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ChainQueen: A Real-Time Differentiable Physical Simulator

for Soft Robotics

Yuanming Hu, Jiancheng Liu∗, Andrew Spielberg∗,

Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, Wojciech Matusik1,2

Abstract— Physical simulators have been widely used in robot
planning and control. Among them, differentiable simulators
are particularly favored, as they can be incorporated into
gradient-based optimization algorithms that are efficient in
solving inverse problems such as optimal control and motion
planning. Simulating deformable objects is, however, more
challenging compared to rigid body dynamics. The underlying
physical laws of deformable objects are more complex, and the
resulting systems have orders of magnitude more degrees of
freedom and therefore they are significantly more computation-
ally expensive to simulate. Computing gradients with respect
to physical design or controller parameters is typically even
more computationally challenging. In this paper, we propose a
real-time, differentiable hybrid Lagrangian-Eulerian physical
simulator for deformable objects, ChainQueen, based on the
Moving Least Squares Material Point Method (MLS-MPM).
MLS-MPM can simulate deformable objects including contact
and can be seamlessly incorporated into inference, control and
co-design systems. We demonstrate that our simulator achieves
high precision in both forward simulation and backward
gradient computation. We have successfully employed it in a
diverse set of control tasks for soft robots, including problems
with nearly 3,000 decision variables.

I. INTRODUCTION

Robot planning and control algorithms often rely on

physical simulators for prediction and optimization [1], [2].

In particular, differentiable physical simulators enable the use

of gradient-based optimizers, significantly improving control

efficiency and precision. Motivated by this, there has been

extensive research on differentiable rigid body simulators,

using approximate [3], [4] and exact [5], [6], [7] methods.

Significant challenges remain for deformable objects. First,

simulating the motion of deformable objects is slow, because

they have much higher degrees of freedom (DoFs). Second,

contact detection and resolution is challenging for deformable

objects, due to their changing geometries and potential self-

collisions. Third, closed-form and efficient computation of

gradients is challenging in the presence of contact. As a

consequence, current simulation methods for soft objects

cannot be effectively used for solving inverse problems such

as optimal control and motion planning.

In this paper, we introduce a real-time, differentiable

physical simulator for deformable objects, building upon

the Moving Least Squares Material Point Method (MLS-

1Y. Hu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and
W. Matusik are with Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA

2J. Liu is with Institute for Interdisciplinary Information Science, Tsinghua
University, Beijing, China

∗ Equally contributed.

MPM) [8]. We name our simulator ChainQueen∗. The

Material Point Method (MPM) is a hybrid Lagrangian-

Eulerian method that uses both particles and grid nodes

for simulation [9]. MLS-MPM accelerates and simplifies

traditional MPM using a moving least squares force dis-

cretization. In ChainQueen, we introduce the first fully

differentiable MLS-MPM simulator with respect to both state

and model parameters, with both forward simulation and back-

propagation running efficiently on GPUs. We demonstrate

the ability to efficiently calculate gradients with respect to

the entire simulation. This enables many novel applications

for soft robotics including optimization-based closed-loop

controller design, trajectory optimization, and co-design of

robot geometry, materials, and control.

As a particle-grid-based hybrid simulator, MPM simulates

objects of various states, such as liquid (e.g., water), granular

materials (e.g., sand), and elastoplastic materials (e.g., snow

and human tissue). ChainQueen focuses on elastic materials

for soft robotics. It is fully differentiable and 4− 9× faster

than the current state-of-the-art. Numerical and experimental

validation suggest that ChainQueen achieves high precision in

both forward simulation and backward gradient computation.

ChainQueen’s differentiability allows it to support gradient-

based optimization for control and system identification. By

performing gradient descent on controller parameters, our

simulator is capable of solving these inverse problems on

a diverse set of complex tasks, such as optimizing a 3D

soft walker controller given an objective. Similarly, gradient

descent on physical design parameters, enables inference of

physical properties (e.g. mass, density and Young’s modulus)

of objects and optimizing design for a desired task.

