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Chain formation in homogeneous gas-liquid nucleation of polar fluids
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We report a computer-simulation study of homogeneous gas-liquid nucleation in a model for
strongly polar fluids. We find that the nucleation process is initiated by chain-like clusters. As the
cluster size is increased, the chains become longer. However, beyond a certain size, the nuclei
collapse to form compact, spherical clusters. Nevertheless, in the interface of the collapsed nuclei a
high degree of chain formation is preserved. We compare the interface of the collapsed nuclei with
the planar interface and find that the interface of the globule-like nuclei differs markedly from the
flat interface. Classical nucleation theory underestimates both the size of the critical nucleus and the
height of the nucleation barrier. @999 American Institute of Physid$§0021-960609)50534-5
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I. INTRODUCTION interact via a Lennard-Jones potential plus a dipole—dipole
interaction potential
When simple fluids, such as the Lennard-Jones fluid, are
cooled below a critical temperatufg., they can occur in o\ [o)\®
two distinct disordered phases that only differ in density: the ri) o\
(low-density vapor phase and thelensey liquid phase(see, 5 3
e.g., Ref. 1. The explanation of the coexistence of both 3w 1) (e rip I+ i I35 (D)
phases dates back to the work of van der Waals, who showqg'ere’ ¢ is the Lennard-Jones well depthr,is the Lennard-
that it arises from the interplay of the short-range repulsweJones diametes, denotes the dipole moment of partidle
forcgs and the long-range attractive forces between thgndrij is the vector joining particlesandj.
particles” ) ) ) The simulations of Van Leeuwen and Smit suggest that a
Hovv_ever, even if partlc_les have bOth rgpulswe and at_'minimum amount of dispersive attractions is required to ob-
tractive interactions, the existence of a liquid—vapor transigan e gas—liquid phase coexisterié. the attractive forces
tion is not inevitable. For instance, if the range of the attrac-s 199 small in comparison to the strength of the dipolar
tive forces is sufficiently short, the liquid—vapor transition interactions, as for soft sphéfeand hard sphere dipolar
will be pre-empted by a freezing transitidn. More recently, fluids 112 then the system appears unable to condense to
evidence has accumulated that in a system of dipolar harghym a liquid, but appears to form a “gel” of chains of
spheres(hard spheres with embedded permanent dipoles gipoles that align heat-to-tail. Theoretical studies by Van
where the attractive interactions are long-ranged, the liquid-Rojj'® and by Sedf suggest that the tendency to form chains
vapor transition may be suppressed. In fact, early theoreticalan suppress the gas-—liquid phase coexistence.
studies of the phase behavior of this prototype dipolar fluid  |n the present paper, we wish to investigate whether this
suggested that these systems should have a gas-liquid crigeculiar feature of dipolar interactions may affect the nucle-
cal point®>~'°This seemed plausible because, in the isotropiaition behavior of polar fluids, even in the case where the
fluid phase, the dipole—dipole interaction provides amét  liquid—vapor transition itself is still possible. The reason why
attraction between the particles, wherés the interparticle we look at nucleation is the following: since the work of
separation. However, when the phase behavior of dipolaDstwald, it is known that the phase that forms during homo-
hard spheres was investigated by computer simulation, ngeneous nucleation need not be the one that is thermody-
gas—liquid phase coexistence was obsefédOf particu- namically most stablé’ In recent computer studies, we
lar interest is a computer simulation study by Van Leeuwerfound evidence that even when Ostwald’s rule does not ap-
and Smit*® Van Leeuwen and Smit studied the equilibrium ply on a macroscopic scalge., at the level of the macro-
phase behavior of a Stockmayer fluid, in which the particlesscopic phases that fopmit may apply on a more micro-
scopic scale to the nuclei of the new phase that forms during
homogeneous nucleatidf?°
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reduced dipole moment was chosen to b&=u/\ea® Fo=—kgTInZ,=—kgTIN(VIV)Z}, e, (6)

=4, which is, in fact, comparable to that of water. For this . . . .
value of the dipole moment, the system is known to shovx}"’here Z, cm is the partition function for a cluster in its
gas—liquid phase coexistenteHowever, as we will show cen'ijer-of-trr?ass frar?(;.] Note tthat W.Zerfa?m does rtlr? t tdti'
below, the nucleation of liquid droplets is preceded by thgP€Nd on the size ot e Sys _e(rpr_ow_ ed ot course that the
formation of chains. Only when the chains have reached gpanal extent of the cluster is significantly smaller than the
certain size do they collapse to form compact clusters. Fofﬁ' ste_rr), an,tzra]nd theirefore thtﬁ free erle_rﬁx, do ??getr_‘d OP
polar fluids without attractive dispersion forces, the tendenc;} € size of the system, as they contain a contribution from
to form chains will be even more pronounced. It is conceiv-the translation of the center-of-mass of the cluster over the

able that the gel-like phases observed in the simulations O\folumev. . .
Refs. 11 and 13 is an interpenetrating network of uncol- As the interactions between the clusters are neglected,
lapsed dipolar chain clusters the number of clusterbl, is given by(see Refs. 23, 24

The rest of this paper is organized as follows. We firstN,=Z, exd Bun]=exd — B(F,—nu)]=exd — BAF],
present a new approach to determine the size distribution of )

“.qwd clust.ers n & vapor. !n sec. Il we give the Cpmpmf}where,u is the imposed chemical potential. The free-energy
tional details of the simulations and we end with a d'scus,s'o'gifferenceAF is the free-energy change associated with as-
of the reszults. Parts of the results have been publishe emblingn patrticles in a cluster. Note that the magnitude of
elsewheré: the free-energy difference depends on the size of the system
Il. DETERMINATION OF CLUSTER-SIZE as the free energy of ammer, F,,, contains a free-energy
DISTRIBUTION contribution from the translational free energy of the center-

