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Abstract. The tiny encryption algorithm (TEA) was developed by
Wheeler and Needham as a simple computer program for encryption.
This paper is the first design-space exploration for hardware implemen-
tations of the extended tiny encryption algorithm. It presents efficient
implementations of XTEA on FPGAs and ASICs for ultra-low power
applications such as RFID tags and wireless sensor nodes as well as fully
pipelined designs for high speed applications. A novel ultra-low power
implementation is introduced which consumes less area and energy than
a comparable AES implementation. Furthermore, XTEA is compared
with stream ciphers from the eSTREAM portfolio and lightweight ci-
phers. The high speed implementations of XTEA operate at 20.6 Gbps
(FPGA) or 36.6 Gbps (ASIC).

Keywords: Efficient implementation, symmetric key algorithms, TEA, XTEA,
FPGA, ASIC

1 Introduction

The Tiny Encryption Algorithm (TEA) was introduced by David Wheeler and
Roger Needham [1, 2] in ’94. Their main design goal was to produce a cipher that
is simple, short and does not rely on large tables or pre-computations. Shortly
after TEA was published, a few minor weaknesses were found [3]. The original
authors eliminated those weaknesses in a new version of TEA called XTEA for
extended TEA [4]. A positive side effect of the new version, also called tean, is
that the main routine requires two fewer addition operations which results in
a faster algorithm. Also in [4] the authors described a variant of TEA called
Block TEA to cater for larger block sizes than the original algorithm’s 64-bit.
An attack on Block TEA was found and subsequently corrected in [5]. Other
recent attacks [6, 7] target a reduced round version of TEA. The recommended
32 round version is still considered to be secure.

TEA uses only simple addition, XOR and shifts, and has a very small code
size. This makes TEA an ideal candidate to provide data security services for
wireless sensor network (WSN) nodes which have limited memory and computa-
tional power. Many software implementations of TEA for these nodes have been
reported [8–10]. Kanamori compared software implementations of the Advanced
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Encryption Standard (AES) to implementations of TEA on sensor nodes [11]
and concluded that the memory requirements for TEA are one quarter the re-
quirements of AES.

Even though TEA was proposed mainly for software implementations, its
simple design makes it also very suitable for hardware implementations. The im-
plementation designers can take advantage of the inherent parallelism of TEA
to boost performance or, on the other hand, reduce its area and power con-
sumption. This makes it possible to implement TEA for severe power constraint
applications such as passive radio frequency identification (RFID) tags and the
next generation WSN nodes. Customized hardware is currently the only option
for inexpensive passive RFID tags as they do not have a processor. The same
might become true for next generation sensor nodes which are predicted to be
powered by energy scavenged from the environment [12].

For environments in which the power consumption is not the most important
design criteria, field programable gate arrays (FPGAs) are an interesting option.
FPGAs can be re-programmed in the field which makes it possible to update
the cryptographic algorithm after deployment. This might be necessary if new
cryptanalytic results lead to changes in the TEA algorithm as we have seen in
the past.

Hardware implementations of the original TEA were first published in [13,
14] targetting RFID tags. To the knowledge of the authors, this is the first de-
sign space exploration of hardware implementations of XTEA. This paper covers
implementations for application specific integrated circuits (ASIC) as well as for
FPGAs, small, power and energy efficient implementations for ubiquitous com-
puting devices with stringent power constraints and high speed implementations
for server environments.

2 Extended Tiny Encryption Algorithm

The Extended Tiny Encryption Algorithm (XTEA) is a block cipher that uses
a cryptographic key of 128 bits to encrypt or decrypt data in blocks of 64 bits.
Each input block is split into two halves y and z which are then applied to a
routine similar to a Feistel network for N rounds where N is typically 32. Most
Feistel networks apply the result of a mixing function to one half of the data
using XOR as a reversible function. XTEA uses for the same purpose integer
addition during encryption and subtraction during decryption.

