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Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over

a number field K , and denote its Jacobian by J . Let d ≥ 1 be an integer and

denote the d-th symmetric power of C by C (d). In this paper we adapt the classic

Chabauty–Coleman method to study the K -rational points of C (d). Suppose that

J (K ) has Mordell–Weil rank at most g − d . We give an explicit and practical

criterion for showing that a given subset L⊆C (d)(K ) is in fact equal to C (d)(K ).

1. Introduction

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 defined

over a number field K , and write J for the Jacobian of C . Suppose that the rank

of the Mordell–Weil group J (K ) is at most g−1. In a pioneering paper, Chabauty

[1941] proved the finiteness of the set of K -rational points on C . This has since

been superseded by Faltings’s proof [1983] of the Mordell conjecture, which gives

the finiteness of C(K ) without any assumption on the rank of J (K ). Chabauty’s

approach, where applicable, does however have two considerable advantages:

The first is that Chabauty can be refined to give explicit bounds for the cardinality

of C(K ), as shown by Coleman [1985a]. Coleman’s bounds are realistic, and

occasionally even sharp; see for example [Grant 1994; Flynn 1995]. Coleman’s

approach has been adapted to give bounds (assuming some reasonable conditions)

for the number of solutions of Thue equations [Lorenzini and Tucker 2002], the

number of rational points on Fermat’s curves [McCallum 1992; 1994], the number

of points on curves of the form y2 = x5 + A [Stoll 2006b], and the number of

rational points on twists of a given curve [Stoll 2006a].

The second is that the Chabauty–Coleman strategy can often be adapted to compute

C(K ), as in [Bruin 2002; 2003, Flynn 1997; Flynn and Wetherell 1999; 2001;

McCallum and Poonen 2006; Wetherell 1997].
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One can ask if it is sensible to apply Chabauty to varieties X/K of dimension

at least 2, where the Albanese variety Alb(X) plays the role of the Jacobian. Of

course, even when a K -rational degree 1 zero-cycle on X exists, the associated

Albanese map  : X → Alb(X) is often not injective. Indeed Alb(X) can have

smaller dimension than X . However, if  is injective, or even if  (X) is merely

birational to X , there is a hope that Chabauty might enable us to determine the

rational points on X . Alas, for a general variety X there are as of yet no algorithms

for studying the arithmetic of Alb(X). A sensible starting point for the investigation

of Chabauty in higher dimension is the symmetric powers of curves. Here the

Albanese variety is also the Jacobian of the curve.

Suppose d is a positive integer, and denote the d-th symmetric power of C

by C (d). The elements of C (d)(K ) correspond to effective K -rational divisors on

C of degree d. Suppose C (d)(K ) is nonempty, and let  : C (d)→ J be the Abel–

Jacobi map corresponding to some fixed element of C (d)(K ). We shall write γ for

the gonality of C ; this is defined to be the least possible degree of any nonconstant

morphism C→P1. If d <γ , then C (d) is isomorphic to its image in J (denoted by

W (d)), and if d ≤ g, then C (d) is birational to W (d). Another theorem of Faltings

[1991; 1994] states that any proper subvariety of an abelian variety has finitely

many K -rational points provided this subvariety does not contain a translate of

any nontrivial proper abelian subvariety of J . If d < γ and W (d) does not contain

the translate of any proper abelian subvariety — this would be the case if J is

simple — then it follows from Faltings’s theorem that C (d)(K ) is finite. This idea

is used by Klassen [1993], by Debarre and Klassen [1994], and by Harris and

Silverman [1991] to give sufficient conditions for C (d)(K ) to be finite in many

cases. For example, Harris and Silverman show that if C is neither hyperelliptic

nor bielliptic, then the set C (2)(K ) is finite. This result fails if C is hyperelliptic

or bielliptic.

We are naturally led to the question, if C (d)(K ) is finite, can we adapt Chabauty–

Coleman to compute it? Klassen makes a first attempt at this question in his PhD

thesis [1993]. His main result on Chabauty–Coleman can be summarized as fol-

lows. Let K =Q and 1 < d < γ . Suppose that the rank of J (Q) is at most g− d .

Let p be an odd prime of good reduction, and let red :C (d)(Q)→ C̃ (d)(Fp) denote

the reduction map. Klassen shows the existence of a canonical divisor M on C (d)

such that C (d)(Q) \ red−1(M(Fp)) is finite. In essence he shows that any fibre of

the reduction map contains at most one element of C (d)(Q) \ red−1(M(Fp)).

Our broad objective here is to refine the method of Chabauty–Coleman so that

we can compute C (d)(K ) in many cases. Our achievements can be summarized as

follows:

(I) Let υ be a nonarchimedean prime of the number field K . Inspired by the

aforementioned work of Klassen, we give an explicit criterion for an element
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of C (d)(K ) to be the unique K -rational element in its residue class, for a given

prime υ (the residue classes are defined to be the fibres of the reduction map

C (d)(Kυ)→ C (d)(kυ)). Here, unlike Klassen, we do not assume that d < γ . Just

as in classical Chabauty, we need an assumption on the rank of the Mordell–Weil

group: Our criterion requires that rank J (K )≤ g− d .

(II) We often expect, by applying the criterion of (I), to show that the fibres contain-

ing a K -rational element do not contain any other. This criterion however does not

tell us anything about fibres that do not seem to contain K -rational elements. Thus,

if the reduction map C (d)(K )→ C (d)(kυ) happens to be surjective, then it might

be possible to use (I) to show that the known elements of C (d)(K ) are the only

ones. But experience suggests that the reduction map is rarely surjective for d > 1.

To prove that the known elements of C (d)(K ) are all its elements, we combine

information given by our criterion using several well-chosen primes υ1, . . . , υt .

(III) Suppose ̺ : C→ C ′ is a degree-d morphism defined over K . Then ̺∗C ′(K )

is a subset of C (d)(K ). If C ′ has genus 0 or 1, then C ′(K ) can be infinite, and in

this case ̺∗C ′(K ) is an infinite subset of C (d)(K ), and undoubtedly, the strategy

of (I) and (II) fails. In this case we explain how the strategy of (I) and (II) can

be suitably modified to compute C (d)(K ) \ ̺∗C ′(K ). Again we need a condition

on the ranks of the Mordell–Weil groups; in the obvious notation, we require that

rank JC(K )− rank JC ′(K )≤ gC − gC ′ − d + 1.

Although we do not give theoretical bounds for C (d)(K ) in the way that Coleman

[1985a] does for C(K ), we believe that our simplified explicit approach in (I) is a

useful first step in this direction.

In the spirit of modern computations on curves of higher genus, we will not

require explicit equations for C (d), but rather represent K -rational points on C (d)

as effective K -rational divisors of degree d . We suppose we have been supplied

with a basis D1, . . . , Dr for a subgroup of J (K ) of full rank and hence finite

index — the elements of this basis are represented as degree 0 divisors on C (mod-

ulo linear equivalence). Obtaining a basis for a subgroup of full rank is often the

happy outcome of a successful descent calculation; see for example [Cassels and

Flynn 1996; Flynn 1994; Poonen and Schaefer 1997; Schaefer 1995; Schaefer and

Wetherell 2005; Stoll 1998; 2001; 2002]. Obtaining a basis for the full Mordell–

Weil group is often time consuming for curves of genus 2 and simply not feasible

in the present state of knowledge for curves of higher genus.

We illustrate our method by computing C (2)(Q) for two curves C of genus 3.

The first is a hyperelliptic curve, and the second a nonhyperelliptic plane quartic

curve. It is noteworthy that in both examples C (2) is a surface of general type, being

birational to a 2-divisor on the Jacobian. Much less is known about the arithmetic

of surfaces of general type than that of other surfaces.
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Examples of papers that study rational points on symmetric powers of modular

curves are [Kamienny 1986a; 1986b; 1992; Merel 1996; Parent 2000; 2003]; some

that study rational points on symmetric powers of Fermat curves are [Debarre and

Klassen 1994; Gross and Rohrlich 1978; Klassen and Tzermias 1997; Tzermias

1998, 2003; 2004; 2005]. It is our hope that the techniques explained in this paper

will lead to useful progress in these directions.

