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We discuss a class of chain graph models for categorical variables defined by what we call a multivariate
regression chain graph Markov property. First, the set of local independencies of these models is shown to
be Markov equivalent to those of a chain graph model recently defined in the literature. Next we provide a
parametrization based on a sequence of generalized linear models with a multivariate logistic link function
that captures all independence constraints in any chain graph model of this kind.
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1. Introduction

Discrete graphical Markov models are models for discrete distributions representable by graphs,
associating nodes with the variables and using rules that translate properties of the graph into
conditional independence statements between variables. There are several classes of graphical
models; see [24] for a review. In this paper we focus on the class of multivariate regression chain
graphs and we discuss their definition and parametrization for discrete variables.

Multivariate regression chain graphs generalize directed acyclic graphs, which model recursive
sequences of univariate responses, by allowing multiple responses. As in all chain graph models
the variables can be arranged in a sequence of blocks, called chain components, ordered on the
basis of subject-matter considerations, and the variables within a block are considered to be on
an equal standing as responses. The edges are undirected within the chain components, drawn as
dashed lines [6] or as bi-directed arrows [21], and directed between components, all pointing in
the same direction, that is, with no chance of semi-directed cycles. One special feature of multi-
variate regression chain graphs is that the responses are potentially depending on all the variables
in all previous groups, but not on the other responses. Chain graphs with this interpretation were
proposed first by Cox and Wermuth in [5], with several examples in [6], Chapter 5.

In the special case of a single group of responses with no explanatory variables, multivariate
regression chain graphs reduce to covariance graphs, that is, to undirected graphs representing
marginal independencies with the basic rule that if its subgraph is disconnected, that is, composed
by completely separated sets of nodes, then the associated variables are jointly independent; see
[11] and [18]. In the general case, the interpretation of the undirected graphs within a chain com-
ponent is that of a covariance graph, but conditional on all variables in preceding components.
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Figure 1. Three chain graphs with chain components (a) T = {{1,2}, {3,4}}; (b) T = {{1,2,3}, {4,5}};
(c) T = {{1,2,3,4}, {5,6}, {7}}. Dashed lines only occur within chain components.

For example, the missing edge (1,3) in the graph of Figure 1(b) is interpreted as the indepen-
dence statement X1 ⊥⊥ X3|X4,X5, compactly written in terms of nodes as 1 ⊥⊥ 3|4,5.

The interpretation of the directed edges is that of multivariate regression models, with a miss-
ing edge denoting a conditional independence of the response on a variable given all the remain-
ing potential explanatory variables. Thus, in the chain graph of Figure 1(a) the missing arrow
(1,4) indicates the independence statement 1 ⊥⊥ 4|3. The interpretation differs from that of clas-
sical chain graphs ([12,17]; LWF for short) where the missing edges mean conditional indepen-
dencies given all the remaining variables, including the other responses within the same block.
However, in studies involving longitudinal data, such as the prospective study of child develop-
ment discussed in [4], where there are blocks of joint responses recorded at ages of three months,
two years and four years, an analysis conditioning exclusively on the previous developmental
states is typically appropriate.

Recently, [8] distinguished four types of chain graphs comprising the classical and the alter-
native [1] chain graph models, called type I and II, respectively. In this paper we give a formal
definition of multivariate regression chain graph models and we prove that they are equivalent to
the chain graph models of type IV, in Drton’s classification [8]. Moreover, we provide a parame-
trization based on recursive multivariate logistic regression models. These models, introduced in
[20], Section 6.5.4, and [13] can be used to define all the independence constraints. The models
can be defined by an intuitive rule, see Theorem 2, based on the structure of the chain graph, that
can be translated into a sequence of explicit regression models. One consequence of the given
results is that any discrete multivariate regression chain graph model is a curved exponential
family, a result obtained in [8] with a different proof.

2. Multivariate regression chain graphs

The basic definitions and notation used in this paper closely follow [8], and they are briefly
recalled below. A chain graph G = (V ,E) is a graph with finite node set V = {1, . . . , d} and an
edge set E that may contain either directed edges or undirected edges. The graph has no semi-
directed cycle, that is, no path from a node to itself with at least one directed edge such that all
directed edges have the same orientation. The node set V of a chain graph can be partitioned
into disjoint subsets T ∈ T called chain components, such that all edges in each subgraph GT

are undirected and the edges between different subsets T1 �= T2 are directed, pointing in the same
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direction. For chain graphs with the multivariate regression interpretation, the subgraphs GT

within each chain component have undirected dashed ( ) or bi-directed (←→) edges. The
former convention is adopted in this paper. Thus, the chain graph of Figure 1(c) has three chain
components, while the previous ones have two components.

Given a subset A ⊆ T of nodes within a chain component, the subgraph GA is said to be dis-
connected if there exist two nodes in A such that no path in GA has those nodes as endpoints. In
this case, A can be partitioned uniquely into a set of r > 1 connected components A1, . . . ,Ar .
Otherwise, the subgraph GA is connected. For example, in chain graph (c) of Figure 1, the sub-
graph GA with A = {1,2,4} is disconnected with two connected components A1 = {1,2} and
A2 = {4}. On the other hand, the subgraph GA with A = {1,2,3} is connected. In the remain-
der of the paper, we shall say for short that a subset A of nodes in a component is connected
(respectively, disconnected) if the subgraph GA is connected (respectively, disconnected).