Figure 1 shows the C source code for XTEA as it was introduced in [4].
Additional parenthesis were added to clarify the precedence of the operators.
The main variables y, z, and sum, which assists with the subkey generation,
have a length of 32 bits. All additions and subtractions within XTEA are modulo
232. Logical left shifts of z by 4 bits are denoted as z ¿ 4 and logical right shift
by 5 bits as z À 5. The bitwise XOR function is denoted as “^” in the source
code and ⊕ in this paper.

The first part of the algorithm is the encryption routine and the second
part is the decryption routine. The while-loop constitutes the round function.
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int tean(long * v, long * k, int N)

{

unsigned long y=v[0], z=v[1], DELTA=0x9e3779b9;

if (N>0) { /* encryption */

unsigned long limit=DELTA*N, sum=0;

while (sum != limit) {

y += ((z<<4 ^ z>>5) + z) ^ (sum + k[sum&3]);

sum += DELTA;

z += ((y<<4 ^ y>>5) + y) ^ (sum + k[sum>>11 &3]);

}

} else { /* decryption */

unsigned long sum=DELTA*(-N);

while (sum) {

z -= ((y<<4 ^ y>>5) + y) ^ (sum + k[sum>>11 &3]);

sum -= DELTA;

y -= ((z<<4 ^ z>>5) + z) ^ (sum + k[sum&3]);

}

}

v[0]=y, v[1]=z;

return;}

Fig. 1. Source code of XTEA

The formulae that compute the new values for y and z can be split into a
permutation function f(z) = (z ¿ 4 ⊕ z À 5) + z and a subkey generation
function sum + k(sum). The function k(sum) selects one block out of the four
32-bit blocks that comprise the key, depending on either bits 1 and 0 or bits
12 and 11 of sum. The results of the permutation function and the subkey
generation function are XORed and then applied to y and z respectively, by
addition in the case of encryption or subtraction in the case of decryption.

This leads to the simplified block diagram shown in Fig. 2. For encryption,
z is applied to the left side, y to the right side, and all adder/subtracters are
in addition mode. For decryption, the opposite is applied. The permutation
function is shown as f and the subkey generation as Keygen . One round of
xtea computes a new value for y and z. Therefore, we can view the computation
of one value as a halfround. A new value for sum is computed between the first
and the second halfround. It is incremented by a constant ∆ during encryption
and decremented during decryption. We included this computation into the first
halfround as it can be performed concurrently with the final addition/subtraction
of the data in this halfround.

3 Speed XTEA

Speed XTEA investigates how XTEA scales for fast hardware implementations.
We implemented a fully loop-unrolled, pipelined architecture of XTEA on FPGA
and ASIC. Each block of data can be associated with a new key and the mode can
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Fig. 3. Pipeline cuts for half rounds

be switched between encryption and decryption without loss of throughput. A
natural location for the pipeline cuts is between the half rounds, so called outer
round pipelining. However, due to the long delay of one halfround additional
pipeline cuts within the halfround, called inner round pipelining, are necessary.
Figure 3 indicates through thick dashed lines the location of three inner round
cuts that we want to investigate.

3.1 FPGA Implementation

FPGAs are composed of configurable logic blocks (CLB) and a programmable
interconnection network. We targeted the low cost Xilinx FPGA series Spartan 3
to compare our results with other reported block cipher implementations on the
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same series. In addition, we implemented XTEA on the Xilinx Virtex 5 devices
which are a natural choice for high speed applications. Xilinx divides each CLB
into slices. Each slice on a Spartan-3 contains two sets of a 4-input look-up table
(LUT) followed by a flip-flop. The Virtex 5 slice contains four sets of a 6-input
LUT followed by a flip-flop. Slices in both families have dedicated circuitry and
connections for fast carry propagation. Therefore, the result of additions can be
stored within the same slices avoiding any additional wire delay. This makes this
location ideal for a pipeline cut which is indicated by line number 2 in Fig. 3.
Furthermore the LUT contained in these slices can accommodate the function
sftmix and XOR .

