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Chain formation in homogeneous gas–liquid nucleation of polar fluids
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We report a computer-simulation study of homogeneous gas–liquid nucleation in a model for
strongly polar fluids. We find that the nucleation process is initiated by chain-like clusters. As the
cluster size is increased, the chains become longer. However, beyond a certain size, the nuclei
collapse to form compact, spherical clusters. Nevertheless, in the interface of the collapsed nuclei a
high degree of chain formation is preserved. We compare the interface of the collapsed nuclei with
the planar interface and find that the interface of the globule-like nuclei differs markedly from the
flat interface. Classical nucleation theory underestimates both the size of the critical nucleus and the
height of the nucleation barrier. ©1999 American Institute of Physics.@S0021-9606~99!50534-5#
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I. INTRODUCTION

When simple fluids, such as the Lennard-Jones fluid,
cooled below a critical temperatureTc , they can occur in
two distinct disordered phases that only differ in density:
~low-density! vapor phase and the~denser! liquid phase~see,
e.g., Ref. 1!. The explanation of the coexistence of bo
phases dates back to the work of van der Waals, who sho
that it arises from the interplay of the short-range repuls
forces and the long-range attractive forces between
particles.2

However, even if particles have both repulsive and
tractive interactions, the existence of a liquid–vapor tran
tion is not inevitable. For instance, if the range of the attr
tive forces is sufficiently short, the liquid–vapor transitio
will be pre-empted by a freezing transition.3–7 More recently,
evidence has accumulated that in a system of dipolar h
spheres~hard spheres with embedded permanent dipol!,
where the attractive interactions are long-ranged, the liqu
vapor transition may be suppressed. In fact, early theore
studies of the phase behavior of this prototype dipolar fl
suggested that these systems should have a gas–liquid
cal point.8–10 This seemed plausible because, in the isotro
fluid phase, the dipole–dipole interaction provides a netr 26

attraction between the particles, wherer is the interparticle
separation. However, when the phase behavior of dip
hard spheres was investigated by computer simulation
gas–liquid phase coexistence was observed.11,12 Of particu-
lar interest is a computer simulation study by Van Leeuw
and Smit.13 Van Leeuwen and Smit studied the equilibriu
phase behavior of a Stockmayer fluid, in which the partic
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interact via a Lennard-Jones potential plus a dipole–dip
interaction potential

v~r i j ,mi ,mj !54eF S s

r i j
D 12

2S s

r i j
D 6G

23~mi•r i j !~mj•r i j !/r i j
5 1mi•mj /r i j

3 . ~1!

Here,e is the Lennard-Jones well depth,s is the Lennard-
Jones diameter,mi denotes the dipole moment of particlei,
and r i j is the vector joining particlesi and j.

The simulations of Van Leeuwen and Smit suggest tha
minimum amount of dispersive attractions is required to o
serve gas–liquid phase coexistence.13 If the attractive forces
are too small in comparison to the strength of the dipo
interactions, as for soft sphere14 and hard sphere dipola
fluids,11,12 then the system appears unable to condense
form a liquid, but appears to form a ‘‘gel’’ of chains o
dipoles that align heat-to-tail. Theoretical studies by V
Roij15 and by Sear16 suggest that the tendency to form chai
can suppress the gas–liquid phase coexistence.

In the present paper, we wish to investigate whether
peculiar feature of dipolar interactions may affect the nuc
ation behavior of polar fluids, even in the case where
liquid–vapor transition itself is still possible. The reason w
we look at nucleation is the following: since the work
Ostwald, it is known that the phase that forms during hom
geneous nucleation need not be the one that is therm
namically most stable.17 In recent computer studies, w
found evidence that even when Ostwald’s rule does not
ply on a macroscopic scale~i.e., at the level of the macro
scopic phases that form!, it may apply on a more micro-
scopic scale to the nuclei of the new phase that forms du
homogeneous nucleation.18–20

We have studied by computer simulation thepathway
for condensation of a strongly polar Stockmayer fluid. T

,

2 © 1999 American Institute of Physics
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4763J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Nucleation of polar fluids
reduced dipole moment was chosen to bem* 5m/Aes3

54, which is, in fact, comparable to that of water. For th
value of the dipole moment, the system is known to sh
gas–liquid phase coexistence.21 However, as we will show
below, the nucleation of liquid droplets is preceded by
formation of chains. Only when the chains have reache
certain size do they collapse to form compact clusters.
polar fluids without attractive dispersion forces, the tende
to form chains will be even more pronounced. It is conce
able that the gel-like phases observed in the simulation
Refs. 11 and 13 is an interpenetrating network of unc
lapsed dipolar chain clusters.

The rest of this paper is organized as follows. We fi
present a new approach to determine the size distributio
liquid clusters in a vapor. In Sec. III we give the compu
tional details of the simulations and we end with a discuss
of the results. Parts of the results have been publis
elsewhere.22

II. DETERMINATION OF CLUSTER-SIZE
DISTRIBUTION

In homogeneous gas–liquid nucleation, the density
usually so low that without association the gas would
ideal. However, the temperature is low enough for partic
to associate into dimers, trimers, etc. Still, the concentra
of n-mers is so low that we can safely ignore their mutu
interactions. We thus have an ideal ‘‘solution’’ ofn-mers in
the vapor phase.

The identification of a cluster is not unambiguous a
can only be performed explicitly after choosing a criteri
that must be fulfilled by the particles that constitute
n-mer. We have adopted a geometric cluster criterion.
particles that are within a cutoff distanceqc51.5s from each
other are considered to be ‘‘connected,’’ and, therefore,
long to the same cluster. Thus, the cluster criter
wn(r 8n21) is given by

wn~r 8n21!51, if all n particles are mutually connected
~2!

50, otherwise. ~3!