2. Preliminaries

In this section we summarize various results on p-adic integration. The definitions

and proofs can be found in [Coleman 1985b; Colmez 1998]. For an introduction to

the ideas involved in Chabauty’s method we warmly the recommend Wetherell’s

thesis [1997] and the survey paper of McCallum and Poonen [2006], as well as

Coleman’s paper [1985a].

Integration. Let p be a rational prime and Kυ be a finite extension of Qp. Let Oυ

be the ring of integers in Kυ , and let Cυ be the completion of its algebraic closure.

Let W be a smooth, proper connected scheme of finite type over Oυ , and write

W for the generic fibre. Coleman [1985b, Section II] describes how to integrate

“differentials of the second kind” on W . We shall however only be concerned

with global 1-forms (that is, differentials of the first kind) and so shall restrict our

attention to these. Among the properties of integration [loc. cit.] we shall need are

∫ Q

P

ω =−
∫ P

Q

ω,

∫ P

Q

ω+
∫ R

P

ω =
∫ R

Q

ω,

∫ P

Q

αω = α

∫ P

Q

ω,

∫ P

Q

ω+
∫ P

Q

ω′ =
∫ P

Q

ω+ω′
(1)

for P , Q, R ∈W (Cυ), global 1-forms ω, ω′ on W×Cυ , and α ∈Cυ . We shall also

need the “change of variables formula” [Coleman 1985b, Theorem 2.7]: If W1 and

W2 are smooth, proper connected schemes of finite type over Oυ and ̺ :W1→W2

is a morphism of their generic fibres, then

∫ P

Q

̺∗ω =
∫ ̺(P)

̺(Q)

ω (2)

for all global 1-forms ω on W2×Cυ and P , Q ∈W1(Cυ).

Now let A be an abelian variety of dimension g over Kυ , and write �A for the

Kυ-space of global 1-forms on A. Consider the pairing

�A× A(Kυ)→ Kυ, (ω, P) 7→
∫ P

0

ω. (3)
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This pairing is bilinear. It is Kυ-linear on the left by the bottom two equalities in

(1). That it is also Z-linear on the right is a straightforward consequence of the

change of variables formula (2); see [Coleman 1985b, Theorem 2.8]. The kernel

on the left is 0 and on the right is the torsion subgroup of A(Kυ); see [Bourbaki

1989, III.7.6].

Notation. Henceforth we shall be concerned with curves over number fields and

their Jacobians. Once and for all, we fix

K a number field,

C a smooth projective absolutely irreducible curve

defined over K , of genus ≥ 2,

C (d) the d-th symmetric power of C ,

J the Jacobian of C ,

υ a nonarchimedean prime of K , of good reduction for C ,

Kυ the completion of K at υ,

kυ the residue field of K at υ,

Oυ the ring of integers in Kυ ,

C a minimal regular proper model for C over Oυ ,

C̃ the special fibre of C at υ,

�C/Kυ
the Kυ-vector space of global 1-forms on C .

Global 1-forms on curves and Jacobians. For any field extension M/K (not nec-

essarily finite), we shall write �C/M and �J/M for the M-vector spaces of global

1-forms on C/M and J/M , respectively. Corresponding to any P0 ∈ C(K ) is the

Abel–Jacobi map

 : C →֒ J, P 7→ [P − P0].
It is well known that the pull-back ∗ : �J/K → �C/K is an isomorphism; see

[Milne 1986, Proposition 2.2]. Moreover any two Abel–Jacobi maps differ by

a translation on J . Since 1-forms on J are translation invariant, the map ∗ is

independent of the choice of P0; see [Wetherell 1997, Section 1.4]. It is clear that

∗ is defined over K if there is some K -rational point P0 on C . We however do not

want to assume the existence of a K -rational point on C . Instead we shall make

use of the following (well-known) result, for which we cannot find a reference.

Proposition 2.1. With notation as above, the pull-back ∗ induces an isomorphism

�J/K →�C/K .

Proof. By smoothness there is a rational point on C defined over some finite Galois

extension M/K . This induces an isomorphism ∗ :�J/M →�C/M . However, by

independence of the choice of M-rational point, the isomorphism ∗ is equivariant
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under the action of Gal(M/K ), and hence descends to an isomorphism over the

ground field K . �

Integration on curves and Jacobians. Suppose υ is a nonarchimedean place for K

of good reduction for C . Let  be the Abel–Jacobi corresponding to any P0∈C(K ).

Proposition 2.1 asserts that the pull-back induces an isomorphism ∗ : �J/K →
�C/K of global 1-forms defined over K (and independent of P0). This extends to

an isomorphism �J/Kυ
→ �C/Kυ

, which we also denote by ∗. For any global

1-form ω ∈�J/Kυ
and any two points P , Q ∈ C(Cυ), we have

∫ P

Q

∗ω =
∫  P

 Q

ω =
∫ [P−Q]

0

ω,

using the integration properties (1). We shall henceforth use ∗ to identify �C/Kυ

with �J/Kυ
. With this identification, the pairing (3) with J = A gives the bilinear

pairing

�C/Kυ
× J (Kυ)→ Kυ,

(

ω,
[∑

Pi −
∑

Qi

])

7−→
∑

∫ Pi

Qi

ω, (4)

whose kernel on the right is 0 and on the left is the torsion subgroup of J (Kυ). We

ease notation a little by defining, for divisor class D =
∑

Pi −Qi of degree 0, the

integral
∫

D

ω =
∑

∫ Pi

Qi

ω.

Note that this integral depends on the equivalence class of D and not on the de-

composition as D =
∑

Pi − Qi . We shall need the following functorial property

of integration of curves, for which we are unable to find a reference:

Lemma 2.2. Suppose ̺ : C → C ′ is a nonconstant morphism of curves defined

over K , and let υ be a nonarchimedean place of good reduction for both curves.

Denote by Tr the corresponding trace map �C/Kυ
→�C ′/Kυ

on global 1-forms. If

D is a degree 0 divisor on C ′ and ω ∈�C/Kυ
then

∫

̺∗D

ω =
∫

D

Tr ω.

Proof. First we assume that C/C ′ is geometrically Galois. Replacing Kυ by a finite

extension if necessary, we can assume that Kυ(C)/Kυ(C ′) is in fact Galois and

contains the fields of definition of the points in ̺∗D. Suppose that ̺ has degree d .

Then the Galois group of C/C ′ is some set of automorphisms {σ1, . . . , σd} where

σi : C→ C is defined over Kυ and commutes with ̺. The virtue of assuming that

C/C ′ is Galois is that the trace has a very simple formula in terms of the Galois

group: ̺∗ Tr ω =
∑

σ ∗i ω.
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Now fix a degree 0 divisor D0 on C such that ̺D0 = D. Then ̺∗D =
∑

σi D0,

and
∫

̺∗D

ω =
d

∑

i=1

∫

σi D0

ω =
d

∑

i=1

∫

D0

σ ∗i ω =
∫

D0

̺∗ Tr ω =
∫

D

Tr ω.

where the second and fourth equalities use the change of variables formula (2).

This proves the lemma in the geometrically Galois case. For the general case, we

will need to work with the (geometric) Galois closure C ′′/C of C ′/C . This is

necessarily defined over some finite extension of Kυ , so we again replace Kυ by

this finite extension. Consider now the following commutative diagram of curves.

C ′′
ǫ

//

δ
  B

B

B

B

B

B

B

B

C

̺

��

C ′

Both ǫ and δ are geometrically Galois and we may apply the lemma to them. Let

D be a degree 0 divisor on C ′ and ω a global 1-form on C . Applying the lemma

to δ, we see
∫

δ∗D

ǫ∗ω =
∫

D

TrC ′′/C ′(ǫ
∗ω)= deg(ǫ)

∫

D

TrC/C ′ ω.

