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We report grand canonical Monte Carlo simulations of the critical point properties of homopolymers
within the bond fluctuation model. By employing configurational bias Monte Carlo methods, chain
lengths of up toN560 monomers could be studied. For each chain length investigated, the critical
point parameters were determined by matching the ordering operator distribution function to its
universal fixed-point Ising form. Histogram reweighting methods were employed to increase the
efficiency of this procedure. The results indicate that the scaling of the critical temperature with
chain length is relatively well described by Flory theory, i.e.,Q2Tc;N20.5. The critical volume
fraction, on the other hand, was found to scale likefc;N20.37, in clear disagreement with the Flory
theory predictionfc;N20.5, but in good agreement with experiment. Measurements of the chain
length dependence of the end-to-end distance indicate that the chains are not collapsed at the critical
point. © 1996 American Institute of Physics.@S0021-9606~96!52026-X#

I. INTRODUCTION AND OVERVIEW

When long flexible polymers are dissolved in a bad sol-
vent there exists a critical temperatureTc(N) of unmixing
slightly beneath theQ temperature~Fig. 1!. At this critical
temperature, the system phase separates into a very dilute
~solvent rich! solution of collapsed chains and a semidilute
~polymer rich! solution. The process is qualitatively de-
scribed by the mean field theory of Flory,1 which predicts
simple power laws for the chain length (N) dependences of
Tc(N) and the corresponding critical volume fractionfc(N)

Tc~N!5Q/~111/AN!2'Q22Q/AN, N→`, ~1!

fc~N!51/~11AN!'1/AN, N→`. ~2!

Another power law is predicted for the shape of the coexist-
ence curve nearTc(N)

fcoex
~2! 2fcoex

~1! 52B̂~N!tb, t[12T/Tc~N!, ~3!

with a critical order parameter exponentb and a chain length
dependent critical amplitudeB̂(N) given by

b5bMF51/2, B̂~N!}N21/4. ~4!

Further power laws describe the intensity of critical scatter-
ing, the associated correlation lengths and the interfacial ten-
sion, etc.,2,3 but will not be considered here.

Notwithstanding the qualitative correctness of the Flory
theory in predicting a phase separation, it should be empha-
sised that the exponentb5bMF51/2 in Eq.~4!, as well as the
powers ofN in Eqs.~2!–~4! are mean field results, and thus
cannot be expected to be quantitatively correct. More gener-
ally one expects that~we follow the notation of a recent
experimental study4!

B̂~N!}N2x1,

fc~N!}N2x2, ~5!

Q2Tc~N!}N2x3,

where the mean field values of the exponents defined in Eq.
~5! are

x1
MF51/4,

~6!
x2
MF5x3

MF51/2.

It is an interesting open question to ask what are the correct
values of these exponents. While it is generally accepted
from the ‘‘universality principle,’’5 as well as experimental
findings,4,7–13 that the phase separation of polymer solutions
falls in the same universality class as the three dimensional
Ising model, so that6

b'0.325, ~7!

the theoretical understanding of the exponentsx1 ,x2 ,x3 in
Eq. ~5! is rather limited. Experimental data have yielded the
estimates4,7–14

x1'0.23–0.34,

x2'0.38 ~8!

x3'0.47–0.50.

However, theoretical estimates for these exponents are still
controversial. De Gennes15 suggested that in the limit of
largeN, one has the same scaling behavior as in mean field
theory, i.e., the coexistence curve scales as

fcoex
~2! 2fcoex

~1! 5
1

AN
f̃~ANt!, ~9!

Sincef̃(z) must behave for small argumentz as f̃(z)}zb,
this yields

x15~12b!/2'0.34, ~10!

which is roughly compatible with experiments. However, the
scaling with AN in Eq. ~9! implies that x251/2, which
clearly disagrees with Eq.~8!. Muthukumar16 on the other
hand, suggested that in a limit where ternary interactions are
important, one should have different exponents, namely,
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x15x352/9, x251/3. ~11!