Now that we have specified our cluster criterion, we c
define the partition functionZn of an n-mer ~Ref. 23! as

Zn5
Vn3

nnn! E dr 8n21 wn~r 8n21!exp@2bUn~r 8n21!#, ~4!

where b[1/kBT is the reciprocal temperature, withkB

Boltzmann’s constant andT the absolute temperature,V is
the total volume of the system,r 8n21 denotes the coordinate
of the particles in the cluster, with the prime indicating th
the coordinates are taken with respect to the center-of-m
of the cluster, Un(r 8n21) is the interaction energy
wn(r 8n21) is the cluster criterion, andn is the thermal
volume

n5L33
h3

A~2pkBT!3I 1I 2I 3

, ~5!

whereL is the thermal de Broglie wavelength andI 1 ,I 2 ,I 3

are the principal moments of inertia of the particles.
We can define the free energy of ann-mer as
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Fn[2kBT ln Zn52kBT ln~V/n!Zn,cm, ~6!

where Zn,cm is the partition function for a cluster in its
center-of-mass frame. Note that whereasZn,cm does not de-
pend on the size of the system~provided of course that the
spatial extent of the cluster is significantly smaller than
system!, Zn , and therefore the free energyFn , do depend on
the size of the system, as they contain a contribution fr
the translation of the center-of-mass of the cluster over
volumeV.

As the interactions between the clusters are neglec
the number of clustersNn is given by~see Refs. 23, 24!

Nn5Zn exp@bmn#5exp@2b~Fn2nm!#[exp@2bDF#,
~7!

wherem is the imposed chemical potential. The free-ener
differenceDF is the free-energy change associated with
semblingn particles in a cluster. Note that the magnitude
the free-energy difference depends on the size of the sys
as the free energy of ann-mer, Fn , contains a free-energy
contribution from the translational free energy of the cent
of-mass of the cluster. In particular,Nn , the number of clus-
ters of sizen, is an extensive quantity, i.e., it is proportion
to the size of the system, as can be seen by combining
~4! with Eq. ~7!. We would like to obtain a quantity that doe
not depend on the size of the system. We therefore defin
intensive probabilityP(n),

P~n![Nn /N, ~8!

that relates the average numberNn of clusters of sizen to the
total number of particlesN in the system. The free-energyV
of a cluster is defined as

bDV~n,m,V,T![2 ln@P~n!#. ~9!

We stress that, in our simulations, we do not direc
computebDV(n). Rather, we measure the cluster-size pro
ability distribution functionP(n), as given in Eq.~8!, and
obtain the free energybDV(n) by taking ~minus! the loga-
rithm of this distribution function. However, in order to com
pute the absolute nucleation rate, we only need to kn
P(n) itself—DV(n) is only a derived quantity. From the
cluster-size probability distribution function,P(n), we di-
rectly obtain one crucial ingredient to calculate the nuc
ation rate: the number of nuclei at the top of the barrier. T
other ingredient, which is the flux over the top of the barri
can be obtained using molecular dynamics, as shown in
25. In the present study, we only calculate the cluster-s
probability distribution and not the full nucleation rate, i.e
we do not compute the kinetic prefactor.

The cluster-size probability distribution functionP(n) is
an equilibrium quantity and can be measured both by Mo
Carlo ~MC! and molecular dynamics~MD!. In principle, one
could measureP(n) simply by simulating a metastable va
por and counting the number of clusters. However, at m
erate supersaturations, only smalln-mers will be formed that
have a free energyV on the order of a couple ofkBT. But,
critical nuclei, that is nuclei at the top of the free-ener
barrier separating the stable liquid from the metastable
por, have a free energy on the order of 50– 75kBT. Hence,
the probability that such critical nuclei will be formed spo
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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taneously is extremely small. To obtain good statistics for
cluster sizes, we have therefore used the umbrella samp
technique.26 The main idea is to bias the sampling of co
figuration space and correct for the bias afterwards. We
bias the sampling of configuration space by adding a fi
tious potential that is a function of an order parameter to
true potential of our model system. As explained in detai
Ref. 27, the use of a global order parameter, such as
density of the system or the total number of liquid particl
has some serious drawbacks from a computational poin
view. If the volume is large, it will always be entropicall
favorable to distribute a given amount of the new phase o
many small clusters, rather than over one relatively la
liquid cluster. In fact, if the volume is sufficiently large, th
change in free energy associated with a small homogen
density fluctuation will be smaller than the change in fr
energy due to the formation of a liquid-like droplet. How
ever, for the nucleation process, we are interested in the l
est liquid cluster that grows to its critical size. We therefo
exploit the fact that the clusters can be decoupled from
surrounding vapor and simulate only one cluster in the gr
canonical ensemble. The order parameter is taken to be
size of this cluster.

Kusakaet al.28 showed how the size distribution of
cluster can be obtained in the grand canonical ensemble
their scheme, all particles in the simulation cell are cons
ered to be part of the same cluster. Consequently, all den
fluctuations in the system participate in the nucleation ev
This implies that, in order to avoid redundant counting
configuration space, the fluctuations of the center-of-mas
the cluster with respect to the simulation cell should be a
lyzed carefully.29 Moreover, the size of the volume of th
system has to be chosen carefully. On the one hand,
volume should be larger than the spatial extent of the ph
cal cluster in it. On the other hand, as discussed above
volume should also not be too large. If the volume is t
large, the cluster will break up into many small clusters~see
Ref. 27!.

The use of a geometric cluster criterion not only pr
vides a unique definition of the cluster, but also circumve
this problem. For large system sizes, it ensures that the
ticles that make up the cluster are always connected.
more importantly, it is not even required that the volume in
~from! which the particles are inserted~removed! is larger
than the size of the cluster. This is particularly importa
when the cluster is not compact but ramified. In the sche
by Kusaka28 and in the approach of Lee, Barker, an
Abraham,30 it is conceivable that the constraining sphere
ases the shape of the nucleus. In contrast, our scheme
not impose a certain cluster shape.

In order to see this, consider the combined system sh
in Fig. 1. In our grand canonical MC scheme, we only co
sider particle additions to and removals from a spherical v
umeVs around the center-of-mass of the cluster. The cen
of-mass is computed for the cluster excluding the particle
be added or removed. The acceptance probability for
insertion~removal! of particles into~from! a sphere of vol-
umeVs placed in a system of volumeV is given by31
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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a~n˜n11!5
Vsw~rn11!

~M11!w~rn!
exp@bm#

3exp@2b@U~rn11!2U~rn!##, ~10!

a~n11˜n!5
~M11!w~rn!

Vsw~rn11!
exp@2bm#

3exp@2b@U~rn!2U~rn11!##. ~11!

