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Abstract

Background: Advances in high throughput technologies and growth of biomedical knowledge have contributed
to an exponential increase in associative data. These data can be represented in the form of complex networks of
biological associations, which are suitable for systems analyses. However, these networks usually lack both, context
specificity in time and space as well as the distinctive borders, which are usually assigned in the classical pathway
view of molecular events (e.g. signal transduction). This complexity and high interconnectedness call for automated
techniques that can identify smaller targeted subnetworks specific to a given research context (e.g. a disease scenario).

Results: Our method, named ChainRank, finds relevant subnetworks by identifying and scoring chains of interactions
that link specific network components. Scores can be generated from integrating multiple general and context specific
measures (e.g. experimental molecular data from expression to proteomics and metabolomics, literature evidence,
network topology). The performance of the novel ChainRank method was evaluated on recreating selected signalling
pathways from a human protein interaction network. Specifically, we recreated skeletal muscle specific signaling
networks in healthy and chronic obstructive pulmonary disease (COPD) contexts. The analysis showed that ChainRank
can identify main mediators of context specific molecular signalling. An improvement of up to factor 2.5 was shown in
the precision of finding proteins of the recreated pathways compared to random simulation.

Conclusions: ChainRank provides a framework, which can integrate several user-defined scores and evaluate their
combined effect on ranking interaction chains linking input data sets. It can be used to contextualise networks,
identify signaling and regulatory path amongst targeted genes or to analyse synthetic lethality in the context of
anticancer therapy. ChainRank is implemented in R programming language and freely available at https://
github.com/atenyi/ChainRank.

Keywords: Biological networks, Protein-protein interaction, Data integration, Filtering, Computational biology,
Bioinformatics, Systems biology, COPD

Background

Canonical pathways are widely used tools to represent

signal transduction and molecular networks. They generally

rely on literature-based information, mostly derived from

hypothesis-driven experiments collected in exceedingly di-

verse contexts, encompassing a large variety of experimen-

tal conditions (e.g. different species, cell-types/tissues,

diseases) and/or in-vitro models. Multiple layers of in-

formation (e.g. direction of a signalling event, type of

interactions or cartoon graphics) make literature-based

pathways a highly accepted and convenient source of

information in biological research. However, the emer-

gence of high-throughput technologies has shown several

limitations of the approach.

By incorporating non-hypothesis based interactions,

high-throughput methods have revealed many previously

unrecognised pathway components [1–3]. Moreover, dif-

ferent studies have shown high interconnectedness of

signalling pathways indicating larger complexity than the

conventional separate representation of molecular events

[4, 5]. Furthermore an increasing amount of evidence

suggests the dependence of biological, cellular and disease

outcomes on the complex of interactions between genes,
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proteins and other molecules [6] which is rarely addressed

in pathway databases. Consequently, it is currently appar-

ent that the classical pathway approach is too simplistic to

properly describe complex cellular events [7–9].

With advances in high-throughput technologies an in-

creasing number of genome scale association data be-

came available. This scenario facilitates the construction

of data-driven biological networks, integrating experimen-

tal data, e.g. on protein-protein interactions (PPI), gene

regulation and metabolic interactions, offering a systems

approach to model molecular events [10]. However, these

networks are too large for human interpretation and their

context specific origin is often unaccounted in databases.

Therefore, filtering these networks and identifying subnet-

works that are important in a certain context (e.g. disease/

health, tissue/cell) are major challenges that make up an

active field of research.

