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Chain-complete posets and directed sets with applications

George Markowsky

1. Introduction

Let a poset P be called chain-complete when every chain, including the empty
chain, has a sup in P. Many authors have investigated properties of posets satisfying
some sort of chain-completeness condition (see [13, [3], [6]1, [7], [171, [18], [19],
[21], [22]), and used them in a variety of applications. In this paper we study the
notion of chain-completeness and demonstrate its usefulness for various applications.
Chain-complete posets behave in many respects like complete lattices; in fact, a chain-
complete lattice is a complete lattice. But in many cases it is the existence of sup’s of
chains, and not the existence of arbitrary sup’s, that is crucial.

More generally, let P be called chain a-complete when every chain of cardinality
not greater than « has a sup. We first show that if a poset P is chain a-complete, then
every directed subset of P with cardinality not exceeding « has a sup in P. This
sharpens the known result ([8], [18]) that in any chain-complete poset, every directed
set has a sup.

Often a property holds for every directed set if and only if it holds for every chain.
We show that direct (inverse) limits exist in a category if and only if ‘chain colimits’
(‘chain limits’) exist. Since every chain has a well-ordered cofinal subset [11, p. 68],
one need only work with well-ordered collections of objects in a category to establish
or disprove the existence of direct and inverse limits. Similarly, a topological space is
compact if and only if every ‘chain of points’ has a cluster point. A ‘chain of points’
is a generalization of a sequence.

Chain-complete posets, like complete lattices, arise from closure operators in a
fairly direct manner. Using closure operators we show how to form the chain-
completion P of any poset P.

The chain-completion P of a poset P is a chain-complete poset with the property
that any chain-continuous map from a poset P into a chain-complete poset Q extends
uniquely to a chain-continuous map from the completion P into Q, where by a chain-
continuous map we mean one that preserves sup’s of chains. If P is already chain-
complete, then P is naturally isomorphic to P. This completion is not the MacNeille
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completion, since in general Pis not a lattice. However, if P is a lattice, or even directed,
then so is P.

Since our empbhasis is on chains, the chain-completion of a poset is more natural
for us than the MacNeille completion. Moreover, forming the MacNeille completion
may require the addition of many points in cases where chains are well-behaved.
Finite posets with least elements (which are obviously chain-complete) may be greatly
enlarged in the process of constructing the MacNeille completion. However, in some
cases the MacNeille completion adds fewer new points then the chain-completion.

Tarski’s fixpoint theorem [24] generalizes to chain-complete posets, i.e., if
F:P - P is an isotone map and P is a chain-complete poset, then the set of fixpoints is
a chain-complete poset under the induced order. This sharpens the results of Abian
and Brown [1] that every isotone self-map of a chain-complete poset has a fixpoint.
Conversely, we show that if every isotone map F: P — P has a least fixpoint, P is chain-
complete. We prove several generalizations and extensions of these results. It is of
interest to note that the basic fixpoint theorem does not require the axiom of choice for
its proof.

Chain w-complete posets are useful in Dana Scott’s theory of computation (see
[7] for references), where w is the first infinite ordinal. The emphasis there is on how
well certain objects approximate other objects, and not in the existence of joins of
arbitrary objects, which in general have no ‘natural’ meaning. Many of the results in
this paper are contained in an unpublished manuscript on the theory of computation
completed by the author during the summer of 1973 at the IBM Thomas J. Watson
Research Center.

The author thanks Garrett Birkhoff, Orrin Frink, Barry Rosen and the referee for
helpful suggestions and references.

2. Decomposition of directed sets

Throughout this paper a chain will mean a totally ordered set (it may be empty),
and a directed set will mean an ordered set having an upper bound for each finite
subset. Directed subsets must be nonempty, since they must contain an upper bound
for the empty set.

The following is a sharpened version of Iwamura’s Lemma [13] (see [16], [23,
p. 98]), which will allow us to prove our basic results about the existence of sup’s for
directed subsets of chain a-complete posets. The proof is similar to the proof in [23]
and is given here for completeness.

THEOREM L. If D is aninfinite directed set, then there exists a transfinite sequence
D,, a<|D|, of directed subsets of D having the following properties:
(1) for each a, if o if finite, so is D,, while if o is infinite |D,|=|a| (thus for all
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o, |D,|<|Dl);

(2) ifa<p<|D|, D,=Dy;

(3) D=U. D..