Unfortunately the ideal clock speed of 3.18 ns on Spartan 3 (speed grade -5)
and 1.00 ns on Virtex 5 (speed grade -3) cannot be reached due to wire delays at
the input of the adder. Even though pipeline location 2 seems to be sufficient at
first glance, the key select function Keysel k(sum) can not be implemented with
a single LUT per bit. Each output bit depends on 9 input bits: The encryption
/ decryption flag, four bits from sum, and four bits from the key. In addition,
we noticed through timing analysis that the routing delay from the input of the
half round to the inner round pipeline cut number 2 was much larger than the
delay from the inner cut to the following outer round pipeline cut. Hence, we
placed an additional pipeline cut, indicated as line number 1 in Fig. 3, before
the first stage of adders.

Pipeline cut three is mainly of interest for ASIC implementation. The results
for FPGA show that it has no effect on the critical path delay because the XOR
can be performed in the LUTs of the slices occupied by the following adder.

We implemented variations of these possible cuts in a not loop-unrolled ver-
sion of XTEA to analyze their effect on the delay and to estimate the throughput-
area ratio of a fully unrolled implementation. Table 1 shows the results including
an approximation of the ratio of delay due to logic cells “Logic Delay” versus
routing delay. The throughput and the throughput area ratio are estimated for
a fully unrolled design with the same delay and 32 times the area.

Placing pipeline cuts in either location 2 or locations 1 & 2 yields the small-
est critical path delay and the best estimated throughput area ratio. We imple-
mented two loop-unrolled pipelined version of XTEA called SpeedXTEA-1 with
pipeline cut 2 and SpeedXTEA-2 with pipeline cuts 1 and 2. It is interesting to
note that the 6-input LUTs of the Virtex 5 have no significant advantage over
the 4-input LUTs on Spartan 3 in terms of critical path delay. The large speed
improvement of Virtex 5 is mainly due to its newer CMOS technology.

3.2 ASIC Implementation

Our ASIC implementations of XTEA are based on the SpeedXTEA-1 and Speed-
XTEA-2 FPGA designs and use the same pipeline cuts. SpeedXTEA-3 makes
use of the pipeline cuts 1, 2, and 3. This takes the XOR as well as sftmix and
keysel out of the critical path which is now determined solely by the delay of

the adders. We used Brent-Kung [15] adders which are more than three times
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Table 1. Results for pipeline cuts in Halfround 1 & 2 Implementations

FPGA xc3s2000-5 xc5vlx100-3
Pipeline Cuts 1 2 1&2 1 2 1&2 1&2&3

Critical Path Delay (ns) 8.200 7.372 5.471 3.097 2.999 2.193 2.199
Logic Delay 67% 53% 71% 62% 51% 64% 65%

Routing Delay (ns) 2.71 3.46 1.59 1.18 1.47 0.79 0.77
Clock Cycles for one round 4 4 6 4 4 6 8

Area including overhead (Slices) 597 577 701 410 383 445 522
Estimated Troughput (Mbps) 7,805 8,681 11,698 20,665 21,340 29,184 29,104
Estimated Ratio (Mbps/Slice) 0.409 0.470 0.521 1.575 1.741 2.049 1.742

faster than ripple-carry adders (RCA) even though they are only 32-bit wide.
All pipeline cuts are implemented by using positive edge triggered flip-flops.

4 Tiny XTEA

The objective of Tiny XTEA was to develop an ultra-low power implementation
of XTEA. We assume that the 128-bit key and 64 bits of data are stored in
memory and can be accessed via an 8-bit data bus. This bus width selection and
the fact that we store a copy of the key and one data block in registers enables
us to compare our design with an ultra-low power AES design reported in [16].
Our implementation acts as a co-processor and has commands for loading a key
from memory and encrypting or decrypting one block of data.