In addition to benchmarking ChainQueen’s performance

and demonstrating its capabilities on a diverse set of inverse

problems, we have interfaced our simulator with high-level

python scripts to make ChainQueen user-friendly. Users at

all levels will be able to develop their own soft robotics

systems using our simulator, without the need to understand

its low-level details. We will open-source our code and data

and we hope they can benefit the robotics community.

II. RELATED WORK

A. Material Point Method

The material point method has been extensively developed

from both a solid mechanics [9] and computer graphics [10]

perspective. As a hybrid Eulerian-Langrangian method, MPM

∗Or 乾坤 , literally “everything between the sky and the earth.”
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has demonstrated its versatility in simulating snow [11],

[12], sand [13], [14], non-Newtonion fluids [15], cloth [16],

[17], solid-fluid coupling [18], [19], rigid body coupling, and

cutting [8]. [20] also proposed an adaptive MPM scheme to

concentrate computation resources in the regions of interest.

There are many benefits of using MPM for soft robotics.

First, MPM is a well-founded and physically-accurate dis-

cretization method and can be derived through the weak form

of conservation laws. Such a physically-based approach makes

it easier to match simulation with real-world experiments.

Second, MPM is friendly to parallelization on modern

hardware architectures. Closely related to our work is a

high-performance GPU implementation [21] by Gao et al.,

from which we borrow many useful optimization practices.

Though efficient when solving forward simulation, their

simulator is not differentiable, making it inefficient for inverse

problems in robotics and learning. Third, MPM naturally

handles large deformation and (self-)collision, which are

common in soft robotics, but often not modeled in, e.g.,

mesh-based approaches due to computational expense. Finally,

the continuum dynamics (including soft object collision) are

governed by the smooth (and differentiable) potential energy,

making the whole system differentiable.

Our simulator, ChainQueen, is fully differentiable and the

first simulator that applies MPM to soft robotics.

B. Differentiable Simulation and Control

Recently, there has been an increasing interest in building

differentiable simulators for planning and control. For rigid

bodies, [22], [3] and [4] proposed to approximate object

interaction with neural nets; later, [23] explored their usage

in control. Approximate analytic differentiable rigid body

simulators have also been proposed [5], [24]. Such systems

have been deployed for manipulation and planning [25].

Differentiable simulators for deformable objects have been

less studied. Recently, [26] proposed SPNets for differen-

tiable simulation of position-based fluids [27]. The particle

interactions are coded as neural network operations and

differentiability is achieved via automatic differentiation in

PyTorch. A hierarchical particle-based object representation

using neural networks is also proposed in [4]. Instead of

approximating physics using neural networks, ChainQueen

differentiates MLS-MPM, a well physically founded dis-

cretization scheme derived from continuum mechanics. In

summary, our simulator can be used for a more diverse set

of objects; it is more physically plausible, and runs faster.

III. FORWARD SIMULATION AND BACK-PROPAGATION

We use the moving least squares material point method

(MLS-MPM) [8] to discretize continuum mechanics, which

is governed by the following two equations:

ρ
Dv

Dt
= ∇ · σ + ρg (momentum conservation), (1)

Dρ

Dt
+ ρ∇ · v = 0 (mass conservation). (2)

We briefly cover the basics of MLS-MPM and readers are

referred to [10] and [8] for a comprehensive introduction

TABLE I: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

∆t scalar time step size
∆x scalar grid cell size
xp vector particle position

V 0
p scalar particle initial volume

vp vector particle velocity
Cp matrix particle affine velocity field [28]
Pp matrix particle PK1 stress (∂ψp/∂Fp)
σpa matrix particle actuation Cauchy stress
Ap matrix particle actuation stress (material space)
Fp matrix particle deformation gradient
xi vector node position
mi scalar node mass
vi vector node velocity
pi vector node momentum, i.e. mivi

N scalar quadratic B-spline function

of MPM and MLS-MPM, respectively. The material point

method is a hybrid Eulerian-Lagrangian method, where

both particles and grid nodes are used. Simulation state

information is transferred back-and-forth between these two

representations. We summarize the notations we use in this

paper in Table IV. Subscripts are used to denote particle (p)

and grid nodes (i), while superscripts (n, n+ 1) are used to

distinguish quantities in different time steps. The MLS-MPM

simulation cycle has three steps:

1) Particle-to-grid transfer (P2G). Particles transfer mass
mp, momentum (mv)np , and stress-contributed impulse
to their neighbouring grid nodes, using the Affine
Particle-in-Cell method (APIC) [28] and moving least
squares force discretization [8], weighted by a compact
B-spline kernel N :

mn
i =

∑

p

N(xi − x
n
p )mp, (3)

G
n
p = −

4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p , (4)

p
n
i =

∑

p

N(xi − x
n
p )

[

mpv
n
p +G

n
p (xi − x

n
p )
]

. (5)

2) Grid operations. Grid momentum is normalized into

grid velocity after division by grid mass:

vn
i =

1

mn
i

pn
i . (6)

Note that neighbouring particles interact with each

other through their shared grid nodes, and collisions

are handled automatically. Here we omit boundary

conditions and gravity for simplicity.

3) Grid-to-particle transfer (G2P). Particles gather up-

dated velocity vn+1
p , local velocity field gradients Cn+1

p

and position xn+1
p . The constitutive model properties

(e.g. deformation gradients Fn+1
p ) are updated.

v
n+1
p =

∑

i

N(xi − x
n
p )v

n
i , (7)

C
n+1
p =

4

∆x2

∑

i

N(xi − x
n
p )v

n
i (xi − x

n
p )

T , (8)

F
n+1
p = (I+∆tCn+1

p )Fn
p , (9)

x
n+1
p = x

n
p +∆tvn+1

p . (10)
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Fig. 1: One time step of MLS-MPM. Top arrows are for forward simulation and bottom ones are for back propagation. A

controller is embedded in the P2G process to generate actuation given particle configurations.

For soft robotics, we additionally introduce an actuation

model. Inspired by actuators such as [29], we designed

an actuation model that expands or stretches particle p

via an additional Cauchy stress Ap = FpσpaF
T
p , with

σpa = Diag(ax, ay, az) – the stress in the material space.

This framework supports the use of other differentiable

actuation models including pneumatic, hydraulic, and cable-

driven actuators. Fig. 1 illustrates forward simulation and

back propagation.

MLS-MPM is naturally differentiable. Though the forward

direction has been extensively used in computer graphics, the

backward direction (differentiation or back-propagation) is

largely unexplored.

Based on the gradients we have derived analytically,

we have designed a high-performance implementation that

resembles the traditional forward MPM cycle: backward

P2G (scatter particle gradients to grid), grid operations, and

backward G2P (gather grid gradients to particles). † Gradients

of state at the end of a time step with respect to states at the

starting of the time step can be computed using the chain

rule. With the single-step gradients computed, applying the

chain rule at a higher level from the final state all-the-way to

the initial state yields gradients of the final state with respect

to the initial state, as well as to the controller parameters

that are used in each state. We cache all the simulation states

in memory, using a “memo” object. Though the underlying

differentiation is complicated, we have designed a simple

high-level TensorFlow interface on which end-users can build

their applications (Fig. 2).

Our high-performance implementation‡ takes advantage of

the computational power of modern GPUs through CUDA. We

also implemented a reference implementation in TensorFlow.

Note that programming physical simulation as a “computation

graph” using high-level frameworks such as TensorFlow is

less inefficient. In fact, when all the overheads are gone, our

optimized CUDA solver is 132× faster than the TensorFlow

reference version. This is because TensorFlow is optimized

towards deep learning applications where data granularity is

much larger and memory access pattern is much more regular

than physical simulation, and limited CPU-GPU bandwidth.

In contrast, our CUDA implementation is tailored for MLS-

†Please see the supplemental document for the gradient derivations.
‡Based the Taichi [30] open source computer graphics library.

TABLE II: Performance comparisons on a NVIDIA GTX

1080 Ti GPU. F stands for forward simulation and B stands

for backward differentiation. TF indicates the TensorFlow

implementation. When benchmarking our simulator with

CUDA we use the C++ instead of python interface to avoid

the extra overhead due to the TensorFlow runtime library.