Subsequently this problem has received further attention in
the literature.3,17–20 Recall that the scaling structure in Eq.
~9! can be justified in terms of a Ginzburg criterion21 if one
assumes that the chain linear dimensions are ideal.15 It then
follows ~remembering that the chain gyration radius enters as
a critical amplitude prefactor in the mean field power laws of
the correlation length of the monomer density fluctuations!,
that the critical densityfc(N) coincides~up to a universal
prefactor! with the onset of the ‘‘semidilute’’ regime, where
chains overlap significantly.15 This assumption is plausible
because of the vicinity to theQ state (T5Q,f→0), where
chains indeed behave ideally and the end-to-end distance
scales as

Re}N
1/2, T5Q, f→0, N→`. ~12!

However, the fact that forT,Q andf→0,N→` chains are
collapsed

Re}N
1/3, T,Q, f→0, N→`, ~13!

implies that one does not really know howRe scales withN
at the critical point. Therefore, it is tempting to generalize
the scaling ansatz 9 as follows:19

fcoex
~2! 2fcoex

~1! 5
1

Nx4
f̃~Nx4t!. ~14!

Equation~8! is, of course, still consistent with the behav-
iour of the coexistence curve at fixedt in the limit N→`3

fcoex
~1! 50, fcoex

~2! 5 3
2~12T/Q!, ~15!

if f̃(z→`)53z/2. Since for smallz 5 Nx4t, the scaling
function must behave asf̃(z)}zb in order to comply with
Eqs.~3! and ~7!, we conclude that

fcoex
~2! 2fcoex

~1! 5Nx4~12b!tb, x15x4~12b!. ~16!

From renormalization group arguments, Cherayil19 has sug-
gested that the exponentsx2 and x3 can be expressed in
terms of the new exponentx4 as

x2512x4 , x35x4 . ~17!

This theory, however, does not yield a prediction forx4 it-
self, and to fit some experimental data it was assumed that
x450.62, x250.38.19 Kholodenko and Qian18 have pre-
sented arguments that the exponentx2 is not even a universal
quantity. If the scaling relations of Cherayil@Eqs. ~16! and
~17!# hold, this would imply thatx1 , x2 , andx3 are all sys-
tem specific quantities, depending upon the material under
consideration! Finally, we note that Muthukumar’s result,
Eq. ~11!, disagrees with the above scaling relation
x15x3(12b), and thus the theoretical situation is clearly
somewhat confusing.

In view of these problems and the difficulties of extract-
ing all relevant information from experiments~one not only
wishes to check the relations of Eq.~5! but also seeks to
clarify how the chain span scales withN at criticality!, study
of this problem by Monte Carlo computer simulations
techniques22 is highly desirable. In fact there has been some
previous work on this problem which considered the vapor–
liquid phase diagram of alkane chains23 and coarse-grained
off-lattice polymer models~see, e.g., Refs. 24 and 25!. How-
ever, the work of Ref. 23 considers the problem of estimat-
ing absolute values ofTc(N) and fc(N) for a chemically
realistic model of alkanes for smallN and does not address
the universal properties of the limitN→`. The Gibbs en-
semble Monte Carlo method of Panagiotopoulos26,27 allows
an efficient estimation of the coexistence curve well below
the critical point, but a precise estimation of critical point
parameters is difficult in this framework.