Any chain graph yields a directed acyclic graph D of its chain components having T as a
node set and an edge T1 �T2 whenever there exists in the chain graph G at least one edge
v �w connecting a node v in T1 with a node w in T2. In this directed graph, we may define
for each T the set paD(T ) as the union of all the chain components that are parents of T in the
directed graph D. This concept is distinct from the usual notion of the parents paG(A) of a set of
nodes A in the chain graph, that is, the set of all the nodes w outside A such that w � v with
v ∈ A. For instance, in the graph of Figure 2(a), for T = {1,2}, the set of parent components is
paD(T ) = {3,4,5,6}, whereas the set of parents of T is paG(T ) = {3,6}.

In this paper we start the analysis from a given chain graph G = (V ,E) with an associated col-
lection T of chain components. However, in applied work, where variables are linked to nodes by
the correspondence Xv for v ∈ V , usually a set of chain components is assumed known from pre-
vious studies of substantive theories or from the temporal ordering of the variables. For variables
within such chain components no direction of influence is specified and they are considered as
joint responses, that is, to be on equal standing. The relations between variables in different chain
components are directional and are typically based on a preliminary distinction of responses, in-
termediate responses and purely explanatory factors. Often, a full ordering of the components is
assumed based on time order or on a subject matter working hypothesis; see [6].

Figure 2. (a) A chain graph and (b) one possible consistent ordering of the four chain components:
{1,2} ≺ {3,4} ≺ {5,6} ≺ {7,8}. In (b) the set of predecessors of T = {1,2} is pre(T ) = {3,4,5,6,7,8},
while the set of parent components of T is paD(T ) = {3,4,5,6}.
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Given a chain graph G with chain components (T | T ∈ T ), we can always define a strict total
order ≺ of the chain components that is consistent with the partial order induced by the chain
graph, such that if T ≺ T ′ then T /∈ paD(T ′). For instance, in the chain graph of Figure 2(a) there
are four chain components ordered in graph (b) as {1,2} ≺ {3,4} ≺ {5,6} ≺ {7,8}. Note that the
chosen total order of the chain components is in general not unique and that another consistent
ordering could be {1,2} ≺ {5,6} ≺ {3,4} ≺ {7,8}.

In the remainder of the paper we shall assume that a consistent ordering ≺ of the chain com-
ponents is given. Then, for each T , the set of all components preceding T is known and we may
define the cumulative set pre(T ) = ⋃

T ≺T ′ T ′ of nodes contained in the predecessors of com-
ponent T that we sometimes also call the past of T . The set pre(T ) captures the notion of all
the potential explanatory variables of the response variables within T . By definition, as the full
ordering of the components is consistent with G, the set of predecessors pre(T ) of each chain
component T always includes the parent components paD(T ).

The following definition explains the meaning of the multivariate regression interpretation of
a chain graph.

Definition 1. Let G be a chain graph with chain components (T | T ∈ T ) and let pre(T ) define
an ordering of the chain components consistent with the graph. A joint distribution P of the
random vector X obeys the (global) multivariate regression Markov property for G if it satisfies
the following independencies. For all T ∈ T and for all A ⊆ T :

(MR1) if A is connected: A ⊥⊥ [pre(T ) \ paG(A)] | paG(A).
(MR2) if A is disconnected with connected components A1, . . . ,Ar : A1 ⊥⊥ · · · ⊥⊥ Ar | pre(T ).

Assuming that the distribution P has a density p with respect to a product measure, the defin-
ition can be stated by the following two equivalent conditions:

pA|pre(T ) = pA|paG(A) (1a)

for all T and for all connected subset A ⊆ T .

pA|pre(T ) =
∏
j

pAj |pre(T ) (1b)

for all T and for all disconnected subset A ⊂ T with connected components Aj , j = 1, . . . , r .
In other words, for any connected subset A of responses in a component T , its conditional dis-

tribution given the variables in the past depends only on the parents of A. On the other hand, if A

is disconnected (i.e., the subgraph GA is disconnected) the variables in its connected components
A1, . . . ,Ar , are jointly independent given the variables in the past.

Remark 1. Definition 1 gives a local Markov property that always implies the following pairwise
Markov property: For every uncoupled pair of nodes i, k,

i ⊥⊥ k|pre(T ), if i, k ∈ T ; i ⊥⊥ k|pre(T ) \ {k}, if i ∈ T , k ∈ pre(T ). (2)
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In particular, two pairwise independencies i ⊥⊥ k|pre(T ) and i ⊥⊥ �|pre(T ) can occur only in
combination with the joint independence i ⊥⊥ k, �|pre(T ). This means that in the associated
model the composition property is always satisfied; see [22]. Thus, even though we concentrate
in this paper on the family of multinomial distributions that does not satisfy the composition
property, the models in which (MR1) and (MR2) hold have this property.

