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Chain-complete posets and directed sets with applications 

George Markowsky 

1. Introduction 

Let a poset P be called chain-complete when every chain, including the empty 
chain, has a sup in P. Many authors have investigated properties of posets satisfying 
some sort of chain-completeness condition (see [,11, [-31, [6], I-71, [17], [,181, ['191, 
[,211, [,221), and used them in a variety of applications. In this paper we study the 
notion of chain-completeness and demonstrate its usefulness for various applications. 
Chain-complete posets behave in many respects like complete lattices; in fact, a chain- 
complete lattice is a complete lattice. But in many cases it is the existence of sup's of 
chains, and not the existence of arbitrary sup's, that is crucial. 

More generally, let P be called chain s-complete when every chain of cardinality 
not greater than ~ has a sup. We first show that if a poset P is chain s-complete, then 
every directed subset of P with cardinality not exceeding ct has a sup in P. This 
sharpens the known result ([,8], [,181) that in any chain-complete poset, every directed 
set has a sup. 

Often a property holds for every directed set i f  and only if  it holds for every chain. 
We show that direct (inverse) limits exist in a category if and only if 'chain colimits' 
('chain limits') exist. Since every chain has a well-ordered cofinal subset [11, p. 681, 
one need only work with well-ordered collections of objects in a category to establish 
or disprove the existence of direct and inverse limits. Similarly, a topological space is 
compact if and only if every 'chain of points' has a cluster point. A 'chain of points' 
is a generalization of a sequence. 

Chain-complete posers, like complete lattices, arise from closure operators in a 
fairly direct manner. Using closure operators we show how to form the chain- 
completion P of any poset P. 

The chain-completion/~ of a poset P is a chain-complete poset with the property 
that any chain-continuous map from a poser P into a chain-complete poset Q extends 
uniquely to a chain-continuous map from the completion/~ into Q, where by a chain- 
continuous map we mean one that preserves sup's of chains. If P is already chain- 
complete, then/~ is naturally isomorphic to P. This completion is not the MacNeille 
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completion, since in general Pis not a lattice. However, ifP is a lattice, or even directed, 
then so is/~. 

Since our emphasis is on chains, the chain-completion of a poset is more natural 
for us than the MacNeille completion. Moreover, forming the MacNeiUe completion 
may require the addition of many points in cases where chains are well-behaved. 
Finite posets with least elements (which are obviously chain-complete) may be greatly 
enlarged in the process of constructing the MacNeille completion. However, in some 
cases the MacNeille completion adds fewer new points then the chain-completion. 

Tarski's fixpoint theorem [24] generalizes to chain-complete posets, i.e., if 
F:P--, P is an isotone map and P is a chain-complete poset, then the set of fixpoints is 
a chain-complete poset under the induced order. This sharpens the results of Abian 
and Brown [1] that every isotone self-map of a chain-complete poset has a fixpoint. 
Conversely, we show that if every isotone map F: P ~ P has a least fixpoint, P is chain- 
complete. We prove several generalizations and extensions of these results. It is of 
interest to note that the basic fixpoint theorem does not require the axiom of choice for 
its proof. 

Chain to-complete posets are useful in Dana Scott's theory of computation (see 
[7] for references), where to is the first infinite ordinal. The emphasis there is on how 
well certain objects approximate other objects, and not in the existence of joins of 
arbitrary objects, which in general have no 'natural'  meaning. Many of the results in 
this paper are contained in an unpublished manuscript on the theory of computation 
completed by the author during the summer of 1973 at the IBM Thomas J. Watson 
Research Center. 

The author thanks Garrett Birkhoff, Orrin Frink, Barry Rosen and the referee for 
helpful suggestions and references. 

2. Decomposition of directed sets 

Throughout this paper a chain will mean a totally ordered set (it may be empty), 
and a directed set will mean an ordered set having an upper bound for each finite 
subset. Directed subsets must be nonempty, since they must contain an upper bound 
for the empty set. 

The following is a sharpened version of Iwamura's Lemma [13] (see [16], [23, 
p. 98]), which will allow us to prove our basic results about the existence of sup's for 
directed subsets of chain ~-complete posets. The proof is similar to the proof in [23] 
and is given here for completeness. 

THEOREM I. l f  D is an infinite directed set, then there exists a transfinite sequence 
D~, ~ < I D I, of  directed subsets of  D having the following properties: 

(1) for each o~, i f  ~ i f  finite, so is D~, while i f  ~ is infinite ID~I--I~I (thus for all 
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a, IDol < IDI) ; 
(2) /fc~<fl< IDI, D~,cD#; 
(3) o=t.L D,. 
Proof. We denote ID[ by Y. Recall that cardinal numbers are the least ordinals of 

a given cardinality. Well-order D using V as an index set, i.e., D = (x,},< r. For  each 
finite subset F=D, let ue denote an upper bound for F in D. Let Do = {Xo}, and let 
Di+l = Di w {Y;+I, uo,~{y~+ 1}} where Yi+l is the least element of D - D i .  Thus for each 
integer i, Di is a finite directed set of cardinality at least i and if i<j, D~=Dj, Let 
Do,= Ui<,o Di. Then D,o is directed and ]Do,I =o9. If ]DI =o9, we are done. Otherwise, 
we proceed as follows. Let/3 < y be an infinite ordinal such that for al! ~ </3, D ,  exists 
and the sequence {D,} (~</3) has the required properties. If/3 is a limit ordinal, we 
simply let Da = I,_)~ < a D,. Clearly, for all ~ </3 D,  ~ Da, and IDa[= 1/31. Finally, suppose 
/3 = 6 + 1. Let Da. o = D6 w {yp}, where y# is the least element of D - D ~ .  Inductively we 
define D#,i+l=D#,iw{uvlF~D#,i ,  F is finite}. Now let D#=t,.Ji<o,D#,~. D# is 
directed, since any finite subset S =D# lies in some D#, ~ and hence has an upper bound 
in Da, ~+~. If  X is an infinite set, the cardinality of the set of all finite subsets of X is 

equal to IXI. Thus for all i, IO61=lO#,~l. And IO#l<.~ogxlOal=lDal=161=l/31. 
Clearly, Da c D#. It is now clear that D = U , <  r D,. []  