Approach Impl. # Particles Time per Frame

Flex (3D) CUDA 8,024 3.5 ms (286 FPS)
Ours (3D, F) CUDA 8,000 0.392 ms (2,551 FPS)
Ours (3D, B) CUDA 8,000 0.406 ms (2,463 FPS)

Flex (3D) CUDA 61,238 6 ms (167 FPS)
Ours (3D, F) CUDA 64,000 1.594 ms (628 FPS)
Ours (3D, B) CUDA 64,000 1.774 ms (563 FPS)

Ours (3D, F) CUDA 512,000 10.501 ms (92 FPS)
Ours (3D, B) CUDA 512,000 11.594 ms (86 FPS)

Ours (2D, F) TF 6,400 13.2 ms (76 FPS)
Ours (2D, B) TF 6,400 35.7 ms (28 FPS)
Ours (2D, F) CUDA 6,400 0.10 ms (10,000 FPS)
Ours (2D, B) CUDA 6,400 0.14 ms (7,162 FPS)

MPM and explicitly optimized for parallelism and locality,

thus delivering high-performance.

IV. EVALUATION

In this section, we conduct a comprehensive study of the

efficiency and accuracy of our system, in both 2D and 3D.

A. Efficiency

Instead of using complex geometries, a simple falling cube

is used for performance benchmarking, to ensure easy analysis

and reproducibility. We benchmark the performance of our

CUDA simulator against NVIDIA Flex [31], a popular PBD

physical simulator capable of simulating deformable objects.

Note that both PBD and MLS-MPM needs substepping

iterations to ensure high stiffness. To ensure fair comparison,

we set a Young’s modulus, Poisson’s ration and density so

that visually ChainQueen gives similar results to Flex. We

used two steps per frame and four iterations per step in Flex.

Note that setting exactly the same parameters is not possible

since in PBD there is no explicitly defined physical quantity

such as Young’s modulus.

We summarize the quantitative performance in Table II.

Our CUDA simulator provides higher speed than Flex, when

the number of particles are the same. It is also worth noting
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Fig. 2: Left: A “memo” object consists all information of a single simulation execution, including all the time step state

information (position, velocity, deformation gradients etc.), and parameters for the initial state p0, policy parameter θ.

Right: Code samples to get the symbolic differentiation (top) and memo, evaluate gradients out of the memo and symbolic

differentiation, and finally use them for gradient descent (bottom).

that the TensorFlow implementation is much slower, due to

excessive runtime overheads.

B. Accuracy

We design five test cases to evaluate the accuracy of both

forward simulation and backward gradient evaluation:

1) A1 (analytic, 3D, float32 precision): final position w.r.t.

initial velocity (with collision). This case tests conser-

vation of momentum, gradient accuracy and stability of

back-propagation.

2) A2 (analytic, 3D, float32 precision): same as A1 but

with one collision to a friction-less wall.

3) B (numeric, 2D, float64 precision): colliding billiards.

This case tests gradient accuracy and stability in more

complex cases where analytic solutions do not exist.

We used float64 precision for accurate finite difference

results.

4) C (numeric, 2D, float64 precision): finger controller. This

case tests gradient accuracy of controller parameters,

which are used repeatedly in the whole simulation

process.

5) D1 (experimental, pneumatic actuator, actuation) In order

to evaluate our simulator’s real-world accuracy, we com-

pared the deformation of a physical actuator to a virtual

one. The physical actuator has four pneumatic chambers

which can be inflated with an external pump, arranged

in a cross-shape. Inflating the individual chambers bends

the actuator away from that chamber. The actuator was

TABLE III: Relative error in simulation and gradient precision.

Empty values are because of too short time for collision to

happen.

Case 1 steps 10 steps 100 steps 1000 steps

A1 9.80× 10−8 4.74× 10−8 1.15× 10−7 1.43× 10−5

A2 - - - 2.69× 10−5

B - - 2.39× 10−8 2.83× 10−8

C 5.63× 10−6 2.24× 10−7 6.97× 10−7 1.76× 10−6

cast using Smooth-On Dragon Skin 30.