Proof. We denote |D| by y. Recall that cardinal numbers are the least ordinals of
a given cardinality. Well-order D using y as an index set, i.e., D= {x,},<,- For each
finite subset F <D, let uy denote an upper bound for F in D. Let Dy= {x,}, and let
Diy1=D;U{Yi+1, Up,oiyis ) Where y,.q is the least element of D— D;. Thus for each
integer i, D, is a finite directed set of cardinality at least i and if i<j, D;=D;. Let
D,=;<, D;. Then D,, is directed and |D,,| =w. If | D| =, we are done. Otherwise,
we proceed as follows. Let 8<7 be an infinite ordinal such that for all e <, D, exists
and the sequence {D,} (x<pf) has the required properties. If B is a limit ordinal, we
simply let Dg=\J,<; D,. Clearly, foralla < 8 D, = Dy, and | D|=|B}. Finally, suppose
B=03+1.Let Dy o=D;U {y;}, where y, is the least element of D— D,. Inductively we
define Dy ;4 =Dy ;v {ur| FeDy , F is finite}. Now let Dy=\J;co, Dp,i- Dp is
directed, since any finite subset S < D, lies in some D, ; and hence has an upper bound
in Dy ;4. If X is an infinite set, the cardinality of the set of all finite subsets of X is
equal to |X|. Thus for all i, |Ds|=|D,;|. And |Ds|<wx |D;s|=|D;|=16|=|BI.
Clearly, D;< Dy. It is now clear that D=\J,., D,. O

Remark. If L is an uncountably infinite lattice, we can write L=, L, where:
each L, is a sublattice of L; a < f implies L, = Ly; |L,| < |L| for all a. To see this modify
the proof of Theorem 1, so that instead of adding upper bounds of finite subsets of
Dy, ; to get Dy ;.q, we add sup’s and inf’s of all finite subsets of Ly ; to get Lg,i41-
Note that even for finite «, |L,| may be w.

COROLLARY 1. Let P be chain y-complete. Then for all directed subsets D of P
for which {D}<y, supp D exists.

Proof. Suppose the conclusion is false. Let D<P be a directed subset such that:
1) |D| <7, 2) supp D does not exist, and 3) for all directed sets D' <P with |D’|<|D|,
supp D’ exists. D cannot be finite. Let D=1{_),<p| D,, where the D, are as in Theorem
1. Let C={sup, D,},< p- Clearly, Cis a chain and sup, C exists and is clearly the sup
of D in P. This contradiction proves Corollary 1. O

Before proceeding to the remaining corollaries we wish to introduce some further
concepts which we will use throughout this paper.

DEFINITION 1. Let P and Q be posets and f: P — Q a map (posets are nonempty
by definition).
() P is strictly inductive (inductive) if every non-empty chain in P has a sup
(an upper bound) in P.
(ii) f'is chain-continuous if for all non-empty chains X < P such that X has a sup in

P, f(supp X)=supy f(X).
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(iii) f is chain-*continuous if-for all chains X <P such that X has a sup in P,
S (suppX)=supyf(X). Thus if P has a least element 0, and f is chain-*continuous,
then Q has a least element 0, and f(0)=0.
(iv) fis sup-preserving (inf-preserving) if for all X =P such that sup X (inf X) exists
inP:
f(suppX)=supy f(X) (f(infp X)=infy £ (X)).

Remark. Observe that chain-continuous, chain-*continuous, sup-preserving, and
inf-preserving maps are all isotone (order-preserving). Also note that 9 has a sup
(inf) in P if and only if P has a least (greatest) element. Finally, much of the material
in the following sections extends easily to quasi-ordered sets. We will not discuss the
concepts dual to chain-complete, chain-continuous, etc., and leave it to the reader to
draw the obvious inferences.

COROLLARY 2. In a strictly inductive poset (in particular, in a chain-complete
poset) every directed subset has a sup. []

Note that Corollary 2 appears in [8, p. 33]. It can be proved in the same way as
Corollary 1.

COROLLARY 3. Let P, and P, be strictly inductive posets and f:P,— P, be
chain-continuous. If D P, is directed, then f (supp, D)=supp,f (D).

Proof. If D is finite the conclusion is clearly true. For infinite D the corollary
follows from Theorem 1 and transfinite induction. [J

The following corollaries may be proven more directly by using the fact that sup,
of nonempty finite subsets of the poset in question exist (see [9, p. 15, Th. 2.4],
[9, p. 9], and [14, p. 163, H]). Note that Corollary 4 is a special case of Corollary 3.

COROLLARY 4. Let L be a complete lattice such that for every chain C< L and
aeL,a A supC=sup,.c(aA x), then for any directed subset Dc L and acL, a A supD
= supxeD(a A x)' O

COROLLARY 5. Let P be a chain-complete poset such that every finite subset has
a sup, then P is a complete lattice. In particular if P is a lattice and a chain-complete
poset, then it is a complete lattice. []

COROLLARY 6. A topological space X is compact if and only if each nest of
closed non-empty sets has a non-empty intersection. [

Notation. Let P and Q be posets, then P+ Q (Px Q, P®Q), the cardinal sum
(cardinal product, ordinal sum) of P and Q, is the poset consisting of the disjoint
union (Cartesian product; disjoint union) of P and Q and ordered as follows. a<b if
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and only if @ and b both belong to P or Q and inPor Q,a<b.((a,b)<(c,d)ifa<cand
b<d;a<bifa<binP+ QoracPandbeQ.)Formoredetails onthese operationssee [5].