In homogeneous gas_"quid nucleation, the density ié)f-maSS of the cluster. In particula‘tln, the number of clus-
usually so low that without association the gas would beters of sizen, is an extensive quantity, i.e., it is proportional
ideal. However, the temperature is low enough for particled0 the size of the system, as can be seen by combining Eq.
to associate into dimers, trimers, etc. Still, the concentratioi4) with Eq. (7). We would like to obtain a quantity that does
of n-mers is so low that we can safely ignore their mutualnot depend on the size of the system. We therefore define an
interactions. We thus have an ideal “solution” pfmers in  intensive probabilityP(n),
the vapor phase. . . P()=N,/N, ®

The identification of a cluster is not unambiguous and
can only be performed explicitly after choosing a criterionthat relates the average numibér of clusters of sizen to the
that must be fulfilled by the particles that constitute antotal number of particlesl in the system. The free-energy
n-mer. We have adopted a geometric cluster criterion. Allof @ cluster is defined as
particles that are within a cutoff distangg=1.50 from each BAQ(n, w1, V,T)=—In[P(n)]. )
other are considered to be “connected,” and, therefore, be-

long to the same cluster. Thus, the cluster criterion ~We stress that, in our simulations, we do not directly
w,(r'"1) is given by computeBA(n). Rather, we measure the cluster-size prob-

ability distribution functionP(n), as given in Eq(8), and

) obtain the free energgAQ(n) by taking (minug the loga-
rithm of this distribution function. However, in order to com-

=0, otherwise. 3 pute the absolute nucleation rate, we only need to know

o . P(n) itself—AQ(n) is only a derived quantity. From the
Now that we have specified our cluster criterion, we can . . A . :
' o ! cluster-size probability distribution functio®(n), we di-
define the partition functioZ,, of an n-mer (Ref. 23 as : o .
rectly obtain one crucial ingredient to calculate the nucle-
vn?

1 R 1 ation rate: the number of nuclei at the top of the barrier. The
Z"_mf dr Wi (T Jexp — BU(r )@ Gther ingredient, which is the flux over the top of the barrier,
can be obtained using molecular dynamics, as shown in Ref.
25. In the present study, we only calculate the cluster-size
probability distribution and not the full nucleation rate, i.e.,
we do not compute the kinetic prefactor.
The cluster-size probability distribution functiét{(n) is
equilibrium quantity and can be measured both by Monte
Carlo (MC) and molecular dynamiodviD). In principle, one
could measurd®(n) simply by simulating a metastable va-

w,(r'"" 1) =1, if all n particles are mutually connected:;

where B=1/kgT is the reciprocal temperature, withg
Boltzmann’s constant andl the absolute temperatur¥, is
the total volume of the system,"~* denotes the coordinates
of the particles in the cluster, with the prime indicating that
the coordinates are taken with respect to the center-of—ma%%
of the cluster, U,(r'" 1) is the interaction energy,
wy(r'""1) is the cluster criterion, and is the thermal

volume por and counting the number of clusters. However, at mod-
h3 erate supersaturations, only sntainers will be formed that
v=A3%x g ®) have a free energf) on the order of a couple &z T. But,
(27kgT) 11213 critical nuclei, that is nuclei at the top of the free-energy
where A is the thermal de Broglie wavelength ahdl,,l5 barrier separating the stable liquid from the metastable va-
are the principal moments of inertia of the particles. por, have a free energy on the order of 50kgb Hence,
We can define the free energy of afmer as the probability that such critical nuclei will be formed spon-
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taneously is extremely small. To obtain good statistics for all P
cluster sizes, we have therefore used the umbrella sampling k

technique?® The main idea is to bias the sampling of con- Y Voo¥ 1
figuration space and correct for the bias afterwards. We can o ® ®

bias the sampling of configuration space by adding a ficti-

tious potential that is a function of an order parameter to the o
true potential of our model system. As explained in detail in o o @

Ref. 27, the use of a global order parameter, such as the
density of the _SyStem or the total number of “qu"d part“_:les'FlG. 1. Ideal gasNy—N particles, volume/,—V) can exchange particles
has some serious drawbacks from a computational point afith an N-particle system of volum&. The particles are only removed/
view. If the volume is large, it will always be entropically inserted from/into a sphere of volunwvg, containingM of the N-interacting
favorable to distribute a given amount of the new phase ovefices:
many small clusters, rather than over one relatively large
liquid cluster. In fact, if the volume is sufficiently large, the (r"+1)

S

change in free energy associated with a small homogeneous «a(n—n-+1)= WGX[{BM]

density fluctuation will be smaller than the change in free

energy due to the formation of a liquid-like droplet. How- xexd —BLUT™H—U(rM]], (10
ever, for the nucleation process, we are interested in the larg-

est liquid cluster that grows to its critical size. We therefore (M+Dw(r")

a(ntl-n)=———1—6€exd—
exploit the fact that the clusters can be decoupled from the ( ) Vaw(r"*h) H=Bul

surrounding vapor and simulate only one cluster in the grand n n+1
. . xXexg —BLur™)—=uU(r . 11
canonical ensemble. The order parameter is taken to be the =AU ( al (3
size of this cluster. Note that in the above expressions, the number of partidles
Kusakaet al?® showed how the size distribution of a in the sphere appears, but not the total number of partitles
cluster can be obtained in the grand canonical ensemble. I the cluster. Still, the potential energy contains not only
their scheme, all particles in the simulation cell are consigcontributions from the interactions between particles inside
ered to be part of the same cluster. Consequently, all densi§’¢ sphere, but also from interactions between particles in-
fluctuations in the system participate in the nucleation even@2nd outside the sphere. Note also that only the volume of the
This implies that, in order to avoid redundant counting ofSPhere enters the expression and not the total volume of the

configuration space, the fluctuations of the center-of-mass ofyStém. The cluster criterion is included in the acceptance
the cluster with respect to the simulation cell should be anaCfterion to ensure that the cluster remains connected.
lyzed carefully?® Moreover, the size of the volume of the

system has to be chosen carefully. On the one hand, thH: COMPUTATIONAL DETAILS

volume should be larger than the spatial extent of the physia. Nucleation barrier

cal cluster in it. On the other hand, as discussed above, the

volume should also not be too large. If the volume is too
large, the cluster will break up into many small clustésse
Ref. 27.