Note that in the above expressions, the number of particleM
in the sphere appears, but not the total number of particlen
in the cluster. Still, the potential energyU contains not only
contributions from the interactions between particles ins
the sphere, but also from interactions between particles
and outside the sphere. Note also that only the volume of
sphere enters the expression and not the total volume o
system. The cluster criterion is included in the accepta
criterion to ensure that the cluster remains connected.

III. COMPUTATIONAL DETAILS

A. Nucleation barrier

We have computed the cluster-size distribution via
grand canonical scheme discussed in Sec. II. However, ra
than checking for the connectivity of the particles in the clu
ter at every trial move, we adopted a staged scheme in w
we only checked for the connectivity of the cluster at fix
intervals.

In the first stage, a series of Monte Carlo cycles is p
formed. In each MC cycle, we try to both displace partic
and insert or remove particles. In one cycle, on average e
particle is given one trial displacement and the choice
tween the trial insertion/removal moves and the trial d
placement moves is made at random, with 60% probab
for the latter. The trial displacements are accepted with
usual Metropolis acceptance criterion. That is, we do
check whether the connectivity of the cluster is broken. O
in the second stage, after this sequence of typically 5–10
cycles, will we check whether all particles are still connect
to one another. If all particles are not mutually connec
with each other, we reject the entire sequence.

When a particle is to be inserted, we first determine
center-of-mass of the cluster. The particle is then inserte
a random position inside a sphere centered at the cente
mass of the cluster. The addition of a particle is accep
with a probability

FIG. 1. Ideal gas (N0–N particles, volumeV0–V) can exchange particles
with an N-particle system of volumeV. The particles are only removed
inserted from/into a sphere of volumeVs , containingM of theN-interacting
particles.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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acc~n˜n11! ~12!

5minF1,
Vs

M11
exp@bm#exp@2b@U~sn11!1W~n11!

2U~sn!2W~n!##G , ~13!

where W(n) is the biasing potential. The biasing potent
was taken to be a harmonic function of the cluster sizen

W~n!5 1
2kn~n2n0!2. ~14!

When a particle has to be removed, we first random
select the particle to be removed. In order to preserve
symmetry of the underlying Markov chain, we then det
mine the center-of-mass of all particles except the particl
be removed and check whether the selected particle is in
the sphere centered at the center-of-mass. If the partic
outside the sphere, we repeat this procedure, until we h
found a particle which is inside the sphere. The remova
the particle is then accepted with a probability

acc~n˜n21! ~15!

5minF1,
M

Vs
exp@2bm#exp@2b@U~sn21!1W~n21!

2U~sn!2W~n!##G . ~16!

The height of the barrier and the structure of the nuc
should not depend on the size of the sphere. In particular
sphere need not contain the entire cluster. We have ver
that the results are indeed insensitive to the size of
sphere. However, the size of the sphere does affect the
ciency of the simulation. If the sphere is large, the insert
and removal probability, given by Eqs.~12! and ~15!, are
relatively large. However, the probability that the connect
ity of the cluster is broken after the Monte Carlo sequen
will also be increased, and thus the probability that the
jectory has to be rejected. For smaller spheres the balan
reversed. In addition, if the sphere is very small, it can h
pen that the sphere does not contain any particle to be
moved. We found that, depending on the shape and siz
the clusters, a sphere of radius 5–10s is optimal.

The number of umbrella windows for the free-ener
barrier was 25. Most simulations in a window consisted of
equilibration period of 53105 cycles, followed by a produc
tion run of 53105– 23106 cycles. Especially for the smalle
clusters, very long production runs were required as t
exhibit strong shape fluctuations. The results that we re
here are free of hysteresis.

B. Coexistence point

The coexistence point was determined by calculating
chemical potential as a function of pressure for both the
por and liquid phase. The chemical potential and pressur
coexistence was then found from the intersection.

In order to obtain for the vapor phase the chemical
tential as a function of pressure, we first determined fo
vapor at low pressureP0 ~so low that association of mono
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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mers does not occur!, the chemical potential by the Widom
insertion technique.32 The chemical potentialm as a function
of pressure was then obtained by integrating the inverse d
sity r as a function of pressureP

m~P!5m~P0!1E
P0

P 1

r~P8!
dP8. ~17!

For the liquid phase we have to follow a different pr
cedure, as the strong first-order phase transition separa
the liquid from the vapor phase rules out the integrat
along the isotherm from a low-density vapor. We therefo
exploited the fact that the liquid–vapor critical point of th
Lennard-Jones system (Tc51.316e/kB)33 is much lower
than that of the Stockmayer system (Tc55.07e/kB

21). We
first computed the chemical potential for a Lennard-Jo
system at a reference densityr050.8 by Widom insertion at
low density and integration along the equation of state@see
Eq. ~17!#. After we have obtained the chemical potential f
the Lennard-Jones system atr0 , we can determine the
chemical potential for the Stockmayer system at this den
by computing the reversible work to switch on the dipo
interactions.

In order to find a reversible path from the Lennard-Jon
system to the Stockmayer system, we have used the foll
ing interaction potential:

v~l!5vLJ1lvdip . ~18!

For l51, the above interaction potential is given by Eq.~1!,
whereas forl50 the interaction potential reduces to th
Lennard-Jones potential. The chemical potentialm(l
51,r0) of the Stockmayer system is now related to t
chemical potentialm(l50,r0) of the Lennard-Jones system
via

m~l51,r0!5m~l50,r0!1E
0

1

^vdip&l dl

1
1

r0
@P~l51!2P~l50!#. ~19!

Once we know the chemical potential of the Stockma
system at a given densityr0 ~and pressureP0!, we can ob-
tain the chemical potential as a function of pressure by in
grating along the equation of state@see Eq.~17!#.

All simulations of the bulk phases were performed usi
a system size of 256 particles. The simulations to comp
equations of state were performed in the isothermal–isob
~NPT! ensemble, whereas the simulations to calculate
free-energy difference between the Stockmayer system
the Lennard-Jones system were done in the canonical~NVT!
ensemble. In the simulations, the Lennard-Jones pote
was truncated at half the box size and the standard lo
range corrections were added.34 The long-range dipolar in-
teractions were handled with the Ewald summation te
nique using ‘‘conducting’’ boundary conditions.35 Cubic
periodic boundary conditions were applied.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C. Surface tension

The surface tension was computed from a direct M
simulation of the two coexisting phase, using the Ewa
summation technique to handle the long-range dipolar in
actions. A liquid slab was brought in contact with a vap
from which the surface tensiong was obtained by measurin

g5 1
2Lz~Pzz2

1
2~Pxx1Pyy!!. ~20!

