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We report grand canonical Monte Carlo simulations of the critical point properties of homopolymers

within the bond fluctuation model. By employing configurational bias Monte Carlo methods, chain

lengths of up to N560 monomers could be studied. For each chain length investigated, the critical

point parameters were determined by matching the ordering operator distribution function to its

universal fixed-point Ising form. Histogram reweighting methods were employed to increase the

efficiency of this procedure. The results indicate that the scaling of the critical temperature with

chain length is relatively well described by Flory theory, i.e., Q2Tc;N20.5. The critical volume

fraction, on the other hand, was found to scale like fc;N20.37, in clear disagreement with the Flory

theory prediction fc;N20.5, but in good agreement with experiment. Measurements of the chain

length dependence of the end-to-end distance indicate that the chains are not collapsed at the critical

point. © 1996 American Institute of Physics. @S0021-9606~96!52026-X#

I. INTRODUCTION AND OVERVIEW

When long flexible polymers are dissolved in a bad sol-

vent there exists a critical temperature Tc(N) of unmixing

slightly beneath the Q temperature ~Fig. 1!. At this critical

temperature, the system phase separates into a very dilute

~solvent rich! solution of collapsed chains and a semidilute

~polymer rich! solution. The process is qualitatively de-

scribed by the mean field theory of Flory,1 which predicts

simple power laws for the chain length (N) dependences of

Tc(N) and the corresponding critical volume fraction fc(N)

Tc~N !5Q/~111/AN !2'Q22Q/AN , N→` , ~1!

fc~N !51/~11AN !'1/AN , N→` . ~2!

Another power law is predicted for the shape of the coexist-

ence curve near Tc(N)

fcoex
~2!

2fcoex
~1 !

52B̂~N !tb, t[12T/Tc~N !, ~3!

with a critical order parameter exponent b and a chain length

dependent critical amplitude B̂(N) given by

b5bMF51/2, B̂~N !}N21/4. ~4!

Further power laws describe the intensity of critical scatter-

ing, the associated correlation lengths and the interfacial ten-

sion, etc.,2,3 but will not be considered here.

Notwithstanding the qualitative correctness of the Flory

theory in predicting a phase separation, it should be empha-

sised that the exponent b5bMF51/2 in Eq. ~4!, as well as the

powers of N in Eqs. ~2!–~4! are mean field results, and thus

cannot be expected to be quantitatively correct. More gener-

ally one expects that ~we follow the notation of a recent

experimental study4!

B̂~N !}N2x1,

fc~N !}N2x2, ~5!

Q2Tc~N !}N2x3,

where the mean field values of the exponents defined in Eq.

~5! are

x1
MF

51/4,

~6!
x2

MF
5x3

MF
51/2.

It is an interesting open question to ask what are the correct

values of these exponents. While it is generally accepted

from the ‘‘universality principle,’’5 as well as experimental

findings,4,7–13 that the phase separation of polymer solutions

falls in the same universality class as the three dimensional

Ising model, so that6

b'0.325, ~7!

the theoretical understanding of the exponents x1 ,x2 ,x3 in

Eq. ~5! is rather limited. Experimental data have yielded the

estimates4,7–14

x1'0.23– 0.34,

x2'0.38 ~8!

x3'0.47– 0.50.

However, theoretical estimates for these exponents are still

controversial. De Gennes15 suggested that in the limit of

large N , one has the same scaling behavior as in mean field

theory, i.e., the coexistence curve scales as

fcoex
~2!

2fcoex
~1 !

5

1

AN
f̃~ANt !, ~9!

Since f̃(z) must behave for small argument z as f̃(z)}zb,

this yields

x15~12b !/2'0.34, ~10!

which is roughly compatible with experiments. However, the

scaling with AN in Eq. ~9! implies that x251/2, which

clearly disagrees with Eq. ~8!. Muthukumar16 on the other

hand, suggested that in a limit where ternary interactions are

important, one should have different exponents, namely,
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x15x352/9, x251/3. ~11!