We have computed the cluster-size distribution via the
grand canonical scheme discussed in Sec. Il. However, rather
than checking for the connectivity of the particles in the clus-
ter at every trial move, we adopted a staged scheme in which

. The use of a 999”‘9”'0 cluster criterion not_ only Pro- e only checked for the connectivity of the cluster at fixed
vides a unique definition of the cluster, but also cwcumventsimervals

this problem. For large system sizes, it ensures that the par- In the first stage, a series of Monte Carlo cycles is per-

ticles that make up the cluster are always connected. Byt ey n each MC cycle, we try to both displace particles

more importantly, it is not even required that the volume intog 4 insert or remove particles. In one cycle, on average every
(from) which the particles are insertédemoved is larger  aricle is given one trial displacement and the choice be-

than the size of the cluster. This is particularly importantyyeen the trial insertion/removal moves and the trial dis-
when the cluster is not compact but ramified. In the SChem%lacement moves is made at random, with 60% probability
by Kusakd® and in the approach of Lee, Barker, andfor the latter. The trial displacements are accepted with the
Abraham it is conceivable that the constraining sphere bi-ysual Metropolis acceptance criterion. That is, we do not
ases the shape of the nucleus. In contrast, our scheme dagseck whether the connectivity of the cluster is broken. Only
not impose a certain cluster shape. in the second stage, after this sequence of typically 5—10 MC

In order to see this, consider the combined system showgycles, will we check whether all particles are still connected

in Fig. 1. In our grand canonical MC scheme, we only con-to one another. If all particles are not mutually connected
sider particle additions to and removals from a spherical volwith each other, we reject the entire sequence.

umeV, around the center-of-mass of the cluster. The center-  When a particle is to be inserted, we first determine the

of-mass is computed for the cluster excluding the particle tacenter-of-mass of the cluster. The particle is then inserted at
be added or removed. The acceptance probability for tha random position inside a sphere centered at the center-of-
insertion (remova) of particles into(from) a sphere of vol- mass of the cluster. The addition of a particle is accepted

umeV, placed in a system of volum¢ is given by with a probability
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acdn—n+1) (12 mers does not occyrthe chemical potential by the Widom
v insertion techniqué® The chemical potentigk as a function
—min 1, — ex extd — BIU(S* 1)+ Win-+1 o_f pressure was.then obtained by integrating the inverse den-
M+1 HAwlex — BLU( ) ( ) sity p as a function of pressure

—U(s)-W(m11|, 13

P 1
M(P):M(Po)+JPmdP'- 17
where W(n) is the biasing potential. The biasing potential °

was taken to be a harmonic function of the cluster size For the liquid phase we have to follow a different pro-

W(n) = 3k,(n—ng)2. (14 cedure, as the strong first-order phase transition separating

When a particle has to be removed, we first randomlythe liquid from the vapor phase rules out the integration

select the particle to be removed. In order to preserve thglong. the isotherm from a !ow—densny vapor. We. therefore

symmetry of the underlying Markov chain, we then deter_epr0|ted the fact that the I|qU|d—vapcgr3 c_rmcal point of the

mine the center-of-mass of all particles except the particle t enna:;]d:[Jo?(ati SgteTT‘(: 1'3165{!(?% 'ISS Or7n>jlf2hl Ion\\;er

be removed and check whether the selected particle is insi Iéap a Ot d Gt}h Oﬁ mgye;r SX{S et' IC(f: ' EL B)- d‘?

the sphere centered at the center-of-mass. If the particle gst comi)u € ‘ ec Zm'c"?‘ E%%nb'aw(.)(; a _enn'c:_r i otnes

outside the sphere, we repeat this procedure, until we ha N Zm a_ta re gr_ertlce ?nsﬁyl— ' thy ' 0? ms<fer 'fo':;

found a particle which is inside the sphere. The removal OEW ensity and integration along e equation ot Siaf

the particle is then accepted with a probability g. (17)]. After we have obtained the chemical potential for
the Lennard-Jones system ap, we can determine the

acgn—n—1) (15  chemical potential for the Stockmayer system at this density
M by computing the reversible work to switch on the dipolar
=min 1,—exd — Bulexd — B[U(S" ) +W(n—1) interactions.
Vs In order to find a reversible path from the Lennard-Jones

system to the Stockmayer system, we have used the follow-

—uU(shH)-wmn1i|. (16 ing interaction potential:

The height of the barrier and the structure of the nuclei  y(\)=v ,+ AV gip - (18
should not depend on the size of the sphere. In particular, the

sphere need not contain the entire cluster. We have verifiegl .\ — 1 the above interaction potential is given by Ef

that the results are indeed insensitive to the size of thg oreas forhn=0 the interaction potential reduces to the

sphere. However, the size of the sphere does affect the eﬁtennard-Jones potential. The chemical potentja(\

ciency of the simulation. If the sphere is large, the insertionzlpo) of the Stockmayer system is now related to the

and .removal probability, given by E.q'$12) and (15, are _ chemical potential (N =0,pp) of the Lennard-Jones system
relatively large. However, the probability that the connectiv-,

ity of the cluster is broken after the Monte Carlo sequence
will also be increased, and thus the probability that the tra- 1
jectory has to be_ rejec_ted. For smal_ler spheres th_e balance is ,,(\= 1’p0):“()‘:0’p0)+f (Vaiph AN
reversed. In addition, if the sphere is very small, it can hap- 0
pen that the sphere does not contain any particle to be re- 1
moved. We found that, depending on the shape and size of +—P(A=1)—P(A=0)]. (19
the clusters, a sphere of radius 5618 optimal. Po
The number of umbrella windows for the free-energy
barrier was 25. Most simulations in a window consisted of aronce we know the chemical potential of the Stockmayer
equilibration period of 5 10° cycles, followed by a produc- System at a given densify, (and pressur®;), we can ob-
tion run of 5x 10°—2x 10P cycles. Especially for the smaller tain the chemical potential as a function of pressure by inte-
clusters, very long production runs were required as theg@rating along the equation of stetsee Eq(17)].

exhibit strong shape fluctuations. The results that we report  All simulations of the bulk phases were performed using
here are free of hysteresis. a system size of 256 particles. The simulations to compute

equations of state were performed in the isothermal—isobaric
(NPT) ensemble, whereas the simulations to calculate the
free-energy difference between the Stockmayer system and

The coexistence point was determined by calculating theéhe Lennard-Jones system were done in the cano(hbaT)
chemical potential as a function of pressure for both the vaensemble. In the simulations, the Lennard-Jones potential
por and liquid phase. The chemical potential and pressure atas truncated at half the box size and the standard long-
coexistence was then found from the intersection. range corrections were add&iThe long-range dipolar in-

In order to obtain for the vapor phase the chemical poteractions were handled with the Ewald summation tech-
tential as a function of pressure, we first determined for anique using “conducting” boundary conditioris. Cubic
vapor at low pressur®, (so low that association of mono- periodic boundary conditions were applied.

