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ABSTRACT Recent studies have shown that microRNAs (miRNAs) play an important role in complex
human diseases. Identifying potential miRNA-disease associations is useful for understanding the pathogen-
esis. However, there are currently only a few methods proposed to predict miRNA-disease association based
on sequence information. And these methods can only quantify nonlinear sequence relationships without
taking linear sequence information into account. In this work, we designed a computational method for
predicting miRNA-disease association based on chaos game representation, called CGMDA, to overcome
these problems. CGMDA combines association information with miRNA sequence information, miRNA
functional information and disease semantic information to improve prediction accuracy. In particular, we use
chaos game representation (CGR) technology for the first time to transform miRNA sequence information
into image information and extract its features. In the cross-validation experiment, CGMDA achieved a
mean the area under the receiver operating characteristic curve (AUC) of 0.9099 on the HMDD v3.0 data set.
To better evaluate the performance of CGMDA, we compared it to different classifiers and related prediction
methods. In addition, CGMDA is applied to three human complex diseases. The results showed that of the
top 40 disease-related miRNAs predicted, 39 (Breast Neoplasm), 39 (Lymphoma) and 38 (Colon Neoplasm)
were validated by experiments in case studies. These experimental results show that CGMDA is a reliable
tool and has potential application prospects in assisting early diagnosis and treatment of prognosis.

INDEX TERMS miRNAs, chaos game representation, disease, heterogenous information, LightGBM.

I. INTRODUCTION

MicroRNAs (miRNAs) are small RNAs that are 20 to
25 nucleotides in length [1], [2]. Line-4 and let-7 are the
first two miRNAs discovered in the past two decades [3], [4].
Since then, many miRNAs have been revealed and identified
by using different biological experimental methods, which
gives new insights into the functions and regulatory mech-
anisms of miRNAs. The experiment proves that many miR-
NAs are specifically expressed in certain types of diseases,
including arthritis, adenoid cystic, arteriosclerotic occlusive
disease, immune thrombocytopenic purpura, and idiopathic
pulmonary hypertension [5]–[10]. For example, Bang et al.
found that miR-23, miR-27 and miR-24 cluster have the
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relation to angiogenesis and endothelial apoptosis with the
progress of cardiac ischemia and retinal vascular, and are also
the key of cardiovascular angiogenesis [11]. For the above
reasons, exploring the potential association between miRNA
and disease is gradually concerned by scholars [12]–[15].
However, the high experimental cost, long experimental cycle
and sensitivity of noise may hinder the validation of potential
miRNA-disease associations through biological experiments.
Therefore, it is necessary to find more effective calculation
methods to assist biological experiments to provide effec-
tive association candidates to promote the development of
biomedicine.

Since existing methods cannot accurately measure miRNA
attribute information based on incompletely correlated bio-
logical information or only nonlinear sequence relation-
ships are considered. In this study, we introduce a new
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computational approach of Chaos Game Representation for
predicting miRNA-Disease Association called CGMDA to
try to overcome the above problems. The proposed method
integrates manifold sources including miRNA sequence
information, miRNA functional similarity information, dis-
ease semantic similarity information, and known miRNA-
disease association information. The three advantages of our
approach are as follows: (1) miRNA sequence information
can accuratelymeasuremiRNAproperty information. (2) The
introduction of chaos game representation method can pro-
vide new ideas for extracting sequence features. (3) Imaging
the sequence information can align the features.
In order to better verify the robustness and reliabil-

ity of the method, the experiment was designed. 5-fold
cross-validation was used to evaluate the performance of
CGMDA on the HMDD V3.0 dataset, resulting in the AUC
of 90.99%. In addition, CGMDA is applied to Breast Neo-
plasms, Lymphoma and Colon Neoplasms, and the accuracy
of the first 40 predicted miRNAs in other databases was
97.7%, 97.5% and 95%, respectively. The above experimental
results prove that the proposed method is reliable and robust.
We hope that the introduction of chaos game representation
can provide a new perspective for extracting sequence feature
research. In particular, we introduce chaos game representa-
tion into miRNA disease prediction models for the first time
and hope to provide a new perspective for extracting nucleic
acid sequence features.