Here,Paa is theaa element of the pressure tensor andLz is
the length of the system in the direction perpendicular to
interface. The factor of 1/2 outside the bracket arises fr
the fact that we have two liquid–vapor interfaces in the s
tem. In the Appendix, we describe how we have compu
the pressure tensor.

In order for the density and pressure to approach b
liquid values in the middle of the slab, the slab should not
too thin. We therefore used a rectangular simulation b
which allows for a relatively thick slab in comparison to th
total number of particles in the system. The sides were
lengthLx5Ly51/4Lz , for thex-, y-, andz-direction, respec-
tively, and periodic boundary conditions were applied in
three coordinate directions. The maximum number of rec
rocal lattice vectors parallel to the interface wasukx

maxu
5uky

maxu57, whereas the number of wave vectors perpend
lar to the interface wasukz

maxu528. The larger number o
reciprocal vectors in thez-direction makes the simulation
significantly longer, but this is unavoidable in order
achieve the same convergence of the Ewald sum in all p
cipal directions.

The Lennard-Jones interaction potential was truncate
r c50.5Lx and the tail correction to the surface tension w
evaluated from36

g tail512peE
2`

` E
21

1 E
r c

`

r~z1!r~z2!~123s2!r 24dr ds dz1 ,

~21!

wheres5(z12z2)/r andz1 andz2 are the positions of par
ticles 1 and 2, respectively. The density profile was fitted
a hyperbolic tangent function of the form

r~z!5 1
2~r l1rv!2 1

2~r l2rv!tanh@~z2z0!/d#, ~22!

where r l and rv are the densities of the liquid and vap
respectively, andz0 andd are parameters for the location o
the dividing surface and the thickness of the surface. W
the above fit for the density profile, the tail correctio
becomes36

g tail512pe~r l2rv!2E
0

1

dsE
r c

`

dr coth~rs/d!~3s32s!r 23.

~23!

In order to establish that our system is in equilibrium, w
also studied the real-space contribution to the normal
tangential components of the pressure tensor as a functio
z. When the system is in equilibrium, the normal compon
should be equal to the transverse component away from
interfaces.

For an inhomogeneous fluid, there is no unambigu
way to calculate the components of the pressure tensor.
have used the Irving–Kirkwood convention.37 The system is
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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divided intoNs slabs parallel to the interface. The local no
mal @pN(s)# and tangentialpT(s) components of the pres
sure tensor are given by

pN~s!5kBT^r~s!&1
1

Vs
K (

i , j

s zi j
2

r i j
f ~r i j ,mi ,mj !L ~24!

and

pT~s!5kBT^r~s!&1
1

2Vs
K (

i , j

s xi j
2 1yi j

2

r i j
f ~r i j ,mi ,mj !L ,

~25!

where r(s) is the average density in slabs, Vs

5LxLyLz /Ns is the volume of the slab andf (r i j ,mi ,mj )
52(]v(r i j ,mi ,mj )/]r i j ) is the force acting between pa
ticles i andj. ( i j

s denotes a summation that runs over all pa
of particlesi andj for which the slabs ~partially! contains the
line that connects them. The contribution to the virial of
slab from a given pair is determined by the ratio to which t
slab contains the line.

We performed a simulation with 512 particles and o
with 2000 particles, to check for finite-size effects. The nu
ber of equilibration cycles was 100 000 and the number
production cycles was 200 000.

IV. RESULTS AND DISCUSSION

All simulations were performed atT* 5kBT/e53.5
~with kB Boltzmann’s constant!, which is approximately
30% below the critical temperature ofTc* 55.07.21 We first
study the formation of a critical nucleus at an impos
chemical potentialm5226.0e. This corresponds to a supe
saturation S5(P/Pcoex'exp@bDm#)51.26, whereDm5m
2mcoex, with m(P) the imposed chemical potential~pres-
sure!, and mcoex(Pcoex) the chemical potential~pressure! at
coexistence. Figure 2 shows the excess free energy of a
ter as a function of its size at this degree of supersaturat

From the free-energy barrier measured at this degre
supersaturation, we can directly obtain the nucleation bar

FIG. 2. The excess free energybDV of a cluster as a function of its sizen,
for a Stockmayer system atS51.26 andT* 5kBT/e53.5. The reduced
dipole momentm* 5m/Aes354.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



io
p

.

he

e
tio
n
th

t a
r
te
se
o
g
al
ba
ee

th
pe
-

er
th
o

ar
e

ns

ric
h

d

e

r-

e
u
le

-
ed

ng
if

.
nt
tly
at

hat
n-
of

der
ion
II,
that

the
able
u-
that
uite
en-
the
at
ulk
ra-
into
us

rm
e
i-

ed
-

rtain

of

4767J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Nucleation of polar fluids
at any degree of supersaturation, as long as the interact
between the clusters can be neglected. In that case, the
tition function Zn of an n-mer is independent of fugacity
That is, the configuration integral ofZn in Eq. ~4! does not
depend on the imposed chemical potential. We can t
combine Eqs.~4! and ~7! with Eq. ~9! to arrive at

bDV~n,m8,V,T!5bDV~n,m,V,T!2b~m82m!n ~26!

1 ln@r~m8!/r~m!#, ~27!

wherer5N/V is the total number density in the system. W
have verified that our simulations indeed satisfy this equa
by computing the free-energy barriers for two differe
chemical potentials. Furthermore, we have compared
structure of the nuclei at one chemical potential with tha
the other chemical potential. The analysis of the structu
order parameters, which will be discussed below, indica
that the nucleus structure is independent of the impo
fugacity. This provides further evidence that the sampling
configuration space and hence the evaluation of the confi
ration integral in Eq.~4! does not depend on the chemic
potential. We have therefore determined the free-energy
rier as a function of supersaturation from the computed fr
energy barrier atS51.26, using Eq.~26!.

