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Chain integral solutions to

tautological systems

An Huang, Bong H. Lian, Shing-Tung Yau, and Xinwen Zhu

We give a new geometrical interpretation of the local analytic so-
lutions to a differential system, which we call a tautological sys-
tem τ , arising from the universal family of Calabi-Yau hypersur-
faces Ya in a G-variety X of dimension n. First, we construct
a natural topological correspondence between relative cycles in
Hn(X − Ya,∪D − Ya) bounded by the union of G-invariant divi-
sors ∪D in X to the solution sheaf of τ , in the form of chain inte-
grals. Applying this to a toric variety with torus action, we show
that in addition to the period integrals over cycles in Ya, the new
chain integrals generate the full solution sheaf of a GKZ system.
This extends an earlier result for hypersurfaces in a projective ho-
mogeneous variety, whereby the chains are cycles [3, 7]. In light of
this result, the mixed Hodge structure of the solution sheaf is now
seen as the MHS of Hn(X − Ya,∪D − Ya). In addition, we general-
ize the result on chain integral solutions to the case of general type
hypersurfaces. This chain integral correspondence can also be seen
as the Riemann-Hilbert correspondence in one homological degree.
Finally, we consider interesting cases in which the chain integral
correspondence possibly fails to be bijective.

1. Introduction

Throughout this paper, we shall follow closely the notations introduced in
[7]. Let G be a connected algebraic group over a field k of characteristic
zero. Let X be a projective G-variety of dimension n, and let L be a very
ampleG-linearized invertible sheaf overX which gives rise to aG-equivariant
embedding

X → P(V ),

where V = Γ(X,L)∨. Let r = dimV . We assume that the action of G on
X is locally effective, i.e. ker(G → Aut(X)) is finite. Let Gm be the mul-
tiplicative group acting on V by homotheties. Let Ĝ = G×Gm, whose Lie
algebra is ĝ = g⊕ ke, where e acts on V by identity. We denote by Z : Ĝ →
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GL(V ) the corresponding group representation, and Z : ĝ → End(V ) the
corresponding Lie algebra representation. Note that under our assumptions,
Z : ĝ → End(V ) is injective.

Let ı̂ : X̂ ⊂ V be the cone of X, defined by the ideal I(X̂). Let β : ĝ → k
be a Lie algebra homomorphism. Then a tautological system as defined in
[12][13] is a cyclic D-module on V ∨ given by

τ ≡ τ(G,X,L, β) = DV ∨/(DV ∨J(X̂) +DV ∨(Z(ξ) + β(ξ), ξ ∈ ĝ)),

where DV ∨ is the ring of polynomial differential operators on V ∨,

J(X̂) = {D̂ | D ∈ I(X̂)}

is the ideal of the commutative subalgebra C[∂] ⊂ DV ∨ obtained by the
Fourier transform of I(X̂) (see [7, §A] for the review on the Fourier trans-
form).

Given a basis {ai} of V , we have Z(ξ) =
∑

ij ξijai∂aj
, where (ξij) is the

matrix representing ξ in the basis. Since the ai are also linear coordinates
on V ∨, we can view Z(ξ) ∈ Derk[V ∨] ⊂ DV ∨ . In particular, the identity
operator Z(e) ∈ EndV becomes the Euler vector field on V ∨.

We briefly recall the main geometrical context that motivates our study
of tautological systems. Let X ′ be a compact complex manifold (not nec-
essarily algebraic), such that the complete linear system of anticanonical
divisors in X ′ is base point free. Let π : Y → B := Γ(X ′, ω−1

X′ )sm be the uni-
versal family of smooth CY hyperplane sections Ya ⊂ X ′, and let Htop be the
Hodge bundle over B whose fiber at a ∈ B is the line Γ(Ya, ωYa

) ⊂ Hn−1(Ya),
where n = dimX ′. In [13], the period integrals of this family are constructed
by giving a canonical trivialization of Htop. Let Π = Π(X ′) be the period
sheaf of this family, i.e. the locally constant sheaf generated by the period
integrals (Definition 1.1 [13].)