II. RELATED WORK

In recent years, more and more prediction methods for
underlying disease-miRNA associations have been discov-
ered. There have been two types of classical calculation
methods, similarity-based measures methods and machine
learning-based methods. Shi et al. established a computa-
tional method based on a random walk algorithm to identify
unknown miRNA-disease associations [16]. Xu et al. estab-
lished a prioritization method that does not require miRNA-
disease association information to prioritize disease-related
miRNAs [17]. Chen et al. Inferred potential miRNA-disease
interactions by implementing random walks on miRNA-
miRNA functional similarity networks using global network
similarity measures [18]. Li et al. proposed an algorithm
for predicting potential disease-related miRNA by updating
adjacency matrices more efficiently based only on known
miRNA-disease association information [19]. Next, machine
learning-based approaches were introduced. Xu et al. devel-
oped a predictive method based on support vector machine
(SVM) for candidate miRNAs in prostate cancer [20].
Wang et al. proposed a new method of Logistic Model Tree
for predicting miRNA-Disease Association and extracted
miRNA sequence information for the first time using natural
language processing techniques [21].

III. MATERIALS AND METHODS
A. HUMAN MIRNA-DISEASE ASSOCIATIONS

The HMDD (Human MicroRNA Disease Database) dataset
provided by Li et al. provides experimental support for

human miRNA and disease association [22]. The latest ver-
sion of the HMDD dataset now collects 32,281 miRNA
disease associations, including 1,102 miRNAs and 850 dis-
eases from 17,412 papers. The home page of the data
set is http://www.cuilab.cn/hmdd. When preprocessing the
dataset, we excluded some miRNAs that cannot find the
corresponding sequence information in the public database
miRBase [23]. After screening, we selected miRNA-disease
association pairs constructed by 1057 miRNAs and 850 dis-
eases as positive set in the experiment. When disease d(i) and
miRNAm(j) that have association are verified in the HMDD
v3.0 database, the element X (i, j) of the adjacency matrix X
is equal to 1, otherwise it is equal to 0, where d(i) is the i-th
disease and m(j) is the j-th miRNA [24].

B. MIRNA FUNCTIONAL SIMILARITY

Based on the hypothesis that pathologically similar dis-
eases are affected by functionally similar miRNAs and
vice versa, Wang et al. proposed an algorithm for cal-
culating the similarity of miRNA functions [25]. The
MiRNA functional similarity score was uploaded to
http://www.cuilab.cn/files/images/cuilab/misim.zip. In this
method, we download and construct a 495-line× 495-column
miRNA functional similarity matrixFS as miRNA functional
similarity information, where the entity FS(a, b) represents
the similarity score between miRNA m(a) and m(b). a and b
are the serial numbers of miRNA. The data used to calculate
the functional similarity of miRNAs comes from the HMDD
database and there is a possibility that the inclusion of label
information in the feature would result in inaccurate results.
Therefore, this data is only added to the feature in the case
study.

C. DISEASE SEMANTIC SIMILARITY MODEL

The medical subject term (MeSH) is a disease descriptor
to rigorously classify diseases which can be downloaded
from the medical library (http://www.nlm.nih.gov/), and its
hierarchical information can reflect the relationship between
miRNA-related diseases. Diseases can be described as a
directed acyclic graph (DAG) based on MeSH, where the
edge is the relationship between the diseases and the node
is the disease [26]. If the MeSH of disease d(j) is a subset
of the MeSH of disease d(i), then d(j) is the parent node
of d(i) and d(i) is the child node of d(j). For example,
‘‘Neoplasms by histologic type’’ (C04.577) is the parent node
of ‘‘Neoplasms, glandular and epithelial’’ (C04.557.470).
Therefore, the disease d(i) can be represented by DAGd(i) =