4.1 ASIC Implementation

Power consumption in CMOS devices is the sum of the leakage power PLeak (also
called static power) and dynamic power PDyn. PLeak is caused by the leakage
current of each gate and therefore proportional to the circuit size. PDyn is caused
by gate output changes from ’0’ to ’1’ and vice versa and hence proportional
to the switching activity and to the clock frequency of the circuit. Ultra low-
power applications such as RFID tags and energy scavenger powered sensor
nodes [12] operate at frequencies of 100 kHz to 500 kHz where the leakage
power is dominant. Therefore, its reduction must be the primary design goal.
This can be achieved by reducing the circuit size.

From Fig. 2 we can see that it is sufficient to implement halfround 1 as it can
perform the same function as halfround 2. We chose to use a 32-bit datapath
as this is the native width of all operations used in XTEA. The main area
consuming parts, as far as ASIC design is concerned, are the registers required
to store the data (x and y), the key, and the variable sum. Using a smaller
datapath, for example 8 bits, would reduce the size of the adders and XORs
by one fourth. However, it would require the use of additional multiplexers to
select between four bytes of the the 32-bit words1 and to select 17 bits from z
1 The current design employs only a single such multiplexer.
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in order to facilitate the f(z) = (z ¿ 4 ⊕ z À 5) + z function. It would also
increase the number of clock cycles needed for one encryption, and require a
more complex control logic. The number of registers will not be affected. Hence,
a smaller datapath will not necessarily lead to smaller circuit with a reduced
power or energy consumption.

The halfround function performs four integer additions if it is used as hal-
fround 1 and three integer additions as halfround 2. We can use the same adder
for additions and subtractions by including a small circuit to compute the 2’s-
complement of the subtrahend. The design of the halfround function can be
scaled to use only one adder or up to four adders. In order to determine the
ideal solution for an ultra-low power implementation on ASIC, we implemented
all four versions. From those results, we estimated the results of an implementa-
tion that combines halfround 1 and halfround 2 and therefore incorporates seven
adders. We used simple ripple carry adders (RCA) which consume less power
than faster adders of this width and at the targeted clock frequency [16].

Table 2. Results for Halfround 1 Implementations

Number of Adders in Architecture 1 2 3 4 7a

Critical Path Delay (ns) 9.91 9.84 10.08 9.97 11.70
Clock Cycles for one operation 224 128 96 64 32

Area (NAND Equiv.) 1220 1330 1170 1351 2521
Dynamic Power (at 100 kHz) (µW) 0.49 0.54 0.67 0.86 1.54

Static Power (µW) 6.34 7.21 6.57 7.56 13.84

Total Power (at 100 kHz) (µW) 6.83 7.75 7.25 8.42 15.38

Energy per bit (pJ) 239.0 154.9 108.8 84.24 76.89

a Estimated, includes halfround1 and halfround 2

Table 2 shows that the critical path delay of all implementations is almost
equivalent. The main contributors to the delay are the RCAs. The surprising
result is, that the area of the circuit does not grow linearly with the number of
adders. In fact, the halfround 1 architecture with three adders is smaller than the
one with two adders. The architectures adder1 and adder2 need a 32-bit wide
register to store temporary results which is not necessary in the other architec-
tures. Another reason for the nonlinearity is that with each additional adder,
the need for multiplexers to switch their inputs is reduced. The static power
consumption also has nonlinearities. This is due to the fact that not all gates
have the same leakage power. RCAs have a very high switching activity due to
glitches which is emphasized when multiple adders are in series as in the adder3
and adder4 architectures. This leads to a higher dynamic power consumption.
Another factor of the dynamic power consumption is the utilization of the adders
in each state of the computation, e.g. the state machine of the adder3 architec-
ture utilizes only one adder in every third state and three in all other states.
This reduces the average dynamic power consumption.
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We implemented TinyXTEA-1 using the adder1 architecture which has the
lowest power consumption and TinyXTEA-3 using adder3 which is a good com-
promise between power consumption and speed.