Remark. If L is an uncountably infinite lattice, we can write L =  t..J, L,  where: 
each L,  is a sublattice of L; a </3 implies L~ c L B; I L~I < ILl for all c~. To see this modify 
the proof  of Theorem 1, so that instead of adding upper bounds of finite subsets of 
Dr ~ to get Da, ~+~, we add sup's and inf's of all finite subsets of L#, ~ to get Lp. i+x. 
Note that even for finite , ,  ILa[ may be w. 

COROLLARY 1. Let P be chain 2)-complete. Then for all directed subsets D of P 
for which IDi <<. 7, supeD exists. 

Proof. Suppose the conclusion is false. Let D=P be a directed subset such that: 
1) I D]~< 7, 2) supvD does not exist, and 3) for all directed sets D ' c P  with I D'l < ID[, 
supvD' exists. D cannot be finite. Let D = l J ,<  IDI Da, where the D, are as in Theorem 
1. Let C =  {supeDa}~<lD I. Clearly, C is a chain and supeC exists and is clearly the sup 
of D in P. This contradiction proves Corollary I. []  

Before proceeding to the remaining corollaries we wish to introduce some further 
concepts which we will use throughout this paper. 

DEFINITION 1. Let P and Q be posets a n d f : P ~  Q a map (posets are nonempty 
by definition). 

(i) P is strictly inductive (inductive) if every non-empty chain in P has a sup 
(an upper bound) in P. 

(ii) f i s  chain-continuous if for all non-empty chains X c P  such that X has a sup in 

P, f(supv X') = supQ f (X) .  
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(iii) f is chain-* continuous i f ' for  all chains X = P  such that X has a sup in P, 
f(supl, X)=supef(X) .  Thus if P has a least element O, and f is chain-*continuous, 
then Q has a least element O, andf(O)=O. 

(iv) f i s  sup-preserving (inf-preserving) if for all X=P such that supX (infX) exists 
i n P :  

f ( suppX)=supe f (X)  (f(inf~,X)=inf~f(X)).  

Remark. Observe that chain-continuous, chain-*continuous, sup-preserving, and 
inf-preserving maps are all isotone (order-preserving). Also note that 0 has a sup 
(inf) in P if and only i fP  has a least (greatest) element. Finally, much of the material 
in the following sections extends easily to quasi-ordered sets. We will not discuss the 
concepts dual to chain-complete, chain-continuous, etc., and leave it to the reader to 
draw the obvious inferences. 

COROLLARY 2. In a strictly inductive poset (in particular, in a chain-complete 
poset) every directed subset has a sup. [] 

Note that Corollary 2 appears in I-8, p. 33-1. It can be proved in the same way as 
Corollary 1. 

COROLLARY 3. Let P1 and P2 be strictly inductive posets and f :P1 ~P2 be 
chain-continuous. I f  D =Px is directed, then f (supl,, D) = sup~,2f (D)" 

Proof. If  D is finite the conclusion is clearly true. For infinite D the corollary 
follows from Theorem 1 and transfinite induction. [] 

The following corollaries may be proven more directly by using the fact that sup, 
of nonempty finite subsets of the poset in question exist (see ]-9, p. 15, Th. 2.4], 
['9, p. 9], and ['14, p. 163, H]). Note that Corollary 4 is a special case of Corollary 3. 

COROLLARY 4. Let L be a complete lattice such that for every chain C=L and 
a~L, a ^ sup C=  sup x~ c(a A x), then for'any directed subset D = L and a eL, a ^ sup D 
= supx~ D(a ̂  x). [] 

COROLLARY 5. Let P be a chain-complete poset such that every finite subset has 
a sup, then P is a complete lattice. In particular i fP  is a lattice and a chain-complete 
poser, then it is a complete lattice. [] 

COROLLARY 6. A topological space X is compact if and only if each nest of 
closed non-empty sets has a non-empty intersection. [] 

Notation. Let P and Q be posets, then P+Q ( P x  Q,P~Q),  the cardinal sum 
(cardinal product, ordinal sum) of P and Q, is the poset consisting of the disjoint 
union (Cartesian product; disjoint union) of P and Q and ordered as follows, a<~b if 
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and only if a and b both belong to P or Q and in P or Q, a ~< b. ((a, b) ~< (c, d) ifa ~< c and 
b ~< d; a ~< b ifa ~< b in P + Q or a e P a n d  b e Q.) For more details on these operations see ['5]. 

By n we shall mean the ordinal {0, 1 ..... n -  I}, where n is a non-negative integer. 
By 09 we mean the first infinite ordinal, i.e., co = {0, 1, 2, 3 ..... }. We use 09~ to denote 
the first uncountable ordinal. Recall that each ordinal is the set of all ordinals which 
precede it. 

The following is an example of a strictly inductive poset P and a directed subset D 
such that for no chain C = D, sup C =  sup D. Another such example can be found in 
[-4, Theorem 10]. 