(d(i),Td(i),Wd(i)), where Td(i) is the set of ancestor nodes
including d(i) andWd(i) is the set of edges between diseases.
The disease semantic information calculated by the above
DAG can reflect the attributes of the disease and enrich the
information contained in the features. In addition, d(i) is
the i-th disease of all 850 diseases used. Here, the previous
method provided by Xuan et al. based on the MeSH disease
descriptor was used to calculate the semantic similarity of
the disease [27]. In particular, the semantic value Dd(i)(t) is
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considered to be the contribution of disease t to disease d(i),
as follows:











Dd(i) (t) = 1 if t = d(i)

Dd(i) (t) = max
{

1∗Dd(i)
(

t′
)

|t′ ∈ children of t
}

if t 6= d(i)

(1)

where 1 is the semantic contribution attenuation factor,
which we set to 0.5 according to previous research [26].
In addition, we defined the semantic value DV (d) as follows:

DV (d) =
∑

t∈Td(i)
Dd(i)(t) (2)

If the diseases d(i) and d(j) have more common parts of their
DAG maps, then the two diseases are semantically similar.
We can calculate the semantic similarity values based on this
conjecture, as defined below:

Sim1(d(i), d(j)) =

∑

t∈Td(i)∩Td(j)

(

Dd(i)(t) + Dd(j)(t)
)

DV (d(i)) + DV (d(j))
(3)

where Sim1 is semantic hierarchical information with
850 rows and 850 columns, and the elements Sim1(d(i), d(j))
are treated as semantic similarities of d(i) and d(j).
We consider the contribution of hierarchical information

to semantic values in Sim1. However, each disease occurs
at a different frequency in each DAG, and the less fre-
quently occurring diseases have higher specificity in general.
Therefore, in order to retain the term specific information,
we define the second semantic value D2d(i) (t) to quantify the
contribution of disease t to disease d(i) as follows:

D2d(i) (t) = log(1 +
number of DAGs includingt

number of disease
) (4)

The semantic similarity score Sim2 between disease d(i) and
d(j) is defined as follows:

Sim2(d(i), d(j))=

∑

t∈Td(i)∩Td(j)

(

D2d(i)(t)+D2d(j)(t)
)

DV (d(i))+DV (d(j))
(5)

where Sim2 is semantic specificity information with 850 rows
and 850 columns, and the elements Sim2(d(i), d(j)) are
treated as semantic similarities of d(i) and d(j).

D. GAUSSIAN INTERACTION PROFILE KERNEL (GIPK)

SIMILARITY FOR DISEASES AND MIRNA

The HMDD v3.0 dataset provides information about the
associations that contains similarity information between dis-
eases and between miRNAs, therefore Gaussian interaction
profile kernel (GIPK) similarity are utilized to extract this
information [28]. In detail, we describe the interaction profile
of disease d(a) with d(a)-associated miRNAs as IP(d(a)).
Among them, the binary vector IP(d(a)) is composed of the
a-th row vector of the adjacency matrix X . We described
disease GIPK similarity between d(a) and d(b) as follow:

KD (d(a), d(b)) = exp(−γd ∗ ||IP (d(a)) − IP (d(b)) ||2)

(6)

where the width parameter γd of the function can be cal-
culated by normalizing the original parameters. nd is the
number of diseases. The formula is as follows:

γ d =
1

1

nd

∑nd
i=1

||IP(d(i))||2
(7)

The Gaussian interaction profile kernel (GIPK) similarity
between miRNAs is calculated in the same way:

KM (m(a),m(b)) = exp(−γm ∗ ||IP (m(a)) − IP(m(b))||2)

(8)

γm =
1

1
nm

∑nm
i=1 ||IP(m(i))||

2
(9)

In detail, we describe the interaction profile of miRNA m(a)
with m(a)-associated miRNAs as IP(m(a)). Among them,
the binary vector IP(m(a)) is composed of the a-th column
vector of the adjacency matrix X . nm is the number of
miRNAs.