B. Coexistence point
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C. Surface tension n

The surface tension was computed from a direct MC 0 190 290 390 490 500

simulation of the two coexisting phase, using the Ewald-
summation technique to handle the long-range dipolar inter-
actions. A liquid slab was brought in contact with a vapor, 30.0
from which the surface tensiopwas obtained by measuring

Y= %Lz( Py~ %( Pyxt |:)yy) ). (20

Here,P,, is the aa element of the pressure tensor dngis
the length of the system in the direction perpendicular to the :
interface. The factor of 1/2 outside the bracket arises from 499 | £
the fact that we have two liquid—vapor interfaces in the sys-
tem. In the Appendix, we describe how we have computed
the pressure tensor. 0.0
In order for the density and pressure to approach bulk

liquid values in the middle of the slab, the slab should not be
too thin. We therefore used a rectangular simulation bOXFIG. 2. The excess free energAQ of a cluster as a function of its size
which allows for a relatively thick slab in comparison to the for a Stockmayer system &=1.26 andT* =kgT/e=3.5. The reduced
total number of particles in the system. The sides were ofiiPole momeniu* = u/\es®=4.
lengthL,=L,=1/4,, for thex-, y-, andzdirection, respec-
tively, and periodic boundary conditions were applied in all
three coordinate directions. The maximum number of recip-
rocal lattice vectors parallel to the interface wHg'|

=[kj"™{=7, whereas the number of wave vectors perpendicu-
lar to the interface wask]'®{=28. The larger number of 1 o 2
reciprocal vectors in the-direction makes the simulations Pn(S)=KgT(p(s))+ V. > rf(rij VM 1) (24)
significantly longer, but this is unavoidable in order to sy
achieve the same convergence of the Ewald sum in all prinand
cipal directions. .

The Lennard-Jor_les intera_lction potential was trur_lcated at p(s)= kBT<p(S))+ <ES y” f(rij ,M,)>

r.=0.5L, and the tail correction to the surface tension was

40.0

w)5vy

divided intoNg slabs parallel to the interface. The local nor-
mal [pn(s)] and tangentiap;(s) components of the pres-
sure tensor are given by

evaluated fronf (25)
w (1 [ where p(s) is the average density in slats, Vg
Viail= 127-ref f f p(21)p(2,)(1—3s)r *drds dz, =LXLyLZ/Ns is the volume of the slab andl(r;; , u;, p;)
s =1 —(av(rij , m ,/u,-)/arij) is the force acting between par-

(22) ticlesi andj. E,J denotes a summation that runs over all pairs
wheres=(z,—2,)/r andz, andz, are the positions of par- of particlesi andj for which the slals (partially) contains the
ticles 1 and 2, respectively. The density profile was fitted tdine that connects them. The contribution to the virial of a
a hyperbolic tangent function of the form slab from a given pair is determined by the ratio to which the

_1 1 slab contains the line.

P(2)=2(pitpy) ~2lp1—py)aNM (2= 20)/d], 22 We performed a simulation with 512 particles and one
where p; and p, are the densities of the liquid and vapor with 2000 particles, to check for finite-size effects. The num-
respectively, and, andd are parameters for the location of ber of equilibration cycles was 100000 and the number of
the dividing surface and the thickness of the surface. Wittproduction cycles was 200 000.
the above fit for the density profile, the tail correction

become¥ IV. RESULTS AND DISCUSSION

1 0
YViail = 127Te(p|—pv)2f dsf dr coth(rs/d)(3s3—s)r 3. All simulations were performed afT*=kgT/e=3.5
0 e (with kg Boltzmann’s constait which is approximately
(23 309 below the critical temperature @t =5.072L We first
In order to establish that our system is in equilibrium, westudy the formation of a critical nucleus at an imposed
also studied the real-space contribution to the normal andhemical potentiak= —26.0e. This corresponds to a super-
tangential components of the pressure tensor as a function eaturation S= (P/P e~ exXd BAx])=1.26, whereAu=pu
z. When the system is in equilibrium, the normal component— ucpex, With w(P) the imposed chemical potentigbres-
should be equal to the transverse component away from th&ure, and weoed Peoey the chemical potentialpressurg at
interfaces. coexistence. Figure 2 shows the excess free energy of a clus-
For an inhomogeneous fluid, there is no unambiguouger as a function of its size at this degree of supersaturation.
way to calculate the components of the pressure tensor. We From the free-energy barrier measured at this degree of
have used the Irving—Kirkwood conventidhThe system is  supersaturation, we can directly obtain the nucleation barrier
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at any degree of supersaturation, as long as the interactions 1.0 :

between the clusters can be neglected. In that case, the par- —— p,r08
tition function Z, of an n-mer is independent of fugacity. 0.8 N pr>0.85 |
That is, the configuration integral &, in Eq. (4) does not I 1y-1,>0.9
depend on the imposed chemical potential. We can then A T 095

combine Eqs(4) and(7) with Eq. (9) to arrive at
BAQ(N,u",V, T)=BAQN, 1, V,T)=B(p' —u)n (26)