An alternative approach for estimating critical point
properties from simulations is based on finite-size
scaling.28,29This approach has been very successful for both
symmetrical30 and asymmetrical31 polymer mixtures in con-
junction with the bond-fluctuation lattice model32 and semi-
grand canonical ensemble simulation techniques.33 These
studies also relied on the use of histogram reweighting34 and
~in the asymmetric case! recent advances in disentangling
order parameter and energy fluctuations near criticality in a
finite-size scaling context.35

In the present work we attempt to apply a related ap-
proach to study the liquid–vapor critical point of homopoly-
mers within the bond fluctuation model. This problem is,
however, somewhat more intricate than that of polymer mix-
tures since one must employ the grand canonical ensemble
~GCE!35 in order to effectively deal with the strong near-

FIG. 1. Schematic phase diagram of a polymer solution in the space of the
temperatureT and the volume fractionf. The coexistence curve separates a
dilute solution of collapsed chains@at fcoex

~1! # from a semidilute solution of
overlapping chains@at fcoex

~2! #. These two branches of the coexistence curve
merge at a critical pointTc(N), fc(N). ForN→` the critical point merges
with the Q point of a dilute polymer solution@Tc(N→`)→Q,
fc(N→`)→0# and the unmixing transition has a tricritical character. At
T5Q, the chain configurations are ideal Gaussian coils, while their struc-
ture atTc(N) is nontrivial.
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critical density fluctuations. As is well known, GCE simula-
tions for chain molecules are extremely difficult, since the
insertion probability for a polymer chain into a many chain
system is vanishingly small.22,36–38For chains that are not
too long~and/or systems that are not too dense!, this problem
can be eased by the configurational bias Monte Carlo
~CBMC! method.36–38 In the present paper we combine
CBMC with histogram reweighting and a finite-size scaling
analysis in its form extended to asymmetric systems.31,35By
this special combination of recent techniques~which will be
briefly reviewed in Sec. II! we are able, for the first time to
obtain accurate results, both forf(N) and Tc(N) up to
N560 effective monomers. Since the effective bond in the
bond-fluctuation model can be thought of as corresponding
to 3 to 5 chemical bonds~when a mapping to chemically
realistic chain molecules is attempted32!, our simulations
thus correspond to a degree of polymerization up to a few
hundred chemical bonds along the chain backbone.

Section III then presents our results, including a estima-
tion of theQ temperature from an analysis of the end-to-end
distance of single isolated chains. We obtain both the loca-
tion of the critical point in the (T,f) plane as a function of
chain length and, for the first time, the associated depen-
dence of the chain span. In Sec. IV we discuss our results
and compare them to the theoretical ideas sketched above.
We obtain very good agreement with experiment, but as in
the latter the need to study much longer chains is clearly
apparent to definitively clarify the true asymptotic behaviour
for chain lengthsN→`.

II. ALGORITHMIC AND COMPUTATIONAL ASPECTS

The bond-fluctuation model~BFM! studied in this paper
is a coarse-grained lattice-based polymer model that com-
bines computational tractability with the important qualita-
tive features of real polymers, namely, monomer excluded
volume, monomer connectivity, and short range interactions.
Within the framework of the model, each monomer occupies
a whole unit cell of a 3D periodic simple cubic lattice.
Neighboring monomers along the polymer chains are con-
nected via one of 108 possible bond vectors. These bond
vectors provide for a total of 5 different bond lengths and 87
different bond angles. Thermal interactions are catered for by
a short range intermonomer potential. The cutoff range of
this potential was set atrm 5 A6 ~in units of the lattice spac-
ing!, a choice which ensures that the first peak of the corre-
lation function is encompassed by the range of the potential.
We note also, that within our model, solvent molecules are
not modeled explicitely, rather their role is played by vacant
lattice sites. Further details concerning the BFM can be
found in Ref. 32.

To implement a grand canonical ensemble simulation of
the BFM, the configurational bias Monte Carlo~CBMC!
method was employed.36–38 The CBMC scheme utilizes a
biased insertion method to ‘‘grow’’ a polymer into the sys-
tem in a stepwise fashion, each successive step being chosen
so as to avoid excluded volume where possible. For brevity

we shall merely outline the GCE implementation of this
CBMC method and refer the reader to Ref. 39 for a fuller
description.