4.2 FPGA Implementation

The FPGA implementation is based on the design of TinyXTEA-1 and Tiny-
XTEA-3. The main modification was the replacement of ripple carry adders with
fast carry propagate adders offered by the Xilinx FPGAs.

5 Results

All our designs were described in VHDL. The FPGA designs were implemented
using Xilinx ISE 9.1 tools and verified through post-place and route simulation
with ModelSim SE 6.3a and test vectors generated from the C-code given in [4].
All results reported in the FPGA section are from post-place and route analysis.
The ASIC implementations were synthesized using Synopsys power compiler and
a 0.13 µm, VDD = 1.2V ASIC library from TSMC which is characterized for
power. All results were reported at the gate level. Results for power, energy and
maximum delay from implementations using different CMOS processes, e.g.:
0.35 µm, 0.18 µm, can not be compared to ours as these results are depending
on the technology used.

5.1 ASIC Implementations

The results for the high speed ASIC implementation of XTEA are shown in
Table 3. It is interesting to note that SpeedXTEA-1 with one pipeline cut per
halfround has the same maximum path delay as SpeedXTEA-2 with two cuts.
However, the results are from gate level implementation, before placing and rout-
ing. Depending on the routing paths we will see a difference but it might not
be as significant as for the FPGA implementations. The result of SpeedXTEA-3
shows that our assumption that XOR is in the critical path is correct. It yields
the fastest speed of 36.6 Mbps. However, its throughput area ratio is less favor-
able than SpeedXTEA-1. Unfortunately, the comparison of SpeedXTEA with
high speed AES implementations is rather difficult. Satoh’s [17] AES implemen-
tation supports 128, 192, and 256-bit keys and operates in Galois Counter Mode.
Hodjat’s AES implementation in [18] has a throughput of 77 Gbps, however in
later publications [19, 20] no detailed results were shown. The numbers for those
implementations in Table 3 were estimated from the published graphs.

Table 4 compares our tiny XTEA implementations with an ultra-low power
AES implementation reported by Kaps in [16], the landmark AES implementa-
tions by Feldhofer [21, 22] which both use 0.35 µm technology, as well as sev-
eral light-weight crypto algorithm implementations. Just recently the eSTREAM
portfolio [29] was published recommending four different stream ciphers for hard-
ware implementations. Common to these stream ciphers is that they use an 80-bit
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Table 3. Results for Speed XTEA compared to fast AES implementations (ASIC)
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SpeedXTEA-1 2.87 1 128 64 307,190 22,300 72.6
SpeedXTEA-2 2.87 1 192 64 420,562 22,300 53.0
SpeedXTEA-3 1.75 1 256 64 529,987 36,571 69.0

AES (Satoh)[17] 3.00 1 11 128 297,542 42,667 143.4
AES (Hodjat) [18] 1.65 1 41 128 473,000 77,576 164.0

AES (composite) [19] 2.00 1 41 128 175,000 64,000 365.7
AES (LUT) [19] 1.91 1 21 128 275,000 67,000 143.4

Table 4. Results for Tiny XTEA compared to block ciphers and the eS-
TREAM ciphers (ASIC)
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TinyXTEA-1 11.28 240 64 128 3500 26.7 0.008 18.8 703
TinyXTEA-3 11.66 112 64 128 3490 57.1 0.016 19.5 341

AES 8-bit[16] 2.19 534 128 128 4070 24.0 0.006 23.8 994
AES 8-bit[21]a – 1016 128 128 3595 12.6 0.004 26.9 2135
AES 8-bit[22]a 12.50 1032 128 128 3400 12.4 0.004 4.5 363