An appealing approach for relevant subnetwork identi-

fication is to model the flow of biological information

(e.g. cell signalling) using chains of interactions. In the

case of protein signalling this means that every protein

in a chain can modify the consequent protein, transmitting

a biological signal (the alternative term “path” is avoided

here to prevent confusion with signalling pathways). Mul-

tiple alternative chains which allow to traverse from a start

to an endpoint may exist within a network. Following this

logic Scott et al. [11] successfully developed an algorithm

to identify protein signalling cascades in a protein network

for pathway discovery purposes. They used interaction

reliability and functional enrichment based scoring to

calculate the significance of the chains. They showed

that this technique has a potential in recovering known

pathways in yeast, however, their algorithm lack context

specificity and is not publicly available. Other method-

ologies use gene expression data to get more context spe-

cific results. Teku et al. [12] developed a filtering method

to identify a core T cell network using the immunome

interactome. They used a co-expression based weight-

ing of the interaction network to compute the signifi-

cance of the links. However, expression based specificity is

not the only factor defining the importance of a protein

in an added context. Functional module identification

methods based on topological structures of unweighted

PPI networks are another active area of research. For

example lately, Liekens et al. [13] introduced a solely

network based methodology for gene prioritisation

using an integrated interaction network. According to

the assessment of the authors, this method, despite its

exclusively topology based search algorithm, was re-

ported to outperform earlier gene prioritisation algo-

rithms based on data fusion of heterogeneous data

sources [13]. Recent reviews on pathway discovery ap-

proaches provide further examples for the interested

readers [14, 15].

Here, we present ChainRank, an enhanced search and

prioritisation tool that allows combining multiple bio-

logical evidences (e.g. topology, experimental molecular

data from expression to proteomics and metabolomics,

literature evidence, meta-analysis results, phenotype as-

sociation) as scores. Similarly to the work of Scott et al.

[11], our method uses a chain based network search al-

gorithm to retrieve chains linking user defined start and

end nodes, e.g. biomarkers associated with a disease

state. In this work, we show that combining different

context specific and topological scores together with a

chain based search approach that simulates real inter-

action mechanisms – instead of focusing on individual

biological elements or their associations – can improve

the prediction of underlying pathway mechanisms. We

introduce a framework over the search algorithm that

can incorporate multiple user defined scores and thus is

able to contextualize search results to e.g. disease states

or tissues. Furthermore, we show that this framework

can evaluate the combined effect of these scores to simu-

late complex phenotypes, e.g. tissue specific effects of a

certain disease. According to our knowledge this is the

first method relying on a chain based approach that is able

to incorporate various scores and combine them and this

is the first study showing the effect of combining different

scores.

To assess ChainRank, we evaluated three scores (topo-

logical, tissue specific and disease state specific) to pri-

oritise chains within a PPI network and evaluate them

against known gold standard signalling pathways. We

focused our analysis on muscle dysfunctions in chronic

obstructive pulmonary disease (COPD) because of its

specificity to a distinctive tissue, and also because of its

clinical relevance. We introduce two complex, biologically

motivated scores that we created integrating multiple dif-

ferential expression studies as well as expression, protein

and metabolite data to describe tissue- and disease wise

importance of the network proteins. We also present a

score describing topological importance and show the

combined effects of the developed scores. Evaluating the

precision and recall of finding gold standard (GS) proteins

in our top scoring results, we show a considerable increase

in precision with comparably good recall rate, compared

to a simulated random scoring. Furthermore we show that

combining different scores can further improve the per-

formance of the prioritisation. The results demonstrate

that our method can effectively identify pathway elements

in a context specific manner. Potential use cases are the

identification of disease specific networks, assessment of

pathway interactions, simulation of the spread of perturb-

ing effects amongst networks (mode-of-actions) and the

elucidation of mechanistic relations between biomarkers.

Our method is implemented in the popular R framework

and freely available at https://github.com/atenyi/ChainRank.
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Methods
The ChainRank method consists of two main steps. The

first step searches for all chains connecting start and end

nodes in a network (Fig. 1c-d). For example given a start

node S which interacts with node C1 which interacts with

proteins C2 and E1 (Fig. 1c), as such we define two chains

between S and E, namely S-C1-E1 and S-C1-C2-E (Fig. 1f).

The next step involves annotating the network nodes with

scores and computing the chain scores and p-values to

provide a ranking and selection (Fig. 1e-f).