By n we shall mean the ordinal {0, 1,..., n—1}, where n is a non-negative integer.
By @ we mean the first infinite ordinal, i.e., w={0, 1, 2, 3,....}. We use w, to denote
the first uncountable ordinal. Recall that each ordinal is the set of all ordinals which
precede it.

The following is an example of a strictly inductive poset P and a directed subset D
such that for no chain C =D, sup C=supD. Another such example can be found in
[4, Theorem 10].

EXAMPLE 1. Let P=(0,®1)x(0®1). 0,;®! and w@1 are both complete
lattices, and so is P. Let D={(a, b)eP | a% w, and b#w}=w, x w. D is directed (D is
in fact a lattice). It is easy to see that sup D=(w,, @) but we claim that (@, ®)#sup
{(x4> Ys)}ze 4 for any chain in D.

If C={(x, ¥.)}sea is a countable chain in D, i.e., |C| is countable, then sup
{(xu’ ya)}aed=(sup {xa}aeda Sup{ya})aed<(wl’ (D), since Wy is not the sup of any
countable chain in w,. If C is uncountable, then there exists new such that S,=
={(Xg Myea | (x,, W) €C} is uncountable. We now claim that S,=0 for m>n.
Suppose that (x, m) €S,, for some m>n. Then (x, m) is an upper bound for S,, hence
(x, m)=sup S, =(SUD(x,.n es, {X}> 1)=(wy, 1), since any uncountable chain in w,;P1
has w; as sup. This implies that x=¢,, which is impossible since xew,. Since S,,=0
for all m>n and S, is uncountable, sup C =(w,, n) #(w,, @). Thus no chain in D has
(wy, @) as a sup. [J

The next example shows that a directed subset of an inductive poset need not even
have an upper bound.

EXAMPLE 2. Let Q=(w; x w)u ({0} x w)u(w, x {w}) with the following or-
dering (a, b)<(c, d) if and only if a#w, and b#w and (g, b)<(c, d) in (w;D1)x
x (w®1). Thus all elements of the form (w,, y) (y #w) and (x, w) (x# w,) are maximal
elements in 0, and hence at most one such element can be in any chain. The argument
used in Example 1 shows that any chain in w, X w has an upper bound. Thus Q is can
inductive poset, but w; x @ has no upper bound in 9. [

3. Applications to general topology

In this section we briefly indicate the extent to which the preceding results allow
one to substitute chains for directed sets when working with topological spaces.

DEFINITION 2. Let T be a topological space and D a directed set. A net over D
isamap IT: D T. If D is a chain (thus D s ¢), we call nets over D chains of points over
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D. A cluster point y of a net IT is any point yeT such that for any neighborhood # of
¥, and any ie D, there is some jeD, j =i such that IT(j)e%. A net II, converges to y
if for any neighborhood # of y there is some ie D such that for all j =i I1(j) e %.

Remark. Kelley [14, p. 65], defines nets over quasi-ordered directed sets. Our
results hold with either definition.

THEOREM 2. Let X be a topological space. Every net in X has a cluster point if
and only if every chain of points in X has a cluster point.

Proof. The necessity is trivial. The sufficiency follows from Theorem 1 by trans-
finite induction. More precisely, let D be a directed set such that all nets over directed
sets of cardinality less than |D] have a cluster point. D is infinite since all finite nets
converge. Let IT: D — X be a net. Decompose D as ! _J,<|p; D, using Theorem 1. Let
¥, be a cluster point of IT | D,. It is easy to check that the cluster point y of the chain
of points {y,}.<p; is a cluster point for 1. [

The following corollary follows immediately from Theorem 2 above and Theorem
2in [14, p. 136].

COROLLARY. 4 topological space X is compact if and only if every chain of
points in X has a cluster point. [

Remark. The argument above is very similar to the argument in Bruns [6]. In its
set family form this result can be traced back to Alexandroff-Urysohn [2].

Example E in [14, p. 77] shows that it is possible for a net to converge to a point,
without there being a sequence (an w-chain of points) converging to that point. This
result is not surprising in view of the fact that nets can be of arbitrary cardinality,
while sequences are countable. In fact, Example B of [14, p. 76] shows that a chain
of points can converge to a given point without there existing a sequence which con-
verges to the point in question. The example used in Theorem 10 of [4] can easily be
adapted to give a net in X— {p} converging to p such that no chain of points in
X—{p} converges to p.

4, Chain-complete categories

We now turn our attention to the question of the existence of inverse and direct
limits in a category. In particular, we will show that questions of existence of inverse
and direct limits can be settled by examing only those cases in which the underlying
directed set is a chain. Since every chain has a well-ordered cofinal subset, we need
consider only well-ordered chains. Our terminology is that of [20, Chapter 2]. Since
our diagrams will have at most one arrow between any two vertices, we can think of a
diagram scheme X as an ordered pair (I, M) with M < x I and d: M — I x I being the
inclusion, so we won’t bother with d. Thus a diagram in a category C over a diagram
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scheme Z is an ordered pair of maps (¢, 8), such that ¢:7—ObC, 8: M - MorC, and
6((a, b)) eMor(¢(a), ¢(b)).