Integral solutions to holonomic differential systems go back to the classi-
cal theory of the Gauss hypergeometric equation in the form of the so-called
Euler integrals. Many generalizations have since been found over the cen-
turies. One notable class was the vast generalizations given by the celebrated
GKZ hypergeometric systems [1, 5] associated to algebraic tori and their
rational modules. Euler type integral solutions to these systems have been
constructed, and are integrals of multivalued meromorphic differential forms
over ‘formal cycles’, namely they are homology classes on the complement of
an affine hypersurface in an algebraic torus with coefficient in a local system.
This construction has also been generalized later to hypergeometric systems
associated to reductive algebraic groups and their rational modules [9].
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On the other hand, in recent decades period integrals of projective vari-
eties have become central to the study of mirror symmetry and Hodge theory.
As it is well-known, for the universal family of CY hypersurfaces in a given
toric variety X, the GKZ system τ whose solutions include period integrals
of the family, is never complete in the sense that its solution sheaf is always
strictly larger than the period sheaf. While the latter is by construction
geometrical in nature, physicists have conjectured that the larger solution
sheaf too has a purely geometrical origin. In fact, they have shown in some
examples that the solutions to τ in this case are integrals over topological
chains with certain boundary conditions [2], and they call these solutions
‘semi-periods’ of the CY family. In addition, period integrals over relative
cycles have also arisen in another context in mirror symmetry, namely in
the theory of open string theory [8, 10]. Here the relative cycles are chains
bounded by certain distinguished algebraic curves (or ‘D-branes’) in a CY
threefold (see [11] and for details), and they are the basic ingredients for
enumerating open Gromov-Witten invariants in this setting.

In this paper, we show that the so-called semi-periods in physics are
nothing but integrals over relative cycles with boundary on the G-invariant
canonical divisor, and we do so for CY hyperplane sections in a general G-
variety X. We also extend this result to general type hyperplane sections.
In addition, we show that the chain integrals we have constructed do in
fact exhaust all solutions when X is a toric variety. Therefore, these chain
integrals may also be viewed as a geometrical realization of the solutions to
a GKZ system, as periods associated to relative cycles for families of alge-
braic varieties. We note that the chain integrals are defined here for families
of projective varieties, and are therefore à priori different from the Euler
type integrals in the GKZ theory, since the two are integrals over classes in
different homology groups. But since both types of integrals solve the same
differential system in the case in question, it would be very interesting to
find a direct correspondence between the two constructions. This will be
deferred to a future investigation.

We now return to the main geometrical set up of this paper. We shall
assume that X is an n-dimensional finite-orbit Fano smooth G-variety. We
denote by ∪D the union of all G-invariant divisors in X (which may be
empty). Let V = Γ(X,ω−1

X )∨, and we identify X with the image of the nat-
ural map X → P(V ), and put L = OX(1). We shall consider the tautological
system τ = τ(X,G,L, β) in two important settings:

(1) L = ω−1
X , and β = β0, where β0(g) := 0 and β0(e) := 1, as in the setting

of CY hyperplane sections above; and more generally
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(2) L is any very ample line bundle such that L ⊗ ωX is base point free,
and β = β0. This case corresponds to hyperplane sections of general
type.

Some of the results on toric varieties also hold under much weaker conditions.
Put

DX,β = (DX ⊗ kβ)⊗Ug k,

(where Ug is the universal enveloping algebra of g) which is a DX -module.
Here we treat β ≡ β|g, and kβ is the 1-dimensional g-module given by the
character β (see [7, §A] for details on notations). This D-module will play
an important role throughout the paper.