Chain search

The chain search step is used directly to evaluate all po-

tential chains connecting start and end nodes within the

initial network. This task translates to the “all simple

paths” graph theoretical problem [16] that seeks to find

all simple (non-cyclical) paths between two vertices. A

graph of n vertices contains n! simple paths which makes

a brute force search an NP hard problem. However, for

signalling and gene regulatory networks the biological

relevance of connections between two entities diminishes

with increasing relative distance, i.e. the given distance

relative to the shortest distance [17, 18]. Therefore, the

problem can be addressed by introducing a depth limit for

the search that is greater or equal to the distance of the

shortest path linking the start and end nodes. This prob-

lem can be optimally solved by a depth limited depth first

search (DFS) algorithm. The basic DFS algorithm tra-

verses the network from the starting node and explores a

branch of the network before backtracking (Fig. 1c). Using

a depth limit the search is halted if a chain would exceed a

specified k maximal length (depth limit) which is defined

as the number of nodes a chain contains (Fig. 1b). This al-

gorithm has Ο (bk) time complexity, where b is the

branching factor of the graph and due to its exhaustive

nature it finds an optimal solution within the depth limit k

[19]. We implemented a recursive version of this algo-

rithm and extended it to be able to search simple paths

amongst multiple start and end nodes. Chains connecting

start and end nodes are stored and serve as the output of

the algorithm. The method was implemented in R pro-

gramming language. The pseudo code of the algorithm is

detailed in the Additional file 1: Text S1.

Scoring and prioritisation using p-values

In order to create a general prioritisation framework, we

introduced the concept of element scores. Such scores

are mapped to network nodes and describe a specific

Fig. 1 Schematic overview of the ChainRank method (a-b) and its workflow (c-f). a The input parameters of the algorithm are the investigated
research targets (start and end nodes), a network and the defined scores. b The ChainRank method produces a context specific subnetwork specific to
the research targets. c The method is based on a depth-first search (DFS) algorithm that traverses the network from the starting node and explores a
branch as far as possible before backtracking. d DFS is constrained to search only chains that has a maximal length or smaller. e Network
nodes are annotated with scores. Chain scores then calculated by the sum of the scores of chain elements, normalized by the length of the
chain. f The significance of the chains are calculated using the chain scores. g Most significant chains are selected and used for the construction of a
context and target specific subnetwork
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property of a biological entity that the node represents.

This score can include both topological and biological

characteristics (e.g. the connectivity of a node or tissue

specific expression of the protein/gene that the node

represents or experimental support for a protein-protein

interaction) (Fig. 1) and a node can hold one or more

separate scores. We used these measures to characterize

the interaction chains. Our aim was to maximize the

overall score of the nodes in a chain, therefore we used

the sum of their element scores to calculate the chain

scores. Furthermore, to exclude length based biases we

normalized this score by the length of the chain to get

the final chain score, thus S = ∑i
lsi/l where S denotes the

chain score, l is the length of the chain and si is the

score of the ith element of the chain.

Certain research situations involve several biological

contexts, e.g. disease effects on specific tissue. To address

such needs, we introduced the concept of combined

scores. We introduced three different strategies to com-

bine the scores: (i) Combined scores are calculated as

the weighted product of the normalized element scores

mapped to a node, using the formula ck = ∑j
nwjskj, where ck

is the combined score of the kth node, n is the number of

scores, sj is the jth element score normalized to the range

[0,1] and wj is the weight corresponding to the jth score,

(ii) the filtering strategy pre-filters the chains using a

threshold for the score s1, and then it re-ranks the filtered

chains with score s2 and (iii) the intersection strategy

keeps only those chains that are under a specified thresh-

old for all the selected scores.

To evaluate the chain scores, we calculate the significance

of the chains. We simulated random networks, constructed

by shuffling the weights and edges of the initial network,

while preserving the vertex degrees. For a given chain with

score s, its score p-value is defined as the percentage of

top-scoring chains in random networks that have score s or

higher [11].

We also use the score p-value to generate the list of

prioritised chains. Depending on the application a score

p-value cut-off can be utilized to select the most signifi-

cant chains or alternatively the top scoring n chains can

be selected. Assembling the filtered chains allows for the

reconstruction of a subnetwork that is specific to the

start and end nodes and to the context the score defines.