E. INTEGRATED SIMILARITY FOR DISEASES AND MIRNA

The disease similarity matrix SD was built to maximize the
use of term hierarchical information, terminology specific
information, andGIPK similarity information [29]. The com-
prehensive similarity SD (d(a), d(b)) between disease d(a)
and d(b) is expressed as follows:

SD (d(a), d(b))

=















Sim1 (d(a), d(b))+Sim2 (d(a), d(b))

2
if d(a), d(b) in Sim1 and Sim2

KD (d(a), d(b)) others

(10)

GIPK similarity and functional similarity were used to build
miRNA similarity. We calculated the similarity between
miRNA m(a) and m(b) as follows:

SM (m(a),m(b)) =

{

FS (m(a),m(b)) if m(a),m(b) in FS

KM (m(a),m(b)) others

(11)

F. CHAOS GAME REPRESENTATION

Gene mutations can change the composition or sequence
of amino acids in the polypeptide chain, thus affecting
the biological functions of proteins or enzymes and caus-
ing abnormalities in the body’s phenotype [30]. In general,
the nonlinear sequence relationship of a mutated gene does
not change significantly when no mutation occurs, and there-
fore, the expression of the gene is related to linear sequence
information. However, most of the sequence comparison
algorithms at this stage, like k-mer, only quantify nonlinear
sequence relationships [31]. Therefore, a new algorithm for
extracting sequence linear information is needed. The chaos
game representation (CGR) derived from chaos theory is a
mapping method of genome sequences proposed by Jeffrey
in 1990 [32], [33]. The CGR has two advantages. One is
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FIGURE 1. CGR of the miRNA named hsa-mir-4661.

that it uniquely maps each nucleotide in the sequence to the
Euclidean space, and the coordinates of each nucleotide can
restore all of the previously mapped nucleotide sequences
without loss of information, in other words, the mapped coor-
dinates contain linear relationship information. The second
is that the same effect of k-mer can be achieved by the
number of nucleotides in each interval, that is, the nonlinear
relationship is quantified. Therefore, chaos game represen-
tation is introduced to extract linear sequence information
from the sequences in this paper. Since only LMTRDA is a
k-mer basedmiRNA-disease association predictor, in order to
compare the effects of k-mer and chao game representation,
we compare the results of LMTRDA and CGMDA in TABLE
3 [21]. The mapped Euclidean space is confined as four
vertices by four possible nucleotides (Figure 1). The positions
CGRi is defined as follow:

CGRi = CGRi−1 + θ ∗ (CGRi−1 − gi) (12)

gi



















(0, 0) if Nucleotide = A

(0, 1) if Nucleotide = C

(1, 1) if Nucleotide = G

(1, 0) if Nucleotide = U

(13)

where parameter θ is the decay factor. According to previous
research, θ is set to 0.5 [33]. And we define i = 1 . . . nG and
CGR0 = (0.5, 0.5).

G. MIRNAS SEQUENCE FEATURE

Since microRNAs (miRNAs) are derived from distinct hair-
pin precursors (pre-miRNAs) that contain more information,
we chose the sequences of pre-miRNAs. Firstly, we first
downloaded the required 1057 miRNA precursor sequences
from miRBase [23]. Secondly, we pigment the CGR of
each miRNA and used it to build sequence feature matrixes.
After that, sequence feature matrixes are converted into new
matrixes whose shape is 640×5 by Singular Value Decompo-
sition. Therefore, each miRNA sequence could be described
by a 3200-dimensional vector based on reshape the sequence
feature matrixes:

Fseq =
(

f1, f2, f3, . . . , f3199, f 3200
)

(14)

