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Abstract

Previous studies in multimodal sentiment anal-

ysis have used limited datasets, which only

contain unified multimodal annotations. How-

ever, the unified annotations do not always

reflect the independent sentiment of single

modalities and limit the model to capture the

difference between modalities. In this pa-

per, we introduce a Chinese single- and multi-

modal sentiment analysis dataset, CH-SIMS,

which contains 2,281 refined video segments

in the wild with both multimodal and in-

dependent unimodal annotations. It allows

researchers to study the interaction between

modalities or use independent unimodal anno-

tations for unimodal sentiment analysis. Fur-

thermore, we propose a multi-task learning

framework based on late fusion as the baseline.

Extensive experiments on the CH-SIMS show

that our methods achieve state-of-the-art per-

formance and learn more distinctive unimodal

representations. The full dataset and codes are

available for use at https://github.com/

thuiar/MMSA.

1 Introduction

Sentiment analysis is an important research area in

Natural Language Processing (NLP). It has wide

applications for other NLP tasks, such as opinion

mining, dialogue generation, and user behavior

analysis. Previous study (Pang et al., 2008; Liu

and Zhang, 2012) mainly focused on text sentiment

analysis and achieved impressive results. However,

using text alone is not sufficient to determine the

speaker’s sentimental state, and text can be mis-

leading. With the booming of short video applica-

tions, nonverbal behaviors (vision and audio) are

introduced to solve the above shortcomings (Zadeh

et al., 2016; Poria et al., 2017).

In multimodal sentiment analysis, intra-modal

representation and inter-modal fusion are two im-
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Figure 1: An example of the annotation difference be-

tween CH-SIMS and other datasets. For each mul-

timodal clip, in addition to multimodal annotations,

our proposed dataset has independent unimodal anno-

tations. M: Multimodal, T: Text, A: Audio, V: Vision.

portant and challenging subtasks (Baltrušaitis et al.,

2018; Guo et al., 2019). For intra-modal represen-

tation, it is essential to consider the temporal or

spatial characteristics in different modalities. The

methods based on Convolutional Neural Network

(CNN), Long Short-term Memory (LSTM) net-

work and Deep Neural Network (DNN) are three

representative approaches to extract unimodal fea-

tures (Cambria et al., 2017; Zadeh et al., 2017,

2018a). For inter-modal fusion, numerous methods

have been proposed in recent years. For exam-

ple, concatenation (Cambria et al., 2017), Tensor

Fusion Network (TFN) (Zadeh et al., 2017), Low-

rank Multimodal Fusion (LMF) (Liu et al., 2018),

https://github.com/thuiar/MMSA
https://github.com/thuiar/MMSA
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Memory Fusion Network (MFN) (Zadeh et al.,

2018a), Dynamic Fusion Graph (DFG) (Zadeh

et al., 2018b), and others. In this paper, we mainly

consider late-fusion methods that perform intra-

modal representation learning first and then employ

inter-modal fusion. An intuitive idea is that the

greater the difference between inter-modal repre-

sentations, the better the complementarity of inter-

modal fusion. However, it is not easy for existing

late-fusion models to learn the differences between

different modalities, further limits the performance

of fusion. The reason is that the existing multi-

modal sentiment datasets only contain a unified

multimodal annotation for each multimodal seg-

ment, which is not always suitable for all modali-

ties. In other words, all modalities share a standard

annotation during intra-modal representation learn-

ing. Further, these unified supervisions will guide

intra-modal representations to be more consistent

and less distinctive.

To validate the above analysis, in this paper, we

propose a Chinese multimodal sentiment analy-

sis dataset with independent unimodal annotations,

CH-SIMS. Figure 1 shows an example of the anno-

tation difference between our proposed dataset and

the other existing multimodal datasets. SIMS has

2,281 refined video clips collected from different

movies, TV serials, and variety shows with sponta-

neous expressions, various head poses, occlusions,

and illuminations. The CHEAVD (Li et al., 2017)

is also a Chinese multimodal dataset, but it only

contains two modalities (vision and audio) and one

unified annotation. In contrast, SIMS has three

modalities and unimodal annotations except for

multimodal annotations for each clip. Therefore,

researchers can use SIMS to do both unimodal and

multimodal sentiment analysis tasks. Furthermore,

researchers can develop new methods for multi-

modal sentiment analysis with these additional an-

notations.