Evaluation and performance

To evaluate a computational method one can either

apply a measure of stability by cross-validating multiple

runs or, ideally, derive precision and sensitivity informa-

tion from comparison against a standard of truth. As de-

scribed in the introduction there is a lack of context

aware pathways which could be used as standard of

truth. In order to evaluate the results of the ChainRank

we therefore validate our method on two levels. First,

the significance of the chain scores is evaluated. Second,

a reference pathway is used as a validation set and the

enrichment of its members in the top results or the

ranked chains is assessed for the evaluation. This valid-

ation set is referred to as the gold standard (GS). To

judge the stability of the method we compute the preci-

sion and recall of the top n chains or alternatively use a

p-value cut-off. For the validation, positives (P) are de-

fined as the validation elements represented in the input

network but not included in the start and end proteins.

To determine the precision, the occurrence of the valid-

ation set elements are counted in the top chains (exclud-

ing start and end proteins), i.e. the true positives (TP),

while non-validation set elements represents the false pos-

itives (FP). Thus, Precision =TP/(TP + FP) and Recall =

TP/P. Due to the lack of well-defined GS, reaching high

precision values is a highly challenging task. Therefore to

represent our results in a more informative way we de-

fined the metric of improvement. To compute the im-

provement of a ranking we simulate a random score, i.e.

we perform a random sampling from the chains to select

the top results. Then, we compute ovement = (Precision of

ranking)/(Precision of random ranking).

Results
In order to assess the performance of our method we

studied its applicability in protein interaction network

based pathway reconstruction. We specified the domain

of interest to muscle dysfunctions in chronic obstructive

pulmonary disease (COPD) because of its specificity to a

distinctive tissue, its clinical relevance as well as the

wealth of literature mining and experimental data avail-

able for our analysis [20]. We designed two application

cases, each with a specific GS pathway (Table 1.). First,

we aimed to recreate a subnetwork of the IGF-Akt path-

way [21] describing regulation of protein synthesis, an

important aspect of muscle remodelling (Fig. 2a). In the

second case, our goal was to represent the disease spe-

cific involvement of parts of a canonical signalling path-

way. We used disease specific varieties of the canonical

MAPK pathway: the EGF-PI3K and ROS-TGFa-EGFR

pathways (Additional file 1: Table S1, Fig. S7), that are

based on literature mining for COPD related signal trans-

duction events [20]. We note that evidence for the involve-

ment of these specific parts of the GS pathways is not

excluding potential involvement of additional parts. For

the evaluation we selected specific chains from these path-

ways defined by start and end proteins that we refer as gold

standards (Table 1).

PPI network

For the investigations we utilized the complete human

PPI network as the input network. At the time of the

analysis it contained 1.6 million protein interactions that
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were collected and merged from different publicly avail-

able databases and integrated into the COPD knowledge

base [20]. We quality filtered this network by including

only those interactions that were supported by at least

one piece of experimental evidence (in contrast to purely

computationally predicted ones). This resulted in a PPI

network of around 10,000 nodes and 62,000 interactions

(Table 1).

Subnetwork selection and performance

Within this general PPI network we are only interested

in the specific subnetwork that potentially connects our

start and target set, here determined by the endpoints of

our selected gold standard pathways. In order to retrieve

this subnetwork as starting point for the ChainRank

method, we applied the BioXM knowledge management

environment network search tool [22]. This tool is based

on a heuristic breadth-first search algorithm, allows nodes

to be preferred or penalised based on their connectivity

and it retrieves those nodes in the input network that have

the potential to link targeted nodes within a k maximal

distance. Consequently, with this step we omit those

unnecessary nodes and edges that does not lead to any

targeted endpoints in a k maximal length chain. There-

fore, we decided to set the k distance cut-off for the

breadth first search centered on the distance between

the start and the target in our reference GS path. Fur-

thermore, Baudot et al. [18] showed that canonical signal

transduction pathways are enriched for highly connected

protein hubs; therefore, we set the algorithm to encourage

the integration of canonical interactors preferring highly

connected proteins. We generated two subnetworks

(IGF-Akt proximity and MAPK proximity subnetworks,

Table 1.). Because heuristic subnetwork generation methods

introduce an element of variability, we evaluated its effect by

creating further networks with different parameterisation

and analysed them in terms of their overall influence

on the ChainRank results which was not significant

(Additional file 1: Table S2 and S4).