+In[p(u") p(p)], 27

wherep=N/V is the total number density in the system. We
have verified that our simulations indeed satisfy this equation
by computing the free-energy barriers for two different .
chemical potentials. Furthermore, we have compared the 0'01 2 3 4 5
structure of the nuclei at one chemical potential with that at 1
the other chemical potential. The analysis of the structural o , _ _
order parameders, which il be discussed below, ndicale§(®,, Prel Serbuon eions o e e ngin el
that the nucleus structure is independent of the imposed 0.005. The different curves correspond to different threshold values of
fugacity. This provides further evidence that the sampling ofthe chain criterior(see the tejt
configuration space and hence the evaluation of the configu-
ration integral in Eq.{4) does not depend on the chemical
potential. We have therefore determined the free-energy bar-  Yet, it is conceivable that in the bulk liquid a high de-
rier as a function of supersaturation from the computed freegree of chain formation is present. We therefore examined
energy barrier aB=1.26, using Eq(26). the chain-size distribution. We have adopted the following
As the structure of the clusters does not depend on thehain criterion: particles andj are part of the same chain if
imposed fugacity, we only discuss the structure analysis petthe interparticle distance; is less tharg, and for both par-
formed atS=1.26. After the structure analysis, we will con- ticles the dot producf;-f;; exceeds a certain threshold.
sider how the nucleus structure determines the free-enerdyigure 3 shows the chain-size distribution for different
barrier. We compare the free-energy barrier, as well as ththreshold values. As expected, the size distribution is slightly
critical nucleus Size' with the Corresponding predictions Ofsensitive to the value of the threshold. St|”, it is clear that
classical nucleation theory. However, in order to compardnost chains consist of only one to four particles and that
the structure of the nuclei with that of the bulk liquid, we chain formation is not very pronounced. We therefore con-
first investigate the structural order in the liquid. clude that the bulk liquid at the temperature and range of

pressures considered in the simulations is isotropic. In order
to avoid any confusion, we have only used the chain criterion

Stevens and Grest found evidence for the existence dp identify the chains in the liquid. As mentioned in Sec. Il
dipolar order in the fluid phase, albeit for different conditionswe have used a distance criterion to identify the particles that
(i.e., higher temperature and pres3dfe We therefore make up a cluster in the vapor.
checked whether the bulk liquid also exhibits ferroelectric
ordering at the temperature and range of pressures at whigh Coil—globule transition
we study the nucleation process.

Ferroelectric ordering can be characterized by the order In classical nucleation theory it is assumed that even the
parametel, , which is defined as smallest droplets are spherical. In fact, this is a reasonable
1

approximation for a typical model system for nonpolar flu-
1 ~ ids, the Lennard-Jones system. In Ref. 23 we showed that
= M_N|M -dl, (28)  precritical nuclei as small as ten particles are already quite
compact, spherical objects. However, the interaction poten-
where f; is a unit vector specifying the orientation of the tial of the Lennard-Jones system is isotropic, whereas the
dipole of particlei, M is the total dipole moment of the dipolar interaction potential is anisotropic. It is possible that
system, andl is the director, which is the eigenvector cor- this affects the shape of the small clusters. Indeed, for bulk

responding to the largest eigenvalue of eensor hard-s_phere and soft-sphere dipolar ﬂu_ids at low t_empe_ra-
ture, it has been observed that particles associate into

18 (3. chains''* On the other hand, as discussed in the previous
Q= Nzl <§Miﬂi— 5)- (29 section, the bulk liquid is isotropic.
We find that clusters containing up to 30 particles form
For a fully ordered systeni®;=1. We found thaP; did  chains in which the particles align head-to-tail. In fact, we
not differ significantly from zero for the bulk liquid at the find a whole variety of differently shaped clusters in dynami-
temperature and supersaturations considered in the simuleal equilibrium with each other: linear chains, branched
tions. Hence, the system does not show significant ferroelechains, and ring-“polymers.” As the cluster size is in-
tric ordering. creased, the polymers become longer. But, beyond a certain

A. Equilibrium phase behavior

N

> i-d

=1

1
Pl:ﬁ
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FIG. 5. The distribution functions of the three eigenvalues of the moment-
of-inertia tensor for a cluster of around 300 particles in a Stockmayer system
atT*=3.5(=0.7T.) andS=1.26. For comparison, we also show the distri-
bution functions for a Lennard-Jones cluster of comparable $ize300)

and at the same temperature with respect to the critical temperature (
=0.7T;). In this and subsequent figures,s the unit of length.
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7 C. Structure of collapsed nuclei

1. No global order

FIG. 4. Radius of gyratiolR,, and the three eigenvalues of the moment- A ; ;
n examination of the snapsh f the larger, gl le-
of-inertia tensor, as a function of cluster sigeat S=1.26 andT* =3.5. exa ation of the snapshots of the larger, g obule

Initially, the clusters are chain-liksnapshot top left but at a cluster size of 1K€ nuclei confirms that they are compact, more or less

n~30 they collapse to compact, spherical nu¢sriapshot top right spherical objects. To study this in more detail, we have mea-
sured the probability distribution functions of the three ei-
genvalues of the moment-of-inertia tensor. Figure 5 shows
the result. For comparison, we also indicate the distribution

) functions for a Lennard-Jones cluster of comparable size
size, the clusters collapse to form a compact globule. In order g 4t the same temperature with respect to the critical tem-

to quantify this, we determined the size dependence of thgg ayra. Note that compared to the Stockmayer cluster, the
radius of gyration, as well as the three eigenvalues of thgjisyinytion functions of the Lennard-Jones cluster are dis-
moment-of-inertia tensor placed to somewhat higher values. This is due to the slightly
lower density in the Lennard-Jones cluster. Yet, for both the
1.0 Lennard-Jones and the Stockmayer systems the distribution
I = —2 riri, (300  functions of the three eigenvalues overlap. Hence, the clus-
ni=1 ters are quite spherical, although the larger spread of the
distribution functions of the polar cluster indicates that this
wherer; is the vector joining particlé and the center-of- cluster exhibits more pronounced fluctuations around the
mass of the cluster. In Fig. 4, we show the square of thépherical shape. We do not find evidence for a prolate-
radius of gyration, divided bp?3. For a compact, spherical Shaped cluster, in which the molecules are aligned in an an-
objectR} scales wittn??, whereas for chainR] scales with ~ tiparallel head-to-tail arrangement, as suggested by Wright
n®, where 1.2 a<2, depending on the stiffness of the and El-Shal®® A prolate structure would have two small
chain. Hence, for chain-like clusteR§/n?® should increase ~€igenvalues and one significantly larger eigenvalue of the
with n, whereas for a globule it should approach a constanfioment-of-inertia tensor. As can be seen from Fig. 5, this is
value. not the case. Furthermore, both the nematic order parameter