Remark 2. One immediate consequence of Definition 1 is that if the probability density p(x) is
strictly positive, then it factorizes according to the directed acyclic graph of the chain compo-
nents:

p(x) =
∏
T ∈T

p
(
xT |xpaD(T )

)
. (3)

This factorization property is shared by all types of chain graphs; see [24] and [8].

Recently, [8] discussed four different block-recursive Markov properties for chain graphs, of
which we discuss here those with the Markov property of type IV. To state it, we need two further
concepts from graph theory. Given a chain graph G, the set NbG(A) is the union of A itself and
the set of nodes w that are neighbours of A, that is, coupled by an undirected edge to some node
v in A. Moreover, the set of non-descendants ndD(T ) of a chain component T , is the union of
all components T ′ such that there is no directed path from T to T ′ in the directed graph of chain
components D.

Definition 2 (Chain graph Markov property of type IV [8]). Let G be a chain graph with chain
components (T | T ∈ T ) and directed acyclic graph D of components. The joint probability
distribution of X obeys the block-recursive Markov property of type IV if it satisfies the following
independencies:

(IV0) A ⊥⊥ [ndD(T ) \ paD(T )] | paD(T ) for all T ∈ T ;
(IV1) A ⊥⊥ [paD(T ) \ paG(A)] | paG(A) for all T ∈ T for all A ⊆ T ;
(IV2) A ⊥⊥ [T \ NbG(A)] | paD(T ) for all T ∈ T for all connected subsets A ⊆ T .

Then we have the following result, proved in the Appendix.

Theorem 1. Given a chain graph G, the multivariate regression Markov property is equivalent
to the block-recursive Markov property of type IV.

This result shows that the block-recursive property of a chain graph of type IV is in fact
simplified by Definition 1. On the other hand, Definition 1 depends only apparently on the chosen
full ordering of the chain components, because the equivalent Definition 2 depends only on the
underlying chain graph G.

Example 1. The independencies implied by the multivariate regression chain graph Markov
property are illustrated below for each of the graphs of Figure 1.

Graph (a) represents the independencies of the seemingly unrelated regression model; see [5]
and [10]. For T = {1,2} and pre(T ) = {3,4} we have the independencies 1 ⊥⊥ 4|3 and 2 ⊥⊥ 3|4.
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Note that for the connected set A = {1,2} the condition (MR1) implies the trivial statement
A ⊥⊥ ∅|pre(T ).

In graph (b) one has T = {1,2,3} and pre(T ) = {4,5}. Thus, for each connected subset A ⊆ T ,
by (MR1), we have the non-trivial statements

1 ⊥⊥ 5|4; 2 ⊥⊥ 4,5; 3 ⊥⊥ 4|5; 1,2 ⊥⊥ 5|4; 2,3 ⊥⊥ 4|5.

Then, for the remaining disconnected set A = {1,3} we obtain by (MR2) the independence
1 ⊥⊥ 3|4,5.

In graph (c), considering the conditional distribution pT |pre(T ) for T = {1,2,3,4} and
pre(T ) = {5,6,7}, we can define independencies for each of the eight connected subsets of T .
For instance, we have

1 ⊥⊥ 5,6,7; 1,2 ⊥⊥ 6,7|5; 1,2,3,4 ⊥⊥ 7|5,6.

The last independence is equivalent to the factorization p = p1234|56 · p56|7 · p7 of the joint
probability distribution according to the directed acyclic graph of the chain components. The
remaining five disconnected subsets of T imply the conditional independencies 1,2 ⊥⊥ 4|5,6,7
and 1 ⊥⊥ 3,4|5,6,7. Notice that when in a component there are two uncoupled nodes, then there
is a conditional independence given simply the common parents of the two nodes. For example,
in graph (c), we have not only 1 ⊥⊥ 3|5,6 but also 1 ⊥⊥ 3|5.

Remark 3. When each component T induces a complete subgraph GT and, for all subsets A

in T , the set of parents of A, paG(A), coincides with the set of the parent components of T ,
paD(T ), then the only conditional independence implied by the multivariate regression Markov
property is

A ⊥⊥ [pre(T ) \ paD(T )]|paD(T ) for all A ⊆ T , T ∈ T .

This condition is in turn equivalent just to the factorization (3) of the joint probability distribution.

Remark 4. In Definition 1, (MR2) is equivalent to imposing that for all T the conditional dis-
tribution pT |pre(T ) satisfies the independencies of a covariance graph model with respect to the
subgraph GT .

In [18], Proposition 3, it is shown that a covariance graph model is defined by constraining
to zero, in the multivariate logistic parametrization, the parameters corresponding to all discon-
nected subsets of the graph. In the following subsection we extend this approach to the multi-
variate regression chain graph models.