If I' <1, we call the diagram scheme Z'=(I', M'=M (I’ x I')) the restriction of
X induced by I'. Given a diagram (¢, 6) in € over £ we define its restriction to Z' to be
(@|I',0|M).

For the remainder of this section we will only refer to commutative diagrams, and
hence we use the word diagram to mean commutative diagram.

DEFINITION 3. P be a poset. By the diagram scheme P| (P1) we mean (P, P)
((P, P<)) where Py ={(x, y)ePxP | x>y} (P<={(x, y) ePx Px< y}).

We use the terms chain family, chain cofamily, chain limit, and chain colimit, for
inverse family, directed family, inverse limit, and direct limit (respectively) when the
underlying directed set is a chain.

We say that a category is chain complete (chain cocomplete) if chain limits
(colimits) exist for every chain family (cofamily) over an arbitrary nonempty chain.

Remark. For the remainder of this section we will only discuss inverse families,
inverse limits, etc., since it is clear that every result has a dual which can be proved
dually. If (¢, ) is a diagram over the diagram scheme P} and Q = P, we shall denote
the restriction of (¢, 6) to Q| also by (¢, 6).

THEOREM 3. A category ¥ is chain complete if and only if an inverse limit exists
for every inverse family in €.

Proof. Since every nonempty chain is a directed set, the sufficiency is obvious.
Necessity follows from Theorem 1 by transfinite induction, as follows.

An inverse limit exists for any inverse family over a finite directed set. Assume that
an inverse limit exists for every inverse family over a directed set with cardinality less
than the infinite cardinal y. Let D be a directed set of cardinality y and (¢, 8) and
inverse family over D|.

Using Theorem 1, we write D as {_J, <, D,. Let (X, { f.,:}1¢p,) b€ an inverse limit
for D,, where f, ;eMor(X,, ¢(1)). If a<p<y, let g5 ,eMor(X,, X,) be the unique
morphism such that for all 2D, f, =1, 1°85, .. It is easy to see that F=({X,}.<,
{85, 2 a<p<y) is @ chain family over y|. Let (X, {,},<,) be an inverse limit of F, with
h,eMor(X, X,) for all a.

For each Ae D, we define f;eMor (X, ¢ (1)) as follows. There exists a, such that for
all a>ay, AeD,. For any a>ay, let f,= f, ;oh,. It is easy to see that f, is well-defined,
and that (X, { fi}:.p) is an inverse limit for (¢, 6) over D|. [

5. Closure operators and chain-complete posets

Chain-complete posets correspond to closure operators in a way that generalizes
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the correspondence between complete lattices and closure operators (see [5, Ch. 5]).
The construction and results in this section appear in more general form in
Banaschewski [3].

DEFINITION 4. Let y be a closure operator on X and T <2*. We define the
chain-complete poset generated by T and y (denoted by y*(T)) as follows. Let Q=
={Q<=y(2") | 7(T)=Q and for all chains C<=Q, y(Ug.c £) €Q}. We define y*(T)
to be MNgepn Q- It is easy to see that y*(T) is the least element in Q.

THEOREM 4. Let y be a closure operator on X and T<2X. Then:

(a) y*(T)is a chain-complete poset and for any chain C < y*(T), supC =y(Ugec E);

(b) If D=y*(T) is a directed set, supD=y(\Ugep E).

Proof. (a) From the definition of y*(T), it is clear that for any chain C in y*(T),
P(UEec E) ey¥(T). If Sey*(T) is an upper bound for C, Jg.c<S, ie., (U E)<=
=y(S)=S since S is closed. Thus y({J E)=supC.

(b) If D is finite, it has a greatest element .Sy. Then sup D= S,=7(S,)=Y(Ugep E)-
Let D be a directed set such that (b) holds for all directed sets of cardinality less than
|D]. Using Theorem 1 we decompose D into | D,. Clearly, supD=sup(supD,)=
=3(Ue 7(Usep, E) by (@). But ¥(U, 7(Usen BN, <3 (Uszen EN=1(Usen E).
The reverse inclusion is obvious. The result now follows by transfinite induction. [

Remark. y*(2%)=7y(2%)is just the usual lattice of closed sets. Arguing as above it is
easy to see that y({_g.r E) is the sup of I'=y(2%). Note that inf =y W.

The results above extend with trivial modification to strictly inductive posets.

Theorem 5 (E) shows that every chain-complete poset is y*(T) for appropriate
v, X, and T.

6. The chain-completion of a poset

The chain-completion of a poset, which we describe below, has some nice extension
properties with respect to chain-continuous and chain-*continuous maps. Completions
of directed sets and lattices are themselves directed sets and complete lattices
(respectively).
 Notation. Given a poset P, we use Ch(P) to denote the set of all chains in P. We
will use D(P) to denote the set of all order ideals of P, i.e., subsets of P such that
whenever they contain an element they contain all elements less than that element as
well.