EXAMPLE 1. Let P=(091G1)x(09@l).  o h G l  and a~G1 are both complete 
lattices, and so is P. Let D =  {(a, b) eP  [ a~09 1 and b:~ co} =091 x 09. D is directed (D is 
in fact a lattice). It is easy to see that supD=(091, 09) but we claim that (091, co):~sup 
{(x,, Y,)}~,a for any chain in D. 

If C = { ( x , , y , ) } , ~ a  is a countable chain in D, i.e., ICI is countable, then sup 
{(x,, y,)},~a=(sup{x,},~n,  sup{y,}),~a<(091, co), since 091 is not the sup of any 
countabIe chain in 091. If C is uncountable, then there exists ne09 such that Sn= 
={(x,,n),oa [(x~,n)~C} is uncountable. We now claim that S , ,=0  for m > n .  

Suppose that (x, m ) e S ,  for some m > n .  Then (x, m) is an upper bound for S,, hence 
(x, m)~>supS,,=(sup( . . . .  )~s, {x,}, n)=(091, n), since any uncountable chain in 091G1 
has 091 as sup. This implies that x=09 D which is impossible since xe091. Since Sin=0 
for all m > n  and S,, is uncountable, supC =(091, n)r 09). Thus no chain in D has 
(091, 09) as a sup. []  

The next example shows that a directed subset of an inductive poset need not even 
have an upper bound. 

EXAMPLE 2. Let 0=(091 x c0)u({09,} x aJ)vo(09, x {co}) with the following or- 
dering (a, b)<(c,  d ) i f  and only if a#091 and b:/=09 and (a, b)<(c, d) in (09,@1)x 
x (09@ 1). Thus all elements of the form (co D y) (y-Y: co) and (x, ~0) (x-Y= c01) are maximal 
elements in Q, and hence at most one such element can be in any chain. The argument 
used in Example 1 shows that any chain in 091 x 09 has an upper bound. Thus O is can 
inductive poset, but co, x to has no upper bound in O. [] 

3. Applications to general topology 

In this section we briefly indicate the extent to which the preceding results allow 
one to substitute chains for directed sets when working with topological spaces. 

DEFINITION 2. Let T be a topological space and D a directed set. A net over D 

is a map I-I:D ~ T. I fD  is a chain (thus D ~ ~b), we call nets over D chains ofpoints  over 
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D. A cluster point y of a net /- / is  any point y e T  such that for any neighborhood q / o f  
y, and any ieD, there is somej~D,j>~i such that l I( j )~ql .  A net II, converges to y 
if for any neighborhood q / o f y  there is some ieD such that for a l l j  t> i / ' / ( j )  ~q-/. 

Remark. Kelley [14, p. 65"1, defines nets over quasi-ordered directed sets. Our 
results hold with either definition. 

T H E O R E M  2. Let X be a topological space. Every net in X has a cluster point if  
and only if  every chain of points in X has a cluster point. 

Proof. The necessity is trivial. The sufficiency follows from Theorem 1 by trans- 
finite induction. More precisely, let D be a directed set such that all nets over directed 
sets of cardinality less than ID[ have a cluster point. D is infinite since all finite nets 
converge. Let I-I:D--)X be a net. Decompose D as !,.J~<lOl D= using Theorem 1. Let 
y~ be a cluster point o f / I  [ D~. It is easy to check that the cluster point y of the chain 
of points {y~}~<lDi is a cluster point for /7 .  []  

The following corollary follows immediately from Theorem 2 above and Theorem 
2 in [14, p. 136]. 

COROLLARY. A topological space X is compact if and only if every chain of 
points in X has a cluster point. [] 

Remark. The argument above is very similar to the argument in Bruns [6]. In its 
set family form this result can be traced back to Alexandroff-Urysohn [2]. 

Example E in [14, p. 77] shows that it is possible for a net to converge to a point, 
without there being a sequence (an co-chain of points) converging to that point. This 
result is not surprising in view of the fact that nets can be of arbitrary cardinality, 
while sequences are countable. In fact, Example B of [14, p. 76] shows that a chain 
of points can converge to a given point without there existing a sequence which con- 
verges to the point in question. The example used in Theorem I0 of  [4] can easily be 
adapted to give a net in X -  {p} converging to p such that no chain of points in 
At-  {p} converges to p. 

4. Chain-complete categories 

We now turn our attention to the question of the existence of inverse and direct 
limits in a category. In particular, we will show that questions of existence of inverse 
and direct limits can be settled by examing only those cases in which the underlying 
directed set is a chain. Since every chain has a well-ordered cofinal subset, we need 
consider only well-ordered chains. Our terminology is that of [20, Chapter 2]. Since 
our diagrams will have at most one arrow between any two vertices, we can think of a 
diagram.scheme Z as an ordered pair (/, M) with M c I x I and d: M ~ I x I being the 
inclusion, so we won't bother with d. Thus a diagram in a category C over a diagram 
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scheme 27 is an ordered pair of maps (~b, 0), such that ~: I--, Ob C, 0: M-* Mor C, and 
0((a, b)) eMor(~b(a), ~b(b)). 

I f l ' , " I ,  we call the diagram scheme ~ ' = ( I ' ,  M'=Mc~( I '  x I')) the restriction of 
27 induced by I'. Given a diagram (~, 0) in rr over 2~ we define its restriction to F.' to be 

(~ 11', 0 I M') .  
For the remainder of this section we will only refer to commutative diagrams, and 

hence we use the word diagram to mean commutative diagram. 