Likewise, applying the lemma to ǫ, we get

∫

δ∗D

ǫ∗ω =
∫

ǫ∗̺∗D

ǫ∗ω =
∫

̺∗D

TrC ′′/C(ǫ∗ω)= deg(ǫ)

∫

̺∗D

ω.

Comparing the results of the last two calculations yields the desired conclusion. �

Uniformizers. The usual Chabauty approach when studying rational points in a

residue class is to work with a local coordinate (defined shortly) and create power

series equations in terms of the local coordinate whose solutions, roughly speaking,

contain the rational points. In our situation we find it more convenient to shift the

local coordinate so that it becomes a uniformizer at a rational point in the residue

class. Fix a nonarchimedean prime υ of good reduction for C , and a minimal

regular proper model C for C over υ. Let Q ∈C(K ) and let Q̃ be its reduction on

the special fibre C̃ . Choose a rational function sQ ∈ K (C) so that its extension to

a rational function on C is a generator of the maximal ideal in O
C,Q̃ ; the function

sQ is called in [Lorenzini and Tucker 2002, Section 1] a local coordinate at Q. Let

tQ = sQ − sQ(Q).

Lemma 2.3. (i) tQ is a uniformizer at Q.

(ii) t̃Q is a uniformizer at Q̃.
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(iii) Let Lυ be a finite extension of Kυ with valuation ring OLυ
and uniformizing

element π . Then tQ is regular and injective on {P ∈C(Lυ) : P̃ = Q̃}. Indeed,

tQ defines a bijection between {P ∈ C(Lυ) : P̃ = Q̃} and πOLυ
, given by

P 7→ tQ(P).

Proof. Parts (i) and (ii) are clear from the construction. Part (iii) is standard; see

for example [Lorenzini and Tucker 2002, Section 1] or [Wetherell 1997, Sections

1.7 and 1.8]. �

We shall refer to tQ , constructed as above, as a well-behaved uniformizer at Q.

Now let Q ∈ C(K ) and fix an extension of υ to K (Q). By a well-behaved

uniformizer tQ at Q, we mean an element tQ ∈ K (Q)(C) that is a well-behaved

uniformizer for the point Q on the curve C × K (Q).

Evaluating integrals on curves. Inside �C/Kυ
is the lattice �C/Oυ

. Let P and Q

belong to C(K ) and satisfy P̃ = Q̃. Let ω ∈ �C/Oυ
. Let tQ ∈ K (C) be a well-

behaved uniformizer at Q. We can expand ω (after viewing it as an element in

�ÔQ
) as a formal power series as

ω = (a0+ a1tQ + a2t2
Q + · · · ) dtQ, (5)

where the coefficients ai are all integers in Kυ (see for example [Lorenzini and

Tucker 2002, Proposition 1.6] or [Wetherell 1997, Sections 1.7 and 1.8]); here we

have not used the assumption that tQ(Q)= 0, but instead merely that tQ is a local

coordinate at Q. We can now evaluate the integral (see for example [Lorenzini and

Tucker 2002, Proposition 1.3])

∫ P

Q

ω =
∞

∑

i=0

ai+1

i + 1
tQ(P)i+1,

where the infinite series converges since |tQ(P)|< 1 by Lemma 2.3(iii).

3. Chabauty for a single residue class

As an algebraic variety, the d-th symmetric power C (d) is the quotient of the d-th

Cartesian power Cd by the action of the d-th symmetric group. We represent

points of C (d)(K ) as unordered d-tuples P = {P1, . . . , Pd} such that Pi ∈ C(K )

and {P1, . . . , Pd} is invariant under the action of Gal(K/K ). It is often useful to

think of P = {P1, . . . , Pd} as a positive K -rational divisor on C of degree d . A

useful reference on the geometry of symmetric powers of curves is [Milne 1986].

Let redυ :C (d)(Kυ)→C (d)(kυ) denote the reduction map. The residue class of

P in C (d)(Kυ) is defined as the fibre of the reduction map containing this d-tuple;

in other words, it is the set red−1
υ (redυ(P)). There are clearly only finitely many

residue classes.
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This section gives a criterion for a given Q∈C (d)(K ) to be the unique K -rational

point in its residue class. Let V ⊂�C/Kυ
be the annihilator of J (K )⊂ J (Kυ) under

the pairing (4). Write

V= V ∩�C/Oυ
.

Lemma 3.1. V is a free Oυ-module of rank at least g− rank J (K ).

Proof. This is a standard observation. It suffices to show that dimKυ
V ≥ g − s,

where s is the rank of J (K ). Recall that torsion belongs to the kernel of the

pairing (4) on the right. Let D1, . . . , Ds be a Mordell–Weil basis for J (K ) modulo

torsion. Then a global 1-form ω ∈ �C/Kυ
belongs to V if and only if it annihi-

lates D1, . . . , Ds . Thus V is a subspace of �C/Kυ
defined by s (not necessarily

independent) Kυ-linear conditions. Since the dimension of �C/Kυ
is g, the lemma

follows. �

Let ω ∈�C/Oυ
. Let Q ∈C(K ); fix an extension of υ to K (Q) and denote it also

by υ. Let tQ ∈ K (Q)(C) be a well-behaved uniformizer at the point Q. Expand ω

as in (5), where the coefficients ai are integers in K (Q)υ . For a positive integer m,

define

v(ω, tQ, m)=
(

a0,
1
2
a1,

1
3
a2, . . . ,

1
m

am−1

)

. (6)

Now let ω1, . . . , ωr be an Oυ-basis for V, and let Q be an element of C (d)(K ). The

unordered d-tuple Q may have some repetition in it, and we need to take a careful

account of that possibility. At this point it will be convenient to identify C (d)(K )

with the set of effective K -rational divisors of degree d . Thus we can write

Q=
l

∑

j=1

d j Q j , (7)

where Q1, Q2, . . . , Ql are distinct and d j > 0. We call d j the multiplicity of Q j

in Q. Note that d = d1+d2+· · ·+dl . Let L = K (Q1, . . . , Ql) and fix an extension

of υ to L , which we also denote by υ. Let A be the r × d matrix

A=











v(ω1, tQ1
, d1) v(ω1, tQ2

, d2) · · · v(ω1, tQl
, dl)

v(ω2, tQ1
, d1) v(ω2, tQ2

, d2) · · · v(ω2, tQl
, dl)

...
...

. . .
...

v(ωr , tQ1
, d1) v(ωr , tQ2

, d2) · · · v(ωr , tQl
, dl)











. (8)

The main objective of this section is to prove the following theorem.

Theorem 3.2. Suppose C is a smooth projective curve of genus g ≥ 2 over a

number field K , and write J for the Jacobian of C. Let d be a positive integer and

Q an element of C (d)(K ). Write Q as in (7) with Q1, Q2, . . . , Ql distinct, having

positive multiplicities d1, d2, . . . , dl . Let υ be a nonarchimedean prime of K , and

let p be the rational prime below υ. Write kυ for the residue field of υ. Write e for
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the ramification index of υ/p in K/Q. Fix an extension of υ to K (Q1, . . . , Ql),

which we also denote by υ. Write e j for the ramification index of υ in K (Q j )/K ,

and let f j := [kυ(Q̃ j ) : kυ]. Let

N = e ·max
{

lcm(e j , b) : 1≤ j ≤ l, 1≤ b ≤ d/ f j

}

. (9)

Suppose

(i) υ is a prime of good reduction for C ,

(ii) p > d1, d2, . . . , dl , and

(iii) ordp(d j + i + 1)≤ i/N for all i ≥ 0 and 1≤ j ≤ l.

Let ω1, . . . , ωr be an Oυ-basis for V (defined as above), and A be the r ×d matrix

associated with the ωi and Q as in (8). Write Ã for the reduction of A with entries

in k̄υ . If Ã has rank d , then the point Q is the unique element in its residue class

belonging to C (d)(K ).