Here is a brief outline. We begin in §2 with the construction of the ‘chain
integral map’, between relative cycles in Hn(Ua, Ua ∩ (∪D)) and local ana-
lytic solutions at an arbitrary point a ∈ V ∨ to τ . Here Ua := X − Ya. The
rest of the paper is then devoted to studying this correspondence. Corol-
lary 3.6 shows that the chain integral map is bijective when X is a toric
variety and τ is a GKZ system (i.e. the symmetry group is chosen to be
the torus.) Corollary 3.8 proves an analogous result for general type hyper-
plane sections. Our main tool here is a new description, Proposition 3.1, of
the D-module DX,β , together with a previous description of τ given by the
Riemann-Hilbert correspondence [7]. In §4, we consider cases in which the
chain integral map may fail to be bijective, and give a description of the
kernel and cokernel of the map.

2. Chain integral solutions to τ

Recall that

V = Γ(X,L)∨,

and we first consider the case L = ω−1
X . Let ai denote a basis of V , a∨i the

dual basis, and let f ≡
∑

i a
∨
i ai : X × V ∨ → L be the universal section of

L, and fa be the specialization of f at a ∈ V . We begin with the following
observation on the universal family of CY hyperplane sections in X.

Proposition 2.1. For any relative cycle C ∈ Hn(Ua, Ua ∩ (∪D)), the chain
integral

∫
C

Ω
fa

is a solution to τ .

Proof. The proof will essentially be the same as in [13, Thm. 8.8] in the case
CY hypersurfaces, except for one crucial difference. Here C plays the role
of a cycle Γ ∈ Hn(Ua,C) there, which was automatically G0-invariant (G0
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is the connected component of G), a fact used in [13] to argue that
∫
Γ

Ω
fa

is G0-invariant. In order to complete the proof here, it suffices to show the
analogous statement that

∫
C

Ω
fa

is G0-invariant (although C itself need not
be so!)

By assumption, C is an n-chain in Ua bounded by the G0-invariant
divisor ∪D. Let x ∈ Lie(G). For small ε > 0, consider the chains

Cε = {etxc|c ∈ C, t ∈ [0, ε]}, C ′
ε = {etxc|c ∈ ∂C, t ∈ [0, ε]}.

(Here we have abuse notations slightly by representing a chain by its image
set in X, but its meaning as a chain should be clear in this context.) Then
C ′ is an (n+ 1)-chain with

∂Cε = eεxC − C + C ′
ε.

Obviously,
∫
∂Cε

Ω
fa

= 0. Since Ω/fa is a holomorphic in Ua, its restriction

to any divisor of X is zero. In particular, since C ′
ε ⊂ ∪D , it follows that∫

C′

ε

Ω
fa

= 0 as well. Thus we conclude that

∫

eεxC

Ω

fa
=

∫

C

Ω

fa

proving that the right side is G0-invariant.
The rest of the proof is the same as in [13, Thm. 8.8]. �

This shows that in general, we have a canonical ‘chain integral’ map

(2.1) Hn(Ua, Ua ∩ (∪D)) → HomDV ∨
(τ,Oan

V ∨)a, C 
→

∫

C

Ω

fa

Note that this map extends the so-called cycle-to-period map [13][7]:

Hn(Ua,C) 
→ HomDV ∨
(τ,Oan

V ∨)a, Γ 
→

∫

Γ

Ω

fa
.

In other words, the cycle-to-period map factors through the natural map

Hn(Ua,C) → Hn(Ua, Ua ∩ (∪D))

and the chain integral map.

Question 2.2. When is the chain integral map (2.1) is an isomorphism?
More generally, when is the same true for general type hyperplane sections?
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Two of our main results, 3.6 and 3.8, will show that the answer is affir-
mative when X is a toric variety, i.e. τ is a GKZ system. One of the results
in [7] shows the same is true for any projective homogeneous G-varieties as
well (where ∪D is empty). We will also discuss cases, including some exam-
ples, in which the isomorphism possibly fails, and describe the kernel and
cokernel of the chain integral map in these cases.

3. Chain integral solutions to GKZ systems

We shall now work over the ground field k = C. Put T = Gn
m, let X be an

n-dimensional smooth projective toric variety with respect to G = T , and
fix a very ample line bundle L over X. Note that in this setup, τ becomes a
GKZ hypergeometric system [5].