H. LIGHTGBM CLASSIFIER

Since traditional boosting algorithms (such as Gradient
Boosting Decision Tree and eXtreme Gradient Boosting)
need to scan all the sample points for each feature to select the
best segmentation point, which makes them less efficient and
computationally expensive to meet current needs. In order to
reduce the cost of the experiment, lightGBM was selected as
the classifier for this experiment [34]–[36]. LightGBM aims
to optimize both row and column sub-sampling to improve
training speed and prediction accuracy, that is Gradient Based
One-side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). GOSS improves efficiency by distinguishing sam-
ples of different gradients, retaining samples of larger gra-
dients and randomly sampling samples of smaller gradients
to reduce the amount of computation. The Exclusive Feature
Bundling (EFB) binds mutually exclusive features together in
a histogram to form a feature to reduce feature dimensions.
Therefore, the complexity of histogram constructing can be
decreased from O(data× feature) to O(data×bundle) where
feature ≫ bundle.

I. METHOD OVERVIEW

The proposed prediction method includes four steps: 1. Con-
struction of positive and negative sample sets; 2. Fusion of
multi-source data into original feature vectors; 3. Abstract-
ing primitive feature vector to get final feature identifier;
4. Building a better predictive method and predict potential
association. After that, we will carefully introduce the details
of each process. First, building positive and negative sample
sets. The positive sample set consists of filtered, experi-
mentally validated miRNA-disease associations in HMDD
v3.0. There are summarily three steps of randomly selecting
negative sample. Above all, one of the 850 diseases were
chosen randomly; then a miRNA from the 1057 miRNAs
was selected discretionarily; finally, we constituted a negative
sample by using the disease and the miRNA which are not
in 32226 known associations. We repeat this step until the
same number of negative samples as the positive samples
are obtained. Secondly, we fused multi-source data into the
original feature vector. Among them, the disease feature vec-
tor is composed of the term hierarchical information Sim1,
term specific information Sim2 and GIPK similarity informa-
tion KD.
The integrated semantic similarity values stood for each

disease as features. For example, we represented disease by a
feature vector:

SD (d(a)) = (v1, v2, v3, . . . , v849, v850) (15)

where the integrated similarity value between the diseases
d(a) and d(b) is defined as vb. The miRNA feature vector is
composed of functional similarity information FS and GIPK
similarity information KM . For example, we represented
miRNA by a feature vector:

SM (m(a)) = (w1,w2,w3, . . . ,w1056,w1057) (16)
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FIGURE 2. The workflow of CGMDA to predict potential miRNA-disease associations.

TABLE 1. The comparison results of CGMDA and AUCs based on 5-fold
cross validation.

where the integrated similarity value between the miRNAs
m(a) and m(b) is defined as wb. Each miRNA-disease sample
can be described as a 1907-dimensional vector as follow:

Fsim = (SD (d(a)) , SM (m(a))) (17)

Fsim = (f1, f2, f3, . . . , f1906, f1907), where (f1, f2, f3, . . . , f850)
stands for the 850 gathered similarity values of the disease
and (f851, f852, f853, . . . , f1907) stands for the 1057 gathered
similarity values of the miRNAs. The fusion of multi-source
information produces noise that can affect the prediction. And

TABLE 2. Performance comparison among four different classifiers which
are LightGBM, SVM, random forest and decision tree.

the range and dimensions of the data from different sources
can make the model easy to overfit. Therefore, we resized
Fsim from 1907 to 32 by Autoencoder to obtain the new
similarity featureFsim′ and the sequence featurematrixesFseq
is resized from 3200 to 32 in the same way to obtain the new
sequence feature Fseq′. This operation makes the sequence
feature and the similarity information feature weight equiv-
alent. The feature is reduced to 32 dimensions in order to
suppress the noise contained in the feature while reducing the
computational cost. We defined each miRNA-disease sample
as a 64-dimensional vector as follow:

F = (Fsim
′,Fseq

′) (18)
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TABLE 3. The comparison results of cgmda and related methods.