As an alternative to the heuristic network selection

step the ChainRank method could be used to evaluate

all potential chains of a given maximal length within the

overall network. However, the corresponding computa-

tional requirements quickly become prohibitive as longer

Table 1 Overview of the networks used in the evaluation process and the gold standards. Gold standard representation is shown in
the original PPI network and in the selected networks. Edges signify the number of edges connecting GS Nodes in the network

Application case Network properties Gold standard (GS) Start protein End protein GS representation

Edges Nodes Nodes Edges

Human PPI network 61872 10167 IGF-Akt pathway - - 13 20

COPD specific MAPK - - 21 34

Muscle specific case 847 308 IGF-Akt pathway IGF1 RPS6KB1 9 10

COPD related case 544 152 COPD specific MAPK EGFR SRF, CREBBP, ELK1, MYC 11 8

Fig. 2 Changes in the representation of IGF-Akt pathway. a shows the protein synthesis regulation related part of IGF-Akt pathway [21]. In this
pathway representation relations of proteins are well annotated with their directionality, type of interaction, etc. b shows that during manual
conversion of the canonical pathways to PPI network representation (by retrieving all PPI interactions between the fixed set of e nodes) this
kind of information is lost and only undirected edges represent physical binding between proteins. Moreover, the structure of the pathway is
altered by extra edges and some connections are missing. c shows the effect of the network selection which removes redundant edges but
retains most of the nodes
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chains are explored in dense networks (see Chain search).

Runtime of the chain search for the muscle-specific net-

work (314 nodes, 865 edges) with a maximal length of 8 is

14.5 min on a 2.4 GHz processor, finding more than 9000

chains. In addition, we note that the size of the network

that the ChainRank method can process in realistic time

depends strongly on the network complexity (more run-

time data on different networks is available in Additional

file 1: Table S3).

Evaluation of the input network

In order to set a realistic gold standard (GS) for the

evaluation we analysed the changes in the canonical GS

during its manual conversion to a PPI representation

and then the effect of the network selection (Fig. 2). In

canonical pathways relations of proteins are manually se-

lected and well annotated with their directionality, type of

interaction, etc. During the conversion of these pathways to

a PPI network representation the annotation is lost and

only physical interaction without pre-selection are depicted.

Therefore edges appear/disappear during the conversion

and protein complexes become individual, interacting

nodes. These findings show the high complexity of search-

ing in PPI networks and demonstrate that the exact recre-

ation of a canonical pathway cannot be the ultimate metric

of the evaluation process but rather the relative improve-

ment between unranked and ranked searches.

Scores

As mentioned in the introduction there are several methods

that use gene expression data to investigate domain specific

traits. While ChainRank is able to incorporate gene expres-

sion scores, here we focus on more complex scores to repre-

sent localisation or disease relevance. We also introduced a

topology based score.

1. Localisation score: To show the capabilities of the

method in tissue-specific filtering we created a muscle

specificity score. Using this prioritisation with the

ChainRank method would result in those interaction

chains that contain mostly muscle specific proteins

being highly ranked. To create this score we collected

publicly available gene expression measurements from

Gene Expression Omnibus (GEO) [23], studying a

large amount of different conditions in different

tissues. We compared the mean variability of the

genes’ expression value in muscle to their mean

variability in the rest of the body. Genes with highly

variable expression levels under different conditions in

muscle but lower variability in other parts of the body

receive higher scores while genes that are not typically

variable in muscle or are variable throughout all

tissues receive lower score. The corresponding

proteins were mapped to genes to be applicable for

PPI network based analyses. Details on the included

data sets and the exact methodology can be found in

the Additional file 1: Text S2.

2. Relevance score: This score describes the relevance

of a protein in a specific biological process — in this

case a disease. To generate a disease specific score

we used studies that investigated the effect of COPD

on skeletal muscle and other mechanisms that

related to this disease. The selected studies

incorporated diverse experimental paradigms such

as proteomics, metabolomics and gene expression.

From these studies we extracted all genes or proteins

(depending on the type of analysis) that were shown

to be significantly changed in the disease context.