Figure 4 shows that initialllR5/n?® increases with the P2, which is the largest eigenvalue of titensor defined
size of the cluster. Moreover, one eigenvalue of the momenift! Ed. (29), and the ferroelectric order paramey [see Eq.

of the inertia matrix is much larger than the other two, which(28)] are zero, indicating that there is no net parallel or an-
indicates the strong tendency of clusters to form chainstiparallel alignment of the dipoles in the cluster.

However, at a cluster size of about 30 particRgn?? starts We also investigated the degree of circulating orienta-
to decrease and approaches a constant value at a cluster si@ghal order. To this end, we computed the order parameter
of around 200 particles. Furthermore, at that point the three 12

eigenvalues of the moment-of-inertia tensor have also ap- ,u11=|,u11|=< E Mim) ) (31)
proached each other: the cluster has collapsed to a compact amxye

spherical object. with
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FIG. 6. The profile of the orientational order parameter as defined in Eq. FIG. 7. Density profile for a planar vapor—liquid interface at coexistence
. ; "

(33), for a planar interface at coexistence and for a cluster of approximatel@"d for a cluster of around 300 particles at a supersatur&tiot.26(T

300 particles at a supersaturati® 1.26. The profile of the planar interface = 3-5)- The density profile of the planar interface is shifted such that the

is shifted such that its equimolar dividing surface coincides with that of the®quimolar dividing surface of the planar interface coincides with the
cluster, as indicated by the vertical lineRy. equimolar dividing surface of the cluster. The equimolar dividing surface is

indicated by the vertical line &, .

1 n

"‘mzﬁi; (8 XFi)- A, (32 shows bulk liquid behavior. To verify this we have measured
the density profile, which is shown in Fig. 7. It is also seen
that the density approaches a bulk liquid value in the core of
the droplets. It thus seems that the core of the larger, col-
lapsed nuclei is characterized by bulk liquid properties.

However, in the interface the nuclei start to lose their
Wulk liquid character. Figure 6 shows that near the interface

the orientation of the dipoles is not isotropic. In agreement

whereg, is a unit vector in then-direction, g; denotes the
orientation of the dipole of particlie andf; is the unit vector
from the center-of-mass of the cluster to particl€his order
parameter was introduced by Singgral *° and measures the
degree to which the cluster contains dipoles circulating abo
a particular axis. Singeet al*! have studied Stockmayer

clusters consisting of 50 particles with a reduced dipole Moyt previous simulation resuft§*2and theoretical studié€
ment of u*=v3, and found that theliquid) clusters had an e find that at the liquidcore side of the interface the

oblate shapf with a large _degr;ae of circiulating orientationaljinoles tend to orient parallel to the interface, whereas at the
order up tol™ = 0.8, which is 60% belowc . However, this 40y side they prefer a perpendicular orientation. Hence, the
temperature is much lower than in the present simulationg s mption that the dipoles are oriented perpendicular to the

(T*=0.7T¢), and indeed we do not find evidence for an g face at thdiquid side of the interfacd is not justified for
oblate shapéone eigenvalue of the moment-of-inertia tensorp;g polar fluid.

would then be significantly smaller than the other waor In most nucleation theories, it is assumed that the surface
do we find any significant circulating orientational order (ensjon of a cluster is that of a planar interface at coexist-
(w11<0.14). Hence, the global order parameters indicatgnce, |t s therefore natural to compare the structure of the
that the large, collapsed clusters are spherical with no n&hierface of the nuclei with that of the flat interface. Figure 6
global orientational order. shows the comparison for the,-profile. It is also seen that
for the planar interface the dipoles tend to align parallel to
the interface at the liquid side, but perpendicular to the in-
In the previous section, we found that the larger, col-terface at the vapor side. However, the ordering is much
lapsed nuclei are spherical, with no net global orientationamore pronounced for the planar interface at the liquid side.
order. Let us next examine thecal order. Given the spheri- In contrast, at the vapor side the ordering is stronger for the
cal shape of the clusters, it is meaningful to analyze the locatluster interface.
order as a function of the distanceo the center-of-mass of Still, both for the planar interface and the interface of the
the cluster. Figure 6 shows the radial profileagf, which is  nuclei, @, changes sign after the equimolar dividing surface.
defined as In this respflct, our findings are in agreement with those of
Singeret al.** However, the simulation results contradict the
o= \5l4m(P5(cosb)), 33 results of a density functional study of homogeneous nucle-
where 6 is the angle between the director of the dipole andation in a(weakly) polar fluid, in which it was found that
the normal to the surface. It measures the degree to which tHeoth for the planar interface and for the cluster interface,
dipoles are oriented perpendicular to the surface. It is seechanges sigieforethe equimolar dividing surfacg.
that @, approaches zero in the center of the droplet. This In our study of crystal nucleation in a Lennard-Jones
indicates that the orientation of the dipoles in the core of thesystem, we found that the structure of the small clusters,
droplets is isotropic and suggests that the core of the droplethich initiate the nucleation process, still persists in the in-

2. Interfacial structure
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10.0 r ‘ ‘ theory. In 1961, Courtney argued that the CNT prediction for
—— Stockmayer cluster the cluster distribution did not satisfy the law of mass

S Stockmayer planar interface action?® and suggested that this problem could be resolved