Based on SIMS, we propose a multimodal multi-

task learning framework using unimodal and mul-

timodal annotations. In this framework, the uni-

modal and multimodal tasks share the feature repre-

sentation sub-network in the bottom. It is suitable

for all multimodal models based on late-fusion.

Then, we introduce three late-fusion models, in-

cluding TFN, LMF, and Late-Fusion DNN (LF-

DNN), into our framework. With unimodal tasks,

the performance of multimodal task is significantly

increased. Furthermore, we make a detailed discus-

sion on multimodal sentiment analysis, unimodal

sentiment analysis and multi-task learning. Lastly,

we verify that the introduction of unimodal annota-

tions can effectively expand the difference between

different modalities and obtain better performance

in inter-modal fusion.

In this work, we provide a new perspective for

multimodal sentiment analysis. Our main contribu-

tions in this paper can be summarized as follows:

• We propose a Chinese multimodal sentiment

analysis dataset with more fine-grained anno-

tations of modality, CH-SIMS. These addi-

tional annotations make our dataset available

for both unimodal and multimodal sentiment

analysis.

• We propose a multimodal multi-task learn-

ing framework, which is suitable for all late-

fusion methods in multimodal sentiment anal-

ysis. Besides, we introduce three late-fusion

models into this framework as strong base-

lines for SIMS.

• The benchmark experiments on the SIMS

show that our methods learn more distinctive

unimodal representations and achieve state-of-

the-art performance.

2 Related Work

In this section, we briefly review related work in

multimodal datasets, multimodal sentiment analy-

sis, and multi-task learning.

2.1 Multimodal Datasets

To meet the needs of multimodal sentiment anal-

ysis and emotion recognition, researchers have

proposed various of multimodal datasets, includ-

ing IEMOCAP (Busso et al., 2008), YouTube

(Morency et al., 2011), MOUD (Pérez-Rosas et al.,

2013), ICT-MMMO (Wöllmer et al., 2013), MOSI

(Zadeh et al., 2016), CMU-MOSEI (Zadeh et al.,

2018b) and so on. In addition, Li et al. (2017)

proposed a Chinese emotional audio-visual dataset

and Poria et al. (2018) proposed a multi-party emo-

tional, conversational dataset containing more than

two speakers per dialogue. However, these existing

multimodal datasets only contain a unified multi-

modal annotation for each multimodal corpus. In

contrast, SIMS contains both unimodal and multi-

modal annotations.
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Item #

Total number of videos 60

Total number of segments 2,281

- Male 1,500

- Female 781

Total number of distinct speakers 474

Average length of segments (s) 3.67

Average word count per segments 15

Table 1: Statistics of SIMS Dataset.

2.2 Multimodal Sentiment Analysis

Multimodal sentiment analysis has become a major

research topic that integrates verbal and nonver-

bal behaviors. Cambria et al. (2017) proposed

a general multimodal sentiment analysis frame-

work that is composed of representation learning on

intra-modality and feature concatenation on inter-

modality. Based on this framework, many studies

focused on designing a new fusion network to cap-

ture better multimodal representations and achieve

better performance. Zadeh et al. (2017) proposed

a tensor fusion network, which obtains a new ten-

sor representation by computing the outer prod-

uct between unimodal representations. Liu et al.

(2018) used a low-rank multimodal fusion method

to decompose the weight tensor and decrease the

computational complexity of tensor-based meth-

ods. Zadeh et al. (2018a) designed a memory fu-

sion network with a special attention mechanism

for cross-view interactions. Tsai et al. (2019) pro-

posed crossmodal transformers to reinforce a target

modality from another source modality by learning

the attention across the two modalities’ features.

Tsai et al. (2018) learned meaningful multimodal

representations by factorizing representations into

two sets of independent factors: multimodal dis-

criminative and modality-specific generative fac-

tors. Different from the above methods, we aim to

learn more distinctive unimodal representations by

introducing independent unimodal annotations.

2.3 Multi-task Learning

Multi-task learning aims to improve the generaliza-

tion performance of multiple related tasks by uti-

lizing useful information contained in these tasks

(Zhang and Yang, 2017). A classical method is that

different tasks share the first several layers and then

have task-specific parameters in the subsequent lay-

ers (Liu et al., 2015; Zhang et al., 2016b). Based

on this method, we design a multimodal multi-task

learning framework for verifying the practicality

and feasibility of independent unimodal annota-

tions.