Then we computed the score by counting how many

times a gene/protein occurs with high significance in

any of these study results. The first study we utilized

investigated the training effect on the muscle of

COPD patients [24] integrating measurements of gene

expression, metabolism and protein carbonylation

[25–27]. In addition, as part of this research study, the

effect of angiogenesis on gene expression in young

(<30 year) and elderly (>60) persons was examined

(detailed in the Additional file 1: Text S3). Finally, an

analysis on inactivity-induced wasting in mouse

glycolytic muscle was used to construct the score

[28] (detailed in Additional file 1: Text S3). We

used HomoloGene [29] to find homologous human

genes for the mouse genes and we mapped the

genes to the related proteins in all the studies.

3. Connectivity score: We used a topology based score

to characterize the degree centrality of the proteins

in the network. We reversed the degree centrality to

compute the score, thus Connectivity score(v) = |dc(v) −

max(dc(V))| + 1, where dc(v) is the degree centrality

of v∈ V vertice. This score is a good measure to

distinguish between general hub like proteins with

high degree centrality (and thus with low scores)

and specific proteins with lower degree centrality

(and thus high scores).

To test the sensitivity of our algorithm to different scores

that explain similar biological phenomena, we introduced

two additional scores from external data sources. As an

alternative to Localisation score, we retrieved the Tissue

Specificity (TS) score from the Human Protein Atlas [30],

which corresponds to the score calculated as the fold change

to the second highest tissue (for further information see

Additional file 1: Text S4). As an alternative to Relevance

score we created the Fold change (Fc) score, which we re-

trieved from a recent publication that reported RNA-seq

data for 98 COPD subjects and 91 controls [31]. Score was

computed as Fc = log2(COPD/control), where COPD and

control is the gene expression value of the signed group.
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Evaluation of the scores: distribution, correlations and the

length of the chains

In order to check for the independence of our selected

scores we examined their correlation and their relation

to the length of the chains. We used the IGF-Akt prox-

imity subnetwork, with maximal length 8 for this ana-

lysis. Figure 3a shows that the expression and relevance

scores show a slight correlation which can be explained

by the fact that in this case the relevance score (among

other aspects, such as protein carbonylation and metab-

olites) includes data on gene expression in muscle tissue.

Therefore, although the relevance rank is based on experi-

ments with specific environmental factors, the expression

data is expected to show some correlation with the gen-

eral muscle expression measurements. The other variables

are uncorrelated, therefore we can assume that the differ-

ent ranks explain different properties of the chains. We

found that normalisation of the chain scores by the

number of chain nodes removes most of the length de-

pendency (Fig. 3b). We note that different topological

properties of the networks might have effect on the

connectivity scores’ length dependence. Furthermore, we

showed that the distribution of scores in the generated

subnetworks (Subnetwork selection and performance,

Table 1.) represents well the distribution of scores over

the whole PPI network (Additional file 1: Figure S1).

Evaluation of the performance of the ChainRank method

Having prepared the networks, we applied the Chain-

Rank method on them. To determine the maximal length

parameter for the analysis we took into consideration the

distance of the start and end proteins in the GS. For the

muscle specific application the canonical distance would

be 9, however, due to the differences of the PPI represen-

tation of complexes (see in Evaluation of the input net-

work, Fig. 2b) we rationalized using a maximal length 8.

For the COPD specific application we used 7 for maximal

length, following similar reasoning. In the evaluation

process we assessed the improvement of the different

scores in finding GS proteins in the top ranked results

compared to random prioritisation. We evaluated the per-

formance both by using only individual scores to rank and

also by combining the scores. Figure 4 details the depend-

ence of performance on different p-value cut-offs.

For the muscle specific case we ran the ChainRank

using the IGF-Akt proximity subnetwork and maximal

length 8, retrieved 9351 chains. For the COPD application

case (MAPK proximity subnetwork) we computed the

chains with maximal length 7, finding 71838 chains. In

this case Relevance scores showed high discrepancy

from normal distribution therefore the introduced p-value

calculation can be misleading for this score. Instead, we

show our results by the number of top chains in this

scenario.