3. Recursive multivariate logistic regression models

3.1. Notation

Let X = (Xv | v ∈ V ) be a discrete random vector, where each variable Xv has a finite number rv
of levels. Thus X takes values in the set I = ∏

v∈V {1, . . . , rv} whose elements are the cells of the
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joint contingency table, denoted by i = (i1, . . . , id ). The first level of each variable is considered
a reference level and we consider also the set I � = ∏

v∈V {2, . . . , rv} of cells having all indices
different from the first. The elements of I � are denoted by i�.

The joint probability distribution of X is defined by the mass function

p(i) = P(Xv = iv, v = 1, . . . , d) for all i ∈ I,

or equivalently by the probability vector p = (p(i), i ∈ I). With three variables we shall use often
pijk instead of p(i1, i2, i3).

Given two disjoint subsets A and B of V , the marginal probability distribution of XB is
p(iB) = ∑

jB=iB p(j) where iB is a subvector of i belonging to the marginal contingency ta-
ble IB = ∏

v∈B{1, . . . , rv}. The conditional probability distributions are defined as usual and
denoted by p(iA|iB), for iA ∈ IA and iB ∈ IB or, compactly, by pA|B . When appropriate, we
define the set I �

B = ∏
v∈B{2, . . . , rv}.

A discrete multivariate regression chain graph model PMR(G) associated with the chain graph
G = (V ,E) is the set of strictly positive joint probability distributions p(i) for i ∈ I that obeys
the multivariate regression Markov property. By Theorem 1 this class coincides with the set
PIV(G) of discrete chain graph models of type IV.

In the next subsection we define an appropriate parametrization for each component of the
standard factorization

p(i) =
∏
T ∈T

p
(
iT |ipre(T )

)
(4)

of the joint probability distribution. Actually we define a saturated linear model for a suitable
transformation of the parameters of each conditional probability distribution p(iT |ipre(T )).

3.2. Multivariate logistic contrasts

The suggested link function is the multivariate logistic transformation; see [20], page 219, and
[13]. This link transforms the joint probability vector of the responses into a vector of logistic
contrasts defined for all the marginal distributions. The contrasts of interest are all sets of univari-
ate, bivariate and higher order contrasts. In general, a multivariate logistic contrast for a marginal
table pA is defined by the function

η(A)(i�A) =
∑
s⊆A

(−1)|A\s| logp(i�s ,1A\s) for i� ∈ I �
A, (5)

where the notation |A \ s| denotes the cardinality of set A \ s. The contrasts for a margin A are
denoted by η(A) and the full vector of the contrasts for all non-empty margins A ⊆ V are denoted
by η. The following example illustrates the transformation for two responses.

Example 2. Let pij , for i = 1,2, j = 1,2,3 be a joint bivariate distribution for two discrete vari-
ables X1 and X2. Then the multivariate logistic transform changes the vector p of probabilities,
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belonging to the 5-dimensional simplex, into the 5 × 1 vector

η =
(

η(1)

η(2)

η(12)

)
, where η(1) = log

p2+
p1+

,η(2) =
⎛
⎝ log

p+2

p+1

log
p+3

p+1

⎞
⎠ ,η(12) =

⎛
⎝ log

p11p22

p21p12

log
p11p23

p21p13

⎞
⎠ ,

where the + suffix indicates summing over the corresponding index. Thus, the parameters η(1)

and η(2) are marginal baseline logits for the variables X1 and X2, while η(12) is a vector of
log odds ratios. The definition used in this paper uses baseline coding, that is, the contrasts are
defined with respect to a reference level, by convention the first. Therefore the dimension of the
vectors η(1), η(2) and η(12) are the dimensions of the sets I �

1 , I �
2 and I �

12. Other coding schemes
can be adopted, as discussed, for instance, in [23] and [2].

Remark 5. This transformation for multivariate binary variables is discussed in [13], where it
is shown that the function from p to η is a smooth (C∞) one-to-one function having a smooth
inverse, that is, it is a diffeomorphism; see also [3]. For general discrete variables, see [18].
The parameters are not variation-independent, that is, they do not belong to a hyper-rectangle.
However, they satisfy the upward compatibility property, that is, they have the same meaning
across different marginal distributions; see [13] and [18], Proposition 4. Often the multivariate
logistic link is written as

η = C log(Mp), (6)

where C and M are suitable Kronecker products of contrast and marginalization matrices, re-
spectively. For the explicit construction of these matrices, see [2].

3.3. Saturated model

We specify the dependence of the responses in each component T on the variables in the past
by defining a saturated multivariate logistic model for the conditional probability distribution
pT |pre(T ). The full saturated model for the joint probability p then follows from the factoriza-
tion (4).

For each covariate class ipre(T ) ∈ Ipre(T ), let p(ipre(T )) be the vector with strictly positive com-
ponents p(iT |ipre(T )) > 0 for iT ∈ IT . Then consider the associated conditional multivariate lo-
gistic parameters η(ipre(T )) defined using the link function (6). Notice that this vector is composed
of contrasts η(A)(ipre(T )) for all non-empty subsets A of T . Then we express the dependence of
each of them on the variables in the preceding components by a complete factorial model

η(A)
(
ipre(T )

) =
∑

b⊆pre(T )

β
(A)
b (ib). (7)

Here the vectors β
(A)
b (ib) have dimensions of the sets I �

A, and are defined according to the base-
line coding, and thus vanish when at least one component of ib takes on the first level. Again,
here different codings may be used if appropriate. Often it is useful to express (7) in matrix form

η(A) = Z(A)β(A), (8)
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where η(A) is the column vector obtained by stacking all vectors η(A)(ipre(T )) for ipre(T ) ∈ Ipre(T ),
Z(A) is a full-rank design matrix and β(A) is a parameter vector.