As the structure of the clusters does not depend on
imposed fugacity, we only discuss the structure analysis
formed atS51.26. After the structure analysis, we will con
sider how the nucleus structure determines the free-en
barrier. We compare the free-energy barrier, as well as
critical nucleus size, with the corresponding predictions
classical nucleation theory. However, in order to comp
the structure of the nuclei with that of the bulk liquid, w
first investigate the structural order in the liquid.

A. Equilibrium phase behavior

Stevens and Grest found evidence for the existence
dipolar order in the fluid phase, albeit for different conditio
~i.e., higher temperature and pressure!.21 We therefore
checked whether the bulk liquid also exhibits ferroelect
ordering at the temperature and range of pressures at w
we study the nucleation process.

Ferroelectric ordering can be characterized by the or
parameterP1 , which is defined as

P15
1

N U(
i 51

N

m̂i•d̂U5 1

mN
uM•d̂u, ~28!

where m̂i is a unit vector specifying the orientation of th
dipole of particle i, M is the total dipole moment of the
system, andd̂ is the director, which is the eigenvector co
responding to the largest eigenvalue of theQ-tensor

Q5
1

N (
i 51

N S 3

2
m̂im̂i2

I

2D . ~29!

For a fully ordered system,P151. We found thatP1 did
not differ significantly from zero for the bulk liquid at th
temperature and supersaturations considered in the sim
tions. Hence, the system does not show significant ferroe
tric ordering.
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Yet, it is conceivable that in the bulk liquid a high de
gree of chain formation is present. We therefore examin
the chain-size distribution. We have adopted the followi
chain criterion: particlesi and j are part of the same chain
the interparticle distancer i j is less thanqc and for both par-
ticles the dot productm̂i / j• r̂ i j exceeds a certain threshold
Figure 3 shows the chain-size distribution for differe
threshold values. As expected, the size distribution is sligh
sensitive to the value of the threshold. Still, it is clear th
most chains consist of only one to four particles and t
chain formation is not very pronounced. We therefore co
clude that the bulk liquid at the temperature and range
pressures considered in the simulations is isotropic. In or
to avoid any confusion, we have only used the chain criter
to identify the chains in the liquid. As mentioned in Sec.
we have used a distance criterion to identify the particles
make up a cluster in the vapor.

B. Coil–globule transition

In classical nucleation theory it is assumed that even
smallest droplets are spherical. In fact, this is a reason
approximation for a typical model system for nonpolar fl
ids, the Lennard-Jones system. In Ref. 23 we showed
precritical nuclei as small as ten particles are already q
compact, spherical objects. However, the interaction pot
tial of the Lennard-Jones system is isotropic, whereas
dipolar interaction potential is anisotropic. It is possible th
this affects the shape of the small clusters. Indeed, for b
hard-sphere and soft-sphere dipolar fluids at low tempe
ture, it has been observed that particles associate
chains.11,14 On the other hand, as discussed in the previo
section, the bulk liquid is isotropic.

We find that clusters containing up to 30 particles fo
chains in which the particles align head-to-tail. In fact, w
find a whole variety of differently shaped clusters in dynam
cal equilibrium with each other: linear chains, branch
chains, and ring-‘‘polymers.’’ As the cluster size is in
creased, the polymers become longer. But, beyond a ce

FIG. 3. Probability distribution functions of the chain-lengthl in a thermally
equilibrated bulk liquid at a supersaturation ofS51.76 (T* 53.5 andP*
50.005!. The different curves correspond to different threshold values
the chain criterion~see the text!.
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size, the clusters collapse to form a compact globule. In o
to quantify this, we determined the size dependence of
radius of gyration, as well as the three eigenvalues of
moment-of-inertia tensorI

I5
1

n (
i 51

n

r i r i , ~30!

where r i is the vector joining particlei and the center-of-
mass of the cluster. In Fig. 4, we show the square of
radius of gyration, divided byn2/3. For a compact, spherica
objectRg

2 scales withn2/3, whereas for chainsRg
2 scales with

na, where 1.2,a,2, depending on the stiffness of th
chain. Hence, for chain-like clustersRg

2/n2/3 should increase
with n, whereas for a globule it should approach a const
value.

Figure 4 shows that initiallyRg
2/n2/3 increases with the

size of the cluster. Moreover, one eigenvalue of the mom
of the inertia matrix is much larger than the other two, whi
indicates the strong tendency of clusters to form cha
However, at a cluster size of about 30 particles,Rg

2/n2/3 starts
to decrease and approaches a constant value at a cluste
of around 200 particles. Furthermore, at that point the th
eigenvalues of the moment-of-inertia tensor have also
proached each other: the cluster has collapsed to a com
spherical object.

FIG. 4. Radius of gyrationRg , and the three eigenvalues of the mome
of-inertia tensor, as a function of cluster sizen, at S51.26 andT* 53.5.
Initially, the clusters are chain-like~snapshot top left!, but at a cluster size of
n'30 they collapse to compact, spherical nuclei~snapshot top right!.
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C. Structure of collapsed nuclei

1. No global order

An examination of the snapshots of the larger, globu
like nuclei confirms that they are compact, more or le
spherical objects. To study this in more detail, we have m
sured the probability distribution functions of the three
genvalues of the moment-of-inertia tensor. Figure 5 sho
the result. For comparison, we also indicate the distribut
functions for a Lennard-Jones cluster of comparable s
~and at the same temperature with respect to the critical t
perature!. Note that compared to the Stockmayer cluster,
distribution functions of the Lennard-Jones cluster are d
placed to somewhat higher values. This is due to the slig
lower density in the Lennard-Jones cluster. Yet, for both
Lennard-Jones and the Stockmayer systems the distribu
functions of the three eigenvalues overlap. Hence, the c
ters are quite spherical, although the larger spread of
distribution functions of the polar cluster indicates that th
cluster exhibits more pronounced fluctuations around
spherical shape. We do not find evidence for a prola
shaped cluster, in which the molecules are aligned in an
tiparallel head-to-tail arrangement, as suggested by Wr
and El-Shall.38,39 A prolate structure would have two sma
eigenvalues and one significantly larger eigenvalue of
moment-of-inertia tensor. As can be seen from Fig. 5, thi
not the case. Furthermore, both the nematic order param
P2 , which is the largest eigenvalue of theQ tensor defined
in Eq. ~29!, and the ferroelectric order parameterP1 @see Eq.
~28!# are zero, indicating that there is no net parallel or a
tiparallel alignment of the dipoles in the cluster.