Recall that in the present setting, the union ∪D of all T -invariant divi-
sors in X is the anticanonical divisor of X. Let i∪D, j∪D ≡ j be respectively
the closed and open embeddings of ∪D,X − ∪D into X. Let D be an irre-
ducible component of ∪D, and iD, jD be respectively the closed and open
embeddings of D,X −D into X.

Our next result will be formulated for an arbitrary smooth toric variety
X, possibly incomplete. We shall need to apply it to affine toric varieties in
order to prove the main Theorem 3.5. Let X be an n-dimensional smooth
toric variety, with the T = Gn

m action. Let Σ ⊂ Rn be the fan associated to
X, and {vi} ⊂ N = Zn be the integral generators of the 1-cones of Σ. We
say that α ∈ N∨

R
has property (*) if

(∗) α(vi) �= 0,−1,−2, . . . for every vi.

(Note that this is slightly different from the semi-nonresonance condition in
[1, 5].)

Proposition 3.1. Assume that X is smooth, and α has property (*). Then

DX,α := (DX ⊗ Cα)⊗Ut C ≃ j+Lα

where j : X̊ ≡ X − ∪D → X is the open embedding of the open dense T -
orbit, and Lα := (DX̊ ⊗ Cα)⊗Ut C = j!DX,α, where t := Lie(T ).

Remark 3.1. Note that Lα is a rank one local system on X̊. Under an
identification X̊ ≃ T , it is a character D-module on T , see (A.5) of [7],
usually called a Kummer local system.
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This proposition follows from

Lemma 3.2. Let i : D = Di ⊂ X → X be a boundary divisor, correspond-
ing to some vi. If α(vi) �= 0,−1,−2, . . ., then i!DX,α = 0.

Proof. By covering X by affine open toric subvarieties, we can assume that
X ≃ Ar ×Gs

m with coordinates {z1, . . . , zr, zr+1, . . . , zr+s}, n = r + s, and
that D = {0} × Ar−1 ×Gs

m is given by z1 = 0. Then

DX,α = DX/

n∑

i=1

DX(zi∂i + αi),

where αi = α(e′i), and a basis {e′i} of t acts on the affine toric variety X as
zi∂i. By the assumption, α1 �= 0,−1,−2, . . . , (and α2, . . . , αr+s are irrelevant
in this local argument.)

Then by [4, Thm. 7.4, p256], we have Hji!DDX,α = 0 for j �= 0, 1
(codimD = 1). Moreover,

H0i!DDX,α = ω−1
D/X ⊗OD

JDX,α , where JDX,α := {m ∈ DX,α|z1m = 0}

H1i!DDX,α = DX/

(
n∑

i=1

DX(zi∂i + αi) + z1DX

)
.

Therefore 0 = z1∂1 + α1 = α1 in H1i!DDX,α, and H1i!DDX,α = 0.
Next we show that JDX,α = 0. Let m ∈ DX,α with z1m = 0. Then

z1m = h1(z1∂1 + α1) + · · ·+ hn(zn∂n + αn)

for some hi ∈ DX . For the first factor z1, we shall use the usual normal form∑
u pu(z1)∂

u
1 ∈ k[z1]k[∂1] of a differential operator to represent an element

of the Weyl algebra DA1 . Then we can write uniquely

(3.1) hi = z1gi + ri, i = 1, . . . , n

where gi ∈ DX and summands in the normal form of ri do not involve z1.
We get

z1(m− g1(z1∂1 + α1)− · · · − gn(zn∂n + αn)− r1∂1)(3.2)

= [r1, z1]∂1 + α1r1 + r2(z2∂2 + α2) + · · ·+ rn(zn∂n + αn).
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Observe that the normal form of the right side does not involve z1. Thus
both sides are zero, and we get

(3.3) m− g1(z1∂1 + α1)− · · · − gn(zn∂n + αn)− r1∂1 = 0

and

(3.4) [r1, z1]∂1 + α1r1 + r2(z2∂2 + α2) + · · ·+ rn(zn∂n + αn) = 0

The normal form of r1 is expressed in the following finite sum

(3.5) r1 =
∑

j≥0

sj∂
j
1

where (the normal form of) sj involves neither z1 nor ∂1. Then (3.4) becomes

(3.6) −
∑

j≥0

(α1 + j)sj∂
j
1 = r2(z2∂2 + α2) + · · ·+ rn(zn∂n + αn).