80 by introducing the factor &, whereSis the supersaturation,
into the expression for the cluster distribution. Although the
6.0 r factor 15 does bring CNT into line with the law of mass
= action, its introduction seems rathad hoc*® Moreover,
40 - Lothe and Pound realized that a more fundamental omission
in the original theory still persist¥. They argued that clas-
o0 | sical nucleation theory does not properly take into account

the mechanical and rotational degrees of freedom of a clus-
ter. This is now often referred to as the problem of the “re
0-00_0 20 20 R 60 80 10.0 placement free gnergy” anq is re]ated to the problem of thg
- redundant counting of configuration space, as mentioned in
Sec. Il. The above issues have been the subject of contro-
FIG. 8. Radial profile of the coordination number for a Stockmayer clusterversy, although recently much progress has been ﬁ?ade_
atS=1.26 andT* =3.5(solid line). The coordination numberis defined as In classical nucleation the0|(¢NT), the excess free en-

the number of particles within a cutoff distangg=1.50~. For comparison, . . L
we also give the coordination number profile for a planar interfaotted ergy of a cluster as a function of its size is given by

curve), which is shifted in such a way that its equimolar dividing surface
coincides with that of the cluster, which is indicated by the vertical line BAQ(N)=p
atR,.

6’77 1/3
_F) 25 Aun| | (34

wherep, is the density of the bulk liquidwhich is assumed

terface of the larger clusters. To be more precise, we obto be incompressibje y is the surface tension of a planar
served that the structure in the core is that of the thermodyvapor-liquid interface at coexistence, amdu=u,(P,)
namically most stable phase, but that the core is “wetted”— «i(P,) is the difference in chemical potential between
by a shell with a structure characteristic for the smaller clus@ bulk liquid and a bulk vapor, both at the imposed
ters. We have therefore examined whether in the present caéessureP,, .
we also find traces of the tendency to form chains at the The prediction of classical nucleation theory for the
surface of the larger, collapsed, clusters. height of the nucleation barrier and the size of the critical

A visual inspectior(see Fig. 4of these clusters suggests nucleus can be obtained by taking the derivative of B¢)
that loops of dipolar chains stick out of the surfgteading with respect to the cluster size We then find for the height
to a positive value ofx,, see Fig. & In order to quantify ~ of the barrier

this behavior, we have computed the radial profile of the 16743

coordination number for a cluster of around 300 particles. gAQ*=p8-— 5, (35)
This is shown in Fig. 8. It is seen that the coordination num- 3piAu

ber smoothly approaches a value of 2 at the vapor side of the, 4 tor the size of the critical nucleus

interface. Such behavior is expected if the particles on the

vapor side of the interface belong to chains. For comparison, . 327ry3

we have also shown in Fig. 8 the coordination number profile " 3pf AM (36)

for the planar interface. As the number density in the vapor is

extreme|y low, smaller than )1_‘]_0_3 _3’ it was not pos- In order to compare our simulation results with classical

sible to get accurate statistics beyand6.75r. However, it ~ nhucleation theory, we computeglby the procedure outlined

is clearly seen that at the vapor side of the planar interfacé Sec. Il C. We foundy=1.34+0.07/c”. As the density

the coordination number drops below 2. Hence, the interfac# the vapor is much lower than the density in the liquid, the
of the clusters is more rough than the planar interface. Alsoi(P) curve of the vapor phase is much steeper than that of
an inspection of the density prof”ésee F|g 7 shows that the ||qU|d We therefore made the common aSSUmption that
the planar interface is sharper than the interface of a colthe difference in chemical potential can be approximated by
lapsed cluster of around 300 particles—the width of the in-Ax= uy(Py) = mi1(Py) = uy(Py) = teoex- The chemical po-
terface of the cluster is some 25% larger. Most likely, thetential at coexistence was determined using the method dis-
planar interface is sharper because the stronger dispersiéssed in Sec. IlIB and was found to e~ —26.82

interactions with the bulk cause the dipole chains to adsorb+0.02%. The den5|ty of the liquid at this chemical potential
is p;=0.78+0.015 2

Let us now d|scuss in more detail the basic assumptions
of classical nucleation theory that lead to E¢34)—(36).

Classical nucleation theorfCNT) is based on macro- First, it is assumed that the nuclei behave like small droplets
scopic thermodynamics. It is clear that the use of macroef bulk liquid that are spherical. As discussed previously, the
scopic quantities has both its advantages and disadvantagéarger nuclei, comprising more than approximately 200 par-
However, even if we accept the approximations of classicalicles, are quite spherical. However, the smaller clusters,
nucleation theory, there are still inconsistencies within thewhich initiate the nucleation process in this system, are not

D. Comparison with classical nucleation theory
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nucleation theory. This can be seen from Fig. 9. This figure
shows the comparison between the simulation results and the
predictions of classical nucleation theory for the height of the
barrier and the critical nucleus size. Clearly, the theory un-
derestimates both the size of the critical nucleus and the
height of the nucleation barrier. As the variation in the nucle-
ation rate is dominated by the variation in the barrier height,
our results are in qualitative agreement with the experiments
on strongly polar fluid$®3°in which it was found that clas-
sical nucleation theory seriously overestimates the nucleation
rate.
0.0 ' We would like to understand the origin of this discrep-
0.0 10.0 20.0 . . .
1/(BAp)? ancy between classical nucleation theory and the simula-
tions. As mentioned, the larger, collapsed nuclei are spheri-
1/(BAw)’ cal. Also, the assumption of classical nucleation theory that
0.0 10.0 20.0 the cores of these nuclei show bulk liquid behavior seems to
80 be justified, as the density and the orientational order param-
etera, approach bulk liquid values in the center of the drop-
lets.
However, CNT neglects the variation of surface tension
with droplet size. In fact, McGraw and Laaksoff&showed
= that the interfacial curvature free energy can cause a signifi-
cant correction to the barrier height as predicted by classical
nucleation theory. They derived relatidfé® for the barrier
height and the critical nucleus size that could provide an
explanation for the discrepancy between experiment and
classical nucleation theory for a variety of nonpolar and
00 00 7009 weakly polar fluids® In particular, McGraw and
1/BAR)’ Laaksoneff showed that if CNT correctly predicts the size
of the critical nucleus, then the curvature correction yields a
FIG. 9. Comparison of the simulation resultspen circles with classical ~ constant offset between the actual barrier height and the
nucleation theorystraight solid ling for a Stockmayer system &=1.26 height of the barrier as predicted by classical nucleation
andT* =3.5: (&) nucleation barrier(b) size of the critical cluster. theory. It is interesting to note that this behavior has been
observed in both a density functional std®§? and in our
gomputer simulation study of gas—liquid nucleation in the
lsennard-.]ones systefsee Ref. 2B It was found that for a
ide range of cluster sizes, CNT gives a correct prediction of
e critical nucleus size and that the deviation from the pre-
gicted barrier height is constant, i.e., independent of cluster