We also investigated the degree of circulating orien
tional order. To this end, we computed the order parame

m115um11u5S (
a5x,y,z

m11a
2 D 1/2

, ~31!

with

FIG. 5. The distribution functions of the three eigenvalues of the mome
of-inertia tensor for a cluster of around 300 particles in a Stockmayer sys
at T* 53.5(50.7Tc) andS51.26. For comparison, we also show the dist
bution functions for a Lennard-Jones cluster of comparable size (n'300)
and at the same temperature with respect to the critical temperaturT
50.7Tc). In this and subsequent figures,s is the unit of length.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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m11a5
1

n (
i 51

n

~ êa3r̂ i !•m̂i , ~32!

where êa is a unit vector in thea-direction, m̂i denotes the
orientation of the dipole of particlei, andr̂ i is the unit vector
from the center-of-mass of the cluster to particlei. This order
parameter was introduced by Singeret al.40 and measures th
degree to which the cluster contains dipoles circulating ab
a particular axis. Singeret al.41 have studied Stockmaye
clusters consisting of 50 particles with a reduced dipole m
ment ofm* 5), and found that the~liquid! clusters had an
oblate shape with a large degree of circulating orientatio
order up toT* 50.8, which is 60% belowTc* . However, this
temperature is much lower than in the present simulati
(T* 50.7Tc* ), and indeed we do not find evidence for a
oblate shape~one eigenvalue of the moment-of-inertia tens
would then be significantly smaller than the other two!, nor
do we find any significant circulating orientational ord
(m11,0.14). Hence, the global order parameters indic
that the large, collapsed clusters are spherical with no
global orientational order.

2. Interfacial structure

In the previous section, we found that the larger, c
lapsed nuclei are spherical, with no net global orientatio
order. Let us next examine thelocal order. Given the spheri
cal shape of the clusters, it is meaningful to analyze the lo
order as a function of the distancer to the center-of-mass o
the cluster. Figure 6 shows the radial profile ofa2 , which is
defined as

a25A5/4p^P2~cosu!&, ~33!

whereu is the angle between the director of the dipole a
the normal to the surface. It measures the degree to which
dipoles are oriented perpendicular to the surface. It is s
that a2 approaches zero in the center of the droplet. T
indicates that the orientation of the dipoles in the core of
droplets is isotropic and suggests that the core of the dro

FIG. 6. The profile of the orientational order parametera2 , as defined in Eq.
~33!, for a planar interface at coexistence and for a cluster of approxima
300 particles at a supersaturationS51.26. The profile of the planar interfac
is shifted such that its equimolar dividing surface coincides with that of
cluster, as indicated by the vertical line atRe .
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shows bulk liquid behavior. To verify this we have measur
the density profile, which is shown in Fig. 7. It is also se
that the density approaches a bulk liquid value in the core
the droplets. It thus seems that the core of the larger,
lapsed nuclei is characterized by bulk liquid properties.

However, in the interface the nuclei start to lose th
bulk liquid character. Figure 6 shows that near the interfa
the orientation of the dipoles is not isotropic. In agreem
with previous simulation results41,42and theoretical studies,43

we find that at the liquid~core! side of the interface the
dipoles tend to orient parallel to the interface, whereas at
vapor side they prefer a perpendicular orientation. Hence,
assumption that the dipoles are oriented perpendicular to
surface at theliquid side of the interface44 is not justified for
this polar fluid.

In most nucleation theories, it is assumed that the surf
tension of a cluster is that of a planar interface at coex
ence. It is therefore natural to compare the structure of
interface of the nuclei with that of the flat interface. Figure
shows the comparison for thea2-profile. It is also seen tha
for the planar interface the dipoles tend to align parallel
the interface at the liquid side, but perpendicular to the
terface at the vapor side. However, the ordering is mu
more pronounced for the planar interface at the liquid si
In contrast, at the vapor side the ordering is stronger for
cluster interface.

Still, both for the planar interface and the interface of t
nuclei,a2 changes sign after the equimolar dividing surfac
In this respect, our findings are in agreement with those
Singeret al.41 However, the simulation results contradict th
results of a density functional study of homogeneous nu
ation in a ~weakly! polar fluid, in which it was found that
both for the planar interface and for the cluster interface,a2

changes signbeforethe equimolar dividing surface.43

In our study of crystal nucleation in a Lennard-Jon
system, we found that the structure of the small cluste
which initiate the nucleation process, still persists in the

ly

e

FIG. 7. Density profile for a planar vapor–liquid interface at coexisten
and for a cluster of around 300 particles at a supersaturationS51.26(T*
53.5). The density profile of the planar interface is shifted such that
equimolar dividing surface of the planar interface coincides with
equimolar dividing surface of the cluster. The equimolar dividing surface
indicated by the vertical line atRe .
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terface of the larger clusters. To be more precise, we
served that the structure in the core is that of the thermo
namically most stable phase, but that the core is ‘‘wette
by a shell with a structure characteristic for the smaller cl
ters. We have therefore examined whether in the present
we also find traces of the tendency to form chains at
surface of the larger, collapsed, clusters.