Remarks. (a) The matrix Ã has dimension r × d , where r is the Oυ-rank of V. It

is evident that a necessary condition for the success of the criterion in the theorem

is r ≥ d. Evaluating the precise value of r is difficult, though by Lemma 3.1 we

know that r ≥ g − rank J (K ). Hence it is sensible to apply the theorem when

rank J (K )≤ g− d.

(b) We note the following useful simplification in the case where d1 = d2 = · · · =
dl = 1 (that is Q= {Q1, Q2, . . . , Qd} with the Q j distinct). Then A= (αi j ) is the

r × d matrix with entries given by

αi j = ωi

dtQ j

∣

∣

∣

tQ j
=0

.

(c) At first glance it seems that hypothesis (iii) of the theorem requires checking

an infinite list of inequalities, though this is not the case. To see this, fix 1≤ j ≤ l

and let i0 be the first value of i such that

u(i) := i

N
− logp(d j + i + 1)≥ 0 and v(i) := 1

N
− 1

(d j+i+1) log p
≥ 0.

But v = du/di ; thus u is a nondecreasing function on i ≥ i0. So

i

N
≥ logp(d j + i + 1)≥ ordp(d j + i + 1) for all i ≥ i0.

Hence we need only check the inequality i/N ≥ ordp(d j + i + 1) for 0≤ i < i0.

(d) Our theorem should be related to [Klassen 1993, Proposition 11]. Klassen

assumes that d is strictly less than the gonality, and so he is able to identify C (d)

with its image W (d) on the Jacobian. He works with local parameters on W (d)

instead of local parameters on the curve as we do. Moreover he phrases his criterion
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in terms of wedge products of 1-forms. We have not attempted to evaluate the

precise overlap between our theorem and Klassen’s. We expect that in the case

where d is strictly less than the gonality and the multiplicities of Q are all 1, some

variant of our theorem above may be deduced from Klassen’s result. We are not at

all confident that such a deduction is possible if these restrictions are not assumed.

(e) There is one striking difference between our approach and Klassen’s: power

series obtained through our method do not contain any mixed terms. Our power

series equations are of the form
∑d

j=1 fi, j (z j ) = 0 for i = 1, . . . , r, with fi, j (z j )

being a power series in z j . By the absence of mixed terms, we mean that our power

series do not contain any terms that involve more than one unknown. We believe

that these simpler power series should be useful in proving effective bounds for

the number of points on C (d)(K ), similar to Coleman’s bounds [1985a] for C(K ).

Proof of Theorem 3.2. We continue with the notation of Theorem 3.2. Suppose

that Q shares its residue class with P ∈ C (d)(K ). Our objective is to show that the

two d-tuples are equal. Let L be the extension of K generated by the supports of

the divisors P and Q. In the statement of the theorem we fixed an extension υ to

K (Q1, . . . , Ql), which we denoted also by υ. We now fix a further extension of υ

to L (compatible with the earlier extension to K (Q1, . . . , Ql)), and also denote it

by υ. Let Lυ/Kυ be the corresponding extension of local fields, and write OL ,υ

for the integers of Lυ . We normalize | · |υ in the usual way, requiring |p|υ = p−1.

Without loss of generality we can rewrite

P=
l

∑

j=1

d j
∑

j ′=1

Pj, j ′, where P̃j, j ′ = Q̃ j for j = 1, . . . , l.

Suppose ω ∈ V. Then P − Q is a divisor of degree 0 and yields an element

of J (K ). Since V is orthogonal to J (K ) with respect to the pairing (4), we obtain
∫

P−Q
ω = 0. We may rewrite this as

l
∑

j=1

d j
∑

j ′=1

∫ Pj, j ′

Q j

ω = 0. (10)

As before, we choose tQ j
∈ K (Q j )(C) to be well-behaved uniformizers at Q j . Let

z j, j ′ = tQ j
(Pj, j ′). We note the following:

(a) |z j, j ′ |υ < 1. This follows from Lemma 2.3(iii) as Pj, j ′ belongs to the residue

class of Q j .

(b) |z j, j ′ |υ ≤ 1/p1/N , where N is given by (9). Let L j, j ′ = K (Q j , Pj, j ′), which

contains z j, j ′ . Since |z j, j ′ |υ < 1, all we have to show is that υ has ramification

index at most N in L j, j ′/Q. Recall that the ramification index for υ in K/Q
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is e. Hence it is enough to show that the ramification index of υ in L j, j ′/K

is at most lcm(e j , b) for some 1≤ b ≤ d/ f j . The ramification index for υ in

L j, j ′/K is at most the least common multiple of the ramification indices for υ

in K (Q j )/K and K (Pj, j ′)/K . The former is denoted by e j in the theorem.

The latter is at most d/ f j since the extension K (Pj, j ′)/K has degree at most d ,

and the corresponding residue field extension is kυ(Q̃ j )/kυ , whose degree was

denoted by f j .

(c) z j, j ′ = 0 if and only if Q j = Pj, j ′ . This again follows from Lemma 2.3(iii).

We will show that all z j, j ′ = 0, and then P = Q as required. Now fix some j and

expand ω in terms of tQ j
to obtain

ω = (a0+ a1tQ j
+ a2t2

Q j
+ · · · ) dtQ j

,

where the ai lie in OL ,υ (page 216, middle). Integrating, we obtain

∫ Pj, j ′

Q j

ω =
∫ z j, j ′

0

(a0+ a1tQ j
+ a2t2

Q j
+ · · · ) dtQ j

= a0z j, j ′ + 1
2
a1z2

j, j ′ + · · ·

= v(ω, tQ j
, d j ) ·













z j, j ′

z2
j, j ′
...

z
d j

j, j ′













+ z
d j+1

j, j ′

(

ad j

d j + 1
+

ad j+1z j, j ′

d j + 2
+ · · · .

)

.

(11)

where v(ω, tQ j
, d j ) is as in (6). Note that hypothesis (ii) of the theorem ensures

that the entries of v(ω, tQ j
, d j ) belong to OL ,υ . Moreover, by hypothesis (iii) and

observation (b) above, we see that

(

ad j

d j + 1
+

ad j+1z j, j ′

d j + 2
+ · · ·

)

∈ OL ,υ .

Let π be a uniformizing element of Lυ . Let ordπ : Lυ→Z∪{∞} be the normalized

valuation corresponding to π . Write

m j = min
j ′=1,...,d j

ordπ (z j, j ′) for j = 1, . . . , l. (12)

Without loss of generality, we may suppose that

m1(d1+ 1)≤ m2(d2+ 1)≤ · · · ≤ ml(dl + 1).

We will show that m1 =∞; thus all m j =∞ and so all z j, j ′ = 0, completing our

proof. Thus suppose that m1 <∞.
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We obtain from (11)

∫ Pj, j ′

Q j

ω ≡ v(ω, tQ j
, d j ) ·













z j, j ′

z2
j, j ′
...

z
d j

j, j ′













(mod πm1(d1+1)), (13)

for all j , j ′. Write

z j =













z j,1+ z j,2+ · · ·+ z j,d j

z2
j,1+ z2

j,2+ · · ·+ z2
j,d j

...

z
d j

j,1+ z
d j

j,2+ · · ·+ z
d j

j,d j













for j = 1, . . . , l.

From (10) and (13) we deduce that

l
∑

j=1

v(ω, tQ j
, d j ) · z j ≡ 0 (mod πm1(d1+1)). (14)

For z ∈ (OL ,υ)d , write z = (z1 z2 · · · zl)
T . From (14) we obtain

(v(ω, tQ1
, d1), . . . , v(ω, tQl

, dl)) · z ≡ 0 (mod πm1(d1+1)).