Now writing each ri in the normal form, i.e. as a sum of powers of ∂1, and
noting that ∂1 commutes with z2∂2, . . . , zn∂n, it follows that the right side
can be written uniquely in the form

∑
j s

′
j∂

j
1 where s

′
j ∈

∑n
i=2DX(zi∂i + αi).

Given our assumptions on α1, (3.6) implies that for each j ≥ 0,

sj = −s′j/(α1 + j) ∈
n∑

i=2

DX(zi∂i + αi).

By (3.5), we get r1 ∈
∑n

i=2DX(zi∂i + αi), hence r1∂1 ∈
∑n

i=2DX(zi∂i +
αi). Finally, by (3.3), we have m ∈

∑n
i=1DX(zi∂i + αi), and thus m ≡ 0

in DX,α. So JDX,α = 0 and H0i!DDX,α = 0. �

We now return to the special case with β = β0.

Corollary 3.3. DX,β0
≃ j!j

!DX,β0
.

Proof. Since β = β0, β(t) = 0. Since X is a smooth toric variety X, we can
cover it by affine open toric subvarieties of the Ar ×Gs

m corresponding to
the cones in the fan of X. Since it suffices to show that the isomorphism
holds on each such open set, we may as well assume that X itself is an affine
toric variety of this form, with the torus T = Gn

m acting on X by scaling.
Put α(ei) = −β(ei) + 1, where {ei} is the standard basis of t ≡ kn. Then α
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satisfies condition (*). We can now apply Proposition 3.1 on the affine toric
variety X and get

DX,α = j+Lα.

Now, Verdier duality D exchanges the toric characters α and β: one can check
this on each A1 with coordinate x, where DDA1,λ is, up to an appropriate

shift of degree, calculated by applying HomD
A1
(., D̃A1) to the resolution

DA1

x∂+λ
−−−−→ DA1

,

where D̃A1 is the dualizing D-module as defined in [4]. One verifies that

HomD
A1
(DA1 , D̃A1) ≃ DA1 as left DA1-modules, via the map φ → φ(1)(dx),

and checks that φ(x∂ + λ)(dx) = −φ(1)(dx)(x∂ − λ+ 1), then the conclu-
sion follows. Note that Dj+D = j!, thus taking Verdier dual yields DX,β ≃
j!Lβ . �

Next, we proceed to proving Theorem 3.5. Following [7], we set Ua :=
X − Ya (Ya ≡ V (fa)) and F := Sol(DX,β). Restricting Corollary 3.3 to Ua,
taking Sol, and noting that Solf! ≃ f∗Sol, Solf

! ≃ f∗Sol for any morphism
f and that DX,β |X−∪D ≃ OX−∪D, we have

(3.7) F|Ua
≃ j∪D,∗F|Ua−∪D ≃ j∪D,∗C|Ua−∪D[n].

Lemma 3.4. Denote p : Ua → pt. Then Rnp!j∗C|Ua−∪D is the relative ho-
mology Hn(Ua, Ua ∩ (∪D)).

Proof. Let Y be a variety and ωY be the dualizing sheaf in constructive set-
ting, so for Y smooth, ωY = C[2 dimY ], the 1-term complex with the con-
stant sheaf in degree −2 dimY . Then Hk(Y ) = H−k

c (ωY ) (compactly sup-
ported cohomology). Now if i : Z ⊂ Y is a closed subset and let j : Y − Z →
Y be the complement, then we have

i!ωZ → ωY → Rj∗ωY−Z →

So H−k
c (Rj∗ωY−Z) = Hk(Y, Z). Note that in our setting, Y = Ua is smooth,

Z = Ua ∩ (∪D), and j is an affine embedding. So

Rnp!j∗C|Ua−∪D = H−n
c (j∗C|Ua−∪D[2n]) = Hn(Ua, Ua ∩ (∪D)).