Subsequently this problem has received further attention in

the literature.3,17–20 Recall that the scaling structure in Eq.

~9! can be justified in terms of a Ginzburg criterion21 if one

assumes that the chain linear dimensions are ideal.15 It then

follows ~remembering that the chain gyration radius enters as

a critical amplitude prefactor in the mean field power laws of

the correlation length of the monomer density fluctuations!,
that the critical density fc(N) coincides ~up to a universal

prefactor! with the onset of the ‘‘semidilute’’ regime, where

chains overlap significantly.15 This assumption is plausible

because of the vicinity to the Q state (T5Q ,f→0), where

chains indeed behave ideally and the end-to-end distance

scales as

Re}N1/2, T5Q , f→0, N→` . ~12!

However, the fact that for T,Q and f→0, N→` chains are

collapsed

Re}N1/3, T,Q , f→0, N→` , ~13!

implies that one does not really know how Re scales with N

at the critical point. Therefore, it is tempting to generalize

the scaling ansatz 9 as follows:19

fcoex
~2!

2fcoex
~1 !

5

1

Nx4
f̃~Nx4t !. ~14!

Equation ~8! is, of course, still consistent with the behav-

iour of the coexistence curve at fixed t in the limit N→`3

fcoex
~1!

50, fcoex
~2 !

5
3
2~12T/Q !, ~15!

if f̃(z→`)53z/2. Since for small z 5 Nx4t , the scaling

function must behave as f̃(z)}zb in order to comply with

Eqs. ~3! and ~7!, we conclude that

fcoex
~2!

2fcoex
~1 !

5Nx4~12b !tb, x15x4~12b !. ~16!

From renormalization group arguments, Cherayil19 has sug-

gested that the exponents x2 and x3 can be expressed in

terms of the new exponent x4 as

x2512x4 , x35x4 . ~17!

This theory, however, does not yield a prediction for x4 it-

self, and to fit some experimental data it was assumed that

x450.62, x250.38.19 Kholodenko and Qian18 have pre-

sented arguments that the exponent x2 is not even a universal

quantity. If the scaling relations of Cherayil @Eqs. ~16! and

~17!# hold, this would imply that x1 , x2 , and x3 are all sys-

tem specific quantities, depending upon the material under

consideration! Finally, we note that Muthukumar’s result,

Eq. ~11!, disagrees with the above scaling relation

x15x3(12b), and thus the theoretical situation is clearly

somewhat confusing.

In view of these problems and the difficulties of extract-

ing all relevant information from experiments ~one not only

wishes to check the relations of Eq. ~5! but also seeks to

clarify how the chain span scales with N at criticality!, study

of this problem by Monte Carlo computer simulations

techniques22 is highly desirable. In fact there has been some

previous work on this problem which considered the vapor–

liquid phase diagram of alkane chains23 and coarse-grained

off-lattice polymer models ~see, e.g., Refs. 24 and 25!. How-

ever, the work of Ref. 23 considers the problem of estimat-

ing absolute values of Tc(N) and fc(N) for a chemically

realistic model of alkanes for small N and does not address

the universal properties of the limit N→` . The Gibbs en-

semble Monte Carlo method of Panagiotopoulos26,27 allows

an efficient estimation of the coexistence curve well below

the critical point, but a precise estimation of critical point

parameters is difficult in this framework.