Example 3. Suppose that in Example 2 the responses X1 and X2 depend on two binary explana-
tory variables X3 and X4, with levels indexed by k and �, respectively. Then the saturated model
is

η(A)(k, �) = β
(A)
∅

+ β
(A)
3 (k) + β

(A)
4 (�) + β

(A)
34 (k, �), k, � = 1,2,

for A = {1}, {2}, {12}. The explicit form of the matrix Z(A) in equation (8) is, using the Kronecker
product ⊗ operator,

Z(A) = I ⊗
(

1 0
1 1

)
⊗

(
1 0
1 1

)
,

that is, a matrix of a complete factorial design matrix, where I is an identity matrix of an order
equal to the common dimension of each η(A)(k, �). Following [20], page 222, we shall denote
the model, for the sake of brevity, by a multivariate model formula

X1 :X3 ∗ X4; X2 :X3 ∗ X4; X12 :X3 ∗ X4,

where X3 ∗X4 = X3 +X4 +X3 ·X4 is the factorial expansion in Wilkinson and Rogers’ symbolic
notation [25].

When we need to express the overall 1–1 smooth transformation of the conditional proba-
bility vectors p(ipre(T )), denoted collectively by pT , into the logistic and regression parameters
we introduce the vectors ηT and βT obtained by concatenating the parameters η(A) and β(A),
respectively, for all non-empty subsets A of T , writing

ηT = ZT βT , (9)

where ZT = diag(Z(A)) is a full rank block-diagonal matrix of the saturated model, and

CT log(MT pT ) = ηT , (10)

where CT and MT are suitable overall contrast and marginalization matrices.

4. Discrete multivariate regression chain graph models

4.1. Linear constraints

A multivariate regression chain graph model is specified by zero constraints on the parameters
βT of the saturated model (9). We give first an example and then we state the general result.
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Example 4. Continuing the previous example for the chain graph G of Figure 1(a), we shall
require that X1 depends only on X3 and X2 depends only on X4. Therefore, we specify the
model

η(1)(k, �) = β
(1)
∅

+ β
(1)
3 (k),

η(2)(k, �) = β
(2)
∅

+ β
(2)
4 (�),

η(12)(k, �) = β
(12)
∅

+ β
(12)
3 (k) + β

(12)
4 (�) + β

(12)
34 (k, �)

with a corresponding multivariate model formula

X1 :X3, X2 :X4, X12 :X3 ∗ X4.

The reduced model satisfies the two independencies 1 ⊥⊥ 4|3 and 2 ⊥⊥ 3|4 because the first two
equations are equivalent to p1|34 = p1|3 and p2|34 = p1|4, respectively. The log odds-ratio be-
tween X1 and X2, on the other hand, depends in general on all the combinations (k, �) of levels
of the two explanatory variables.

The following theorem, proved in the Appendix, states a general rule to parametrize any dis-
crete chain graph model of the multivariate regression type.

Theorem 2. Let G be a chain graph and let pre(T ) be a consistent ordering of the chain com-
ponents T ∈ T . A joint distribution of the discrete random vector X belongs to PMR(G) if and
only if, in the multivariate logistic model (7), the parameters β

(A)
b (ib) = 0, ib ∈ Ib , whenever

A is connected and b ⊆ pre(T ) \ paG(A), (11a)

A is disconnected and b ⊆ pre(T ) (11b)

for all A ⊆ T and for all T ∈ T .

Notice that equations (11a) and (11b) correspond to conditions (1a) and (1b), respectively, of
Definition 1. Thus the multivariate regression chain graph model turns out to be η(A)(ipre(T )) =∑

b⊆paG(A) β
(A)
b (ib) if A is connected and 0 if A is disconnected. In matrix form we have a linear

predictor

ηT = Zrβr , (12)

where Zr is the matrix of the reduced model obtained by removing selected columns of ZT , and
βr are the associated parameters.

The proof of Theorem 2 is based on a basic property of the regression parameters β
(A)
b (ib)

of model (7), that is, that they are identical to log-linear parameters defined in selected marginal
tables. Specifically, each β

(A)
b (ib) coincides with the vector of log-linear parameters λAB

Ab of order
A ∪ b in the marginal table A ∪ pre(T ). See Lemma 2 in the Appendix.