3 CH-SIMS Dataset

In this section, we introduce a novel Chinese multi-

modal sentiment analysis dataset with independent

unimodal annotations, CH-SIMS. In the following

subsections, we will explain the data acquisition,

annotation, and feature extraction in detail.

3.1 Data Collection

Comparing with unimodal datasets, the require-

ments of multimodal datasets are relatively high. A

fundamental requirement is that the speaker’s face

and voice must appear in the picture at the same

time and remain for a specific period of time. In

this work, to acquire video clips as close to life as

possible, we collect target fragments from movies,

TV series, and variety shows. After getting raw

videos, we use video editing tools, Adobe Premiere

Pro1, to crop target segments at the frame level,

which is very time-consuming but accurate enough.

Moreover, during the data collection and cropping,

we enforce the following constraints:

• We only consider mandarin and are cautious

with the selection of materials with the accent.

• The length of clips is no less than one second

and no more than ten seconds.

• For each video clip, no other faces appear

except for the speaker’s face.

Finally, we collect 60 raw videos and acquire

2,281 video segments. SIMS has rich character

background, wide age range, and high quality. Ta-

ble 1 shows the basic statistics for SIMS.2

3.2 Annotation

We make one multimodal annotation and three uni-

modal annotations for each video clip. In addition

to the increase in workload, the mutual interference

between different modalities is more confused. To

avoid this problem as much as possible, we claim

every labeler can only see the information in the

current modality when annotating. Besides, con-

ducting four annotations at the same time is not

1https://www.adobe.com/products/premiere.html
2We consulted a legal office to verify that the academic

usage and distribution of very short length videos fall under
the fair use category.
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Figure 2: Left: the distribution of sentiment over the entire dataset in one Multimodal annotation and three single-

modal (Text, Audio, and Vision) annotations. Right: the confusion matrix shows the annotations difference be-

tween different modalities in CH-SIMS. The larger the value, the greater the difference.

permitted. More precisely, every labeler makes

unimodal annotation first and then performs mul-

timodal annotation, which of the order is text first,

audio second, then silent video, and multimodal

last.

For each clip, every annotator decides its senti-

mental state as -1 (negative), 0 (neutral) or 1 (pos-

itive). we have five independent students in this

field making annotations. Then, in order to do both

regression and multi-classifications tasks, we av-

erage the five labeled results. Therefore, the final

labeling results are one of {-1.0, -0.8, -0.6, -0.4,

-0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We further divide

these values into 5 classifications: negative {-1.0,

-0.8}, weakly negative {-0.6, -0.4, -0.2}, neutral

{0.0}, weakly positive {0.2, 0.4, 0.6} and positive

{0.8, 1.0}.

The histogram in the left of Figure 2 shows the

distribution of sentiment over the entire dataset in

four annotations. We can see that negative seg-

ments are more than positive segments. The main

reason is that actors in film and television dramas

are more expressive in negative sentiments than

positive ones. The confusion matrix in the right

of Figure 2 indicates the annotations difference

between different modalities, which is computed

as:

Dij =
1

N

N∑

n=1

(An
i −An

j )
2 (1)

where i, j ∈ {m, t, a, v}, N is the number of all

samples, An
i means the nth label value in modal i.

From the confusion matrix, we can see that the

difference between A and M is minimal, and the

difference between V and T is maximal, which is

in line with expectations. Because audio contains

text information, closer to multimodal while the

connection between video and text is sparse.

Furthermore, we provide the other attribute an-

notations, including speakers’ age and gender. And

we use sentimental annotations only in our follow-

ing experiments.

3.3 Extracted Features

The extracted features for all modalities are as fol-

lows (we use the same basic features in all experi-

ments):

Text: All videos have manual transcription, in-

cluding the Chinese and English versions. We use

Chinese transcriptions only. We add two unique to-

kens to indicate the beginning and the end for each

transcript. And then, pre-trained Chinese BERT-

base word embeddings are used to obtain word

vectors from transcripts (Devlin et al., 2018). It is

worth noting that we do not use word segmentation

tools due to the characteristic of BERT. Eventu-

ally, each word is represented as a 768-dimensional

word vector.