An alternative approach for estimating critical point

properties from simulations is based on finite-size

scaling.28,29 This approach has been very successful for both

symmetrical30 and asymmetrical31 polymer mixtures in con-

junction with the bond-fluctuation lattice model32 and semi-

grand canonical ensemble simulation techniques.33 These

studies also relied on the use of histogram reweighting34 and

~in the asymmetric case! recent advances in disentangling

order parameter and energy fluctuations near criticality in a

finite-size scaling context.35

In the present work we attempt to apply a related ap-

proach to study the liquid–vapor critical point of homopoly-

mers within the bond fluctuation model. This problem is,

however, somewhat more intricate than that of polymer mix-

tures since one must employ the grand canonical ensemble

~GCE!35 in order to effectively deal with the strong near-

FIG. 1. Schematic phase diagram of a polymer solution in the space of the

temperature T and the volume fraction f. The coexistence curve separates a

dilute solution of collapsed chains @at fcoex
~1! # from a semidilute solution of

overlapping chains @at fcoex
~2! #. These two branches of the coexistence curve

merge at a critical point Tc(N), fc(N). For N→` the critical point merges

with the Q point of a dilute polymer solution @Tc(N→`)→Q ,

fc(N→`)→0# and the unmixing transition has a tricritical character. At

T5Q , the chain configurations are ideal Gaussian coils, while their struc-

ture at Tc(N) is nontrivial.
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critical density fluctuations. As is well known, GCE simula-

tions for chain molecules are extremely difficult, since the

insertion probability for a polymer chain into a many chain

system is vanishingly small.22,36–38 For chains that are not

too long ~and/or systems that are not too dense!, this problem

can be eased by the configurational bias Monte Carlo

~CBMC! method.36–38 In the present paper we combine

CBMC with histogram reweighting and a finite-size scaling

analysis in its form extended to asymmetric systems.31,35 By

this special combination of recent techniques ~which will be

briefly reviewed in Sec. II! we are able, for the first time to

obtain accurate results, both for f(N) and Tc(N) up to

N560 effective monomers. Since the effective bond in the

bond-fluctuation model can be thought of as corresponding

to 3 to 5 chemical bonds ~when a mapping to chemically

realistic chain molecules is attempted32!, our simulations

thus correspond to a degree of polymerization up to a few

hundred chemical bonds along the chain backbone.

Section III then presents our results, including a estima-

tion of the Q temperature from an analysis of the end-to-end

distance of single isolated chains. We obtain both the loca-

tion of the critical point in the (T ,f) plane as a function of

chain length and, for the first time, the associated depen-

dence of the chain span. In Sec. IV we discuss our results

and compare them to the theoretical ideas sketched above.

We obtain very good agreement with experiment, but as in

the latter the need to study much longer chains is clearly

apparent to definitively clarify the true asymptotic behaviour

for chain lengths N→` .

II. ALGORITHMIC AND COMPUTATIONAL ASPECTS

The bond-fluctuation model ~BFM! studied in this paper

is a coarse-grained lattice-based polymer model that com-

bines computational tractability with the important qualita-

tive features of real polymers, namely, monomer excluded

volume, monomer connectivity, and short range interactions.

Within the framework of the model, each monomer occupies

a whole unit cell of a 3D periodic simple cubic lattice.

Neighboring monomers along the polymer chains are con-

nected via one of 108 possible bond vectors. These bond

vectors provide for a total of 5 different bond lengths and 87

different bond angles. Thermal interactions are catered for by

a short range intermonomer potential. The cutoff range of

this potential was set at rm 5 A6 ~in units of the lattice spac-

ing!, a choice which ensures that the first peak of the corre-

lation function is encompassed by the range of the potential.

We note also, that within our model, solvent molecules are

not modeled explicitely, rather their role is played by vacant

lattice sites. Further details concerning the BFM can be

found in Ref. 32.

To implement a grand canonical ensemble simulation of

the BFM, the configurational bias Monte Carlo ~CBMC!
method was employed.36–38 The CBMC scheme utilizes a

biased insertion method to ‘‘grow’’ a polymer into the sys-

tem in a stepwise fashion, each successive step being chosen

so as to avoid excluded volume where possible. For brevity

we shall merely outline the GCE implementation of this

CBMC method and refer the reader to Ref. 39 for a fuller

description.