40.0

300

20.0

BAQ

10.0

300
*n 40 |

1 200

1 100

compact, spherical objects, but chain-like aggregates. As
consequence, the variation in free energy with cluster size i
not as predicted by classical nucleation theory. We note thaVK
if the clusters were perfectly rigid chains, the variation int
free energy with cluster size would be linear. Indeed, as ca
be seen from Fig. 2, we find that after=5 the increase in

cluster free energy is very linear with its size. The barrier Howhever, for tzii pqlarhsys:]em,orhﬁ dispégcerg(;nt. Ee'f
shape predicted by classical nucleation thdege Eq.(34)] tween the measured barrier height and the predicted height o

is only recovered after the clusters have collapsed. the barrier is not constant, as can be seen from Fig. 9. More

The linear regime in the size dependence of the cluste?learly’ the critical nucleus size is not correctly predicted by

free energy has a remarkable consequence for the depe NT. Hence, in contrast to thénonpolaj Lennard-Jones

dence of the critical nucleus size on supersaturdsee Fig. luid, the relations as proposed by McGraw and

49 . .
9(a)]. When the supersaturation is increased, the height Olraak_sbcl)nef‘? | are.not obﬁjygd fr(])r thlshhlghly ﬁow ﬂl:c'd' Af
the nucleation barrier and the critical nucleus size decreas82SS!P'€ €XP anation could be that, whereas the interface of a

However, at a supersaturation 8 1.8(1/(8A u)3=5.25), Lennard-Jones critical nucleus is nearly indistinguishable

the critical clusters have reached a size at which the variatiohrOrn the planar mtgr_face, for this §yst§m the structu_re of the
in free energy with cluster size is linear. At this point, the topmterface of the'crltlcal clusters is still markedly different
of the barrier is flat, and a small increase in the supersaturJ[om the planar interface.

tion leads to a jump in the critical cluster siggee inset of
Fig. 9b)].

It is thus clear that at large supersaturation, where the We have studied homogeneous gas-liquid nucleation of
critical nuclei are relatively small, the polymer-like charactera strongly polar Stockmayer fluid. The simulations show that
of the clusters leads to strongly nonclassical nucleation bethe nucleation process is initiated by chain-like clusters.
havior. However, even for the collapsed globule-like nuclei,When these clusters exceed a certain size, they condense to
the simulation results show large deviations from classicaform compact, droplet-like nuclei. However, the interface of

CONCLUSIONS
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these droplets, with a high degree of chain formation, is still N
markedly different from the planar interface. In highly polar M(k)E_Z i(m-K)yexplik-ry). (A7)
liquids*®3° it may be responsible for the discrepancy be- =1
tween the experimentally observed nucleation rates and thgere, k are the reciprocal lattice vectors, which are defined
predictions of classical nucleation theory. as

k=(27l/Ly,2mm/Ly,2mn/L,), (A8)
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APPENDIX: PRESSURE TENSOR (i rij)] (A9)

For pairwise additive potentials, such as the Lennard- C'(ryj)
Jones potential, thes element of the pressure tensor can be * i Cij aCpti 1) (m8 T3 (A10)
evaluated from the virial equation for the pressure

where
N
P..=pksT+ EE ri fo (A1) aC 2ar
s~ PT8 & Hialiip Cl(n=—"=- 15erfc(ar)+T(15+1Oa2r2
T

wherer;; is the vector betweenandj and fj; g(rij , s , &)
=—(av(rij,mi, )/ rijp) is the intermolecular force. How- 4d - 6
ever, in the Ewald sum, which contains a real space contri- Taa'rh)exp —a’r?) re. (A1)
bution and a reciprocal space contribution, the pressure ten-
sor cannot be written as in EGAL). In order to calculate the reciprocal space contribution to

The electrostatic energy 4, of the dipolar interactions the pressure tensor, we have followed the procedure of Nose
in the Stockmayer system, embedded in a material with inand Klein®! In this procedure, the pressure tensor is obtained

finite dielectric constant, {8 from the variation in potential energy with a deformation of
N the system. The reciprocal space contribution to the pressure
1 tensor is
Udipzig (i ) BCri) = Cpai- 1) (g - 1 )C(r )
‘ 275 ool Maom(—k 2k ks Kokg
261(3 N 5 Paﬁ_wkio Q( ) M( )M(_ ) 5aﬁ_?_ 2a2
- 24 M (A2)
3wzt (A12)
20 MKV 5(—K)+M(=K)V,5(K)}, (A13)
+7k§0 QUIMOM(~k), (A3) whereV,4(K) is given by
where« is the convergence parameter, N
Vop(K)=2 ipiakgexplik-r)). (A14)
2ar i=1
B(r)=| — exp(— a?r?)+erfd ar /rs, Ad
(") {\/; = ar) dar) A4 A similar expression has been independently derived by

Heyes>? although in Ref. 52 a minus sign in the second
exponential on the right-hand side of E&4) is missing.
We found that the above expressions for the pressure
tensor could be used as a convergence test for the Ewald
5 summation. From the definition of the dipolar interaction po-
re (A5)  tential [see Eq(1)] and from the definition of the virial equa-
tion for the pressurgsee Eq(Al)] it can be verified that for

2ar
— (83+2a%r?)exp(— a’r?)

C(”E{ N

+ 3 erfq ar)

with erfc the complementary error function, and dipolar interactions the interaction energy is equal to the
exp —k2/4a?) virial, i.e.,
and 2:] v(rj ,Mi,[.tj)=§i§<:j Fig - fCrij i, ) (A15)
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