Theorem 2 shows also that the chain graph model PMR(G) is defined by a set of linear restric-
tions on a multivariate logistic parametrization and thus is a curved exponential family.
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Example 5. From Theorem 2, the chain graph model of Figure 1(b) is defined by the equations

η(1)(k, l) = β
(1)
φ + β

(1)
4 (k), η(2)(k, l) = β

(2)
φ , η(3)(k, l) = β

(3)
φ + β

(3)
5 (l),

η(12)(k, l) = β
(12)
φ + β

(12)
4 (k), η(13)(k, l) = 0, η(23)(k, l) = β

(23)
φ + β

(23)
5 (l),

η(123)(k, l) = β
(123)
φ + β

(123)
4 (k) + β

(123)
5 (l) + β

(123)
45 (k, l)

and by the multivariate logistic model formula

X1 :X4, X2 : 1, X3 :X5, X12 :X4, X13 : 0, X23 :X5, X123 :X4 ∗ X5.

Notice that the marginal logit of X2 does not depend on the variables X4,X5. This is denoted
by X2 : 1. On the other hand, the missing edge (1,3) with associated independence 1 ⊥⊥ 3|4,5
implies that the bivariate logit between X1 and X3 is zero, denoted by model formula X13 : 0. The
above equations reflect exactly the independence structure encoded by the multivariate regression
Markov property but leave a complete free model for the three-variable logistic parameter η(123).

Table 1 lists the parameters (and their log-linear interpretations) of the saturated model. The
non-vanishing parameters of the chain graph model are in boldface. The shaded portion of the
table indicates the interactions of an order higher than two. Therefore, the chain graph model
contains seven parameters in the shaded area that have a more complex interpretation and that
are not strictly needed to define the independence structure. This leads us to consider, as a starting
model, a multivariate logistic regression model with no parameters of log-linear order higher than
two and then use a backward selection strategy to test for the independencies. Some adjustment
of the procedure is needed to include selected higher order interactions when needed. Notice also
that the parameters in Table 1 form a marginal log-linear parametrization in the sense of Bergsma
and Rudas [3], a result that can be proved for any discrete multivariate regression chain model.
For an example see [19].

Table 1. Marginal log-linear parameters of the saturated model for a discrete multi-
variate logistic model with three responses and two explanatory variables. Each row
lists log-linear parameters defined within a marginal table indicated in the last column.
The non-zero terms of the chain graph model of Example 5 are shown in boldface. The
shaded part of the table collects the interactions of an order higher than two

Logit Parameters Margin

Const. 4 5 45

1 1 14 15 145 145
2 2 24 25 245 245
3 3 34 35 345 345

12 12 124 125 1245 1245
13 13 134 135 1345 1345
23 23 234 235 2345 2345

123 123 1234 1235 12345 12345
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A parallel multivariate logistic parametrization for the model PIV(G) can be obtained from
Definition 2 and the associated characterization in terms of densities of Lemma 1 in the Ap-
pendix. In this case, using the factorization (3), the multivariate logistic models can be defined
in the lower-dimensional conditional distributions pT |paD(T ). Therefore we state the following
corollary.

Corollary 1. The joint probability distribution of the random vector X belongs to PIV(G) if and
only if it factorizes according to equation (3), and for each conditional distribution p(iT |ipaD(T )),
for T ∈ T , the multivariate logistic parameters are

η(A)
(
ipaD(T )

) =
⎧⎨
⎩

∑
b⊆paG(A)

β
(A)
b (ib) for all connected A ⊆ T ,

0 for all disconnected A ⊆ T .
(13)

In the class of models defined in Remark 3, corresponding exactly to the factorization (3), all
the independencies are obtained by setting paG(A) = paD(T ) for all A ⊆ T in equation (11a).

4.2. Likelihood inference

The estimation of discrete multivariate regression chain models can be carried out by fitting
separate multivariate logistic regression models to each factor pT |pre(T ) of the decomposition
(4). Specifically, given a block T of responses and the group of covariates pre(T ), we consider
the table of frequencies Yk for each covariate class k, where k = 1, . . . ,K is an index numbering
the cells of the marginal table Ipre(T ). Then we assume that each Yk ∼ M(nk,pk) is multinomial
with pk = p(ipre(T )). Given K independent observations (Y1, n1), . . . , (YK,nK) the vector Y =
vec(Y1, . . . ,YK) has a product-multinomial distribution and the log-likelihood is

l(ω) = yT ω − 1T exp(ω), (14)

where ω = logE(Y) = logμ and CT log(MT μ) = Zrβr , from (12). The maximization of this
likelihood under the above linear constraints has been discussed by several authors; see [2,3,13,
15], among others.

Example 6. We give a simple illustration based on an application to data from the US General
Social Survey [7], for years 1972–2006. The data are collected on 13 067 individuals on 5 vari-
ables. There are three binary responses concerning individual opinions (1 = favor, 2 = oppose)
on legal abortion if pregnant as a result of rape, A; on death penalty for those convicted of mur-
der, C; and on the introduction of police permits for buying guns, G. The potentially explanatory
variables considered are J , job satisfaction (with three levels: 1 = very satisfied, 2 = moderately
satisfied, 3 = a little or very dissatisfied), and S, gender (1 = male, 2 = female). We can interpret
responses G and C as indicators of the attitude towards individual safety, while C and A are
indicators of the concern for the value of human life, even in extreme situations.