Within the GCE scheme there are two complementary

types of moves, insertion attempts and deletion attempts,

both of which are made with equal frequency. An insertion

move first involves attempting to grow a candidate polymer

into the system. The basic strategy for achieving this is to

insert successive monomers of the chain into the system one

by one. The position of each successive monomer is chosen

probabilistically from the set of 108 possible BFM bond vec-

tors emanating from the previously inserted monomer. The

selection probability for each of the possible monomer posi-

tions is weighted by its Boltzmann factor, effectively biasing

the choice in favor of low energy chain configurations. In

order to keep track of the accumulated bias, a book keeping

scheme is maintained. Once a candidate chain has been suc-

cessfully grown, it is submitted to a Monte Carlo lottery to

decide whether or not it is to be accepted. The total chain

construction bias is compensated for in the acceptance prob-

ability, thereby ensuring that detailed balance is obeyed.

For chain deletion moves, one chooses a chain at random

from those in the system and ‘‘reconstructs’’ its bias by ex-

amining the alternative growth scenarios at each step of the

chain. The candidate chain for deletion is also submitted to a

Monte Carlo lottery to decide whether the proposed deletion

should take place. As with the insertion lottery, the chain

bias is taken into account in the deletion probability. The

chemical potential, m, which controls the system chain den-

sity, also enters into the acceptance probability for both in-

sertion and deletion.

The principal observables measured in the course of the

simulations were the monomeric volume fraction

f58nN/V ~18!

and the dimensionless energy density:

u58w21F~$r%!/V , ~19!

where n is the number of chains, F($r%) is the configura-

tional energy, w is the depth of the square well interaction

potential ~so that T5w21! and V is the system volume.

Here, the factor of 8 derives from the number of lattice sites

occupied by one monomer in the BFM. Measurements of f
and u were performed at intervals of 500 chain insertion

attempts and accumulated in the joint histogram pL(f ,u).

The final histograms comprised some 105 entries. Also mea-

sured were the distributions of the chain radius of gyration

and the chain end-to-end distances.

Using the GCE algorithm, chains of lengths N510, 20,

40, 60 were studied. For the N510 and N520 system size

V5403 and V5503 were employed, while for N540 and

N560 chain lengths only the V5503 was studied. Unfortu-

nately, it was not possible to study chains longer than N560

since the acceptance rate for chain insertions falls exponen-

tially with increasing N and volume fraction f. This problem

is illustrated in Fig. 2, where we plot the acceptance rate for

a number of chain lengths as a function of the monomeric

volume fraction. One sees for example, that for N580 the
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acceptance rate is too low to provide reliable statistics within

reasonable run times. Indeed, even for our longest chain

length N560, extremely long runs were required to gather

adequate statistics.

Having outlined our model and simulation technique we

now turn to a brief description of our data analysis methods.

As mentioned in the introduction, finite-size scaling ~FSS!
methods are an indispensable tool for the proper treatment of

critical behavior, serving as they do to provide estimates of

infinite-volume critical properties from simulations of finite-

sized systems. The FSS methods we shall employ here are

especially tailored to fluid systems and have been described

in detail elsewhere.35 The basic idea is to exploit the Ising

character of the polymer liquid–vapor critical point to accu-

rately locate the critical point. This is done by observing that

precisely at criticality the distributions of certain readily

measurable observables assume scale-invariant universal

forms. The particular universal scaling form on which we

shall focus, is the distribution of the ordering scaling opera-

tor pL~M!. For the Ising model, the special symmetry be-

tween the coexisting phases implies M→m ~the magnetiza-

tion!. The critical point form of pL(m) is independently

known from extensive studies of large Ising lattices.40 For

fluids, however, the lack of symmetry between the coexisting

phases implies35 that the ordering operator is a linear combi-

nation of the fluid density and energy density, i.e., M→f
1su , where s is a system specific ‘‘field mixing’’ parameter

that controls the strength of the coupling between the density

and energy fluctuations.