�

Now combining (3.7), and Lemma 3.4, we conclude the proof of our main
result for L = ω−1

X and β = β0:
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Theorem 3.5. For any a ∈ V ∨, we have canonical isomorphisms

H0
c (Ua,F|Ua

) ≃ Hn(Ua, Ua ∩ (∪D)).

Combining the above theorem with [7, Thm. 1.7], we obtain

Corollary 3.6. (Chain integral solutions) For any a ∈ V ∨, we have canon-
ical isomorphisms

HomDV ∨
(τ,Oan

V ∨)a ≃ H0
c (Ua,F|Ua

) ≃ Hn(Ua, Ua ∩ (∪D)).

This gives a new topological description of the classical solution space
of the GKZ system τ in terms chains in the complements Ua = X − Ya that
are bounded by the canonical divisor ∪D.

We note that the composition of the isomorphisms [7]

(3.8) Hn(Ua, Ua ∩ (∪D))
∼
→H0

c (Ua,F|Ua
)
∼
→HomDV ∨

(H0π∨
+N ,Oan

V ∨)a

is given by C 
→ (∗ 
→ 〈C, ∗〉), for C ∈ Hn(Ua, Ua ∩ (∪D)), where

π∨
+N = Ω•

U/V ∨ ⊗ (OV ∨ �DX,β)[dimX]|U

and 〈C, ∗〉 is the pairing between the chain C with top forms.
Composing this with the isomorphism

(3.9) τ ≃ H0π∨
+N , 1 
→

Ω

f

we have get the isomorphism

(3.10) Hn(Ua, Ua ∩ ∪D) → HomDV ∨
(τ,Oan

V ∨)a, C 
→

〈
C, ∗

Ω

f

〉

a

.

In particular, the chain C corresponds to the function germ
〈
C, Ωf

〉
a
as a

local solution to τ at a. Therefore, the theorem shows that the space of local
solution germs of τ at a is exactly given by the chain integrals

∫
C

Ω
fa
.

Corollary 3.7. For generic a, dimHn(Ua, Ua ∩ (∪D)) is equal to the vol-
ume of the polytope generated by the exponents of Laurent monomial basis
xμ of V ∨ = Γ(X,ω−1

X ).

Proof. Since the t-character β is a semi-nonresonant, the generic rank of the
solution sheaf of τ is given by the volume of the polytope in question [1, 5].
Now the corollary follows from corollary (3.6). �
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Remark 3.2.

• Corollary 3.6 gives a topological interpretation of the GKZ’s combi-
natorial volume formula for generic a for generic rank of τ [1, 5] on
the one hand, but it holds for all a on the other hand. The equation
can also be viewed as the toric analogue of the statement that for any
projective homogeneous variety X [7]

H0
c (Ua,F|Ua

) ≃ Hn(Ua,C).

• Under the identification of F with j∗C[n] above, the hypercohomol-
ogy group of the perverse sheaf H0

c (Ua,F|Ua
) in corollary 3.6 inherits a

Mixed Hodge Structure from the relative homologyHn(Ua, Ua ∩ (∪D)),
in addition to providing the solution rank at each point a. This is anol-
ogous to the case of homogeneous varieties, whereby the hypercoho-
mology inherits a mixed Hodge structure [7] from Hn(Ua).

• We point out that in principle we can carry out an explicit construc-
tion of chains in Ua recursively starting from cycles. However, the
construction is rather complicated combinatorially.

We now generalize corollary 3.6 by replacing L = ω−1
X with any very

ample line bundle on the toric variety X, such that L ⊗ ωX is base point
free. Let τ = τVW now be the tautological system defined on V ∨ ×W∨ as
in [7, §6]. Then we have

Corollary 3.8. For any (a, b)∈V ∨×W∨, we have canonical isomorphisms

HomDV ∨
(τ,Oan

V ∨×W∨)(a,b) ≃ H0
c (Ua,F|Ua

) ≃ Hn(Ua, Ua ∩ (∪D)).