The two explanatory variables turned out to be independent (with a likelihood ratio test sta-
tistic of w = 0.79, 1 d.f.). Hence, we concentrate on the model for the conditional distribution
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Table 2. Multivariate regression chain graph model selection for GSS data. Model (1) is the pure inde-
pendence model of Figure 3 for pGCA|JS . Models (2)–(7) are fitted during the suggested model selection
procedure. On the right are the fitted parameters for the best selected model

Model for pGCA|JS Deviance d.f. Logit Const. Jmdr Jfull Sf

(1) G ⊥⊥ A|J,S and G ⊥⊥ J |S 12.84 10 G 0.766 0.766
(2) No 5-factor interaction 0.49 2 C 1.051 0.150 0.257 −0.458
(3) + no 4-factor interactions 5.59 11 A 1.826 −0.033 −0.245 −0.172
(4) + no 3-factor interactions 30.16 27 GC −0.303
(6) + Delete edge GA 33.38 28 CA 0.557
(7) + Delete edge GJ 34.25 30

pGCA|JS . Here the saturated model (9) has 42 parameters and the structure of the parameters
is that of Table 1, with the only modification of the dimensions of the interaction parameters
involving the factor J , with three levels. We describe a hierarchical backward selection strategy.
For this, we examine first the sequence of models obtained by successively removing the higher
order interactions; see Table 1. Then we drop some of the remaining terms to fit independencies.

The results are shown in Table 2. The model with no interactions of an order higher than
three has a deviance of 30.16 with 27 degrees of freedom adequate. From the edge exclusion
deviances, we verify that we can remove the edges GA (w = 33.38 − 30.16 = 3.22, 1 d.f.) and
GJ (w = 34.25 − 33.38 = 0.87, 2 d.f.). The final multivariate regression chain graph model,
as shown in Figure 3(a), has a combined deviance of 34.25 + 0.79 = 35.04 on 32 degrees of
freedom.

Notice that the model includes independence and non-independence constraints, the latter fol-
lowing our preference for a model with all interpretable parameters. The chain graph model
corresponding exactly to the implied independencies has far more parameters, with a deviance
of 12.84 + 0.79 = 13.63 against 12 degrees of freedom. While this model is adequate, the cho-
sen model has a simpler interpretation. The fitted parameters are shown in Table 2 on the right.
The first three rows give the parameters of three univariate logit regressions for being in favor of
the issue. Jmdr, Jfull measure the effect of moderate and full job satisfaction, respectively, with
respect to a baseline level of no satisfaction, and Sf is the effect of females. Thus the effect

Figure 3. (a) The multivariate regression chain graph model fitted to GSS data (Deviance = 13.63,
d.f. = 12). The final fitted model including further non-independence constraints has a Deviance = 35.04
on 32 d.f. (b) the best fitting LWF chain graph model (Deviance = 12.81, d.f. = 18).
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of increased job satisfaction whatever the gender, is to increase the probability of being in fa-
vor of capital punishment and against abortion. Women are more favorable than males toward
gun regulation and are more against the death penalty and abortion, all things being equal. The
negative residual association between G and C and the positive one between C and A having
accounted for gender and job satisfaction are as expected. As a comparison, in this example,
a best-fitting classical chain graph model with LWF interpretation has one additional edge, as
shown in Figure 3. The multivariate regression chain graph has a simpler interpretation in terms
of three additive logistic regressions and two residual associations interpretable as deriving from
two latent variables.

Appendix: Proofs

We shall assume for the joint distribution the existence of a density with respect to a product
measure. Proofs using only basic properties of conditional independence can also be given, but
are omitted for brevity.

Lemma 1. The block-recursive Markov property of type IV is equivalent to the following three
statements: for all T ∈ T

pT |pre(T ) = pT |paD(T ), (15a)

pA|paD(T ) = pA|paG(A) for all connected A ⊆ T , (15b)

pA|paD(T ) =
∏
j

pAj |paD(T ) for all disconnected A ⊆ T , (15c)

where Aj , j = 1, . . . , r , are the connected components of A, if disconnected.

Proof. Condition (IV0) states that the joint probability distribution obeys the local directed
Markov property relative to the directed graph D of the chain components. Then, using the
equivalence of the local and well-ordered local Markov property in directed graphs applied to
the graph of the components as discussed in [9], Appendix A, (IV0) turns out to be equivalent to
(15a) for any ordering of the components consistent with the chain graph. Moreover, condition
(IV2) has been proved by [11] to be equivalent to the joint independence (15c). Statement (IV1)
implies (15b) but it can be restricted to connected subsets A because, for disconnected subsets,
it follows from (15c) and from (15b) restricted to connected sets. If A is disconnected, (15c)
implies

pA|paD(T ) =
∏
j

pAj |paD(T ) =
∏
j

pAj |paG(Aj ) =
∏
j

pAj |paG(A) (16)

by applying (15b) to the connected sets Aj and noting that paG(Aj ) ⊆ paG(A). Therefore,
pA|paD(T ) = pA|paG(A) and equation (IV1) follows. �
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Then we are ready to prove that the multivariate regression Markov property is equivalent to
the above block-recursive Markov property.