Thus, in principle, one is able to accurately locate the

critical point of a fluid system simply by tuning the T , m, and

s until the measured form of pL~M! matches the known

fixed point Ising form. In performing this task, the histogram

reweighting method30,34 can be of great assistance. This tech-

nique allows one to generate estimated histograms pL(f ,u)

for values of the control parameters T and m other than those

at which the simulations were actually performed. Such ex-

trapolations are generally very reliable in the neighborhood

of the critical point, due to the large critical fluctuations.34 In

what follows we shall detail the application of all these tech-

niques to the problem of determining the liquid–vapor criti-

cal point parameters of our polymer model.

III. PROCEDURE AND RESULTS

The first task undertaken was a determination of the Q
temperature for our model, knowledge of which is a prereq-

uisite for studying the scaling of Q2Tc(N) @cf. Eq. ~5!#. To

achieve this the end-to-end distance Re of single chains was

studied as a function of temperature and chain length. From

Eqs. ~12! one sees that precisely at the Q temperature, and

modulo corrections to scaling, Re
2/N should be independent

of N . Extensive simulations were therefore carried out for

single chains of length N564, 80, 100, and 150 at a tem-

perature T52.0. The full temperature dependence of Re for

each chain length was subsequently obtained by histogram

reweighting. This involves recording the joint histogram of

the end-to-end distance and conformational energy of each

configuration generated. The histogram for other tempera-

tures may then be obtained by reweighting the Boltzmann

factor for each histogram entry in the manner described in

Ref. 33. Figure 3 show the resulting curves of Re
2/N(T),

which exhibit a very precise intersection point at T52.02(2),

a value that we therefore adopt as our estimate of the Q
temperature.

In general for fluid systems, the coexistence curve is not

known a priori and must therefore be identified empirically

as a prelude to locating the critical point itself. In the follow-

ing we exemplify the general strategy for determining the

critical parameters by considering the case of the N520 sys-

tem.

Initially a temperature of T51.75 somewhat beneath the

Q temperature was chosen and the approximate value of the

coexistence chemical potential was determined by tuning m
until pL(f) exhibited a double peaked structure. A long run

was then carried out at this near-coexistence m value, in

FIG. 2. The CBMC acceptance rate as a function of the monomeric volume

fraction for chain lengths N520, 40, 80. FIG. 3. The temperature dependence of Re
2/N for a single chain with a

variety of chain lengths. All simulations were performed at the temperature

T52.0 and the temperature dependence obtained by histogram extrapola-

tion. The common intersection point for large N yields the estimate

Q52.02~2!.
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which the histogram of pL(f ,u) was accumulated. A histo-

gram extrapolation based on this data was then used to ex-

trapolate along the coexistence curve using the equal peak-

weight criterion for pL(f).41 In this way a sizeable portion

of the near-critical coexistence curve ~and its analytic

extension35! could be located. Representative forms of the

density distributions along this line of pseudocoexistence are

shown in Fig. 4~a!, while the positions of the density peaks

are shown in Fig. 4~b!.
To locate the critical point along the line of phase coex-

istence, we utilized the universal matching condition for the

operator distributions pL~M!. Again applying the histogram

reweighting technique, the temperature, chemical potential,

and field mixing parameter s were tuned until the form of

pL~M! most accurately matched the universal fixed point

Ising form p̃M
* (x). The results of performing this procedure

are shown in Fig. 5 for the V5403 and V5503 system sizes.

Given that these systems contain on average less than 100

polymer chains at criticality, the quality of the data collapse

is remarkable. The mappings shown were effected for a

choice of the parameters Tc51.791(5), mc525.164 25(2),

s520.135(4), where we have defined m to be the chemical

potential per monomer. The associated estimates for the criti-

cal volume fraction is fc50.198(5). We note that this esti-

mate of Tc is rather less than what would be obtained, were

one simply to extrapolate the liquid and vapor densities to

the point at which they merge @Fig. 4~b!#. Thus our results

further emphasize the finite-size errors that can arise using

such a procedure.