This is true for ω1, ω2, . . . , ωr in place of ω. So plainly (from the definition of A

in (8)) we have Az ≡ 0 (mod πm1(d1+1)). However, z ∈ (OL ,υ)d , where OL ,υ are

the integers of Lυ . Moreover, we assume in the statement of the theorem that the

reduction Ã of A modulo π has rank d . Hence z ≡ 0 (mod πm1(d1+1)). From the

definition of z we obtain z1 ≡ 0 (mod πm1(d1+1)) or equivalently

z1,1+ z1,2+ · · ·+ z1,d1
≡ 0 (mod πm1(d1+1)),

z2
1,1+ z2

1,2+ · · ·+ z2
1,d1
≡ 0 (mod πm1(d1+1)),

...

z
d1

1,1+ z
d1

1,2+ · · ·+ z
d1

1,d1
≡ 0 (mod πm1(d1+1)).

By Lemma 3.4 below, we see that z1,1 ≡ z1,2 ≡ · · · ≡ z1,d1
≡ 0 (mod πm1+1); in

applying Lemma 3.4 we needed that p > d1, which is given by hypothesis (ii)

of the theorem. This contradicts the definition of m1 in (12). The source of the

contradiction is our assumption that m1 <∞. Thus m1 =∞. �

Lemma 3.3. Suppose Lκ is a nonarchimedean local field of characteristic 0 with

ring of integers Oκ and uniformizing element π . Suppose π | p for a rational
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prime p. Let h < p be a positive integer, and suppose that z1, . . . , zh ∈ Oκ satisfy

z1+ z2+ · · ·+ zh ≡ 0 (mod π),

z2
1+ z2

2+ · · ·+ z2
h ≡ 0 (mod π),

...

zh
1 + zh

2 + · · ·+ zh
h ≡ 0 (mod π).

Then z1 ≡ z2 ≡ · · · ≡ zh ≡ 0 (mod π).

Proof. The proof is by easy induction on h. The keys to the proof are Newton’s

identities [Garling 1986, page 113], which imply that hz1z2 . . . zh ≡ 0 (mod π).

Since h < p we obtain that z j ≡ 0 (mod π) for some j , allowing us to reduce to

the h− 1 case. �

Lemma 3.4. Suppose Lκ is a nonarchimedean local field of characteristic 0 with

ring of integers Oκ and uniformizing element π . Suppose π | p for a rational

prime p. Let h < p be a positive integer, and suppose that z1, . . . , zh ∈ Oκ satisfy

z1+ z2+ · · ·+ zh ≡ 0 (mod πm+1),

z2
1+ z2

2+ · · ·+ z2
h ≡ 0 (mod π2m+1),

...

zh
1 + zh

2 + · · ·+ zh
h ≡ 0 (mod πhm+1),

where m ≥ 0. Then z1 ≡ z2 ≡ · · · ≡ zh ≡ 0 (mod πm+1).

Proof. By the previous lemma, z1 ≡ z2 ≡ · · · ≡ zh ≡ 0 (mod π). Suppose that

z1 ≡ z2 ≡ · · · ≡ zh ≡ 0 (mod πr ) where 1 ≤ r ≤ m. Let z′i = π−r zi . Then

z′i ∈ Oκ , and the previous lemma again applies with z′i in place of the zi . Hence

z′i ≡ 0 (mod π), giving zi ≡ 0 (mod πr+1). �

4. A relative version of Chabauty for covers of curves

Suppose that ̺ : C → C ′ is a morphism of curves of degree d defined over a

number field K . Then ̺∗C ′(K ) is subset of C (d)(K ). If C ′(K ) is infinite, then so

is C (d)(K ). We know, thanks to Faltings’s theorem, that C ′(K ) can be infinite only

if the genus of C ′ is 0 or 1. If C ′(K ) is infinite, then some residue classes of C (d)

will contain infinitely many K -rational points, and the criterion of Theorem 3.2 is

bound to fail for these residue classes. In this situation it is indeed more natural

to ask if a given residue class of C (d) contains K -rational points not belonging to

̺∗C ′(K ). In this section we give a criterion for a given residue class in C (d)(K )

to contain only elements of ̺∗C ′(K ).
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Let υ be a nonarchimedean prime of good reduction for both C and C ′. To ease

notation we shall write �C and �C ′ for the global 1-forms on C/Kυ and C ′/Kυ ,

and let Tr :�C→�C ′ be the trace map. Write �0 for the kernel of this trace map.

Lemma 4.1. �0 has dimension gC − gC ′ , where gC (respectively gC ′) is the genus

of C (respectively C ′). Moreover, �C = ̺∗(�C ′)⊕�0.

Proof. The lemma follows from the fact that the trace map is surjective: if ω∈�C ′ ,

then Tr ((1/d)̺∗ω)= ω. �

Let V be as in the previous section, and let V0 = �0 ∩ V. Thus the 1-forms

belonging to V0 enjoy two properties; the first is that their trace is 0 with respect

to ̺, and the second is that they are orthogonal to the Mordell–Weil group J (K )

with respect to the pairing (4).

Lemma 4.2. With notation as above, V0 is a free Oυ-module satisfying

rankOυ
V0 ≥ (gC − gC ′)− (rank JC(K )− rank JC ′(K )).

Proof. The pairing (4) restricts to a bilinear pairing �0 × JC(Kυ)→ Kυ . Let �′

be the annihilator of JC(K ) with respect to this pairing. Then V0 =�′∩�C/Oυ
. It

is sufficient to show that

dimKυ
�′ ≥ (gC − gC ′)− (rank JC(K )− rank JC ′(K )).

However, by Lemma 2.2 the pairing is trivial on ̺∗ JC ′(K ). By Lemma 4.1, the

Kυ-dimension of �0 is gC − gC ′ . Thus

dimKυ
�′ ≥ (gC − gC ′)− rank(JC(K )/̺∗ JC ′(K )).

The lemma follows at once by observing that the kernel of ̺∗ : JC ′→ JC contains

only torsion (since ̺∗ ◦ ̺∗ = deg(̺)), so that

rank(JC(K )/̺∗ JC ′(K ))= rank JC(K )− rank JC ′(K ). �

Theorem 4.3. With notation as above, let Q=
∑d

j=1 Q j be an element of ̺∗C ′(K ).

Let υ be a nonarchimedean prime of K , of good reduction for C and C ′, and let

p be the rational prime below υ. Write kυ for the residue field of υ. Write e for

the ramification index of υ/p in K/Q. Fix an extension of υ to K (Q1, . . . , Qd),

which we also denote by υ. Write e j for the ramification index of υ in K (Q j )/K ,

and let f j := [kυ(Q̃ j ) : kυ]. Let

N ′ = e ·max
{

lcm(e j , b) : 1≤ j ≤ d, 1≤ b ≤ d(d − 1)/ f j

}

. (15)

Suppose ordp(i + 1) < i/N ′ for all i ≥ 0. Let t j ∈ K (Q j )(C) be a well-behaved

uniformizer at Q j . Let ω1, ω2, . . . , ωs be a basis for V0. Let A = (αi, j ) be the
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s× (d − 1) matrix with entries

αi, j = ωi

dt j

∣

∣

∣

t j=0
, for i = 1, . . . , s and j = 2, . . . , d.

If the reduced matrix Ã with entries in k̄υ has rank d − 1, then any element of

C (d)(K ) belonging to the residue class of Q does in fact belong to ̺∗C ′(K ).

Remark. For the criterion in the theorem to succeed, a necessary condition is

s ≥ d − 1, where s is the Oυ-rank of V0. Considering Lemma 4.2, it is sensible to

apply the theorem when

rank JC(K )− rank JC ′(K )≤ gC − gC ′ − d + 1.

Proof of Theorem 4.3. We are supposing Q=
∑d

j=1 Q j is some element of ̺∗C ′(K )

and P=
∑d

j=1 Pj shares its residue class. We reorder the Pj so that P̃j = Q̃ j .

Let P
′ = ̺∗̺P1 and write P

′ =
∑d

j=1 P ′j , where P ′1 = P1 and P̃ ′j = P̃j = Q̃ j for

j = 2, . . . , d .