DEFINITION 3. P be a poset. By the diagram scheme P J, (PT) we mean (P, P>..) 
((P, P , ) )  where P>~ = {(x, y) EP • P I x~> y} ( P ,  = {(x, y) ~P • Px<~ y}). 

We use the terms chain family, chain cofamily, chain limit, and chain colimit, for 
inverse family, directed family, inverse limit, and direct limit (respectively) when the 
underlying directed set is a chain. 

We say that a category is chain complete (chain cocomplete) if chain limits 
(colimits) exist for every chain family (cofamily) over an arbitrary nonempty chain. 

Remark. For the remainder of this section we will only discuss inverse families, 
inverse limits, etc., since it is clear that every result has a dual which can be proved 
dually. I f  (~b, 0) is a diagram over the diagram scheme PJ, and Q=P, we shall denote 
the restriction of (q~, 0) to Q~ also by (~b, 0). 

THEOREM 3. A category ~ is chain complete if and only if an inverse limit exists 
for every inverse family in cr 

Proof. Since every nonempty chain is a directed set, the sufficiency is obvious. 
Necessity follows from Theorem 1 by transfinite induction, as follows. 

An inverse limit exists for any inverse family over a finite directed set. Assume that 
an inverse limit exists for every inverse family over a directed set with cardinality less 
than the infinite cardinal ~. Let D be a directed set of cardinality y and (~b, 0) and 
inverse family over D J,. 

Using Theorem 1, we write D as !,_)~< r D~. Let (X~, {f~,~}x~o,) be an inverse limit 
for'D~, where f~,xeMor(X~, Oh(2)). If  ~</~<y,  let gp,~Mor(Xp,  X~) be the unique 
morphism such that for all 2~D~, f~, ~ =f~, ~ogp, ~. It is easy to see that F =  ({X~}~< y, 
{gp, ~}~p< ~)is a chain family over y~. Let (X, {h~}~< r) be an inverse limit of F, with 
h ~ M o r ( X ,  X~) for all 0~. 

For each 2eD, we definefx~Mor (X, ~ (2)) as follows. There exists 0~ o such that for 
all ~ I> ~o, 2~D~. For any ~/> 0~o, letfx=f~,  x o h~. It is easy to see that f~ is weU-defined, 
and that (X, {fx}x~o) is an inverse limit for (~b, 0) over O.~. [] 

5. Closure operators and chain-complete posets 

Chain-complete posets correspond to closure operators in a way that generalizes 
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the correspondence between complete lattices and closure operators (see I5, Ch. 5]). 
The construction and results in this section appear in more general form in 
Banaschewski [3]. 

DEFINITION 4. Let y be a closure operator on X and T = 2  x. We define the 
chain-complete poset generated by T and ~ (denoted by y* (T)) as follows. Let f2 = 
= {Q = ~(2x)[ 7(T)= Q and for all chains C = Q, 7 (Ur~c E)~  Q}. We define y* (T) 
to be Oe~a  Q. It is easy to see that v*(T) is the least element in f2. 

THEOREM 4. Let y be a closure operator on X and T=2 x. Then: 
(a) y*(T) is a chain-complete poset and for any chain C ~ v*(T), sup C = y ([,Jr ~ c E); 
(b) I f  D = y*(T) is a directed set, sup D = ~ ([,.)r �9 o E). 
Proof. (a) From the definition of y*(T), it is clear that for any chain C in v*(T), 

V([,_Jr~c E)~y*(T). If S~y*(T)is  an upper bound for C, Ue~c=S ,  i.e., y([ , . )E)= 
= y ( S ) = S  since S is closed. Thus y([,.) E )=sup C .  

(b) If D is finite, it has a greatest element So. Then sup D = So = y (So)= y ([,.Jr ~ o E). 
Let D be a directed set such that (b) holds for all directed sets of cardinality less than 
[D[. Using Theorem 1 we decompose D into I,.) D,. Clearly, supD=sup(supD~)= 
=Y(U~ Y(l,_Jr~. E)) by (a). But y([,.)~ Y(t, Jr~o E)).=Y(~(I,_)r~o E ) ) = y ( U ~ o  E). 
The reverse inclusion is obvious. The result now follows by transfinite induction. [] 

Remark. y* (2 x) = ~, (2 x) is just the usual lattice of closed sets. Arguing as above it is 
easy to see that y ( l , J ~ r  E) is the sup of F=y(2x) .  Note that i n f F =  (]w~r IV. 

The results above extend with trivial modification to strictly inductive posets. 
Theorem 5 (E) shows that every chain-complete poser is y*(T) for appropriate 

y, X, and T. 

6. The chain-completion of a poset 

The chain-completion of a poset, which we describe below, has some nice extension 
properties with respect to chain-continuous and chain-*continuous maps. Completions 
of directed sets and lattices are themselves directed sets and complete lattices 
(respectively). 

Notation. Given a poset P, we use Ch(P) to denote the set of all chains in P. We 
will use D(P)  to denote the set of all order ideals of P, i.e., subsets of P such that 
whenever they contain an element they contain all elements less than that element as 
well. 

DEFINITION 5. Let P be a poset and W,-- P. Let Hw = {S ~ P [ W= S and for 
any chain C = S  and x~P, if SupeC exists and x~<supC, then xeS} .  We define the 
chain-closure of W to be Os~n,,  S and denote it by W t. 
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LEMMA 1. t is a closure operator. 
Proof. W = W t, w t  = w t t  and if V c W, it is easy to see that v t  = w t. [] 

DEFINITION 6. Let P be a poset. The chain-completion, P, of P, is simply 

t*(Ch(e)) .  
Theorem 5 gives some basic properties of the chain-completion of a poset. Theorem 

6 gives a universal mapping theorem characterization of the chain-completion of a 
poser. 