Proof of Theorem 1. We establish the equivalence of (1a) and (1b) with (15a), (15b) and (15c)
of Lemma 1.

(Definition 1 implies Definition 2.) Equation (1a) implies pA|pre(T ) = pA|paD(T ) for all con-
nected A because paG(A) ⊆ paD(T ). Thus (1a) implies (15b) and (15a) for A = T , because any
GT is connected, by definition. Thus, if A is disconnected, (1b) gives

pA|pre(T ) =
∏
j

pAj |pre(T ) =
∏
j

pAj |paD(T ) = pA|paD(A)

and (15c) follows.
(Definition 2 implies Definition 1.) Statement (15a) implies, for A ⊆ T , that pA|pre(T ) =

pA|paD(T ). Thus for all connected A, (15b) implies pA|pre(T ) = pA|paG(A), i.e., (1a). Moreover, if
A ⊆ T is disconnected, (15c) implies

pA|pre(T ) = pA|paD(T ) =
∏
j

pAj |paD(T ) =
∏
j

pAj |preD(T ),

that is, (1b). �

Given a subvector XM of the given random vector X, the log-linear expansion of its marginal
probability distribution pM is

logpM(iM) =
∑
s⊆M

λM
s (is), (17)

where λM
s (is) defines the ‘interaction’ parameters of order |s| in the baseline parametrization,

that is, with the implicit constraint that the function returns zero whenever at least one of the
indices in is takes the first level.

Lemma 2. If η(A)(i�A|ipre(T )) is the multivariate logistic contrast of the conditional probability
distribution pA|pre(T ) for A subset of T , then, with B = pre(T ),

η(A)(i�A|iB) =
∑
b⊆B

λAB
Ab (i�A, ib), (18)

where λAB
Ab (i�A, ib) are the log-linear interaction parameters of order A∪ b in the marginal prob-

ability distribution pAB .

Proof. First note that the multivariate logistic contrasts η(A|B)(i�A|iB) can be written

η(A|B)(i�A|iB) =
∑
s⊆A

(−1)|A\s| logpAB(i�s , iB,1A\s). (19)
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Then we express the logarithm of the joint probabilities pAB as the sum of log-linear interactions
using (17),

logpAB(i�s , iB,1A\s) =
∑
a⊆A

∑
b⊆B

λAB
ab (i�a∩s ,1a\s , ib) =

∑
a⊆s

∑
b⊆B

λAB
ab (i�a, ib).

Therefore, by substitution into equation (19) we get

ηA|B(i�A|iB) =
∑
s⊆A

(−1)|A\s| ∑
a⊆s

∑
b⊆B

λAB
ab (i�a, ib)

=
∑
b⊆B

∑
s⊆A

(−1)|A\s| ∑
a⊆s

λAB
ab (i�a, ib) =

∑
b⊆B

λAB
Ab (i�A, ib),

where the last equality is obtained using a Möbius inversion; see [16], Lemma A.2, page 239.
�

Lemma 2 is used in the proof of Theorem 2 given below.

Proof of Theorem 2. If (11a) holds for any chain component T , then for any connected set
A ⊆ T , η(A)(ipre(T )) is a function of ipaG(T ) only. Therefore, using the diffeomorphism and the
property of upward compatibility discussed in Remark 5, the conditional distribution pA|pre(T )

coincides with pA|paG(A) and condition (MR1) holds.
Conversely, if condition (MR1) holds and pA|pre(T ) = pA|paG(A), for all connected subsets A

of T , then the components of η(A)(ipre(T )) are

η(A)
(
i�A|ipre(T )

) =
∑
s⊆A

(−1)|A\s| logp
(
i�s ,1A\s | ipaG(T )

)

=
∑
b⊆B

λAB
Ab (i�A, ib), with B = paG(T )

by Lemma 2, and thus (11a) holds with β
(A)
b (ib) = λAB

Ab (ib), where λAB
Ab (ib) denotes the vector

of log-linear parameters λAB
Ab (i�A, ib) for all i�A ∈ I �

A.
Condition (MR2) of Definition 1 is equivalent to imposing that, for any chain component T ,

the conditional distribution pT |pre(T ) satisfies the independence model of a covariance subgraph
GT . In [14] and [18] it is proved that, given a joint distribution pT , a covariance graph model
is satisfied if and only if, in the multivariate logistic parameterization ηT , η(A) = 0 for all dis-
connected sets A ⊆ T . Therefore, extending this result to the conditional distribution pT |pre(T )

and considering the diffeomorphism (7), condition (MR2) holds if and only if η(A)(iB) = 0 for
every disconnected set A ⊆ T . Following the factorial model (7), β

(A)
b (ib) = 0 with b ⊆ pre(T )

for each disconnected subset A of T . Notice that, by Lemma 2, β
(A)
b (ib) = λAB

Ab (ib) = 0, with
b ⊆ pre(T ). �
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