We want to show that P∈̺∗C ′(K ). We claim it suffices to show that Pj = P ′j for

j=2, . . . , d . Suppose for the moment this holds. Then ̺Pj=̺P1 for j=1, . . . , d .

But the set {P1, . . . , Pd} is stable under the action of Gal(K/K ). Hence ̺P1 is

fixed by the action of Galois and so is in C ′(K ), establishing our claim.

To show that Pj = P ′j for j =2, . . . , d, we need to modify the Chabauty strategy

used in the proof of Theorem 3.2. Let ω ∈ V0. As before
∫

P−Q

ω = 0, so 0=
∫

P−P′
ω+

∫

P′−Q

ω.

However,
∫

P′−Q

ω =
∫

̺∗(̺P1−̺Q1)

ω =
∫

̺P1−̺Q1

Tr ω = 0,

where we have used Lemma 2.2 and the fact that ω∈V0⊂�0, so its trace vanishes.

We deduce that

0=
∫

P−P′
ω =

d
∑

j=2

∫ Pj

P ′j

ω.

Recall that t j was chosen as a well-behaved uniformizer at Q j and that Pj and

P ′j belong to the residue class at Q j . Let z j = t j (Pj ) and z′j = t j (P ′j ). We will

show that z j = z′j for j = 2, . . . , d . Once this is done, Lemma 2.3 implies that

Pj = P ′j , as required.

Now we may as before expand ω = (α j + β j t j + γ j t
2
j + · · · ) dt j , where the

coefficients are integral. We obtain

0=
d

∑

j=2

∫ Pj

P ′j

ω =
d

∑

j=2

α j (z j − z′j )+ 1
2
β j (z

2
j − z′j

2
)+ 1

3
γ j (z

3
j − z′j

3
)+ · · · ,
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and so

d
∑

j=2

α j (z j− z′j )=
d

∑

j=2

(z′j− z j )
(

1
2
β j (z j+ z′j )+ 1

3
γ j (z

2
j+ z j z

′
j+ z′j

2
)+ · · ·

)

. (16)

Let L be the finite extension of K generated by the Q j , Pj and P ′j . In the

statement of the theorem, we chose an extension of υ to K (Q1, . . . , Qd), which

we also denoted by υ. We now extend υ to L in a way that is compatible with the

earlier extension to K (Q1, . . . , Qd), and we continue to denote it by υ. Let π be

a uniformizing element of Lυ . Let

m = min
j=2,...,d

ordπ (z j − z′j ).

We would like to show that m =∞ and so z j = z′j for all j . We suppose m <∞,

aiming for a contradiction. We will show shortly that

|z j |υ ≤ 1/p1/N ′, |z′j |υ ≤ 1/p1/N ′ for j = 2, . . . , d, (17)

where N ′ is given by (15); let us assume this for the moment. One of the hypotheses

of the theorem is that ordp(i + 1) < i/N ′ for all i ≥ 0. Hence

|zi
j/(i + 1)|υ < 1, |z′j

i
/(i + 1)|υ < 1 for i ≥ 0 and j = 2, . . . , d.

Hence 1
2
(z j+z′j )≡ 1

3
(z2

j+z j z
′
j+z′j

2
)≡· · ·≡0 (mod π). Since z j ≡ z′j (mod πm),

Equation (16) shows that

d
∑

j=2

α j (z j − z′j )≡ 0 (mod πm+1).

If ω = ωi , we see that α j is precisely what is called αi, j in the statement of the

theorem. Hence we obtain

d
∑

j=2

αi, j (z j − z′j )≡ 0 (mod πm+1) for i = 1, . . . , s.

Let w j = (z j − z′j )/π
m . Then w j ∈ OL ,υ . Also A(w2 · · · wd)T ≡ 0 (mod π).

Because Ã has rank d − 1, we see that all the w j ≡ 0 (mod π), and therefore

z j ≡ z′j (mod πm+1) for all j . This contradicts the definition of m above, and

shows that m =∞ as required.

Our proof is complete except for claim (17). Naturally |z j |υ < 1 and |z′j |υ < 1.

Also, z j and z′j are contained in L j = K (Q j , Pj ) and L ′j = K (Q j , P ′j ). Thus it is

sufficient to show that the ramification index in these fields is at most N ′. Let us do

this for L ′j ; the corresponding proof for L j is easier. The ramification index for υ

in K/Q is e. The ramification index of υ in L ′j/K is the least common multiple of
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its ramification index in K (Q j )/K and K (P ′j )/K . The former ramification index

is denoted by e j in the statement of the theorem. We will see shortly that the field

extension K (P ′j )/K has degree at most d(d−1); we know that the corresponding

residue field extension is simply kυ(Q̃ j )/kυ , whose degree was denoted by f j .

Hence the ramification index for K (P ′j )/K is at most d(d − 1)/ f j . Putting this

together, it only remains to show that the degree [K (P ′j ) : K ] is at most d(d − 1).

Now [K (P1) : K ] ≤ d since P1 belongs to the rational d-tuple P. The P ′j are

obtained by solving for P the degree d equation ̺P = ̺P1. Clearly any solution

must live in some extension of K (P1) of degree at most d − 1. �

5. Chabauty using several primes

Let L be a (known) nonempty subset of C (d)(K ). We next give a criterion for show-

ing that L is equal to C (d)(K ). This criterion involves using several well-chosen

nonarchimedean primes υ1, . . . , υt of good reduction, applying Theorem 3.2 (and

Theorem 4.3 in the case of a cover C→ C ′) at each prime separately, and finally

combining the information so obtained to show that L is equal to C (d)(K ). Our

method resembles the Mordell–Weil sieve [Bruin and Elkies 2002], which is often

applied to show that a given curve has no rational points [Bruin and Stoll 2008]. We

have found the Mordell–Weil sieve to yield very poor information in our situation;

not only are we dealing with a variety C (d) which has rational points, we also

have many points locally because of the dimension. We improve the situation

dramatically by using Chabauty to remove the image under reduction maps of the

known rational points, and then merely sieve for unknown rational points. If we

obtain a contradiction, then we know there are no unknown rational points and we

have provably determined all the rational points.

We shall make some assumptions:

• We know a subset D1, . . . , Dn of J (K ) that generates a subgroup G of finite

index in J (K ). Such a subset can often be obtained using a descent argument;

see for example [Cassels and Flynn 1996; Flynn 1994; Poonen and Schaefer

1997; Schaefer 1995; Schaefer and Wetherell 2005; Stoll 1998; 2001; 2002].

• The orders of the finite groups J (kυ1
), . . . , J (kυt

) are coprime to the index

of G in J (K ). This assumption can be verified using the standard method

of checking p-saturation, as explained in [Flynn and Smart 1997, page 345],

[Siksek 1995b, page 1526] and [Siksek 1995a].

• If ̺ :C→C ′ is a morphism of degree d , and C ′(K ) is known, we also suppose

̺∗C ′(K )⊆ L.

Fix υ to be one of these primes of good reduction υ1, . . . , υt . Let Ni,υ be the order

of the reduction of D̃i in J (kυ). Fix once and for all an element Q0 ∈L, and denote
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by  :C (d)(K )→ J (K ) the Abel–Jacobi map corresponding to Q0. We also lazily

denote by  the Abel–Jacobi map  : C (d)(kυ)→ J (kυ) corresponding to Q̃0. Let

φ : Zn→ J (K ), (b1, . . . , bn) 7→
∑

bi Di .

This induces a well-defined map

φ̃ :
n

∏

i=1

Z/Ni,υZ→ J (kυ), (b̃1, . . . , b̃n) 7→
∑

bi D̃i .

These maps fit together in the commutative diagram

L
�

�

//

red
##F

F

F

F

F

F

F

F

F

C (d)(K )


//

red
��

J (K )

red

��

Zn
φ

oo

��

C (d)(kυ)


// J (kυ)
∏n

i=1 Z/Ni,υZ.
φ̃

oo

We immediately notice that red(C (d)(K )) ⊆ −1 red(J (K )). By assumption, the

order of J (kυ) is coprime to the index [J (K ) :G]. Thus red(J (K ))= red(G). We

deduce that red(C (d)(K )) ⊂ −1 im φ̃. The set −1 im φ̃ is finite and computable.