THEOREM 5. Let P be a poset and f : e ~ P  be given by f ( x ) = [ - , x ] =  
- {y~e  [ y<~x}. The following are true. 

(A) f is chain-*continuous and for a, b~P, a<~b i f  and only if  f(a)<~f(b). In 
particular, f is injective. Furthermore, f is inf-preserving. 

(B) I f  D=P is directed, then Dt~p. 
(C) I f  P is directed, then P is a directed set with greatest element P and least 

element 0 t. 
(D) For all Se~, S=supv{Te f ( P )  ] T=S} ,  i .e. , f  (P) is join-dense in P. 
(E) l f  P is chain-complete, f :P ~ P is an isomorphism. 
Proof. (A) C lea r ly f i s  well-defined and a<~b if and only if [ ' - ,  a ] = [ ' - ,  b]. If 

y=supv  W for some chain W c P ,  it is easy to see that f ( y )  is an upper bound for 
f ( W ) .  Let Ae/~ be any upper bound f o r f ( W ) .  Then W~-A, but since At=A,  yeA,  
i.e., f (y)=A. 

Suppose that y = infvX for some X = P. Then f (y) = ("Ix, x f (x ) ,  since if z~ 
('~x,xf(x), z is a lower bound for X, and z<~y. Thus clearlyf (y)=infvf(X) ,  since 
any S c  f ( x )  for all xeX,  must lie in nx~x f (x ) .  

(B) f ( D ) =  P is a directed set. By Theorem 4(b), supv f (D)=  ( U ~ , o f ( x ) )  t =  D t. 
(C) Obvious, since p t  = p. 
(D) Obvious, since S = U ~ s f ( x ) .  
(E) In view of (A) we need only show that f is surjective. Observe that for any 

chain C = P, f ( supe  C) = C t. Thus t (Ch(P)) =f(P) .  
If  C = f ( P )  is a chain, so is f -X(C) c P, since f is isotone in both directions. Let 

y=supe f - l (C)  (P is chain-complete), then since f is chain-continuous, f ( y ) =  
= supv C ~f(P),i.e.,  byTheorem 4, (U~ ,cE)  t Ef(e ) .  By definition of /~/~ = f  (P). [] 

THEOREM 6. Let T be a chain-complete poset and h:P ~ T be chain-*continuous 
(chain-continuous but not chain-*continuous). Then there exists a unique map h:P ~ T 
such that: 

(1) h is chain-* continuous (chain-continuous); 
(2) hof=h. Thus any chain-*continuous (chain-continuous) map factors through 

and f.'P ~ P. As usual it follows that ~ is unique up to isomorphism. 
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Proof. Let h:~--,T be given by h(S)=suprh(S). We must first show that h is 
well-defined, i.e., that for S ~/~, suPr h (S) exists. Assume first that h is chain-*continuous. 

We first note that for all X c P and ae T, a is an upper bound for h (X) if and only if 
a is an upper bound for h(Xt). Since h (X)~ h (Xt), sufficiency is trivial. Now suppose 
that a is an upper bound for h(X). It follows that X=h- l ( [0 ,  a]). If C is any chain in 
h-l(l'0, a]) such that suppC exists, then since h is chain-*continuous (thus also 
isotone), 1'- ,  supe C] ~h-l(1,0, a]). Thus Xt ~h-1(1,0, a]), whence h(Xt)~ ['0, a] and 
a is an upper bound for h (Xt). 

It now follows that suph(X) exists if and only if sup h(X "t) exists and that if they 
exist, they are equal. 

Let ~ =  (x t  I x = e  and suprh(X t) exists}. If C c q / i s  any chain, supr{suprh 
(e) l e~  c} exists, since T is chain-complete, and is equal to h ( U s ,  c E ) = h ( ( U  E)t). 
Thus ( U  E) t~q/- By definition, P c q / a n d  h is well-defined on/5. 

Observe that for any chain C in P, h(supp C) = suprh((UE,c E) t) = suph(U E) = 
sup (suph(E)I E ~ C}--suph(C). Thus h is chain-*continuous. 

Observe that h(f(x))=h([-, x])=suprh(1 , - ,  x])=h(x) for all xeP, since h is 
isotone. Thus h of=h. 

We now only need to show that ifhx : / ~  Tis any chain-*continuous map such that 
h t of=h, then h~ =h. Let q/= {X~/~ I h(X) = h~(X)}. Let C be a chain inP. By Theorem 
4, Ct=supr{f(x) lxEC}. Since h x is chain-*continuous and htof=h, we have 
hx(Ct)=supr{hlof(x)lx~C}=suprh(C)=h(Ct). Thus (Ch(p)) t=q/ .Let  C be a 
chain in ~ .  By Theorem 4, S =(UE~c E) t =supr C. Since h~ is chain-*continuous, 
h~(S) = suprhl(C) = suprh (C) = h (S). Thus/~ c o~ and h~ = h. 