Audio: We use LibROSA (McFee et al., 2015)

speech toolkit with default parameters to ex-

tract acoustic features at 22050Hz. Totally, 33-

dimensional frame-level acoustic features are ex-

tracted, including 1-dimensional logarithmic fun-

damental frequency (log F0), 20-dimensional Mel-

frequency cepstral coefficients (MFCCs) and 12-

dimensional Constant-Q chromatogram (CQT).

These features are related to emotions and tone

of speech according to (Li et al., 2018).
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Figure 3: Multimodal multi-task learning framework.

Vision: Frames are extracted from the video seg-

ments at 30Hz. We use the MTCNN face detection

algorithm (Zhang et al., 2016a) to extract aligned

faces. Then, following Zadeh et al. (2018b), we

use MultiComp OpenFace2.0 toolkit (Baltrusaitis

et al., 2018) to extract the set of 68 facial landmarks,

17 facial action units, head pose, head orientation,

and eye gaze. Lastly, 709-dimensional frame-level

visual features are extracted in total.

4 Multimodal Multi-task Learning

Framework

In this section, we describe our proposed multi-

modal multi-task learning framework. Shown as

Figure 3, based on late-fusion multimodal learn-

ing framework (Cambria et al., 2017; Zadeh et al.,

2017), we add independent output units for three

unimodal representations: text, audio, and vision.

Therefore, these unimodal representations not only

participate in feature fusion but are used to generate

their predictive outputs.

For the convenience in following introduction, in

text, audio and vision, we assume that Lu, Du
i , D

u
r ,

where u ∈ {t, a, v}, represent the sequence length,

initial feature dimension extracted by section 3.3

and representation dimension learned by unimodal

feature extractor, respectively. The batch size is B.

4.1 Unimodal SubNets

Unimodal subNets aim to learn intra-modal repre-

sentations from initial feature sequences. A univer-

sal feature extractor can be formalized as:

Ru = Su(Iu) (2)

where Iu ∈ RB×Lu
×Du

i , Ru ∈ RB×Du
r . Su(•) is

the feature extractor network for modal u.

In this work, following Zadeh et al. (2017); Liu

et al. (2018), we use a Long Short-Term Mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997)

network, a deep neural network with three hidden

layers of weights Wa and a deep neural network

with three hidden layers of weights Wv to extract

textual, acoustic and visual embeddings, respec-

tively.

4.2 Feature Fusion Network

Feature fusion network aims to learn inter-modal

representation with three unimodal representations,

formulated as:

Rm = F (Rt, Ra, Rv) (3)

where Rt, Ra, Rv ∈ RB×Du
r are the unimodal rep-

resentations. F (•) is the feature fusion network

and Rm is the fusion representation.

In this work, for full comparison with existing

works, we try three fusion methods: LF-DNN, TFN

(Zadeh et al., 2017) and LMF (Liu et al., 2018).

4.3 Optimization Objectives

Except for the training losses in different tasks, we

sparse the sharing parameters via L2 norm, which

aims to select intra-modal features. Therefore, our

optimization objectives is:

min
1

Nt

Nt∑

n=1

∑

i

αiL(y
n
i , ŷ

n
i ) +

∑

j

βj ||Wj ||
2

2

(4)

where Nt is the number of training samples, i ∈
{m, t, a, v}, j ∈ {t, a, v}. L(yni , ŷ

n
i ) means the

training loss of nth sample in modality i. Wj is the

sharing parameters in modality j and multimodal

tasks. αi is the hyperparameter to balance different

tasks and βj represents the step of weight decay of

subNet j, respectively.

Lastly, we use a three-layer DNN to generate

outputs of different tasks. In this work, we treat

these tasks as regression models and use the L1

loss as training loss in Equation 4.

5 Experiments

In this section, we mainly explore the following

problems using SIMS:

(1) Multimodal Sentiment Analysis: We evaluate

the performance of multimodal multi-task learn-

ing methods comparing with the other methods.