Note that the middle and the right side are both constant in the W∨

direction. The analogue of the chain integral map (3.6) now becomes

C 
→

∫

C

gbΩ

fa

extending the cycle-to-period map of [7]. Note that the chain integrals are
linear in b. The proof above carries over to this case verbatim.

4. Concluding remarks

We now comment on how the chain integral map might fail to be isomorphic.
Let X be a smooth complete toric variety of dim = n, with the action of the
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torus T , and G be an algebraic group acting on X so that T ⊂ G ⊂ Aut(X).
Denote the corrsponding τ by τG, which we shall study for various G. Note
that the G-action on X induces a stratification of X by G-orbits, and denote
∪DG to be the union of codim > 0 strata. We have a natural map

(4.1) rG : Hn(Ua, Ua ∩ (∪DG)) → Hn(Ua, Ua ∩ (∪D)).

Clearly, under the chain integral map (2.1), Ker(rG) maps to 0. We now
prove the following.

Theorem 4.1. The chain integral map induces an isomorphism

(4.2) Hn(Ua, Ua ∩ (∪DG))/Ker(rG) ≃ HomDV ∨
(τG,Oan

V ∨)a

Proof. First note that there is the map j!OX−∪DG → DX,β adjoint to
OX−∪DG ≃ DX,β |X−∪DG . Restricting to Ua and taking Sol and R0p!, it gives
rise to a map

H0
c (Ua,F|Ua

) → Hn(Ua, Ua ∩ (∪DG))

which when G = T , is inverse to the first map in 3.8, by corollary 3.3. One
checks readily that the following diagram commutes:

Hn(Ua, Ua ∩ (∪DG))/Ker(rG)
fG
1−−−−→ HomDV ∨

(τG,Oan
V ∨)a

φG

−−−−→ H0
c (Ua,F

G|Ua
)

fG
0−−−−→

rG

⏐⏐� i

⏐⏐� g

⏐⏐�

Hn(Ua, Ua ∩ (∪D))
f1

−−−−→ HomDV ∨
(τ,Oan

V ∨)a
φ

−−−−→ H0
c (Ua,F|Ua

)
f0

−−−−→

Hn(Ua, Ua ∩ (∪DG))/Ker(rG)
fG
1−−−−→ HomDV ∨

(τG,Oan
V ∨)a

rG

⏐⏐� i

⏐⏐�

Hn(Ua, Ua ∩ (∪D))
f1

−−−−→ HomDV ∨
(τ,Oan

V ∨)a

where f1 is the chain integral map (2.1), f0 is the map coming from homo-
logical algebra at the beginning of the proof, i is the obvious embedding,
and φ is the canonical isomorphism as in [7]. The third square commutes
due to the naturalness of adjoint functors.

The second row are all isomorphisms, and f0φf1 = Id, f1f0φ = Id, by
what we have proved for T . Since rG and i in the diagram are both injective,
we deduce that fG

0 φGfG
1 = Id, and fG

1 fG
0 φG = Id, and therefore the first row

are also all isomorphisms. �
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Next we discuss a few other cases where we understand (2.1) more ex-
plicitly.

Case I, suppose X = G/B is a flag variety, and we take the group B in
the definition of τ (therefore DX,β := DX ⊗Ub k, where b = Lie(B)). Then
by the Beilinson-Bernstein localization, we have DX,β = iw0,!OXw0 , where
iw0

: Xw0 →֒ X is the inclusion of the open dense Schubert cell. So in this
case, by the same argument as in the toric case, (2.1) is an isomorphism.

Remark 4.1. Therefore, for X = G/B, the same argument as in the proof
of Theorem 4.1, where one substitutes the toric X with G/B, and the torus
T with B, shows that 4.1 holds for X and any parabolic subgroup P .