A visual inspection~see Fig. 4! of these clusters sugges
that loops of dipolar chains stick out of the surface~leading
to a positive value ofa2 , see Fig. 6!. In order to quantify
this behavior, we have computed the radial profile of
coordination number for a cluster of around 300 particl
This is shown in Fig. 8. It is seen that the coordination nu
ber smoothly approaches a value of 2 at the vapor side o
interface. Such behavior is expected if the particles on
vapor side of the interface belong to chains. For comparis
we have also shown in Fig. 8 the coordination number pro
for the planar interface. As the number density in the vapo
extremely low, smaller than 131023s23, it was not pos-
sible to get accurate statistics beyondr 56.75s. However, it
is clearly seen that at the vapor side of the planar interf
the coordination number drops below 2. Hence, the interf
of the clusters is more rough than the planar interface. A
an inspection of the density profiles~see Fig. 7! shows that
the planar interface is sharper than the interface of a
lapsed cluster of around 300 particles—the width of the
terface of the cluster is some 25% larger. Most likely, t
planar interface is sharper because the stronger dispe
interactions with the bulk cause the dipole chains to ads

D. Comparison with classical nucleation theory

Classical nucleation theory~CNT! is based on macro
scopic thermodynamics. It is clear that the use of mac
scopic quantities has both its advantages and disadvant
However, even if we accept the approximations of class
nucleation theory, there are still inconsistencies within

FIG. 8. Radial profile of the coordination number for a Stockmayer clu
at S51.26 andT* 53.5 ~solid line!. The coordination numberz is defined as
the number of particles within a cutoff distanceqc51.5s. For comparison,
we also give the coordination number profile for a planar interface~dotted
curve!, which is shifted in such a way that its equimolar dividing surfa
coincides with that of the cluster, which is indicated by the vertical l
at Re .
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theory. In 1961, Courtney argued that the CNT prediction
the cluster distribution did not satisfy the law of ma
action,45 and suggested that this problem could be resol
by introducing the factor 1/S, whereS is the supersaturation
into the expression for the cluster distribution. Although t
factor 1/S does bring CNT into line with the law of mas
action, its introduction seems ratherad hoc.46 Moreover,
Lothe and Pound realized that a more fundamental omis
in the original theory still persists.47 They argued that clas
sical nucleation theory does not properly take into acco
the mechanical and rotational degrees of freedom of a c
ter. This is now often referred to as the problem of the ‘‘r
placement free energy’’ and is related to the problem of
redundant counting of configuration space, as mentione
Sec. II. The above issues have been the subject of con
versy, although recently much progress has been made.29

In classical nucleation theory~CNT!, the excess free en
ergy of a cluster as a function of its size is given by

bDV~n!5bF S 36p

r l
2 D 1/3

gn2/32DmnG , ~34!

wherer l is the density of the bulk liquid~which is assumed
to be incompressible!, g is the surface tension of a plana
vapor–liquid interface at coexistence, andDm5mv(Pv)
2m l(Pv) is the difference in chemical potential betwee
a bulk liquid and a bulk vapor, both at the impose
pressurePv .

The prediction of classical nucleation theory for th
height of the nucleation barrier and the size of the criti
nucleus can be obtained by taking the derivative of Eq.~34!
with respect to the cluster sizen. We then find for the height
of the barrier

bDV* 5b
16pg3

3r l
2Dm2 , ~35!

and for the size of the critical nucleus

n* 5
32pg3

3r l
2Dm3 . ~36!

In order to compare our simulation results with classi
nucleation theory, we computedg by the procedure outlined
in Sec. III C. We foundg51.3460.07e/s2. As the density
in the vapor is much lower than the density in the liquid, t
m(P) curve of the vapor phase is much steeper than tha
the liquid. We therefore made the common assumption
the difference in chemical potential can be approximated
Dm5mv(Pv)2m l(Pv).mv(Pv)2mcoex. The chemical po-
tential at coexistence was determined using the method
cussed in Sec. III B and was found to bemcoex5226.82
60.02e. The density of the liquid at this chemical potenti
is r l50.7860.01s23.

Let us now discuss in more detail the basic assumpti
of classical nucleation theory that lead to Eqs.~34!–~36!.
First, it is assumed that the nuclei behave like small drop
of bulk liquid that are spherical. As discussed previously,
larger nuclei, comprising more than approximately 200 p
ticles, are quite spherical. However, the smaller cluste
which initiate the nucleation process in this system, are

r

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



s
e
th
in
ca

ie

st
p

t
as

tio
op
ur

th
te
b

le
ica

ure
the

the
un-
the
le-
ht,
nts

tion

p-
ula-
eri-
hat
s to
am-
p-

ion

nifi-
ical

an
and
nd

e
s a
the
ion
en

he

of
re-
ster

e-
ht of
ore
by

nd

of a
ble
the
nt

of
hat
rs.
se to
of

4771J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Nucleation of polar fluids
compact, spherical objects, but chain-like aggregates. A
consequence, the variation in free energy with cluster siz
not as predicted by classical nucleation theory. We note
if the clusters were perfectly rigid chains, the variation
free energy with cluster size would be linear. Indeed, as
be seen from Fig. 2, we find that aftern'5 the increase in
cluster free energy is very linear with its size. The barr
shape predicted by classical nucleation theory@see Eq.~34!#
is only recovered after the clusters have collapsed.

The linear regime in the size dependence of the clu
free energy has a remarkable consequence for the de
dence of the critical nucleus size on supersaturation@see Fig.
9~a!#. When the supersaturation is increased, the heigh
the nucleation barrier and the critical nucleus size decre
However, at a supersaturation ofS51.8(1/(bDm)355.25),
the critical clusters have reached a size at which the varia
in free energy with cluster size is linear. At this point, the t
of the barrier is flat, and a small increase in the supersat
tion leads to a jump in the critical cluster size@see inset of
Fig. 9~b!#.

It is thus clear that at large supersaturation, where
critical nuclei are relatively small, the polymer-like charac
of the clusters leads to strongly nonclassical nucleation
havior. However, even for the collapsed globule-like nuc
the simulation results show large deviations from class

FIG. 9. Comparison of the simulation results~open circles! with classical
nucleation theory~straight solid line! for a Stockmayer system atS51.26
andT* 53.5: ~a! nucleation barrier;~b! size of the critical cluster.
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nucleation theory. This can be seen from Fig. 9. This fig
shows the comparison between the simulation results and
predictions of classical nucleation theory for the height of
barrier and the critical nucleus size. Clearly, the theory
derestimates both the size of the critical nucleus and
height of the nucleation barrier. As the variation in the nuc
ation rate is dominated by the variation in the barrier heig
our results are in qualitative agreement with the experime
on strongly polar fluids,38,39 in which it was found that clas-
sical nucleation theory seriously overestimates the nuclea
rate.

We would like to understand the origin of this discre
ancy between classical nucleation theory and the sim
tions. As mentioned, the larger, collapsed nuclei are sph
cal. Also, the assumption of classical nucleation theory t
the cores of these nuclei show bulk liquid behavior seem
be justified, as the density and the orientational order par
etera2 approach bulk liquid values in the center of the dro
lets.