We have also attempted to fit the coexistence curve data

of Fig. 4~b!, using fits of the Ising form: f l5fc

10.745(Tc2T)10.55(Tc2T)0.324, f
v
5fc10.745(Tc2T)

10.55(Tc2T)0.324, with Tc and fc assigned the values ob-

tained above. For the Lennard-Jones fluid,42 a fit of this type

gave a good description of the coexistence data for tempera-

tures down to 0.8Tc . Here, one sees that a reasonable fit can

be obtained, but only for temperature within some 3% of Tc .

This would seem to suggest that the asymptotic Ising region

in the polymer system is much smaller than in the Lennard-

Jones system.

With regard to our estimates for the critical parameters,

it should be emphasized that they are subject to errors arising

both from corrections to scaling, as well as field mixing ef-

fects in the case of the critical volume fraction.35 While in

principal one can also correct for these effects, if one has

access to a sufficient range of system sizes and ample statis-

tics ~see, e.g., Ref. 42!, the computational difficulties of the

present problem preclude such an analysis. Indeed, for the

N560 system studied here, only one system size, V550 was

employed, this being the largest that could reasonably be

tackled. Smaller system sizes were not studied since these

would contain so few chains at criticality as to be exces-

sively influenced by corrections to scaling. The matching to

the universal form for the largest size available was then the

only guide to the location of the critical point. Notwithstand-

ing these problems, however, we feel on the basis of our

experience of corrections to scaling in other systems,42 that

FIG. 4. ~a! The distribution function of the monomeric volume fraction

pL(f) for the N520 system at a selection of temperatures along the line of

liquid–vapor coexistence. ~b! The measured liquid ~squares! and vapor

~circles! peak densities corresponding to the histogram extrapolation along

the coexistence curve. Also shown is an attempted fit to the data ~full line!
and the estimate for the critical point (X), both obtained as described in the

text.

FIG. 5. The ordering operator distribution pL~M! of the polymer model at

the assigned critical parameters. Also shown for comparison is the universal

fixed point form p̃M
* (x) obtained in a separate study ~Ref. 39!. In accor-

dance with convention all data has been scaled to unit norm and variance, by

choice of the scale factor aM .
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the quoted uncertainties generously encompass the infinite-

volume critical parameters.

The procedure described above was repeated for the

other chain lengths studied, allowing estimates to be ob-

tained for Tc(N) and fc(N). However, the computational

difficulty became progressively greater as N increased, mak-

ing the accumulation of good statistics problematic. As a

result it was not possible to perform a reliable histogram

extrapolation away from the critical point into the subcritical

two-phase region and thus no information on the N depen-

dence of the critical amplitude prefactor featuring in Eq. ~5!
could be obtained. An additional hindrance to probing the

subcritical coexistence region is that the BFM appears to be

unable to support a liquid phase for volume fractions f*0.6,

instead collapsing into an amorphous crystal. This artifact is

traceable to the limited conformational entropy of our lattice-

based chains, and has also been observed in a previous study

of tethered chains using the same model.43

The results for Tc(N) and fc(N) are plotted against

N21 in Figs. 6 and 7, respectively. For Tc(N) we find that

the data can be well fitted by a Flory-type formula of the

form Tc5Q1a1N20.5
1a2N21 ~where the N21 term can be

thought of as a free-end correction and where we assume that

limN→`Tc5u!, although fits of the form Tc(N)5Q
1a1N2x3 yield a comparable fit quality for values of x3 in

the range x350.46– 0.53. For f(N) we have performed a

fit of the form fc(N)5(b11b2Nx2)21, and obtain

x250.37(2).

Finally, we have considered the N dependence of the

average squared end-to-end distance, Re
2(N) at criticality.

This quantity has been conjectured to scale as19

Ree
2 ~N !}N2n8. ~20!