Finally, we use an algorithm called lightGBM, which is
described in H. LIGHTGBM CLASSIFIER, to build a pre-
dictor by training the sample dataset. Specifically, we obtain
samples of 64-dimensional vectors in the training set accord-
ing to steps 2 and 3. The sample label in the positive sam-
ple set is assigned a value of 1, otherwise set to 0. Then,
the training set is then used to train the lightGBM classifier
to obtain predictors that can predict potential miRNA-disease
associations. In addition, if a miRNA-disease pair gets a

higher predicted score, they are more likely to be associated.
The flowchart of CGMDA is shown in figure 2.

J. EVALUATION CRITERIA

For the 5-fold cross-validation, the original samples were
randomly divided into five subsets, one of which was retained
as the test set, and the remaining four were used as training
data. The cross-validation process is repeated 5 times, each
subset is taken as a test set, and the resulting results are
averaged to produce a single estimate.

IV. RESULTS

A. PERFORMANCE EVALUATION

1) ASSESSMENT OF PREDICTION ABILITY

The area under the receiver operating characteristic
curve (AUC) is a common machine learning evaluation
criterion for evaluating the training effects of a two-level
model. The abscissa of each point on the receiver operating
characteristic curve (ROC) is the false positive rate (FPR)
obtained under different judgment criteria, and the ordinate is
the true positive rate (TPR) corresponding to the false positive
rate under the same conditions [37]. The higher the value,
the better the classifier effect. CGMDA gained a mean AUC
of 0.9099+/−0.0052 which is the average of AUCs of 0.9026
(fold 1), 0.9116 (fold 2), 0.9132 (fold 3), 0.9169 (fold 4)

TABLE 4. Prediction of the top 40 predicted miRNAs associated with Breast Neoplasms based on known associations in dbDEMC v2.0 and miR2Database.
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TABLE 5. Prediction of the top 40 predicted miRNAs associated with Lymphoma based on known associations in dbDEMC v2.0 and miR2Database.

FIGURE 3. The ROCs of CGMDA and AUCs based on 5-fold cross
validation.

and 0.9058 (fold 5) in 5-fold cross validation as showed in
Figure 3 and the yielded averages of accuracy (Acc.), recall
(Rec.), precision (Pre.) and f1-score (F1) come to be 87.50%,
85.44%, 89.13% and 87.24% as in TABLE 1.

2) COMPARISON AMONG DIFFERENT CLASSIFIERS

In this part of the experiment, the support vector machine
(SVM), random forest (RF) and decision tree (DT) were

FIGURE 4. The ROCs of four different classifiers which are LightGBM,
SVM, random forest and decision tree.

chosen to compare with the lightGBM used in the proposed
method. The accuracy of the four experiments are 85.28%
(lightGBM), 84.42% (SVM), 80.71% (RF) and 77.14% (DT).
Their AUC are 91.64% (lightGBM), 90.27% (SVM), 89.50%
(Random forest) and 77.40% (Decision Tree) shown as
Figure 4. The accuracy, sensitivity, precision and f1-score as
in TABLE 2. Among the above results, SVM and lightGBM
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TABLE 6. Prediction of the top 40 predicted miRNAs associated with Colon Neoplasms based on known associations in dbDEMC v2.0 and miR2Database.

are significantly better than the other two classifiers. In partic-
ular, lightGBM has the highest AUC value, and other bench-
mark parameters are similar to SVM. However, in terms of
runtime, lightGBM is significantly better than SVM because
SVM is very time consuming when processing big data sam-
ples. In addition, AUC ismore discriminating and statistically
consistent than accuracy [38]. Therefore, when the accuracy
performance is similar, in order tomore effectively predict the
potential miRNA-disease association, we choose the light-
GBM with the highest AUC and less running time as the
classifier of the proposed method.