The aim is to validate the advantages of multi-task
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Model Acc-2 Acc-3 Acc-5 F1 MAE Corr

EF-LSTM 69.37 ± 0.0 51.73 ± 2.0 21.02 ± 0.2 81.91 ± 0.0 59.34 ± 0.3 -04.39 ± 2.8

MFN 77.86 ± 0.4 63.89 ± 1.9 39.39 ± 1.8 78.22 ± 0.4 45.19 ± 1.2 55.18 ± 2.0

MULT 77.94 ± 0.9 65.03 ± 2.1 35.34 ± 2.9 79.10 ± 0.9 48.45 ± 2.6 55.94 ± 0.6

LF-DNN 79.87 ± 0.6 66.91 ± 1.2 41.62 ± 1.4 80.20 ± 0.6 42.01 ± 0.9 61.23 ± 1.8

MLF-DNN∗ 82.28 ± 1.3 69.06 ± 3.1 38.03 ± 6.0 82.52 ± 1.3 40.64 ± 2.0 67.47 ± 1.8

▽ ↑ 2.41 ↑ 2.15 ↓ 3.59 ↑ 2.32 ↓ 1.37 ↑ 6.24

LMF 79.34 ± 0.4 64.38 ± 2.1 35.14 ± 4.6 79.96 ± 0.6 43.99 ± 1.6 60.00 ± 1.3

MLMF∗ 82.32 ± 0.5 67.70 ± 2.2 37.33 ± 2.5 82.66 ± 0.7 42.03 ± 0.9 63.13 ± 1.9

▽ ↑ 2.98 ↑ 3.32 ↑ 2.19 ↑ 2.70 ↓ 1.96 ↑ 3.13

TFN 80.66 ± 1.4 64.46 ± 1.7 38.38 ± 3.6 81.62 ± 1.1 42.52 ± 1.1 61.18 ± 1.2

MTFN∗ 82.45 ± 1.3 69.02 ± 0.3 37.20 ± 1.8 82.56 ± 1.2 40.66 ± 1.1 66.98 ± 1.3

▽ ↑ 1.79 ↑ 4.56 ↓ 1.18 ↑ 0.94 ↓ 1.86 ↑ 5.80

Table 2: (%) Results for sentiment analysis on the CH-SIMS dataset. The models with ∗ are multi-task models,

extended from single-task models by introducing independent unimodal annotations. For example, MLF-DNN∗ is

the extension of LF-DNN. The rows with ▽ means the improvements or reductions of new models compared to

original ones in the current evaluation metric.

learning with unimodal annotations and set up mul-

timodal baselines for SIMS.

(2) Unimodal Sentiment Analysis: We analyze

the performance in unimodal tasks with unimodal

or multimodal annotations only. The aim is to vali-

date the necessary of multimodal analysis and set

unimodal baselines for SIMS.

(3) Representations Differences: We use t-SNE

to visualize the unimodal representations of models

with or without independent unimodal annotations.

The aim is to show that the learned unimodal repre-

sentations are more distinctive after using unimodal

annotations.

5.1 Baselines

In this section, we briefly review our baselines used

in the following experiments.

Early Fusion LSTM. The Early Fusion LSTM

(EF-LSTM) (Williams et al., 2018) concatenates

initial inputs of three modalities first and then use

LSTM to capture long-distance dependencies in a

sequence.

Later Fusion DNN. In contrast with EF-LSTM,

the Later Fusion DNN (LF-DNN) learns unimodal

features first and then concatenates these features

before classification.

Memory Fusion Network. The Memory Fusion

Network (MFN) (Zadeh et al., 2018a) accounts for

view-specific and cross-view interactions and con-

tinuously models them through time with a special

attention mechanism and summarized through time

with a Multi-view Gated Memory. MFN needs

Item Total NG WN NU WP PS

#Train 1,368 452 290 207 208 211

#Valid 456 151 97 69 69 70

#Test 457 151 97 69 69 71

Table 3: Dataset splits in SIMS. We split train, valid

and test set in 6:2:2. NG: Negative, WN: Weakly Neg-

ative, NU: Neutral, WP: Weakly Positive, PS: Positive.

word-level alignment in three modalities. However,

this is not easy for SIMS because we haven’t found

a reliable alignment tool of Chinese corpus. In

this work, we follow Tsai et al. (2019) to use CTC

(Graves et al., 2006) as an alternative.

Low-rank Multimodal Fusion. The Low-rank

Multimodal Fusion (LMF) (Liu et al., 2018) model

learns both modality-specific and cross-modal inter-

actions by performing efficient multimodal fusion

with modality-specific low-rank factors.