6) D2 (experimental, pneumatic actuator, bouncing) In a

second test, we dropped the same actuator from a 15 cm

height, and compared its dynamic motion to a simulation.

In 3D analytic test cases, where gradients w.r.t. initial

velocity can be directly evaluated as in Table III. For the

experimental comparisons, the results are shown in Fig. 3. In

addition to our simulator’s high performance and accuracy,

it is worth noting that that the gradients remain stable in the

long term, within up to 1000 time steps.

V. INFERENCE, CONTROL AND CO-DESIGN

The most attractive feature of our simulator is the existence

of quickly computable gradients, which allows the use of

much more efficient gradient-based optimization algorithms.

In this section, we show the effectiveness of our differentiable

simulator on gradient-based optimization tasks, including

physical inference, control for soft robotics, and co-design

of robotic arms.



Fig. 3: Experiments on the pneumatic leg. Row (A, B)

Footage and simulator results of a bouncing experiment with

the leg dropping at 15 cm. Row (C, D) Actuation test.

A. Physical Parameter Inference

ChainQueen can be used to infer physical system properties

given its observed motion, e.g. perform gradient descent to

infer the relative densities of two colliding elastic balls (see

figure above, ball A moving to the right hitting ball B, and

ball B arrives the destination C). Gradient-based optimization

infers that relative density of ball A is 2.26, which constitutes

to the correct momentum to push B to C. Such capability

makes it useful for real-world robotic tasks such as system

identification.

B. Control

We can optimize regression-based controllers for soft robots

and efficiently discover stable gaits. The controller takes

as input the state vector z, which includes target position,

the center of mass position, and velocity of each composed

soft component. In our examples, the actuation vector a for

up to 16 actuators is generated by the controller in each

time step. During optimization, we perform gradient descent

on variables W and b, where a = tanh (Wz+ b) is the

Fig. 4: A soft 2D walker with controller optimized using

gradient descent, aiming to achieve a maximum distance

after 600 simulation steps. The walker has four actuators

(left, marked by letter ‘A’s) with each capable of stretching

or compressing in the vertical direction. The full walking

animation (middle and right) is available in the video.

actuation-generating controller.

We have designed a series of experiments including the 2D

biped runner (Fig. 4) and robotic finger, and 3D quadrupedal

runner (Fig. 6), crawler and robotic arm. Gradient-based

optimizers successfully compute desired controllers within

only tens or hundreds of iterations. Visual results are included

in the supplemental video.

To emphasize the merits of gradient-based approaches,

we compare our control method with proximal policy opti-

mization (PPO) [32], a state-of-the-art reinforcement learning

algorithm. PPO is an actor-critic method which relies on

sampled gradients of a reward function in order to optimize

a policy. This sampling-based approach is model-free; it

relies on gradients of the rewards with respect to controller

parameters, but not with respect to the physical model for

updates. For our comparison, we use velocity projected

onto the direction toward the goal as the reward. § We

use a simplified single link version (with only two adjacent

actuators) of Fig. 5 and the 2D runner Fig. 4 as a benchmark.

Quantitative results for the finger are shown in Fig. 7. We

performed a similar comparison on the 2D walker, the

controller optimized by ChainQueen for the 2D walker starts

functioning well within 20 minutes; by comparison the policy

recovered by PPO still chose nearly-random actions after

over 4 hours of training; demonstrating that for certain soft

locomotion tasks our gradient-based method can be more

efficient than model-free approaches.

C. Co-design

Our simulator is capable of not only providing gradients

with respect to dynamics and controller parameters, but also

with respect to structural design parameters, enabling co-

design of soft robots. To demonstrate this, we designed a

multi-link robot arm (two links, two joints each with two side-

by-side actuators; all parts deformable). Similar to shooting

method trajectory optimization, actuation for each time step

is solved for, along with the time-invariant Young’s modulus

of the system for each particle. In our task, we optimized

the end-effector of the arm to reach a goal ball with final 0
arm velocity, and minimized for actuation cost

∑N
i=0

uTi uidt,

where ui is the actuation vector at timestep i, and N is

the total number of timesteps. This is a dynamic task and

§Note that this is functionally extremely similar to a distance loss; the
cumulative reward

∫
t
= 0

T vgoaldt = D − ‖xT − xgoal‖, where D is
the initial distance and xT and xgoal represent world coordinates of the
robot at time T and of the goal, respectively. As velocity toward the goal
increases, final distance to the goal decreases.