Within the GCE scheme there are two complementary
types of moves, insertion attempts and deletion attempts,
both of which are made with equal frequency. An insertion
move first involves attempting to grow a candidate polymer
into the system. The basic strategy for achieving this is to
insert successive monomers of the chain into the system one
by one. The position of each successive monomer is chosen
probabilistically from the set of 108 possible BFM bond vec-
tors emanating from the previously inserted monomer. The
selection probability for each of the possible monomer posi-
tions is weighted by its Boltzmann factor, effectively biasing
the choice in favor of low energy chain configurations. In
order to keep track of the accumulated bias, a book keeping
scheme is maintained. Once a candidate chain has been suc-
cessfully grown, it is submitted to a Monte Carlo lottery to
decide whether or not it is to be accepted. The total chain
construction bias is compensated for in the acceptance prob-
ability, thereby ensuring that detailed balance is obeyed.

For chain deletion moves, one chooses a chain at random
from those in the system and ‘‘reconstructs’’ its bias by ex-
amining the alternative growth scenarios at each step of the
chain. The candidate chain for deletion is also submitted to a
Monte Carlo lottery to decide whether the proposed deletion
should take place. As with the insertion lottery, the chain
bias is taken into account in the deletion probability. The
chemical potential,m, which controls the system chain den-
sity, also enters into the acceptance probability for both in-
sertion and deletion.

The principal observables measured in the course of the
simulations were the monomeric volume fraction

f58nN/V ~18!

and the dimensionless energy density:

u58w21F~$r %!/V, ~19!

wheren is the number of chains,F($r %) is the configura-
tional energy,w is the depth of the square well interaction
potential ~so thatT5w21! and V is the system volume.
Here, the factor of 8 derives from the number of lattice sites
occupied by one monomer in the BFM. Measurements off
and u were performed at intervals of 500 chain insertion
attempts and accumulated in the joint histogrampL(f,u).
The final histograms comprised some 105 entries. Also mea-
sured were the distributions of the chain radius of gyration
and the chain end-to-end distances.

Using the GCE algorithm, chains of lengthsN510, 20,
40, 60 were studied. For theN510 andN520 system size
V5403 and V5503 were employed, while forN540 and
N560 chain lengths only theV5503 was studied. Unfortu-
nately, it was not possible to study chains longer thanN560
since the acceptance rate for chain insertions falls exponen-
tially with increasingN and volume fractionf. This problem
is illustrated in Fig. 2, where we plot the acceptance rate for
a number of chain lengths as a function of the monomeric
volume fraction. One sees for example, that forN580 the
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acceptance rate is too low to provide reliable statistics within
reasonable run times. Indeed, even for our longest chain
lengthN560, extremely long runs were required to gather
adequate statistics.

Having outlined our model and simulation technique we
now turn to a brief description of our data analysis methods.
As mentioned in the introduction, finite-size scaling~FSS!
methods are an indispensable tool for the proper treatment of
critical behavior, serving as they do to provide estimates of
infinite-volume critical properties from simulations of finite-
sized systems. The FSS methods we shall employ here are
especially tailored to fluid systems and have been described
in detail elsewhere.35 The basic idea is to exploit the Ising
character of the polymer liquid–vapor critical point to accu-
rately locate the critical point. This is done by observing that
precisely at criticality the distributions of certain readily
measurable observables assume scale-invariant universal
forms. The particular universal scaling form on which we
shall focus, is the distribution of the ordering scaling opera-
tor pL~M!. For the Ising model, the special symmetry be-
tween the coexisting phases impliesM→m ~the magnetiza-
tion!. The critical point form ofpL(m) is independently
known from extensive studies of large Ising lattices.40 For
fluids, however, the lack of symmetry between the coexisting
phases implies35 that the ordering operator is a linear combi-
nation of the fluid density and energy density, i.e.,M→f
1su, wheres is a system specific ‘‘field mixing’’ parameter
that controls the strength of the coupling between the density
and energy fluctuations.