Tensor Fusion Network. The Tensor Fusion Net-

work (TFN) (Zadeh et al., 2017) explicitly models

view-specific and cross-view dynamics by creat-

ing a multi-dimensional tensor that captures uni-

modal, bimodal and trimodal interactions across

three modalities.

Multimodal Transformer. The Multimodal

Transformer (MULT) (Tsai et al., 2019) using the

directional pairwise crossmodal attention to real-

ize the interactions between multimodal sequences

across distinct time steps and latently adapt streams

from one modality to another.
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Task Label Acc-2 F1 MAE Corr

A
A 67.70 79.61 53.80 10.07

M 65.47 71.44 57.89 14.54

V
V 81.62 82.73 49.57 57.61

M 74.44 79.55 54.46 38.76

T
T 80.26 82.93 41.79 49.33

M 75.19 78.43 52.73 38.55

Table 4: (%) Results for unimodal sentiment analysis

on the CH-SIMS dataset using MLF-DNN. The col-

umn of “Label” indicates which annotation we use in

this task.

5.2 Experimental Details

In this section, we introduce our experimental

settings in detail, including dataset splits, hyper-

parameters selection, and our evaluation metrics.

Dataset Splits. We shuffle all video clips in ran-

dom first and then divide train, valid and, test splits

by multimodal annotations. The detailed split re-

sults are shown in Table 3.

Hyper-parameters Selection. Due to the differ-

ent sequence lengths in different segments, it is

necessary that fixing sequence length for the spe-

cific modality. Empirically, we choose the average

length plus three times the standard deviation as

the maximum length of the sequence. Besides,

for all baselines and our methods, we adjust their

hyperparameters using grid search with binary clas-

sification accuracy. For a fair comparison, in each

experiment, we select five same random seeds (1,

12, 123, 1234, and 12345) and report the average

performance of five times.

Evaluation Metrics. The same as Liu et al. (2018);

Zadeh et al. (2018b), we record our experimental

results in two forms: multi-class classification and

regression. For multi-class classification, we re-

port Weighted F1 score and multi-class accuracy

Acc-k, where k ∈ {2, 3, 5}. For regression, we

report Mean Absolute Error (MAE) and Pearson

correlation (Corr). Except for MAE, higher values

denote better performance for all metrics.

5.3 Results and Discussion

In this section, we present and discuss the experi-

mental results of the research questions introduced

in Section 5.

5.3.1 Comparison with Baselines.

We compare three new methods with the aforemen-

tioned baselines. In this part, we only consider the

multimodal evaluation results though new meth-

ods are multi-task. Results are shown in Table

2. Compared with single-task models, multi-task

models have better performance in most of eval-

uation metrics. In particular, all three improved

models (MLF-DNN, MLFM, and MTFN) have

promotion significantly compared to corresponding

original models (LF-DNN, LFM, and TFN) in all

evaluation metrics except for Acc-5. The above re-

sults demonstrate that the introduction of indepen-

dent unimodal annotations in multimodal sentiment

analysis can significantly improve the performance

of existing methods. Also, we find that some meth-

ods, such as MULT, that perform well on existing

public datasets while they are not satisfactory on

SIMS. It further illustrates that designing a robust,

cross-lingual multimodal sentiment analysis model

is still a challenging task, which is also one of our

motivations for proposing this dataset.

5.3.2 Unimodal Sentiment Analysis.

Due to the independent unimodal annotations in

SIMS, we conducted two sets of experiments for

unimodal sentiment analysis. In the first set of ex-

periments, we use real unimodal labels to verify the

model’s ability of performing unimodal sentiment

analysis. In the second set of experiments, we use

multimodal labels instead of unimodal labels to

verify the ability of predicting the true emotions of

speakers when there is only unimodal information.

Results are shown in Table 4. Firstly, in the

same unimodal task, the results under unimodal

labels are better than those under multimodal la-

bels. But the former cannot reflect the actual sen-

timental state of speakers. Secondly, under multi-

modal annotations, the performance with unimodal

information only is lower than using multimodal

information in Table 2. Hence, it is inadequate

to perform sentiment analysis using unimodal in-

formation only due to the inherent limitations of

unimodal information.