(a) Actuation config (b) Resting pose (c) Final pose I (d) Final pose II (e) Final pose III

Fig. 5: Final poses of the arm swing task. Lighter colors refer to stiffer regions. (c) Final pose of the fixed-stiffness 300%

initial Young’s modulus arm. (d) Final pose of the fixed-stiffness 300% initial Young’s modulus arm. (e) Final pose of the

co-optimized arm. Actuation cost is 95.5% that of the fixed 100% initial Young’s modulus arm and converges. Only the

co-optimized arm is able to fully reach its target. The final optimized spatially varying stiffness of the arm has lower stiffness

on the outside of the bend, and higher stiffness inside, promoting more bend to the left. Qualitatively, this is similar in effect

to the pleating on soft robot fingers.

Fig. 6: A 3D quadrupedal runner. Please see the supplemental video for more results.

0 350
0.0

0.1
Ours
PPO

0 1500

0.01

0.03 Ours
PPO

0 3500

0.01

0.05
Ours
PPO

Fig. 7: Gradient-free optimization using PPO and gradient-

descent based on ChainQueen, on the 2D finger task. Thanks

to the accurate gradient information, even the most vanilla

optimizer can beat state-of-the-art reinforcement learning

algorithms by one order of magnitude regarding optimization

speed. (Left) single, fixed target. (Middle) random targets.

(Right) random targets, larger range. Curves are smoothed

over 10, 100 and 100 iterations respectively. The x-axis is

simulation iterations and y-axis the loss.

the target pose cannot be reached in a static equilibrium.

NLOPT’s sequential least squares programming algorithm

was used for optimization [33]. We compared our co-design

solution to fixed designs. The designed stiffness distribution

is shown in Fig. 5, along with controls. The convergence for

the different tasks can be seen in Fig. 8. As can be seen,

only the co-design arm fully converges to the target goal, and

with lower actuation cost. Actuation for each chamber was

clamped, and rnges of 30% to 400% of a dimensionless initial

Young’s modulus were allowed and chosen large enough such

as to require a swing instead of a simple bend.

VI. DISCUSSION

We have presented ChainQueen, a differentiable simulator

for soft robotics, and demonstrated how it can be deployed

for inference, control, and co-design. ChainQueen has the

potential to accelerate the development of soft robots. We

have also developed a high-performance GPU implementation

for ChainQueen, which we plan to open source.
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Major Iteration

10-6

10-4

10-2

100

C
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st
ra

in
t V
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tio
n

Fixed 300% Initial Young's
Fixed 100% Initial Young's
Co-design

Fig. 8: Convergence of the arm reaching task for co-design vs.

fixed arm designs. The fixed designs can make progress but

not complete the task, while with co-design, the task can be

completed and the actuation cost is lower. Constraint violation

is the norm of two constraints: distance of end-effector to

goal and mean squared velocity of the particles.

One interesting future direction is to couple our soft object

simulation with rigid body simulation, as done in [8]. As

derived in [34], the ∆t limit for explicit time integration

is C∆x
√

ρ
E

, where C is a constant close to one, ρ is the

density, and E is the Young’s modulus. That means for very

stiff materials (e.g., rigid bodies), only a very restrictive ∆t
can be used. However, a rigid body simulator should probably

be employed in the realm of nearly-rigid objects and coupled

with our deformable body simulator. Combining our simulator

with existing rigid-body simulators using Compatible Particle-

in-Cell [8] can be an interesting direction.

ACKNOWLEDGMENTS

We would like to thank Chenfanfu Jiang, Ming Gao and

Kui Wu for the insightful discussions.



Supplemental Document

In this document, we discuss the detailed steps for backward gradient computation in ChainQueen, i.e. the differentiable

Moving Least Squares Material Point Method (MLS-MPM) [8]. Again, we summarize the notations in Table IV. We assume

fixed particle mass mp, volume V 0
p , hyperelastic constitutive model (with potential energy ψp or Young’s modulus Ep and

Poisson’s ratio νp) for simplicity.