We briefly discuss the case where h is chain-continuous but not chain-*continuous. 
This can only occur when P has a least element, 0e, and h(0p)#0r. All of the above 
goes through except that one must systematically disallow the empty chain, working 
instead with 0 t=  {0~,}. Thus one would have the suprh(X)=suprh(Xt), except whe n 
X = 0. We leave it to the reader to make the necessary modifications. [] 

Remarks. In 1,17; Theorem 4], the following is established and used to prove that 
the category of chain-complete posets with chain-*continuous maps is cocomplete 
(in the sense of Mitchell 1,201). Let A and B be posers andf :A  ~ B isotone, then there 
exists a chain'complete poser By+ and isotone g:B~ Bs+ such that: 

(1) gof is chain-continuous; 
(2) for all chain-complete posets H and isotone maps 0q : A ~ H; 0c2: B ~ H such 

that ~x is also chain-*continuous and ~ = ~2 of, there exists a unique chain-*continuous 
map h:Bs§ ~ H  such that ct2=hog. The proof of this fact is similar to the proof of 
Theorem 6. Note that if we let A=B a n d f b e  the identity, B~§ =/~. 

Examples 3 and 4 (below) show that f in Theorem 5 need not be sup-preserving. 
Finally, the following corollary shows how to construct a completion of P which is 
strictly inductive, but not complete, when P lacks a least element. 
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COROLLARY. Let P be a poset without a least element and h any chain-continuous 
(it is also chain-*continuous) map of P into a strictly inductive poset T. Then P ' =  P -  
-{0e}  is a strictly inductive but not complete poset and there exists a unique chain- 
continuous (actually chain-*continuous) map h' :P' --* T such that h' o f =  h. 

Proof. I f P '  were complete, it would have a least element B. Since P lacks a least 
element 0 p = 0 = 0  t, a n d f - l ( 0 e ) = O  sincefis  isotone both ways by Theorem 5. Also by 
Theorem 5(D), B=sup  {Tef(e) [ T=B} .  Since B is the least element of  P ' ,  B e y ( P )  
which implies that P has a least element s incef i s  isotone both ways a n d f - l ( 0 e ) = 0 .  
Thus P '  is strictly inductive, but not chain-complete. 

Adjoin a new element 0 to Tin such a way that 0 is the least element of  the resulting 
poset T*. Consider the unique chain-*continuous map h:_P-* T* of Theorem 6, such 
that hof=h.  Let h'=h [P'. It is easy to see that h' is unique. [] 

LEMMA 2. Let P be a lattice and L = P  a sublattice. Then L t is an element of P 
and a sublattice of P such that: 

(a) if  W ~  L t, W is countable, and supe W exists, then supe W e L  t ; 
(b) / f  W ~ L  t, W ~O, and infl, W exists, then infe W e L  t. 
Proof. L teD(P) ,  hence (b) is true. Furthermore, recall that by definition if C = L  t 

is a chain such that supeC exists, and y~<supeC, then y e L  t. Since L is directed, by 
Theorem 5 (B), L t PP. We now show that L t is a sublattice of P. 

Let H = { E ~ L t [ L = E  and E is a sublattice of P}. H # 0 ,  since L e H .  If F =  
= {Ep}p~d is a non-empty chain in H, E= ~,.Jp~n EpeH. By Zorn's lemma there exists 
a maximal element GeH. 

Let C be a chain in G and x e P  be such that supeC = b  exists and x~<supC. We 
wish to show that xeG. Let Q =  { y e P  [ y<~b v w for some weG}. We claim that QeH. 
Clearly, L c G = Q. If  a, a' e Q, trivially a ^ a' ~ Q. If a ~< b v w I and a' ~< b v w2, then 
a v a ' ~ b v ( w x v w 2 ) .  Thus Q is a sublattice. It remains only to show that Q = L  t. 
Clearly, b v w= sup {0 v w[ 0~ C} e L  t for all C ~ G and we G. Thus Q e H. By maxi- 
mality, G=Q. But it now follows that G=L t. 

Finally, let W =  {w 1, w2, ...} = L  t be a countable subset such that supe W exists. 
Consider the chain {wl, wl v w2, wx v w 2 v w3,...} in L t. supj, W is the sup of this 
chain, hence supl, W e L  t. [] 

THEOR EM 7. Let P be a lattice. Then P is a complete lattice, and the map 
f :P ~ ~ of Theorem 5 is inf-preserving, chain-*continuous and preserves countable joins 
whenever they exist in P. I f  W c P ,  then infr W =  NE~w E and supe W = {suppF I F 

finite and F c O E ~ w  E} t. 
Proof. We first show if S = P, S ~ O, then S e P  if and only if S is a sublattice of P 

such that S t = S (i.e., S is closed). In particular S must satisfy (a) and (b) of  Lemma 2. 
I f  S is a sublattice of P such that St=.S, then by Lemma 2, SE/~. 
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Now let ~ =  { S e P  I such that S is a sublattice of P}. Clearly, C teq t  for all chains 
C c P. The union of a chain of lattices is a lattice and the 1"-closure of a lattice is a 
lattice by Lemma 2. Hence q /=P .  

From Theorem 5 we know that f is inf-preserving and chain-*continuous. Let 
W =  {w 1, w2, ...} c P be countable such that supe W exists (denote it by w). Clearly, 

f(w) is an upper bound off (w)  in _P. Let Te/~ be any upper bound off(w). Then 
W c T, and since T is a sublattice of P satisfying (a) of Lemma 2, we T. Since T e D (P), 

f(w)~ T. Thus f(w)=suppf(W). 
Let W={W~}r~a=P.  We claim that infpW=('~r~a W r Since J" is a closure 

operator and each W~ us closed, it is easy to see that ( O r , a  Wr) t =  OT~n Wr If 
N WRY0, then (") Wre/~, since it is a sublattice which is closed. If (~ Wr=0,  again 
O Wr e/~ since 0 = 0 t  eP, since 0 is a chain. In any event ("l~a W~eP, and thus clearly 
it is equal to infp W. Thus P is a complete lattice with inf corresponding to set-inter- 
section and the greatest element being P. 