Thus, in principle, one is able to accurately locate the
critical point of a fluid system simply by tuning theT, m, and
s until the measured form ofpL~M! matches the known
fixed point Ising form. In performing this task, the histogram
reweighting method30,34can be of great assistance. This tech-
nique allows one to generate estimated histogramspL(f,u)
for values of the control parametersT andm other than those
at which the simulations were actually performed. Such ex-
trapolations are generally very reliable in the neighborhood
of the critical point, due to the large critical fluctuations.34 In

what follows we shall detail the application of all these tech-
niques to the problem of determining the liquid–vapor criti-
cal point parameters of our polymer model.

III. PROCEDURE AND RESULTS

The first task undertaken was a determination of theQ
temperature for our model, knowledge of which is a prereq-
uisite for studying the scaling ofQ2Tc(N) @cf. Eq. ~5!#. To
achieve this the end-to-end distanceRe of single chains was
studied as a function of temperature and chain length. From
Eqs. ~12! one sees that precisely at theQ temperature, and
modulo corrections to scaling,Re

2/N should be independent
of N. Extensive simulations were therefore carried out for
single chains of lengthN564, 80, 100, and 150 at a tem-
peratureT52.0. The full temperature dependence ofRe for
each chain length was subsequently obtained by histogram
reweighting. This involves recording the joint histogram of
the end-to-end distance and conformational energy of each
configuration generated. The histogram for other tempera-
tures may then be obtained by reweighting the Boltzmann
factor for each histogram entry in the manner described in
Ref. 33. Figure 3 show the resulting curves ofRe

2/N(T),
which exhibit a very precise intersection point atT52.02(2),
a value that we therefore adopt as our estimate of theQ
temperature.

In general for fluid systems, the coexistence curve is not
known a priori and must therefore be identified empirically
as a prelude to locating the critical point itself. In the follow-
ing we exemplify the general strategy for determining the
critical parameters by considering the case of theN520 sys-
tem.

Initially a temperature ofT51.75 somewhat beneath the
Q temperature was chosen and the approximate value of the
coexistence chemical potential was determined by tuningm
until pL(f) exhibited a double peaked structure. A long run
was then carried out at this near-coexistencem value, in

FIG. 2. The CBMC acceptance rate as a function of the monomeric volume
fraction for chain lengthsN520, 40, 80. FIG. 3. The temperature dependence ofRe

2/N for a single chain with a
variety of chain lengths. All simulations were performed at the temperature
T52.0 and the temperature dependence obtained by histogram extrapola-
tion. The common intersection point for largeN yields the estimate
Q52.02~2!.
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which the histogram ofpL(f,u) was accumulated. A histo-
gram extrapolation based on this data was then used to ex-
trapolate along the coexistence curve using the equal peak-
weight criterion forpL(f).

41 In this way a sizeable portion
of the near-critical coexistence curve~and its analytic
extension35! could be located. Representative forms of the
density distributions along this line of pseudocoexistence are
shown in Fig. 4~a!, while the positions of the density peaks
are shown in Fig. 4~b!.

To locate the critical point along the line of phase coex-
istence, we utilized the universal matching condition for the
operator distributionspL~M!. Again applying the histogram
reweighting technique, the temperature, chemical potential,
and field mixing parameters were tuned until the form of
pL~M! most accurately matched the universal fixed point
Ising form p̃M* (x). The results of performing this procedure
are shown in Fig. 5 for theV5403 andV5503 system sizes.
Given that these systems contain on average less than 100
polymer chains at criticality, the quality of the data collapse
is remarkable. The mappings shown were effected for a
choice of the parametersTc51.791(5), mc525.164 25(2),

s520.135(4), where we have definedm to be the chemical
potential per monomer. The associated estimates for the criti-
cal volume fraction isfc50.198(5). Wenote that this esti-
mate ofTc is rather less than what would be obtained, were
one simply to extrapolate the liquid and vapor densities to
the point at which they merge@Fig. 4~b!#. Thus our results
further emphasize the finite-size errors that can arise using
such a procedure.