TABLE IV: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

∆t scalar time step size
∆x scalar grid cell size
xp vector particle position

V 0
p scalar particle initial volume

vp vector particle velocity
Cp matrix particle affine velocity field [28]
Pp matrix particle PK1 stress (∂ψp/∂Fp)
σpa matrix particle actuation Cauchy stress
Ap matrix particle actuation stress (material space)
Fp matrix particle deformation gradient
xi vector node position
mi scalar node mass
vi vector node velocity
pi vector node momentum, i.e. mivi

N scalar quadratic B-spline function

VII. VARIABLE DEPENDENCIES

The MLS-MPM time stepping is defined as follows:

Pn
p = Pn

p (F
n
p ) + Fpσ

n
pa (11)

mn
i =

∑

p

N(xi − xn
p )mp (12)

pn
i =

∑

p

N(xi − xn
p )

[

mpv
n
p +

(

−
4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)

(xi − xn
p )

]

(13)

vn
i =

1

mn
i

pn
i (14)

vn+1
p =

∑

i

N(xi − xn
p )v

n
i (15)

Cn+1
p =

4

∆x2

∑

i

N(xi − xn
p )v

n
i (xi − xn

p )
T (16)

Fn+1
p = (I+∆tCn+1

p )Fn
p , (17)

xn+1
p = xn

p +∆tvn+1
p (18)

(19)



The forward variable dependency is as follows:

xn+1
p ← xn

p ,v
n+1
p (20)

vn+1
p ← xn

p ,v
n
i (21)

Cn+1
p ← xn

p ,v
n
i (22)

Fn+1
p ← Fn

p ,C
n+1
p (23)

pn
i ← xn

p ,C
n
p ,v

n
p ,P

n
p ,F

n
p (24)

vn
i ← pn

i ,m
n
i (25)

Pn
p ← Fn

p ,σ
n
pa (26)

mn
i ← xn

p (27)

(28)

During back-propagation, we have the following reversed variable dependency:

xn+1
p ,vn+1

p ,Cn+1
p ,pn+1

i ,mi ← xn
p (29)

pn
i ← vn

p (30)

xn+1
p ← vn+1

p (31)

vn+1
p ,Cn+1

p ← vn
i (32)

Fn+1
p ,Pn

p ,p
n
i ← Fn

p (33)

Fn+1
p ← Cn+1

p (34)

pn
i ← Cn

p (35)

vn
i ← pn

i (36)

vn
i ← mn

i (37)

pn
i ← Pn

p (38)

Pn
p ← σ

n
pa (39)

(40)

We reverse swap two sides of the equations for easier differentiation derivation:

xn
p → xn+1

p ,vn+1
p ,Cn+1

p ,pn+1

i ,mi (41)

vn
p → pn

p (42)

vn+1
p → xn+1

p (43)

vn
i → vn+1

p ,Cn+1
p (44)

Fn
p → Fn+1

p ,Pn
p ,p

n
i (45)

Cn+1
p → Fn+1

p (46)

Cn
p → pn

i (47)

pn
i → vn

i (48)

mn
i → vn

i (49)

Pn
p → pn

i (50)

σ
n
pa → Pn

p (51)

(52)

In the following sections, we derive detailed gradient relationships, in the order of actual gradient computation. The

frictional boundary condition gradients are postponed to the end since it is less central, though during computation it belongs

to grid operations. Back-propagation in ChainQueen is essentially a reversed process of forward simulation. The computation

has three steps, backward particle to grid (P2G), backward grid operations, and backward grid to particle (G2P).