Recall that our objective is to show, somehow, that C (d)(K ) = L. Assume the

existence of some element P = {P1, . . . , Pd} of C (d)(K ) that does not belong

to L. We would like to say something about the reduction P̃ in C (d)(kυ). Suppose

now that Q = {Q1, . . . , Qd} ∈ L satisfies the criterion of Theorem 3.2. Then Q

is the only element in its residue class. Hence P̃ 6= Q̃. Likewise in the case of a

morphism ̺ : C→ C ′ of degree d , if Q belongs to ̺∗C ′(K )⊆ L and satisfies the

criterion of Theorem 4.3, then P̃ 6= Q̃. Now let Mυ be the subset of those R̃ in

−1 im φ̃ satisfying either

• R̃ 6∈ red(L), or

• R̃= Q̃ for some Q ∈ L that does not satisfy the criterion of Theorem 3.2, or

• we are in the case of a degree d cover ̺ : C → C ′ and R̃ = Q̃ for some

Q ∈ ̺∗C ′(K ) that does not satisfy the criterion of Theorem 4.3.

It is plain that the reduction P̃ of our hypothetical point P ∈ C (d)(K ) \L belongs

to Mυ . Define

Nυ = φ̃−1 (Mυ)⊆
n

∏

i=1

Z/Ni,υZ.

The set Nυ carries some information about the hypothetical point P. This informa-

tion was obtained by considering only one nonarchimedean prime υ. We would

like to combine the information coming from each of our chosen primes υ1, . . . , υt .

We let

Ni = lcm(Ni,υ1
, Ni,υ2

, . . . , Ni,υt
) for i = 1, . . . , n.
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For each υ = υ1, . . . , υt , there is a natural projection

συ :
n

∏

i=1

Z/Ni Z→
n

∏

i=1

Z/Ni,υZ.

We are now ready to state our main result of this section.

Theorem 5.1. Under the hypotheses above, suppose that

υt
⋂

υ=υ1

σ−1
υ Nυ =∅.

Then C (d)(K )= L.

Proof. Suppose P ∈ C (d)(K ) \L. From the discussion above, we know that

P̃ ∈Mυ for υ = υ1, . . . , υt .

Now P ∈ J (K ) and D1, . . . , Dn generate a subgroup G of J (K ) of finite index

m = [J (K ) : G]. Thus

m · P= a1 D1+ a2 D2+ · · ·+ an Dn for some a1, . . . , an ∈ Z.

The index m is coprime to #J (kυ) for υ = υ1, . . . , υt . Hence there is some m∗ ∈Z

such that

m∗m ≡ 1 mod lcm{#J (kυ) : υ = υ1, . . . , υt }.

The equality m∗m · P = (m∗a1)D1 + (m∗a2)D2 + · · · + (m∗an)Dn takes place

in J (K ), with the coefficients m∗ai belonging to Z. Applying redυ : J (K )→ J (kυ),

and recalling that m∗m ≡ 1 mod #J (kυ), we get

P̃= (m∗a1)D̃1+ (m∗a2)D̃2+ · · ·+ (m∗an)D̃n.

Recall our observation at the beginning of the proof that P̃ ∈ Mυ . Hence the

image of (m∗a1, . . . , m∗an)∈Zn in
∏n

i=1 Z/Ni,υZ belongs to Nυ = φ̃−1Mυ . Thus

the image of (m∗a1, . . . , m∗an) ∈ Zn in
∏n

i=1 Z/Ni Z belongs to
⋂

σ−1
υ Nυ . This

contradicts the assumption that
⋂

σ−1
υ Nυ =∅ and completes our proof. �

6. Examples

In this section we use our method to compute C (2)(Q) for two genus 3 curves, both

with Jacobians having rank 1. The first example is hyperelliptic and the second is

a nonsingular plane quartic. All computations are done using the MAGMA package

[Bosma et al. 1997; MAGMA 2009].
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A hyperelliptic example. Let C be the smooth projective curve over Q with affine

chart

C : y2 = x(x2+ 2)(x2+ 43)(x2+ 8x − 6), (18)

and write f for the polynomial on the right. Being hyperelliptic, C is of course a

double cover of the projective line. In our earlier notation, the map ̺ : C→ C ′ is

just the map

C→ P
1, (x, y) 7→ x, ∞ 7→∞.

Thus

̺∗P1(Q)=
{

{(x,
√

f (x)), (x,−
√

f (x))} : x ∈Q
}

∪ {{∞,∞}}.

Note that the hyperelliptic involution ι : C→ C extends to an involution on C (2),

which we will also denote by ι. Thus

ι : C (2)→ C (2), {(x1, y1), (x2, y2)} 7→ {(x1,−y1), (x2,−y2)}.

Let

L= ̺∗P1(Q)∪ {Qi : i = 1, . . . , 10} ⊆ C (2)(Q)

where

Q1 = {(
√

6, 56
√

6), (−
√

6,−56
√

6)},
Q2 = {(0, 0),∞},
Q3 = {(

√
−2, 0), (−

√
−2, 0)},

Q4 = {(
√
−43, 0), (−

√
−43, 0)},

Q5 = {(−4+
√

22, 0), (−4−
√

22, 0)},

Q6 =
{(

41+
√

1509

2
,−222999− 5740

√
1509

)

, conjugate
}

Q7 =
{(−164+

√
22094

49
,

257704352−1648200
√

22094

823543

)

, conjugate
}

,

Q8 = ιQ1,

Q9 = ιQ6,

Q10 = ιQ7.

We want to show that C (2)(Q) = L. First we need some information about the

Mordell–Weil group J (Q), where J is the Jacobian of C . Using the MAGMA routine

for 2-descent on Jacobians of hyperelliptic curves, we find J (Q) has Mordell–Weil

rank 1; this routine is an implementation of the algorithm in [Stoll 2001].

Write  : C (2) → J for the Abel–Jacobi map given by P 7→ P− 2∞. Write

Di = Qi , where i = 1, . . . , 10. Then D1 has infinite order, and D2, D3, D4 are a
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basis for the 2-torsion. We note the relations

D5 = D2+ D3+ D4, D6 = D1+ D2+ D3, D7 = D1+ D2+ D4,

D8 =−D1, D9 =−D7, D10 =−D8.

We believe that D1, D2, D3, D4 is a Mordell–Weil basis for J (Q), although we

are unable to prove this. However, D1, D2, D3, D4 generates a subgroup G of

full rank and hence finite index. Using our implementation of the p-saturation

method (from [Flynn and Smart 1997, page 345], [Siksek 1995b, page 1526] and

[Siksek 1995a]) we verified that this index is not divisible by any prime l ≤ 100;

this verification took just a few seconds.

The primes of bad reduction for C are 2, 3, 11, 41, 43, 5153. We shall work

with primes p = 5, 7, 13 of good reduction. Note that

#J (F5)= 26× 3, #J (F7)= 25× 5, #J (F13)= 210.

It follows that the index of G in J (Q) is coprime to the orders of these groups. To

use our theorems we must, for each of our chosen primes p, compute a Zp-basis

for the global 1-forms V that kill off J (Q). Of course V is a submodule of the

Zp-module spanned by the basis for global 1-forms: dx/y, xdx/y, x2dx/y.

Work first with p = 5. Now D = 3D1+ D3+ D4 is in the kernel of reduction.

We compute (see [McCallum and Poonen 2006] and [Wetherell 1997] for hints on

computing p-adic integrals):
∫

D

dx

y
≡ 5× 1471729 (mod 510),

∫

D

xdx

y
≡ 5× 1174134 (mod 510),

∫

D

x2dx

y
≡ 5× 1135401 (mod 510).