Case II, again take X = G/B, but take the maximal unipotent sub-
group N instead of B, denote n = Lie(N), then DX,β := DX ⊗Un k under
Beilinson-Bernstein becomes a direct sum of Verma modules, of highest
weights −w(ρ)− ρ, indexed by w ∈ W the Weyl group of G, where ρ is
half the sum of positive roots. In other words, DX,β is isomorphic to the di-
rect sum of iw,!OXw , indexed by the Schubert cells Xw. So in this case, (2.1)
is injective but not surjective in general. The extra solutions of τ come from
lower dimensional ”chain integral maps”, associated with Schubert cells of
higher codimensions.

As an explicit example of this case, take X = P1 with homogeneous
coordinates [x : y], and let the unipotent subgroup N be the 1-dimensional
translation group, which leaves invariant ∞ = [1 : 0]. Take a generic a =
a1x

2 + a0xy + a2y
2 ∈ Γ(X,O(2)). The extra solution of τ at a, that lies

outside the chain integral map (2.1), is the pairing of the 0-form on x2/a on
Ua with the zero cycle supported at ∞, which evaluates to 1/a1.

In connection to the chain integral map, we mention an old conjecture
which seems intricately linked to it. In 1996, inspired by mirror symmetry,
Hosono-Lian-Yau found a general combinatorial formula that gives a com-
plete set of solutions to τ in the toric case. Their formula is a renormalized
form of the formal GKZ Gamma series solution [5]. In fact, the formula gives
an explicit cohomology valued function [6, eqn. (3.5)]

(4.3) BX : U∞ → H∗(X∨,C)

such that the classical solution sheaf HomDV ∨
(τ,Oan

V ∨)a is precisely generated
by the functions

∫
αBX (α ∈ H∗(X

∨,Z)). Here U∞ is a neighborhood of the
point f∞ = ζ1 · · · ζp ∈ Γ(X,L) (which is a so-called large complex structure
limit of the universal family Y); the ζi = 0 are the defining equations of
the irreducible T -invariant divisors in X. The space X∨ is a toric variety
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mirrored to X in the sense of Batyrev. In addition as shown in [6], the fact
that BX generates the solution sheaf of τ holds under the much weaker
assumption that X is semi-Fano toric. (There has also been a generalization
of this solution formula recently to certain noncompact toric varieties by
[11] in the context of open string theory.)

More importantly, based on an abundance of numerical evidence, it was
conjectured that the period sheaf of the universal family of Y is generated
precisely by the functions

∫

α
BX ∪ [∪D∨], α ∈ H∗(X

∨,Z)

where [∪D∨] denotes the Poincaré dual of the canonical divisor ∪D∨ in X∨.
This is the so-called hyperplane conjecture, which remains open. Note that
hyperplane sections of OX∨(∪D∨) are nothing but CY varieties mirrored to
the CY varieties Ya in the family Y.

At least intuitively, the parallel between the hyperplane and the chain
integral conjectures seems striking. The statement (4.3) about BX above
is clearly a combinatorial counterpart of the topological statement Corol-
lary 3.6. Under this dictionary, the hyperplane conjecture says that cupping
BX with the (mirror anticanonical) class [∪D∨] corresponds to taking the
subgroup of vanishing homology Hn−1(Ya)van →֒ Hn(Ua, Ua ∩ (∪D)), given
by the ‘tube-over-cycle’ map T . Note that the period sheaf of Y is generated
precisely by the period integrals

∫
γ Res

Ω
fa

=
∫
T (γ)

Ω
fa
. To put it in another

way, the groups Hn(Ua, Ua ∩ (∪D)) and H∗(X∨,C) are ‘mirror’ to each
other, while taking the subgroup of tubes over the cycles in Hn−1(Ya)van
of the CY Ya in X, should be mirror to passing to the quotient group
H∗(X∨,C)/Ann[∪D∨] by the subgroup annihilated by the mirror CY di-
visor ∪D∨ in X∨. This dictionary suggests a close connection between the
hyperplane conjecture and the chain integral isomorphism: that taking tubes
over cycles on the topological side may in fact corresponds to cupping with
[∪D] on the cohomological side.
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