.000 0.388±0.000 0.257±0.000 0.879±0.000 0.349±0.000

GMC 0.274±0.000 0.472±0.000 0.078±0.000 0.391±0.000 0.262±0.000 0.910±0.000 0.351±0.000
CGD 0.287±0.005 0.492±0.004 0.082±0.003 0.422±0.003 0.279±0.003 0.923±0.002 0.367±0.003

5929



sistency are simultaneously exploited in a unified manner.
LMSC (Zhang et al. 2017): The latent multi-view subspace
clustering method, which clusters data points with latent rep-
resentation and simultaneously explores underlying comple-
mentary information from multiple views. MCGL (Zhan et
al. 2018): The graph learning for multi-view clustering, in
which a rank constraint is imposed on the Laplacian ma-
trix to regularize the number of connected elements of the
learned graph. MCGC (Zhan et al. 2019): Multi-view con-
sensus graph clustering, which learn a consensus graph with
minimizing disagreement between different views and con-
straining the rank of the Laplacian matrix. GMC (Wang,
Yang, and Liu 2019): Graph-based multi-view clustering,
which takes the data graph matrices of all views and fuses
them to generate a unified graph matrix.

Experiment Settings There are different parameters in
other compared methods. For fair comparison, we tune their
parameters as suggested in the original paper and the cor-
responding best results from the optimal parameters for
all methods are reported. Without loss of generality, we
use the commonly used Gaussian kernel function with Eu-
clidean distance to generate initial view-specific graphs. σ
in the Gaussian kernel function is set to 0.5. Seven widely
used metrics are used to evaluate the performance: cluster-
ing accuracy (ACC), normalized mutual information (NMI),
purity, precision, recall, F-score, and adjusted rand index
(ARI). For these metrics, the larger value indicates the bet-
ter clustering performance. We run each algorithm 10 times
with the optimal parameters and report the means and stan-
dard deviations of the performance measures.
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Figure 4: Clustering performance with different iteration
times of MSRCV1 dataset.

Experimental Results on Toy Datasets Fig. 2b, Fig. 2g,
Fig. 3b and Fig. 3g show the constructed graphs of the two
views of the two toy datasets. Fig. 2d, Fig. 2i, Fig. 3d and
Fig. 3i are the corresponding updated graphs of the two

views of the two toy datasets after T times of iteration. As
can be seen, after the diffusion process, some noisy sim-
ilarity values are removed, while some credible similarity
values can be strengthened, which indicates that the diffu-
sion process can effectively improve the initial similarity
graphs. In order Fig. 2e, Fig. 2j, Fig. 3e and Fig. 3j show
the connections by using the learned graphs. As shown, the
learned similarity graphs can separate different views very
well since it can exploit the complementary information
from different views.

Experimental Results on Real-World Datasets The
quantitative comparison results in terms of different metric
are shown in Table 2. From the results, we can have the fol-
lowing observations:

• In most cases, multi-view learning methods can obtain
better results than single view methods, which demon-
strate that the cross-view information can be used to effec-
tively improve the clustering performance for multi-view
data;

• Our proposed CGD performs better than all of other state-
of-the-art ones, which validate the efficacy of the cross-
view graph diffusion process, i.e., the complementary in-
formation implied in the graphs of different views can be
exploited to boost each other for the final clustering task;

• In some cases, single view methods, i.e., SPCBestSV and
LRRBestSV, are even work better than some multi-view
methods. This indicates that exploring stable multi-view
clustering method is still necessary.

Clustering Results with Different Iteration Times In or-
der to validate that the diffusion process can improve the
quality of the similarity graphs step by step, we plot the
clustering results of MSRCV1 dataset with different itera-
tion times in Fig. 4. As can be seen, the clustering results
have been improved obviously in the first iteration times,
and stay stable after several times of iteration.

Conclusions

In this work, we propose a general, effective and parameter-
free method with convergence guarantee for multi-view data
clustering via cross-view graph diffusion (CGD). CGD takes
the traditional predefined graph matrices of different views
as input, and learns an improved graph for each single view
via an iterative cross diffusion process. The final unified
graph used for clustering is obtained by averaging the im-
proved view associated graphs. Extensive experiments on
several benchmark datasets are conducted to demonstrate
the efficacy of the proposed method in terms of seven clus-
tering evaluation metrics. In the future, we plan to adopt the
Nystrom sampling to improve the computational complex-
ity.
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