Let W be as above. We claim that supp W =  {supeF I F finite and F =  Wx} t. If 
Wx =0,  this is trivial. Let D = (supF I Ffinite and F =  (,_J Wx}. Clearly D is directed by 
Theorem 5 (B), Dte/~. It is the sup of Wbecause any other upper bound, ~ of Wmust 
be a t-closed sublattice of P containing Wa and hence D. Thus D* =q/.  []  

We now show that the m a p f o f  Theorem 5 and 6 is not sup-preserving in general. 

EXAMPLE 3. Let P=[(cot@N-)x(co@N-)-(N- x N - ) ] @ l  where N - =  
= {0, - 1, - 2 ,  - 3 ,  ...} and where P has the ordering induced by that of [ (cot@N-) x 
x (co@N-)]@1. It is straightforward to verify that P is a lattice. Let At =cot x co and 
observe that I=supeAt. From the argument in Example I, it follows that A~ =At .  
Consider/s.  Ate/~, since At is directed. Observe that A1=suppf(Ax)cP= f(I). 
Thus f i s  not sup-preserving. []  

The following example shows that even i fP is directed,f need not preserve finite sups. 

EXAMPLE 4. Let P=(cot  xco)w {(cot, I), (1, co), c) be ordered as follows: 
P -  {e} is ordered componentwise; c is a maximal element of P;  c >t (x, y) if and only if 
x =  1 or y = 1. Let P ' =  [ P  @ (1 + 1)] @1. Observe that c =  supp{(col, l), (1, co)}. How- 
ever, f(c) and P -  (c} are both upper bounds for {f((col, 1)), f ( ( l ,  co))} in P. Since 
f(c) and e -  (c) are non-comparable, f(c) 4= supp(f((col,  1)), f ( (1 ,  co))}. []  

We know that if P is a lattice, then/~ is a lattice. However, if P is a distributive 
lattice (Boolean algebra), P need not be a distributive lattice (Boolean algebra). 
Example 5 also shows that i fP  is a modular lattice, P need not be modular. 

EXAMPLE 5. Let L be the distributive lattice described in [9, pp. 71-72-1. It is 
shown in [9] that L cannot even be strongly embedded in a complete modular lattice. 
(A strong embedding is an injective sup-preserving and inf-preserving map.) 
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When we construct L we choose a and b to be countable sets, and consequently so 
are A and B. Now L is a complete lattice and the map f : L ~ L  of Theorem 5 is 
injective, chain-*continuous, inf-preserving, and preserves countable joins. The argu- 
ment on p. 72 of [,9-1 now shows that L contains the five-element nonmodular lattice as 
a sublattice, hence L is nonmodular. []  

EXAMPLE 6. Let X be an uncountably infinite set and let B be the Boolean 
algebra of all finite and cofinite subsets of X. Then B is not a Boolean algebra. Let D 
be the directed subset of B consisting of all finite sets. By Theorem 5 (B), DtEB. It is 
not hard to see that D t = D. Any complement E of D would have to be an order ideal. 
Thus E ^  D = {0}; hence by Theorem 7, E n  D = {0}. Thus E =  {0}. But this contradicts 
the fact that E v D = B, since E v D = D :/: B. [] 

Remark. One can define concepts analogous to continuity, ?*(T), and S t using 
directed sets instead of chains. However, Example 3 shows that in general, one would 
get a different 'completion'. One can also consider the notion of 's-completeness', i.e., 
posers in which every chain of cardinality not greater than ~ has a sup, and define 
concepts analogous to continuity, ~,*(T), and S t restricting the cardinality of  allow- 
able chains. We leave the details to the reader. 

7. Fixpoints of chain-complete posets 

The following result of Bourbaki, allows us to prove the basic fixpoint theorem for 
complete posets (Theorem 9) without using the axiom of choice. A proof  of it may be 
found in [,15, Theorem 1, p. 12]. 

T H E O R E M  8. Let P be a strictly inductive poset and f :P ~ P a map such that 
x<<.f(x) for all x~P. Then f has a fixpoint. [] 

THEOREM 9. Let -P be a chain-complete poset, f : P ~ P  isotone, and Fe= 
= {xEP [f(x)=x) be the set ofallfixpoints off .  Then: 

(i) there exists a least element 0*eFe ;  
(ii) for all yEP, if f(y)<~ y, 0*~<y; 

(iii) Fp is a chain-complete in the induced order. 
Proof. (i) Let S = {x~P [ x <<,f(x) and x~< y for ally~Fe}. 0~S. S is chain-complete. 

Let C =  {x~}~acS be a chain and x-supeC. For all ~A,f(x)>~f(x~)>~x~, whence 
f ( x ) ~ x .  Since each element of Fp is an upper bound for C, x~S. Similarly, it is easy to 
see t h a t f ( S ) ~ S .  From Theorem 8, it follows that F enS~O.  Thus Fe has a least 
element 0". 

(ii) The set [,0, y] (=def(zEP [ 0~<Z~< y)) is chain-complete, a n d f ( r 0 ,  y])c- [,0, y]. 
By (i), F e n  [-0, y ] ~ 0 .  Thus 0*~<y. 
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(iii) Let C =  {x,},~a=Fe be a chain, and u=supeC.  I-u, - ]  (=a,e{z~P]z>~u})is 
chain-complete. It is easily verified tha t f ( [u ,  - ] ) =  [u, - ] .  By (i) there is a least fix- 
point y in F p n  [u, - ] .  Clearly, ),=supF,,C. 