We have also attempted to fit the coexistence curve data
of Fig. 4~b!, using fits of the Ising form: f l5fc

10.745(Tc2T)10.55(Tc2T)0.324, fv5fc10.745(Tc2T)
10.55(Tc2T)0.324, with Tc andfc assigned the values ob-
tained above. For the Lennard-Jones fluid,42 a fit of this type
gave a good description of the coexistence data for tempera-
tures down to 0.8Tc . Here, one sees that a reasonable fit can
be obtained, but only for temperature within some 3% ofTc .
This would seem to suggest that the asymptotic Ising region
in the polymer system is much smaller than in the Lennard-
Jones system.

With regard to our estimates for the critical parameters,
it should be emphasized that they are subject to errors arising
both from corrections to scaling, as well as field mixing ef-
fects in the case of the critical volume fraction.35 While in
principal one can also correct for these effects, if one has
access to a sufficient range of system sizes and ample statis-
tics ~see, e.g., Ref. 42!, the computational difficulties of the
present problem preclude such an analysis. Indeed, for the
N560 system studied here, only one system size,V550 was
employed, this being the largest that could reasonably be
tackled. Smaller system sizes were not studied since these
would contain so few chains at criticality as to be exces-
sively influenced by corrections to scaling. The matching to
the universal form for the largest size available was then the
only guide to the location of the critical point. Notwithstand-
ing these problems, however, we feel on the basis of our
experience of corrections to scaling in other systems,42 that

FIG. 4. ~a! The distribution function of the monomeric volume fraction
pL(f) for theN520 system at a selection of temperatures along the line of
liquid–vapor coexistence.~b! The measured liquid~squares! and vapor
~circles! peak densities corresponding to the histogram extrapolation along
the coexistence curve. Also shown is an attempted fit to the data~full line!
and the estimate for the critical point (X), both obtained as described in the
text.

FIG. 5. The ordering operator distributionpL~M! of the polymer model at
the assigned critical parameters. Also shown for comparison is the universal
fixed point form p̃M* (x) obtained in a separate study~Ref. 39!. In accor-
dance with convention all data has been scaled to unit norm and variance, by
choice of the scale factoraM .
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the quoted uncertainties generously encompass the infinite-
volume critical parameters.

The procedure described above was repeated for the
other chain lengths studied, allowing estimates to be ob-
tained forTc(N) and fc(N). However, the computational
difficulty became progressively greater asN increased, mak-
ing the accumulation of good statistics problematic. As a
result it was not possible to perform a reliable histogram
extrapolation away from the critical point into the subcritical
two-phase region and thus no information on theN depen-
dence of the critical amplitude prefactor featuring in Eq.~5!
could be obtained. An additional hindrance to probing the
subcritical coexistence region is that the BFM appears to be
unable to support a liquid phase for volume fractionsf*0.6,
instead collapsing into an amorphous crystal. This artifact is
traceable to the limited conformational entropy of our lattice-
based chains, and has also been observed in a previous study
of tethered chains using the same model.43

The results forTc(N) and fc(N) are plotted against
N21 in Figs. 6 and 7, respectively. ForTc(N) we find that

the data can be well fitted by a Flory-type formula of the
form Tc5Q1a1N

20.51a2N
21 ~where theN21 term can be

thought of as a free-end correction and where weassumethat
limN→`Tc5u!, although fits of the form Tc(N)5Q
1a1N

2x3 yield a comparable fit quality for values ofx3 in
the rangex350.46–0.53. Forf(N) we have performed a
fit of the form fc(N)5(b11b2N

x2)21, and obtain
x250.37(2).

Finally, we have considered theN dependence of the
average squared end-to-end distance,Re

2(N) at criticality.
This quantity has been conjectured to scale as19

Ree
2 ~N!}N2n8. ~20!