DESXL[23, 24]b – 144 64 184 2168 44.4 0.021 1.6 36
Camelia[25]a 27.67 21 128 128 11350 609.5 0.054 – –
Camelia[26] 8.93 44 128 128 6511 290.1 0.045 – –

Present-80[27]b – 32 64 80 1570 200.0 0.127 5.0 25
Present-128[27] – 32 64 128 1886c 200.0 0.106 – –

F-FCSR-H v2 [28] 2.55 1 8 80 4760 800 0.168 10.6 13
F-FCSR-16 [28] 3.15 1 16 128 8072 1,600 0.198 18.3 11

Grain v1 [28] 1.38 1 1 80 1294 100 0.077 3.3 33
Grain 128 [28] 1.08 1 1 128 1857 100 0.054 4.3 43

MICKEY v2 [28] 1.83 1 1 80 3188 100 0.031 7.1 71
MICKEY 128 [28] 2.42 1 1 128 5039 100 0.020 11.2 112

Trivium [28] 3.05 1 1 80 2580 100 0.039 5.5 55
Trivium (x64) [28] 2.87 1 64 80 4921 6,400 1.301 14.3 2

a Results are from 0.35 µm CMOS process.
b Results are from 0.18 µm CMOS process.
c Estimate, was not implemented in [27]
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key. Tables 5 and 4 list these ciphers including derivations of some of them that
allow for a 128-bit key.
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Fig. 4. Comparison of ciphers implemented on aSICs

The power consumption of TinyXTEA-1 is only marginally smaller than the
one of TinyXTEA-3. This confirms our results from the implementations of only
one halfround (see Table 2). TinyXTEA and the AES implementations have a
similar area consumption. Hence, the power consumption of both implementa-
tions should also be similar if the same CMOS technology were used. The AES
implementation in [22] consumes only a fifth of the power of the implementation
reported in [21], even though both use the same CMOS technology. This is due
to low level optimizations and voltage scaling. These techniques could also be
employed for TinyXTEA. The surprising result is that the AES from [21] uses
nine times more clock cycles than TinyXTEA-3 to encrypt twice as much data.
This leads to a 4.5 times higher throughput for XTEA and could result in a 4.5
times lower energy consumption per bit.

The stream cipher implementation listed in Table 4 were published in [28]
and have a much higher throughput than the XTEA or AES implementations
at a similar power consumption. Therefore, they consume less energy per bit.
Light weight ciphers like DESXL, Camelia and Present perform similarly well.

Figure 4 summarizes the results from Table 3 and Table 4 graphically. Two
separate clusters can be easily identified, one for tiny XTEA and AES and one
for fast XTEA and AES implementations. The results for tiny XTEA and AES



11

are very similar, the same applies to the results for high speed implementations.
The results for the stream ciphers and light weight ciphers are scattered above
the cluster for tiny XTEA and AES. Notably Present 128, Grain 128 and DESXL
have a higher throughput while consuming a smaller sized area.

5.2 FPGA Implementations

The results of our XTEA implementations on FPGAs are summarized in Table 5
for tiny XTEA and Table 6 for speed XTEA. We expect from the ASIC analysis
in Table 2 that TinyXTEA-1, using only one adder, consumes a slightly larger
area than TinyXTEA-3 with three adders. Table 5 shows that this holds true
for the FPGA implementation as well.

Table 5. Results for Tiny XTEA compared to 8-bit AES and the eSTREAM Portfolio
ciphers (FPGA)
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TinyXTEA-1 13.87 240 64 128 266 19 0.07 xc3s50-5
TinyXTEA-3 15.97 112 64 128 254 36 0.14 xc3s50-5

AES 8-bit[30] 14.93 3900 128 128 264 2 0.01 xc2s15-6
AES [31] 16.67 46 128 128 522 166 0.32 xc2s30-6

F-FCSR-H v2 [32] 7.25 1 8 80 342 1,104 3.23 xc3s50-5
F-FCSR-16 [32] 7.46 1 16 128 473 2,144 4.53 xc3s50-5