COROLLARY.  (Tarski) l f  P is a complete lattice, then so is Fe. 
Proof. Let a, b~F e and c=aveb .  As in (iii) [c, - ]  is chain-complete and 

f ( [c ,  - ] ) =  [c, - ] .  By (i) there is a least fixpoint ~eF~,c~ [c, - ] .  Clearly ~=av  Fpb. 
Fp is a complete lattice by (iii) and Corollary 5 of Theorem 1. []  

Remark. Every poset with a least element satisfying the ascending chain condition 
is a chain-complete poset. Hence Theorem 9 generalizes the results in [9, p. 17]. 

Our  next theorem generalizes Theorem 2 of  [24] to chain-complete posets. When 
we speak of a commuting family of  functions we mean that composition is 
commutative. 

T H E O R E M  10. Let P be a chain-complete poset and F a commuting family of 
isotone self-maps of P. Let C be the set of common fixpoints ofF, i.e., C = {xeP ] f (x )  = 
=x for all f ~F}. 
Then: 

(i) there exists a least element 0"~ C; 
(ii) for all y~P, if f(y)<~y for all f eF, then O* <<, y; 
(iii) C is chain-complete with respect to the induced order; 
(iv) if P is a lattice, then C is a complete lattice (Tarski). 
Proof. We only prove (i), since the proofs of (ii)--(iv) can be modeled on the proofs 

used in Theorem 9. 
Let A =  {xeP [f(x)>~x for a l l f ~ F  and x<~y for all yeC}.  Clearly OeA. If geE, 

xeA,  and ysC,  g(x)<<.g(y)= y. If in addition, feE,  f(g(x))=g(f(x))>~g(x). Thus 
g(A)=A for all geF. It is easy to see that A is chain-complete. By Zorn's Lemma, A 
has a maximal element 0". But clearly 0* ~ C and it is the least element of C. []  

Remark. We can avoid the use of Zorn's Lemma in the proof  of Theorem 10 if we 
assume that F is well-ordered, say F =  (f~}~,:~. Then we can define f : A ~ A  by 
transfinite induction as follows. For xeA,  let xo=fo(x). For ;t</~, let x~=fz(supe 
{x~}r,:a). Finally, l e t f (x)  = supe{x~}~,: p. Clearly,f  (x) >/x for all xeA.  By Theorem 8, 

f h a s  a fixpoint asA, i.e., a=aa for all 2<ft .  Thus asC. 
Davis [10] showed that a lattice is complete if and only if every isotone self-map 

has a fixpoint. Chain-complete posets cannot be characterized so easily. Take any 
poset P in which every chain has an inf but which lacks a least element. The dual of 
Theorem 9 shows that every isotone self-map of P has a fixpoint, but P need not be 
complete. The next theorem characterizes chain-complete posets in terms of the 
existence of fixpoints. It also provides a partial answer to the question raised by Davis 
[I0] as to whether a lattice L, having the property that every meet-preserving map 



Vol 6, 1 9 7 6  Chain-complete posets and directed sets with applications 67 

f : L ~ L  has a fixpoint, is necessarily complete. A meet-preserving map satisfies 
f ( a A  b ) = f ( a ) A f ( b )  whenever a A b exists in the domain o f f .  Inf-preserving maps 
are of course meet-preserving. 

THEOREM 1 I. Let P be a poset. Then the following are equivalent. 

(a) P is chain-complete. 

(b) Every isotone f :P ~ P has a least fixpoint. 

(c) Every inf-preserving map f :P ~ P has a least fixpoint. 

Proof. Theorem 9 implies that (b) and (c) are consequences of (a). Clearly, (c) 
follows from (b). Thus we need only show that (c) implies (a). 

Let C = P be a chain. We have remarked above that every chain has a well-ordered 
cofinal subset, so that we may assume C is well-ordered. Let ~' be the set of upper 
bounds of C in P. Let f : P  ~ P be given as follows: f (x) = x if x~qz'; f (x)-- least y~ C 
such that yz~x if x~qg. 

To show t h a t f i s  inf-preserving, we let X c  P be such that infX exists. If X = ~ ,  
f ( i n f X )  = infX= inff  (X'), since infXE~.  If X el: ~ let B = X -  qg.Thus, I n f X ~ .  But 
i n f f ( X) =  inf f (B)=leas t  y ~ C  such that y s f ( B )  (call it Yo)- Now Yo ~ infX, since if 
Yo ~< infX, Yo ~<x for all x e X  and yo~f(B) .  For all y e C, if y < Yo, Y~< x for all x, i.e., 
y <~ infX. Thus f ( i n f X )  = Yo - i n f f  (X). 

By hypothesisfhas  a least fixpoint 7~P. Every point of  ~ is a fixpoint, and ~ is 
exactly the set of all fixpoints o f f  since for wq~q~,f(w):~ w. Th.us 7 = i n f , ,  i.e., 7,= sup 
C. Hence P is chain-complete. [] 

Remark. The proof of Theorem 11 can be modified to show that P is a complete 
poset if and only if every map f : P ~ P  of the form f = g o h  (g, h : P ~ P ,  g is sup- 
preserving, h is inf-preserving) has a fixpoint. Dually, we can require g to be inf- 
preserving and h to be sup-preserving. 

The author has used Theorem 9 to establish the existence of inverse limits in 
categories of complete posets (see [,17]). Other applications of fixpoint theorems are in 
['7], [,12], [19] and of course [-24]. 
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