DEFINITION 5. Let P be a poset and W< P. Let Hy={S<P [ W< S and for
any chain C<=S and xeP, if sup,C exists and x<supC, then x&S}. We define the
chain-closure of W to be (N\sen, S and denote it by W,
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LEMMA 1. 1 is a closure operator.
Proof. We W', W=Wandif V< W, itis easy to see that V1< W' [

DEFINITION 6. Let P be a poset. The chain-completion, P, of P, is simply
*(Ch(P))-

Theorem 5 gives some basic properties of the chain-completion of a poset. Theorem
6 gives a universal mapping theorem characterization of the chain-completion of a
poset,

THEOREM 5. Let P be a poset and f:P—P be given by f(x)=[—,x]=
={yeP | y<x}. The following are true.

(A) f is chain-*continuous and for a, beP, a<b if and only if f(a)<f(b). In
particular, f is injective. Furthermore, f is inf-preserving.

(B) If D<P is directed, then D'eP.

(C) If P is directed, then P is a directed set with greatest element P and least
element Q1.

(D) For all SeP, S=supp{Te f(P)| T =S}, i.e., f(P) is join-dense in P.

(E) If P is chain-complete, {:P — P is an isomorphism.

Proof. (A) Clearly f is well-defined and a<b if and only if [—, a]=[~, b]. If
y=supp W for some chain W < P, it is easy to see that f(y) is an upper bound for
F(W). Let A€P be any upper bound for f (W). Then W< A, but since 4'=4, ye4,
ie., f(y)=A.

Suppose that y=inf, X for some X < P. Then f(y)=(zexf(x), since if ze(N
Nsexf(x), z is a lower bound for X, and z<y. Thus clearly f (y)=infp f (X), since
any S < f(x) for all xeX, must lie in (),.x f(x).

(B) f(D)< Pis a directed set. By Theorem 4(b), supp f (D)=(U,ep S (x))t =D

(C) Obvious, since P'=P.

(D) Obvious, since S ={J,.s f (x).

(E) In view of (A) we need only show that f is surjective. Observe that for any
chain C < P, f(supp C)=C". Thus t(Ch(P))<=f(P).

If C < f(P) is a chain, so is f ~(C)< P, since fis isotone in both directions. Let
y=suppf ~}(C) (P is chain-complete), then since f is chain-continuous, f(y)=
=supp C € f(P),i.e.,byTheorem4,(|Jg.cE)' e f(P).Bydefinitionof P, P< f(P). O

THEOREM 6. Let T be a chain-complete poset and h: P — T be chain-*continuous
( chain-continuous but not chain-*continuous). Then there exists a unique map h:P—T
such that: '

(1) % is chain-*continuous (chain-continuous);

(2) hof=h. Thus any chain-*continuous (chain-continuous) map factors through
P and f:P— P. As usual, it follows that P is unique up to isomorphism.
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Proof. Let h:P—T be given by h(S)=suprh(S). We must first show that A is
well-defined, i.e., that for § € P, supy £(S)exists. Assume first that 4 is chain-*continuous.

We first note that for all X = P and aeT, ais an upper bound for #(X) if and onlyif
ais an upper bound for A(XT). Since A(X) = h(X"), sufficiency is trivial. Now suppose
that a is an upper bound for A(X). It follows that X <h~}([0, ]). If C is any chain in
h™Y([0, a]) such that sup,C exists, then since k is chain-*continuous (thus also
isotone), [ —, supp C]=h~*([0, a]). Thus X' <= £~*([0, 4]), whence A(X")=[0, a] and
a is an upper bound for A(X?).

It now follows that sup/(X) exists if and only if sup A(X?) exists and that if they
exist, they are equal.

Let % ={X'| X< P and suprh(X") exists}. If C<% is any chain, supy{supr
(E) | EeC} exists, since T is chain-complete, and is equal to A(Ugec E)=h((U E)*)
Thus (| E)'e%. By definition, P =% and } is well-defined on P.

Observe that for any chain C in P, h(suppC)=sup;A((Ugec E))=suph(l) E)=
sup {suph(E) | EeC}=suph(C). Thus £ is chain-*continuous.

Observe that A(f(x))=h([—, x])=supyh([—, x])=h(x) for all xeP, since & is
isotone. Thus Aof=h.

We now only need to show that if 4, : P— T'is any chain-*continuous map such that
hyof=h,then hy =h.Let % ={XeP | h(X)=hy(X)}. Let C be a chain in P. By Theorem
4, Ct=supp{f(x)|xeC}. Since k, is chain-*continuous and h;of=h, we have
hy(CY)=supy {,of (x) | xe C}=supyh(C)=h(C"). Thus (Ch(P))'c%.Let C be a
chain in %. By Theorem 4, S =(Ugcc E)'=suppC. Since A, is chain-*continuous,
h,(S)=supph,(C)=supph(C)=h(S). Thus P =% and h,=h.