3) COMPARISON WITH RELATED METHODS

In recent years, many computational methods have been
proposed to identify miRNA-disease associations, and we
compare the performance of CGMDA with 7 state-of-the-
art methods, as shown in TABLE 3. Most current predic-
tion methods rely only on incompletely related biological
information, and we introduce miRNA sequence information
to represent attribute information, as we focus on develop-
ing characterization of miRNA sequence information. Since
these methods do not disclose all the evaluation indicators,
the only indicator that can provide comparison are AUC, so in
this experiment we only compare the AUC of these methods.
From the TABLE 3 we can see that the proposed method gets

the highest AUC. The reason that CGMDA is superior to other
methods that rely solely on incompletely related biological
information is the introduction of miRNA sequences and the
quantification of linear sequence information.

B. CASE STUDIES

Based on the hypothesis that only the miRNA-disease asso-
ciation in HMDD v3.0 is known and the remaining associ-
ations are unknown, we built the case studies about Breast
Neoplasms, Lymphoma and Colon Neoplasms to evaluate our
approach. In detail, the confirmed miRNA-disease associa-
tions in the HMDD v3.0 dataset is utilized as the training
set to train the classifier. In addition, we used associations
between the three diseases and all possible miRNAs as
the test set. When CGMDA obtains the predicted results,
we sort the predicted results and select the top 40 candi-
dates with the highest scores based on different diseases, and
confirm them in other miRNA-disease associations datasets,
dbDEMC v2.0 and miR2Database which manually collected
miRNA-disease association entries in the papers [41], [42].
It is well known that malignant breast tumors occur mostly

in women with breast cancer [43]. In the United States, about
12.5% women has breast cancer and the global breast cancer
rate is greater than it in 1970s. A large number of experimen-
tal data reveal that many miRNAs have influence on breast
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neoplasms. So, in the first case study, we chose breast neo-
plasms and used CGMDA to forecast the potential miRNAs
associate about breast neoplasms. The results are shown in
TABLE 4, 39 out of the top 40 potentially miRNAs which
associate with breast neoplasmswere confirmed by dbDEMC
v2.0 and miR2Disease. Lymphoma is a malignant tumor that
originates from the lymphoid hematopoietic system. It was
chosen as a case and the predicted scores of its potentially
associated miRNAs were ranked. As a result, the experimen-
tal results recorded in miR2Disease confirmed by dbDEMC
v2.0, 39 of the top 40 potential miRNAs associated with lym-
phoma, as shown in TABLE 5. Colon cancer is a malignant
tumor that can occur at any age, especially in the elderly.
It will initially form in the form of polyps inside the colon and
may gradually become colon cancer. So, we selected it as an
example of the third case study. As a result, 38 out of the top
40 potentially miRNAs which associate with neoplasms were
confirmed by experimental findings recorded in dbDEMC
v2.0, miR2Disease, as shown in TABLE 6. From the results,
the three case analyses obtained 97.5%, 97.5%, and 95%
accuracy, respectively, in predicting potential miRNAs asso-
ciated with disease. This shows that our approach has good
ability to predict unknown associations.

V. CONCLUSION

In this paper, we propose a predictive method based on
chaos game representation to simultaneously consider linear
sequence information and nonlinear relationships. Compared
to our method, most sequence comparison algorithms, such
as k-mer, can only quantify nonlinear sequence relationships,
and gene expression is related to linear sequence informa-
tion. In addition, CGR is converted to image information
to align features due to different sequence lengths. In terms
of experimental results, the 5-fold cross-validation showed
that the method can reliably predict the potential associa-
tions betweenmiRNAs and diseases. CGMDA achieved good
results when compared with different classifiers and related
prediction methods.What’s more, we apply CGMDA to three
complex human diseases, Breast Neoplasm, Lung Neoplasm
and Esophageal Neoplasm. Experiments have shown that
CGMDA is an excellent miRNA-disease association method.
In future research, we will continue to explore the appli-
cation of sequence information in predictions of potential
miRNA-disease associations to obtain better predictions.
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