In the muscle specific scenario, results show that the

Connectivity score has the highest improvement of the

scores (Fig. 4a). Detailed analysis reveals that this score

show especially high improvement with very low p-values

however, with growing p-values this improvement quickly

decreases to an average of factor 1.8-2 for significant

chains. Furthermore, in the top 5 chains Connectivity

already finds one of the shortest GS path represented

in the input network (Fig. 2c), i.e. IGF1-Akt-mTOR-

RPS6KB1. Localisation also introduces an improvement of

factor 1.5 amongst the significant chains and maximizes the

Recall under 0.001 p-value (Additional file 1: Figure S2). In

the MAPK scenario the Relevance score outperformed the

other scores showing consistent improvement in top chains

(Fig. 4b, Additional file 1: Figure S3). We analyzed the ro-

bustness of the algorithm by comparing the performance of

Localisation score to TS score in the Muscle specific case

and Relevance to Fc score in the COPD specific case. Re-

sults showed that the method produces similar improve-

ment for the scores in these scenarios (Additional file 1:

Figure S6) and thus it is robust to changes of the scores.

We also investigated the performance of the defined

combined strategies. We computed the Combined score

as the equal weighted sum of the three normalized scores

and evaluated its improvement. With these settings this

score could not improve over the best individual scores

and therefore we do not report further results. Further-

more, we applied the filtering strategy for both scenarios.

For the IGF-Akt case we used a Connectivity filter before

evaluating the chains by the Localisation score. We ap-

plied a threshold of 0.05 for the filtering. This method in-

troduces a strong and stable increase in improvement

(Fig. 4a) which shows good applicability in arbitrary sized

subnetwork retrieval. For the MAPK application we inves-

tigated the effects of COPD on muscle, therefore we used

Localisation filtering and evaluated Relevance on the

reduced list of chains. We used the top quartile of the

ranked chains to set a filtering threshold. Together with

the intersection strategy, in which we applied the same

parameters, filtering introduced comparable improvement

to Relevance score. To conclude we showed that combin-

ing different scores can improve the prediction power of

the algorithm and they are capable to mimic complex bio-

logical contexts.

We evaluated the receiver operating characteristic (ROC)

curve and the area under curve (AUC) (Fig. 5) which shows

the significant improvement over random scoring. Next, we

investigated the effect of the maximal length parameter on

the improvement of the chain scores. We found that length

does not have a significant effect on the ranking perform-

ance (Additional file 1: Figure S4).

Finally, we identified relevant thresholds that can be

used to construct significant subnetworks and recreate the

target pathways. Taking into account the improvement-
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Fig. 3 Statistical evaluation of the scores. a shows the correlation between the chain ranks, correlation values are indicated in the lower triangle.
b shows the relation of the length of the chains to the chain scores. Statistical significance between the different length chains’ scores is indicated
(*p ≤0.05)
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recall trade-off we found a p-value of 0.015 or the number

of chains 50 as a good cut-off value. With these thresholds

we show high improvement over random in finding tar-

geted GS proteins (Fig. 6). Assembly of chains under the

cut-off value shows that the algorithm finds the main

chains connecting the targeted start and end proteins and

identifies relevant alternative chains with a recall of 67 %

and a precision of 30 % (Figs. 6, 7 and Additional file 1:

Figures S2, S8). As a further evaluation of the approach,

we show that the distribution of scores in the recreated

pathways are different from the original network. In the

recreated pathways, the distribution means of the simple

scores are shifted to higher values. The combined scores

can further alter this effect, producing a score distribution

that resembles more to the GS (Additional file 1: Figure S5)

indicating that the scores indeed capture biological context.

Discussion and conclusion

In recent decades huge amounts of data have been accu-

mulated in biological research but up to now these valuable

data sources remain underutilized in terms of applications

for integrative analysis and data mining. Systemic use of

biological data could help to create more personalized and

contextualized information and overcome the current rigid

and generally simplistic representations of mechanisms

involved in biological processes and their regulation.