We briefly discuss the case where £ is chain-continuous but not chain-*continuous.
This can only occur when P has a least element, 0p, and 4(0p)#07. All of the above
goes through except that one must systematically disallow the empty chain, working
instead with @' = {0,}. Thus one would have the sup;4(X)=suprh(X"), except when
X =0. We leave it to the reader to make the necessary modifications. [

Remarks. In [17; Theorem 4], the following is established and used to prove that
the category of chain-complete posets with chain-*continuous maps is cocomplete
(in the sense of Mitchell [20]). Let A and B be posets and f: 4 — B isotone, then there
exists a chain-complete poset By, and isotone g:B— B,. such that:

(1) geofis chain-continuous;

(2) for all chain-complete posets H and isotone maps o;:4 - H; o,:B— H such
that «, is also chain-*continuous and o, =a, o f, there exists a unique chain-*continuous
map h:B;. — H such that ay=hog. The proof of this fact is similar to the proof of
Theorem 6. Note that if we let A=B and f be the identity, B+ =B.

Examples 3 and 4 (below) show that f in Theorem 5 need not be sup-preserving.
Finally, the following corollary shows how to construct a completion of P which is
strictly inductive, but not complete, when P lacks a least element.
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COROLLARY. Let P be a poset without a least element and h any chain-continuous
(it is also chain-*continuous) map of P into a strictly inductive poset T. Then P'= P—
—{0p} is a strictly inductive but not complete poset and there exists a unique chain-
continuous (actually chain-*continuous) map h':P’'— T such that h'f =h.

Proof. If P’ were complete, it would have a least element B. Since P lacks a least
element 0p=0=0%, and f ~!(0,) =0 since f is isotone both ways by Theorem 5. Also by
Theorem 5(D), B=sup {Tef(P) | T < B}. Since B is the least element of P’, Bef(P)
which implies that P has a least element since f is isotone both ways and £ ~*(0p)=9.
Thus P’ is strictly inductive, but not chain-complete.

Adjoin a new element 8 to T'in such a way that 0 is the least element of the resuiting
poset T*. Consider the unique chain-*continuous map A:P — T* of Theorem 6, such
that hof=h. Let A'=h | P’. It is easy to see that /' is unique. [J

LEMMA 2. Let P be a lattice and L< P a sublattice. Then L' is an element of P
and a sublattice of P such that:

(a) if W< L', W is countable, and supp W exists, then supp WeL';

(b) if W <L, W#0, and inf, W exists, then inf, We L'.

Proof. L'eD(P), hence (b) is true. Furthermore, recall that by definition if C < L'
is a chain such that sup, C exists, and y<sup,C, then yeL!. Since L is directed, by
Theorem 5 (B), L'eP. We now show that L' is a sublattice of P.

Let H={EcL'|LcE and E is a sublattice of P}. H#9, since LeH. If F=
={E}sc4 is a non-empty chain in H, E=\_J;., Eze H. By Zorn’s lemma there exists
a maximal element Ge H.

Let C be a chain in G and xeP be such that sup, C =5 exists and x<supC. We
wish to show that xeG. Let Q={yeP | y<bvwfor some weG}. We claim that Qe H.
Clearly, LG Q. If a, a’€Q, trivially anad’eQ. If a<bvw, and a’'<bv w,, then
ava <bv(w,vw,). Thus Q is a sublattice. It remains only to show that Q<L
Clearly, bv w=sup{fvw I feC}eL! for all C =G and weG. Thus Qe H. By maxi-
mality, G=0Q. But it now follows that G=L".

Finally, let W ={w,, w,,...} L' be a countable subset such that sup, W exists.
Consider the chain {w;, wy v w,, w,vw,vws,...} in L. supp W is the sup of this
chain, hence sup, WeL!. [0

THEOREM 7. Let P be a lattice. Then P is a complete lattice, and the map
f:P— P of Theorem 5 is inf-preserving, chain-*continuous and preserves countable joins
whenever they exist in P. If W <P, then infp W ={\g.w E and supp W= {supPFl F
Sfinite and F<\ gy E}'.

Proof. We first show if S < P, §#0, then SeP if and only if § is a sublattice of P
such that St=S (i.e., Sis closed). In particular S must satisfy (a) and (b) of Lemma 2.
If S is a sublattice of P such that St=S, then by Lemma 2, SeP.
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Now let % ={S eP | such that § is a sublattice of P}. Clearly, C*e% for all chains
C < P. The union of a chain of lattices is a lattice and the f-closure of a lattice is a
lattice by Lemma 2. Hence #=P.

From Theorem 5 we know that f is inf-preserving and chain-*continuous. Let
W ={w,, w,,...} = P be countable such that supp W exists (denote it by w). Clearly,
f(w) is an upper bound of f (W) in P. Let TeP be any upper bound of f(W). Then
W =T, and since T is a sublattice of P satisfying (a) of Lemma 2, weT. Since Te D(P),
f(w)=T. Thus f(w)=suppf(W).