VIII. BACKWARD PARTICLE TO GRID (P2G)

(A, P2G) For vn+1
p , we have

xn+1
p = xn

p +∆tvn+1
p (53)

=⇒
∂L

∂vn+1
pα

=

[

∂L

∂xn+1
p

∂xn+1
p

∂vn+1
p

]

α

(54)

= ∆t
∂L

∂xn+1
pα

. (55)

(B, P2G) For Cn+1
p , we have

Fn+1
p = (I+∆tCn+1

p )Fn
p (56)

=⇒
∂L

∂Cn+1

pαβ

=

[

∂L

∂Fn+1
p

∂Fn+1
p

∂Cn+1
p

]

αβ

(57)

= ∆t
∑

γ

∂L

∂Fn+1
pαγ

Fn
pβγ . (58)

Note, the above two gradients should also include the contributions of ∂L
∂vn

p

and ∂L
∂Cn

p

respectively, with n being the next

time step.

(C, P2G) For vn
i , we have

vn+1
p =

∑

i

N(xi − xn
p )v

n
i (59)

Cn+1
p =

4

∆x2

∑

i

N(xi − xn
p )v

n
i (xi − xn

p )
T (60)

=⇒
∂L

∂vn
iα

=

[

∑

p

∂L

∂vn+1
p

∂vn+1
p

∂vn
i

+
∑

p

∂L

∂Cn+1
p

∂Cn+1
p

∂vn
i

]

α

(61)

=
∑

p





∂L

∂vn+1
pα

N(xi − xn
p ) +

4

∆x2
N(xi − xn

p )
∑

β

∂L

∂Cn+1

pαβ

(xiβ − xpβ)



 . (62)

IX. BACKWARD GRID OPERATIONS

(D, grid) For pn
i , we have

vn
i =

1

mn
i

pn
i (63)

=⇒
∂L

∂pn
iα

=

[

∂L

∂vn
i

∂vn
i

∂pn
i

]

α

(64)

=
∂L

∂vn
iα

1

mn
i

. (65)

(E, grid) For mn
i , we have

vn
i =

1

mn
i

pn
i (66)

=⇒
∂L

∂mn
i

=
∂L

∂vn
i

∂vn
i

∂mn
i

(67)

= −
1

(mn
i )

2

∑

α

pn
iα

∂L

∂vn
iα

(68)

= −
1

mn
i

∑

α

vn
iα

∂L

∂vn
iα

. (69)



X. BACKWARD GRID TO PARTICLE (G2P)

(F, G2P) For vn
p , we have

pn
i =

∑

p

N(xi − xn
p )

[

mpv
n
p +

(

−
4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)

(xi − xn
p )

]

(70)

=⇒
∂L

∂vn
pα

=

[

∑

i

∂L

∂pn
p

∂pn
p

∂vn
p

]

α

(71)

=
∑

i

N(xi − xn
p )mp

∂L

∂pn
iα

. (72)

(G, G2P) For Pn
p , we have

pn
i =

∑

p

N(xi − xn
p )

[

mpv
n
p +

(

−
4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)

(xi − xn
p )

]

(73)

=⇒
∂L

∂Pn
pαβ

=

[

∂L

∂pn
i

∂pn
i

∂Pn
p

]

αβ
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∆x2
∆tV 0

p

∑

γ

∂L
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iα

Fn
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(xiγ − xn
pγ). (75)

(H, G2P) For Fn
p , we have

Fn+1
p = (I+∆tCn+1

p )Fn
p (76)

Pn
p = Pn

p (F
n
p ) + Fpσ

n
pa (77)

pn
i =

∑

p
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p )

[

mpv
n
p +

(

−
4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)

(xi − xn
p )

]

(78)
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p , we have
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(J, G2P) For xn
p , we have

xn+1
p = xn

p +∆tvn+1
p (85)
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i
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(K, G2P) For σn
pa, we have

Pn
p = Pn

p (F
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n
pa (99)
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XI. FRICTION PROJECTION GRADIENTS

When there are boundary conditions:

(L, grid) For vn
i , we have

lin =
∑

α

viαniα (102)

vit = vi − linni (103)

lit =

√

∑

α

v2
itα + ε (104)

v̂it =
1

lit
vit (105)

l∗it = max{lit + ci min{lin, 0}, 0} (106)

v∗
i = l∗itv̂it +max{lin, 0}ni (107)

H(x) := [x ≥ 0] (108)

R := lit + ci min{lin,0} (109)

=⇒
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