It was observed that the scaling offc with N could be ex-
plained if n850.46, and we would like to check this conjec-
ture. Our results are plotted in Fig. 8. Despite the very lim-
ited number of data points, we have attempted to fit this data
to the form Eq.~20!, with the resultRee

2 (N)}N1.11(4). This
finding thatn8.0.5 is also supported by a study of the dis-
tribution function of end-to-end distancesp(r ) at the esti-
mated critical point. A scaling form for this function~valid
for largeN! may be written44

p~r !}r k exp~2Dr d!, ~21!

whered[~12n!21, D is a constant andk50.24960.011 in
three dimensions.44 In Fig. 9 we plot the function
p(r 2)r20.1245againstr 2 on a logarithmic scale, for the chain
lengthN540 andN560. Fits to the data yields estimates
n850.51 andn50.518, respectively. Of course, it is hard to
believe that the chains are swollen atTc(N) which is below
Q, given the fact that forf→0 atT5Q, the chains are not
swollen. It is thus possible that the slight deviation from
n851/2 is simply due to corrections to scaling.

IV. DISCUSSION

In summary we have performed a study of the liquid–
vapor critical point of a polymer model for chain lengths up
to N560 monomers. Owing to the low acceptance rate for
chain transfers it was not possible to study either very long

FIG. 6. The measured estimates of the inverse critical temperature as a
function of inverse chain length, together with theQ temperature, represent-
ing the critical temperature in the limit of infiniteN. Also shown is a fit of
the form 1/Tc51/u(110.402N20.510.696N21).

FIG. 7. The measured estimates of the critical density as a function of chain
length, together with the infiniteN valuefc50. Also shown is a fit of the
form fc5(1.112611.3N0.369)21.

FIG. 8. TheN dependence of the end-to-end distance squared. The fit is of
the formRe

255.653N1.112.
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chains, or very large systems. Nevertheless we believe that
the FSS-based technique we employed, of matching the mea-
sured scaling operator distribution functions to their fixed
point universal forms is considerably more reliable than the
practice of simply extrapolating a power law fit to coexist-
ence curve data obtained well away from criticality, as has
been the norm in previous simulation studies.23–25,27Indeed,
while we reproduce the previous results with regard to the
finding thatTc(N) is well described by a Flory formula, our
measured value for the exponentx250.37(2), is in much
closer accord with experiment (x250.38) than previous
simulation measurements. It is also interesting to note that
for a similar range of monomeric unitsN, our coarse grained
model seems to be much better at describing the asymptotic
limit than chemically realistic models such as that employed
in a recent study of Alkanes,23 which did not even yield a
monotonically decreasingfc(N).

With regard to the criticalN dependence of the chain
span, our results suggest~albeit on the basis of a very limited
number of data points! that the exponentn8.0.5, which, if
correct, would imply that the chains are slightly swollen at
criticality—at variance with the suggestion of Cherayil19,45

and L’huiller20 thatn8'0.46, which is based on the assump-
tion that the phase separation occurs when the chains just
barely begin to overlap. We consider it possible, however,
that our estimates forn8 should be considered as effective
exponents, which exceed the classical valuen851/2 only be-
cause of corrections to scaling. But in any case there is no
evidence that the chains are somewhat collapsed at critical-
ity.

Finally, we remark that there is evidently a need to study
longer chain and larger system sizes in order both to validate
the results thus far obtained and to confirm that the limiting
scaling behaviour is being observed. In view of the low ac-
ceptance rates for chain transfers at largeN, algorithmic im-
provements are clearly necessary before this can be
achieved.

Note added in proof.Very recently P. Grassberger has
remeasured theQ temperature using much longer chains
than considered here. His results suggest that theQ tempera-

ture lies in the rangeT52.08–2.11. Use of values in this
range in the fit of Fig. 6, yields improved agreement with the
Flory form. We thank Professor Grassberger for communi-
cating his results to us prior to publication.
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