Let W={W,},.,<P. We claim that infpW=(",., W,. Since t is a closure
operator and each W, us closed, it is easy to see that ((\,cs W) =yca W,. If
M W,#0, then () W,eP, since it is a sublattice which is closed. If () W, =9, again
(N W,eP since 9=0"eP, since @ is a chain. In any event (), , W, €P, and thus clearly
it is equal to infp W. Thus P is a complete lattice with inf corresponding to set-inter-
section and the greatest element being P.

Let W be as above. We claim that supp W= {sup,F | F finite and F= W}'. If
W, =0, this is trivial. Let D= {sup F | F finite and F =\ W,}. Clearly D is directed by
Theorem 5 (B), D'eP. It is the sup of W because any other upper bound, %, of W must
be a f-closed sublattice of P containing W, and hence D. Thus D' c#. [

We now show that the map f of Theorem 5 and 6 is not sup-preserving in general.

EXAMPLE 3. Let P=[(w;®N )X (w®N")—(N"xN~)]®1 where N~ =
={0, —1, —2, —3,...} and where P has the ordering induced by that of [(w, ®N ~) x
x (@@®N ")]@®1. It is straightforward to verify that P is a lattice. Let 4, =, x w and
observe that I=suppA;. From the argument in Example 1, it follows that Al=4,.
Consider P. A,€P, since A, is directed. Observe that 4, =suppf(4,)=P = f(I).
Thus fis not sup-preserving. [J

The following example shows that even if Pis directed, fneed not preserve finite sups.

EXAMPLE 4. Let P=(w,; xw)u {(w;, 1), (1, w),c} be ordered as follows:
P—{c} is ordered componentwise; c is a maximal element of P; ¢ (x, y) if and only if
x=lory=1.Let P'=[P@®(1+1)]®1. Observe that c=supp{(w;, 1), (1, w)}. How-
ever, f(c) and P —{c} are both upper bounds for { f((w,, 1)), f((I, w))} in P. Since
f(c) and P —{c} are non-comparable, f(c)#supp(f((w,, 1)), f((1, w))}. O

We know that if P is a lattice, then P is a lattice. However, if P is a distributive
lattice (Boolean algebra), P need not be a distributive lattice (Boolean algebra).
Example 5 also shows that if P is a modular lattice, P need not be modular.

EXAMPLE 5. Let L be the distributive lattice described in [9, pp. 71-72]. It is
shown in [9] that L cannot even be strongly embedded in a complete modular lattice.
(A strong embedding is an injective sup-preserving and inf-preserving map.)
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When we construct L we choose a and b to be countable sets, and consequently so
are 4 and B. Now L is a complete lattice and the map f:L— L of Theorem 5 is
injective, chain-*continuous, inf-preserving, and preserves countable joins. The argu-
ment on p. 72 of [9] now shows that L contains the five-element nonmodular lattice as
a sublattice, hence L is nonmodular. [J

EXAMPLE 6. Let X be an uncountably infinite set and let B be the Boolean
algebra of all finite and cofinite subsets of X. Then B is not a Boolean algebra. Let D
be the directed subset of B consisting of all finite sets. By Theorem 5 (B), D'eB. It is
not hard to see that D' = D. Any complement E of D would have to be an order ideal.
Thus E A D= {@}; hence by Theorem 7, En D= {0}. Thus E= {0}. But this contradicts
the fact that Ev D=B,since EvD=D+#B. [

Remark. One can define concepts analogous to continuity, y*(7'), and ST using
directed sets instead of chains. However, Example 3 shows that in general, one would
get a different ‘éompletion’. One can also consider the notion of ‘a-completeness’, i.e.,
posets in which every chain of cardinality not greater than « has a sup, and define
concepts analogous to continuity, y*(T), and S restricting the cardinality of allow-
able chains. We leave the details to the reader.

7. Fixpoints of chain-complete posets

The following result of Bourbaki, allows us to prove the basic fixpoint theorem for
complete posets (Theorem 9) without using the axiom of choice. A proof of it may be
.found in [15, Theorem 1, p. 12].

THEOREM 8. Let P be a strictly inductive poset and f:P— P a map such that
x< f(x) for all xeP. Then f has a fixpoint. [}

THEOREM 9. Let P be a chain-complete poset, f:P—P isotone, and Fp=

={xeP | f(x)=x} be the set of all fixpoints of f. Then:
(i) there exists a least element 0* € Fp;

(ii) for all yeP, if f(»)<y, 0*<y;

(iil) Fp is a chain-complete in the induced order.

Proof. (i)Let S ={xeP | x<f(x)and x< yforall ye Fp}. 0€S. Sis chain-complete.
Let C={x,},c4<S be a chain and x-sup,C. For all a4, f(x)> f(x,)=>x,, whence
f(x)> x. Since each element of Fp is an upper bound for C, xeS. Similarly, it is easy to
see that f(S)=S. From Theorem 8, it follows that FpnS#0. Thus Fp has a least
element 0*.