However, CNT neglects the variation of surface tens
with droplet size. In fact, McGraw and Laaksonen48 showed
that the interfacial curvature free energy can cause a sig
cant correction to the barrier height as predicted by class
nucleation theory. They derived relations48,49 for the barrier
height and the critical nucleus size that could provide
explanation for the discrepancy between experiment
classical nucleation theory for a variety of nonpolar a
weakly polar fluids.50 In particular, McGraw and
Laaksonen48 showed that if CNT correctly predicts the siz
of the critical nucleus, then the curvature correction yield
constant offset between the actual barrier height and
height of the barrier as predicted by classical nucleat
theory. It is interesting to note that this behavior has be
observed in both a density functional study48,49 and in our
computer simulation study of gas–liquid nucleation in t
Lennard-Jones system~see Ref. 23!. It was found that for a
wide range of cluster sizes, CNT gives a correct prediction
the critical nucleus size and that the deviation from the p
dicted barrier height is constant, i.e., independent of clu
size.

However, for this polar system, the displacement b
tween the measured barrier height and the predicted heig
the barrier is not constant, as can be seen from Fig. 9. M
clearly, the critical nucleus size is not correctly predicted
CNT. Hence, in contrast to the~nonpolar! Lennard-Jones
fluid, the relations as proposed by McGraw a
Laaksonen48,49 are not obeyed for this highly polar fluid. A
possible explanation could be that, whereas the interface
Lennard-Jones critical nucleus is nearly indistinguisha
from the planar interface, for this system the structure of
interface of the critical clusters is still markedly differe
from the planar interface.

CONCLUSIONS

We have studied homogeneous gas–liquid nucleation
a strongly polar Stockmayer fluid. The simulations show t
the nucleation process is initiated by chain-like cluste
When these clusters exceed a certain size, they conden
form compact, droplet-like nuclei. However, the interface
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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these droplets, with a high degree of chain formation, is s
markedly different from the planar interface. In highly pol
liquids,38,39 it may be responsible for the discrepancy b
tween the experimentally observed nucleation rates and
predictions of classical nucleation theory.
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APPENDIX: PRESSURE TENSOR

For pairwise additive potentials, such as the Lenna
Jones potential, theab element of the pressure tensor can
evaluated from the virial equation for the pressure

Pab5rkBT1
1

V (
i , j

N

r i j a f i j b , ~A1!

wherer i j is the vector betweeni and j and f i j b(r i j ,mi ,mj )
52(]v(r i j ,mi ,mj )/]r i j b) is the intermolecular force. How
ever, in the Ewald sum, which contains a real space con
bution and a reciprocal space contribution, the pressure
sor cannot be written as in Eq.~A1!.

The electrostatic energyUdip of the dipolar interactions
in the Stockmayer system, embedded in a material with
finite dielectric constant, is35

Udip5
1

2 (
iÞ j

N

~mi•mj !B~r i j !2~mi•r i j !~mj•r i j !C~r i j !

2
2a3

3Ap
(
i 51

N

m i
2 ~A2!

1
2p

V (
kÞ0

Q~k!M ~k!M ~2k!, ~A3!

wherea is the convergence parameter,

B~r ![F2ar

Ap
exp~2a2r 2!1erfc~ar !G Y r 3, ~A4!

C~r ![F2ar

Ap
~312a2r 2!exp~2a2r 2!

13 erfc~ar !G Y r 5, ~A5!

with erfc the complementary error function, and

Q~k![
exp~2k2/4a2!

k2 , ~A6!

and
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M ~k![ (
i -51

N

i ~mi•k!exp~ ik•r i !. ~A7!

Here,k are the reciprocal lattice vectors, which are defin
as

k[~2p l /Lx,2pm/Ly,2pn/Lz!, ~A8!

wherel, m, andn are integers.
The first two terms in Eq.~A2! are the real-space con

tributions, the third term is the so-called self term express
the self-energy of the dipoles, and the last term in Eq.~A2! is
the reciprocal space contribution. The real-space contribu
to the pressure tensor is obtained by evaluating the sec
term on the right-hand side of Eq.~A1!

Pab5
1

2V (
iÞ j

N

r i j a$C~r i j !@r i j b~mi•mj !1m ib~mj•r i j !

1m j b~mi•r i j !# ~A9!

1
C8~r i j !

r i j
r i j b~mi•r i j !~mj•r i j !%, ~A10!

where

C8~r ![
]C

]r
52F15 erfc~ar !1

2ar

Ap
~15110a2r 2

14a4r 4!exp~2a2r 2!G Y r 6. ~A11!

In order to calculate the reciprocal space contribution
the pressure tensor, we have followed the procedure of N´
and Klein.51 In this procedure, the pressure tensor is obtain
from the variation in potential energy with a deformation
the system. The reciprocal space contribution to the pres
tensor is

Pab5
2p

V2 (
kÞ0

Q~k!H M ~k!M ~2k!S dab2
2kakb

k2 2
kakb

2a2 D
~A12!

1M ~k!Vab~2k!1M ~2k!Vab~k!%, ~A13!

whereVab(k) is given by

Vab~k!5(
i 51

N

im iakb exp~ ik•r i !. ~A14!

A similar expression has been independently derived
Heyes,52 although in Ref. 52 a minus sign in the seco
exponential on the right-hand side of Eq.~34! is missing.

We found that the above expressions for the press
tensor could be used as a convergence test for the Ew
summation. From the definition of the dipolar interaction p
tential@see Eq.~1!# and from the definition of the virial equa
tion for the pressure@see Eq.~A1!# it can be verified that for
dipolar interactions the interaction energy is equal to
virial, i.e.,

(
i , j

N

v~r i j ,mi ,mj !5
1

3 (
i , j

N

r i j •f~r i j ,mi ,mj !. ~A15!
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Hence, the virial and thus the pressure can be directly
tained from the potential energy. On the other hand,
virial should also given by the trace of the stress tensor,
by the sum of the traces of the stress tensors in Eqs.~A9! and
~A12!. In Fig. 10, we compare the two ways of obtaining t
pressure. It is seen that the pressures obtained via the
routes nicely converge to the same value afterukx

maxu5uky
maxu

51/4ukz
maxu57.
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