5.3.3 Representations Differences.

Another motivation for us to propose CH-SIMS is

that we think the unimodal representation differ-

ences will be greater with independent unimodal

annotations. We use t-SNE (Maaten and Hin-

ton, 2008) to visualize intra-modal representations

learned in original models (LF-DNN, TFN, and

LMF) and new models (MLF-DNN, MTFN, and

MLMF), shown as Figure 4. It is relatively obvious

that new models learn more distinctive unimodal
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LF-DNN

MLF-DNN

TFN

MTFN

LMF

MLMF

Figure 4: Visualization in Unimodal Representations. In each subfigure, red, green, and blue points represent the

unimodal representations in text, audio, and video, respectively. The first row shows the learned representations

from models with the multimodal task only. The second row shows the learned representations from multi-task

models. The two subgraphs in the same column contrast each other

representations compare to original models. There-

fore, unimodal annotations can help the model to

obtain more differentiated information and improve

the complementarity between modalities.

6 Ablation Study

In this section, we compare the difference in the

effects of combining different unimodal tasks on

multimodal sentiment analysis. We aim to further

explore the influence on multimodal sentiment anal-

ysis with different unimodal tasks. Furthermore,

we reveal the relationship between multi-task learn-

ing and multimodal sentiment analysis.

We conducted multiple combination experi-

ments to analyze the effects of different unimodal

subtasks on the main multimodal task. In this part,

we only report the results in MLF-DNN. Results

are shown in Table 5. The results show that in

the case of partial absence of three unimodal sub-

tasks, the performance of the multimodal task has

not significantly improved, or even damaged. Two

factors may cause an adverse effect in multimodal

learning, including the consistency between differ-

ent unimodal representations and the asynchrony

of learning in different tasks. The former means

that unified annotations guide the representations

to be similar and lack complementarity in different

modalities. The latter means that the learning pro-

cess in different tasks is inconsistent. Taken tasks

Tasks Acc-2 F1 MAE Corr

M 80.04 80.40 43.95 61.78

M, T 80.04 80.25 43.11 63.34

M, A 76.85 77.28 46.98 55.16

M, V 79.96 80.38 43.16 61.87

M, T, A 80.88 81.10 42.54 64.16

M, T, V 80.04 80.87 42.42 60.66

M, A, V 79.87 80.32 43.06 62.95

M, T, A, V 82.28 82.52 40.64 64.74

Table 5: (%) Results for multimodal sentiment analysis

with different tasks using MLF-DNN. “M” is the main

task and “T, A, V” are auxiliary tasks. Only the results

of task “M” are reported.

“M, A” as an example, the sub-network of subtask

“A” is supervised by multimodal loss and unimodal

loss. In contrast, subtask “T” and subtask “V” are

supervised by their unimodal loss only. It means

the “A” is learned twice while the “T” and the “V”

are learned once only during an training epoch.

Therefore, the introduction of unimodal tasks will

reduce the consistency of the representation and

strengthen the complementarity, but will also cause

the asynchrony. As more unimodal tasks are intro-

duced, the positive effects of the former gradually

increase, and the negative effects of the latter gradu-

ally decrease. Finally, when all unimodal tasks are

added, the negative effect of the latter is almost dis-
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appearing. Finally, the performance of the model

with tasks “M, T, A, V” reaches a peak.

7 Conclusion

In this paper, we propose a novel Chinese multi-

modal sentiment analysis dataset with independent

unimodal annotations and a multimodal multi-task

learning framework based on late-fusion methods.

We hope that the introduction of CH-SIMS will

provide a new perspective for researches on multi-

modal analysis. Furthermore, we conduct extensive

experiments on discussing unimodal, multimodal,

and multi-task learning. Lastly, we summarize our

overall findings as follows:

• Multimodal labels cannot reflect unimodal

sentimental states always. The unified mul-

timodal annotations may mislead the model

to learn inherent characteristics of unimodal

representations.

• With the help of unimodal annotations, mod-

els can learn more differentiated information

and improve the complementarity between

modalities.

• When performing multi-task learning, the

asynchrony of learning in different subtasks

may cause an adverse effect on multimodal

sentiment analysis.

In the future, we will further explore the connec-

tion between multimodal analysis and multi-task

learning and incorporate more fusion strategy, in-

cluding early- and middle-fusion.
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