Grain v1 [32] 5.10 1 1 80 44 196 4.45 xc3s50-5
Grain 128 [32] 5.10 1 1 128 50 196 3.92 xc3s50-5

MICKEY v2 [32] 4.29 1 1 80 115 233 2.03 xc3s50-5
MICKEY 128 [32] 4.48 1 1 128 176 223 1.27 xc3s50-5

Trivium [32] 4.17 1 1 80 50 240 4.80 xc3s50-5
Trivium (x64) [32] 4.74 1 64 80 344 13,504 39.26 xc3s400-5

Figure 5 summarizes the results from Table 5 and Table 6 graphically. Three
separate clusters can be easily identified, one for tiny XTEA and AES, one for
stream ciphers, and one for fast XTEA and AES implementations. The results
for tiny XTEA and AES are very similar, however stream ciphers have a higher
throughput while consuming a smaller or similar sized area.

The throughput of TinyXTEA-3 is almost twice as fast as TinyXTEA-1
since it needs half as many clock cycles to encrypt one block of data. This is also
reflected in the throughput to area ratio. The smallest AES implementation is
the 8-bit AES by Good and Benaissa [30] which is similar in size to TinyXTEA.
However, its throughput is almost 9 times lower than TinyXTEA-3. The AES by
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Table 6. Results for Speed XTEA compared to fast AES implementations (FPGA)
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Device

SpeedXTEA-1 8.00 1 128 64 14,574 8,004 0.55 xc3s2000-5
SpeedXTEA-2 5.79 1 192 64 18,515 11,050 0.60 xc3s2000-5

SpeedXTEA-1 (V) 3.50 1 128 64 8,655 18,286 2.11 xc5vlx85-3
SpeedXTEA-2 (V) 3.10 1 192 64 9,647 20,645 2.14 xc5vlx85-3

AES 128-bit (S) [30] 5.10 1 70 128 17,425 25,101 1.44 xc3s2000-5
AES 128-bit (V) [30] 5.41 1 70 128 16,693 23,654 1.42 xcv2000E-8

Chodowiec and Gaj [31] is twice as large as TinyXTEA-3 and its throughput is
almost twice as fast leading to a similar throughput area ratio. The 128-bit key
versions of the stream ciphers [32] MICKEY and Grain have a higher throughput
area ratio than XTEA or AES and occupy less area. We would like to remark
that our implementation does not involve block RAMs.

The high speed XTEA implementations summarized in Table 6 confirm our
predictions from Table 1. SpeedXTEA-2, with 2 cuts per halfround, has a much
shorter critical path delay than SpeedXTEA-1, and even though it consumes
more area, its throughput to area ratio is larger. Good and Benaissa report
on two fully loop unrolled high speed AES implementations in [30], one on a
Xilinx Spartan 3 (AES 128-bit (S)) and one on a Xilinx Virtex-E (AES 128-bit
(V)). The AES implementation has a slightly shorter critical path delay than the
SpeedXTEA-2 implementation on the same device and consume almost the same
amount of area. However, due to its two times larger block size the throughput
area ratio of AES is two times higher.

6 Conclusion

Our results on ASIC and FPGA show that XTEA is suitable for high-speed ap-
plications, however, it does not perform as fast as AES. Any speed improvement
for XTEA would likely involve a significant increase in area and result in a lower
throughput area ratio. Our ultra-low power implementation show that XTEA
might be better suited for low resource environments than AES. Furthermore,
XTEA’s smaller block size of 64-bit is advantageous for applications where fewer
than 128 bits of data have to be encrypted at a time. However, stream ciphers
are a very interesting option as they have a higher throughput while consuming
a smaller or similar sized area. The small code size of XTEA makes it an in-
teresting choice in environments where some devices use software and other use
hardware implementations.
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Fig. 5. Comparison of ciphers implemented on FPGAs
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