We can take

ω1 = dx

y
+ ǫ

x2dx

y
and ω2 = xdx

y
+ δ

x2dx

y

as a Z5-basis for V, where

ǫ ≡ 510496 (mod 59) and δ ≡ 395091 (mod 59).

Since P1 has genus 0, Lemma 4.1 shows that �0=� (in the notation of Section 4)

and hence V0 = V.

Although we programmed our criteria for Theorems 3.2, 4.3 and 5.1 in MAGMA,

we will however carry out some of the calculations explicitly to give the reader a

taste for these. Consider for example Q0= {(0, 0), (0, 0)} ∈ ̺∗P1(Q). Let us show
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that Q0 does not share its residue class with any element of C (2)(Q) not belonging

to ̺∗P1(Q). We apply the criterion of Theorem 4.3. We take y as the uniformizer

at the point (0, 0). From y2 = f (x), we see that 2ydy = f ′(x)dx . Hence

(

1

y

dx

dy

)∣

∣

∣

y=0
= 2

f ′(x)

∣

∣

∣

y=0
= 2

f ′(0)
= −1

258
.

Hence
ω1

dy

∣

∣

∣

y=0
≡ 3 (mod 5)

and so by Theorem 4.3, Q0 does not share its residue class with any element of

C (2)(Q) not belonging to ̺∗P1(Q). The reader may care to repeat this calculation

with {∞,∞}, and {(a,
√

f (a)), (a,−
√

f (a))} for a = 1, . . . , 4. The outcome of

such a calculation is that no element in ̺∗P1(Q) shares its residue class with an

element of C (2)(Q) not belonging to ̺∗P1(Q).

We now apply Theorem 3.2 to Q1. We can take t1 = x−
√

6 as a uniformizer at

(
√

6, 56
√

6). Note that dt1 = dx . Thus

x i

y

dx

dt1

∣

∣

∣

t1=0
=
√

6
i

56
√

6
.

We see that

ω1

dt1

∣

∣

∣

t1=0
= 1+6ǫ

56
√

6
and

ω2

dt1

∣

∣

∣

t1=0
=
√

6+6δ

56
√

6
.

For (−
√

6,−56
√

6), we take t2 = x +
√

6 as a uniformizer. We get

ω1

dt2

∣

∣

∣

t2=0
= 1+6ǫ

−56
√

6
and

ω2

dt2

∣

∣

∣

t2=0
= −
√

6+6δ

−56
√

6
.

We compute the determinant

∣

∣

∣

∣

∣

∣

∣

∣

1+6ǫ

56
√

6

√
6+6δ

56
√

6

1+6ǫ

−56
√

6

−
√

6+6δ

−56
√

6

∣

∣

∣

∣

∣

∣

∣

∣

= 2(1+6ǫ)

562
√

6
≡ 4 (mod 5),

where in the last step we chose
√

6 = 1+ 3× 5+ 4× 53+ · · · . By Theorem 3.2,

Q1 does not share its residue class with any other element of C (2)(Q). By similar

arguments, the same is true of Qi for i = 2, . . . , 10.

Suppose now that P ∈ C (2)(Q) \L. We would like to deduce a contradiction.

The argument at the end of the proof of Theorem 5.1 shows that there are integers

n1, n2, n3, n4 such that simultaneously in each of J (Fp) with p= 5, 7, 13 we have

P̃= n1 D̃1+ n2 D̃2+ n3 D̃3+ n4 D̃4.
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In J (F5), the order of D̃1 is 6 while D̃2, D̃3, D̃4 are of order 2. Consider the maps

C (2)(F5)
−→ J (F5)

φ̃←−− Z/6Z× (Z/2Z)3.

We see that (n1, n2, n3, n4) mod (6, 2, 2, 2) belongs to φ̃−1(C (2)(F5)). Using our

MAGMA program, we wrote down the set φ̃−1(C (2)(F5)) and found that it has 22

elements. In the notation of Section 5, we want to write down the set N5. This

is the subset of φ̃−1(C (2)(F5)) containing all quadruples that, on the basis of our

Chabauty calculations above, cannot be (n1, n2, n3, n4) mod (6, 2, 2, 2). For exam-

ple, the quadruple (0, 0, 0, 0) is in φ̃−1(C (2)(F5)). However, if (n1, n2, n3, n4)≡
(0, 0, 0, 0) mod (6, 2, 2, 2), then P shares its residue class with some element of

−1P1(Q), contradicting our computations above. Therefore (0, 0, 0, 0) 6∈ N5.

Similarly we can exclude another 10 elements corresponding to Q1, . . . , Q10. This

leaves us with 11 elements in N5:

N5 = {(2, 0, 1, 1), (2, 1, 0, 1), (2, 1, 1, 0), (3, 0, 0, 1), (3, 0, 1, 0), (3, 0, 1, 1),

(3, 1, 0, 0), (3, 1, 1, 1), (4, 0, 1, 1), (4, 1, 0, 1), (4, 1, 1, 0)}
⊂ Z/6Z× (Z/2Z)3.

We know that (n1, n2, n3, n4) is equivalent modulo (6, 2, 2, 2) to one of these 11

elements of N5.

Next we repeat the calculation with p = 7. Our Chabauty arguments, Theo-

rems 3.2 and 4.3, succeed for −1P1(Q) and Q3 and fail for all other Qi . There

are good reasons for these failures. It turns out that Q1, Q4 and Q8 share the same

residue class, likewise for Q5, Q6 and Q9, and for Q2, Q7 and Q10. Despite this, the

information given by p= 7 is still useful, this time because the set φ̃−1(C (2)(F7))

is small, having only 10 elements. We have excluded two of them, those corre-

sponding to −1P1(Q) and Q3. We are left with

N7 = {(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 1, 1), (1, 0, 0, 0),

(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)} ⊂ (Z/2Z)4.

We know that (n1, n2, n3, n4) is equivalent modulo (2, 2, 2, 2) to one of these eight

elements of N7. Combining the information from N5 and N7, we see that

(n1, n2, n3, n4)≡ (3, 0, 0, 1) or (3, 0, 1, 1) mod (6, 2, 2, 2). (19)

We still have not obtained a contradiction. Finally we let p = 13. This time we

find

N13 = {(3, 1, 0, 1), (8, 0, 1, 0), (8, 0, 1, 1), (8, 1, 0, 0), (8, 1, 0, 1), (13, 1, 0, 1)}
⊂ Z/16Z× (Z/2Z)3.
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Again we know that (n1, n2, n3, n4) is equivalent modulo (16, 2, 2, 2) to one of

these six elements of N13. This contradicts the congruences in (19). We deduce

that C (2)(Q)= L as required.

A plane quartic example. Let C be the smooth plane quartic (genus 3) curve with

affine equation

C : x4+ (y2+ 1)(x + y)= 0,

and let J be its Jacobian. Schaefer and Wetherell [2005] observe that it has a trivial

automorphism group, and that its J is absolutely simple and not modular. Using a

deep descent argument, they show that J (Q) ∼= Z⊕Z/4Z. They apply Chabauty

to conclude that C(Q)= {(0, 0), (−1, 0),∞}.
Using our method we showed that C (2)(Q)= {Q1, . . . , Q10}, where

Q1 =
{

(−17+
√

259,−48+ 3
√

259), (−17−
√

259,−48− 3
√

259)
}

,

Q2 =
{(

−1, 1
2
(1+
√
−3)

)

,
(

−1, 1
2
(1−
√
−3)

)}

,

Q3 =
{(

1
2
(1+
√
−3), 0

)

,
(

1
2
(1−
√
−3), 0

)}

,

Q4 = {(0, 0),∞},
Q5 = {(0, 0), (0, 0)},
Q6 = {(0, i), (0,−i)},
Q7 = {(−1, 0),∞},
Q8 = {(−1, 0), (0, 0)},
Q9 = {(−1, 0), (−1, 0)},

Q10 = {∞,∞}.
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