It was observed that the scaling of fc with N could be ex-

plained if n850.46, and we would like to check this conjec-

ture. Our results are plotted in Fig. 8. Despite the very lim-

ited number of data points, we have attempted to fit this data

to the form Eq. ~20!, with the result Ree
2 (N)}N1.11(4). This

finding that n8.0.5 is also supported by a study of the dis-

tribution function of end-to-end distances p(r) at the esti-

mated critical point. A scaling form for this function ~valid

for large N! may be written44

p~r !}rk exp~2Drd!, ~21!

where d[~12n!21, D is a constant and k50.24960.011 in

three dimensions.44 In Fig. 9 we plot the function

p(r2)r20.1245 against r2 on a logarithmic scale, for the chain

length N540 and N560. Fits to the data yields estimates

n850.51 and n50.518, respectively. Of course, it is hard to

believe that the chains are swollen at Tc(N) which is below

Q, given the fact that for f→0 at T5Q , the chains are not

swollen. It is thus possible that the slight deviation from

n851/2 is simply due to corrections to scaling.

IV. DISCUSSION

In summary we have performed a study of the liquid–

vapor critical point of a polymer model for chain lengths up

to N560 monomers. Owing to the low acceptance rate for

chain transfers it was not possible to study either very long

FIG. 6. The measured estimates of the inverse critical temperature as a

function of inverse chain length, together with the Q temperature, represent-

ing the critical temperature in the limit of infinite N . Also shown is a fit of

the form 1/Tc51/u(110.402N20.5
10.696N21).

FIG. 7. The measured estimates of the critical density as a function of chain

length, together with the infinite N value fc50. Also shown is a fit of the

form fc5(1.112611.3N0.369)21.

FIG. 8. The N dependence of the end-to-end distance squared. The fit is of

the form Re
2
55.653N1.112.
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chains, or very large systems. Nevertheless we believe that

the FSS-based technique we employed, of matching the mea-

sured scaling operator distribution functions to their fixed

point universal forms is considerably more reliable than the

practice of simply extrapolating a power law fit to coexist-

ence curve data obtained well away from criticality, as has

been the norm in previous simulation studies.23–25,27 Indeed,

while we reproduce the previous results with regard to the

finding that Tc(N) is well described by a Flory formula, our

measured value for the exponent x250.37(2), is in much

closer accord with experiment (x250.38) than previous

simulation measurements. It is also interesting to note that

for a similar range of monomeric units N , our coarse grained

model seems to be much better at describing the asymptotic

limit than chemically realistic models such as that employed

in a recent study of Alkanes,23 which did not even yield a

monotonically decreasing fc(N).

With regard to the critical N dependence of the chain

span, our results suggest ~albeit on the basis of a very limited

number of data points! that the exponent n8.0.5, which, if

correct, would imply that the chains are slightly swollen at

criticality—at variance with the suggestion of Cherayil19,45

and L’huiller20 that n8'0.46, which is based on the assump-

tion that the phase separation occurs when the chains just

barely begin to overlap. We consider it possible, however,

that our estimates for n8 should be considered as effective

exponents, which exceed the classical value n851/2 only be-

cause of corrections to scaling. But in any case there is no

evidence that the chains are somewhat collapsed at critical-

ity.

Finally, we remark that there is evidently a need to study

longer chain and larger system sizes in order both to validate

the results thus far obtained and to confirm that the limiting

scaling behaviour is being observed. In view of the low ac-

ceptance rates for chain transfers at large N , algorithmic im-

provements are clearly necessary before this can be

achieved.

Note added in proof. Very recently P. Grassberger has

remeasured the Q temperature using much longer chains

than considered here. His results suggest that the Q tempera-

ture lies in the range T52.08–2.11. Use of values in this

range in the fit of Fig. 6, yields improved agreement with the

Flory form. We thank Professor Grassberger for communi-

cating his results to us prior to publication.
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