(i) The set [0, y] (=4ee{z€P | 0<z< y}) is chain-complete, and f ([0, y])= [0, y].
By (i), Fpn [0, y]50. Thus 0*<y.
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(iif) Let C={x,},c4< Fp be a chain, and u=suppC. [u, =] (=e{zeP | z2u})is
chain-complete. It is easily verified that f ([4, —])=[u, —1. By (i) there is a least fix-
point y in Fpn [u, —]. Clearly, y=sup_C.

COROLLARY. (Tarski) If P is a complete lattice, then so is Fp.

Proof. Let a, beFp and c=avpb. As in (iii) [¢, —] is chain-complete and
f([e, =D<=le, —]- By (i) there is a least fixpoint ye Fpn [¢, —]. Clearly y=av g,.b.
Fp is a complete lattice by (iii) and Corollary 5 of Theorem 1. [J

Remark. Every poset with a least element satisfying the ascending chain condition
is a chain-complete poset. Hence Theorem 9 generalizes the results in [9, p. 17].

Our next theorem generalizes Theorem 2 of [24] to chain-complete posets. When
we speak of a commuting family of functions we mean that composition is
commutative.

THEOREM 10. Let P be a chain-complete poset and F a commuting family of
isotone self-maps of P. Let C be the set of common fixpoints of F, i.e., C = {xeP | f(x)=
=x for alIfeF}

Then:

(i) there exists a least element 0*eC;

(ii) for all yeP, if f(y)<y for all feF, then 0* < y;

(iii) C is chain-complete with respect to the induced order;

(iv) if P is a lattice, then C is a complete lattice (Tarski).

Proof. We only prove (i), since the proofs of (11)—(1v) can be modeled on the proofs
used in Theorem 9.

Let 4={xeP|f(x)=x for all feF and x< y for all yeC}. Clearly Oc 4. If geF,
x€4, and yeC, g(x)<g(y)=y. If in addition, feF, f(g{x))=g(f (x))=>g(x). Thus
g(A)c A for all geF. It is easy to see that 4 is chain-complete. By Zorn’s Lemma, 4
has a maximal element 0*. But clearly 0*eC and it is the least element of C. [

Remark. We can avoid the use of Zorn’s Lemma in the proof of Theorem 10 if we
assume that F is well-ordered, say F ={fi}1<p- Then we can define f:4— 4 by
transfinite induction as follows. For x&4, let xo=fo(x). For A<B, let x;=f;(supp
{x,},<4). Finally, let f (x) =supp{x,},<. Clearly, f(x)>x for all xe 4. By Theorem 8,
fhas a fixpoint ae 4, i.e., a=a, for all A<B. Thus aeC.

Davis [10] showed that a lattice is complete if and only if every isotone self-map
has a fixpoint. Chain-complete posets cannot be characterized so easily. Take any
poset P in which every chain has an inf but which lacks a least element. The dual of
Theorem 9 shows that every isotone self-map of P has a fixpoint, but P need not be
complete. The next theorem characterizes chain-complete posets in terms of the
existence of fixpoints. It also provides a partial answer to the question raised by Davis
[10] as to whether a lattice L, having the property that every meet-preserving map
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f:L— L has a fixpoint, is necessarily complete. A meet-preserving map satisfies
f(anb)=f(a)A f(b) whenever aAb exists in the domain of f. Inf-preserving maps
are of course meet-preserving.

THEOREM 11. Let P be a poset. Then the following are equivalent.

(2) P is chain-complete.

(b) Every isotone f:P — P has a least fixpoint.

(c) Every inf-preserving map f:P— P has a least fixpoint.

Proof. Theorem 9 implies that (b) and (c) are consequences of (a). Clearly, (c)
follows from (b). Thus we need only show that (c) implies (a).

Let C < P be a chain. We have remarked above that every chain has a well-ordered
cofinal subset, so that we may assume C is well-ordered. Let % be the set of upper
bounds of Cin P. Let f:P— P be given as follows: f (x)=x if xe¥; f(x)=least yeC
such that y£x if x¢%.

To show that f is inf-preserving, we let X = P be such that infX exists. If X =%,
f(infX)=inf X=inff (X), since infXe%. If X &%, let B=X—%.Thus, InfX¢%. But
inff (X)=inff(B)=least yeC such that yef(B) (call it y,). Now y, £infX, since if
yo<infX, yo<x for all xeX and y,¢f(B). For all yeC, if y< y,, y<x for all x, i.e.,
y<infX. Thus f(infX) =y, =inff(X).

By hypothesis f has a least fixpoint yeP. Every point of % is a fixpoint, and # is
exactly the set of all fixpoints of f since for w¢#, f(w)£ w. Thus y=inf%, i.e., y=sup
C. Hence P is chain-complete. [

Remark. The proof of Theorem 11 can be modified to show that P is a complete
poset if and only if every map f:P—P of the form f=goh (g, h:P—P, g is sup-
preserving, 4 is inf-preserving) has a fixpoint. Dually, we can require g to be inf-
preserving and 4 to be sup-preserving.

The author has used Theorem 9 to establish the existence of inverse limits in
categories of complete posets (see [17]). Other applications of fixpoint theorems are in
[7], [12], [19] and of course [24].
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