This calls for bioinformatics tools that can facilitate data

analysis and help in the interpretation of these huge data-

sets. Biological networks could play an important role

in this procedure as they have already shown their util-

ity in many applications. Current high-throughput methods,

however, are prone to errors e.g. in yeast two-hybrid systems

high false positive rates and platform-specific biases [32] still

Fig. 4 Improvement of the different scores. a Muscle specific case: Intersection is defined as the common chains that have both a p-values ≤0.05
with Connectivity and Localisation score. These chains are shown with their Localisation score p-values. For Filtering chains with Connectivity score
p-values ≤0.05 were selected, re-ranked and evaluated by Localisation score. Number of chains are indicated at p =0.015 for each score. b COPD
specific case, Intersection here is defined as the common chains in the top quartile of chains ranked by Localisation score and Relevance score. These
chains are shown with the number of top chains ranked by Relevance. For Filtering the top quartile of chains ranked by Localisation score
were selected, re-ranked and evaluated by Relevance
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Fig. 5 ROC curve and AUC of the muscle specific case. Localisation and its combined scores with Connectivity shows the highest AUC. Random
score (dashed line) already has an increased performance over completely random guess (diagonal line, not shown), which can be accounted for
by the constraints introduced by the underlying network topology. AUC values appear below the names of the scores

Fig. 6 Results of the evaluation after cut-off. (A1) For the muscle specific case 0.015 was used as cut-off threshold. (B1) shows the performance of
COPD specific case evaluating the top 50 chains. Red lines show the number of GS proteins (positives), second axis shows the improvement. To
represent the enrichment capabilities of the method we compare the recreated pathways to the input network (A2, B2)
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remain problematic. As a result, inconsistencies could be

present in the PPI networks that create alteration in the rep-

resentation of signalling pathways [4, 33] which our results

also confirmed (Evaluation of the input network).

The ChainRank method introduces a data-driven bio-

logical search tool that can be applied in widespread re-

search situations. Our goal was to create a tool that can

retrieve context specific subnetworks by using different

evidences (e.g. expression profile, literature mining).

Evaluating a specific application case is a complex task,

which we addressed by recreating selected gold stand-

ard pathways.

Overall, our evaluation results showed that the gener-

ated scores can create domain specific effects. We showed

that filtering the chains by scores and intersecting top

scoring chains can create improvements in precision and

can be applied to simulate complex biological contexts.

Although this evaluation is limited only to a few contexts

(muscle and COPD) we believe that it gives a representa-

tive result to show the general applicability of the method

and encourage its usage. Using the three developed ranks,

we showed a 50 % improvement (factor 1.5), on average,

in the precision of finding gold standard proteins in our

top ranked chains. We also showed that combining ranks,

for example by pre-filtering with one score before ranking

by another, can improve the precision by up to a factor of

2.5. We achieved as high as 11 % improvement in the area

under the receiver operating curve (AUC) (Fig. 5) which

compares favourably with Bader’s results [34] who reports

a similar improvement but with a less generic framework

and using protein complexes as a gold standard. Our re-

sults are comparable to [12] and [11] who use signal

transduction pathways in yeast and human respectively

as gold standards and report recall of 50–85 %, and pre-

cision of 18–42 %. Therefore, our method generalises the

achievements introduced by Scott et al. [11] and Teku

et al. [12] by introducing additional, non-expression based

evidences and allowing to tune for multiple contexts such

as tissue specificity or disease association. We were able to

replicate our results with different pathways (IGF-Akt,

COPD specific MAPK sub-pathways) and different initial

conditions (different input networks). Overall the evalu-

ation showed strong evidence that the method provides

improved specificity to generate context-specific networks

and therefore supports the viability of the concept.

Although we only showed the applicability of our meth-

odology using PPI networks and in two different contexts

(muscle and COPD), it is a generic tool that is applicable

for various network types, like metabolic networks or dis-

ease networks. Integrated networks incorporating several

interactome layers, like proteomics, metabolomics, dis-

eases, etc. can also be used with the method. In addition,

scoring criteria can be easily created using various private

and public data sources. Although, the new criteria would

have to be validated, the accumulation of different context

profiles could pave the way for an integrated analysis

framework. The differences in performance of individual

scores in different biological context (Fig. 4) underscore

the importance of appropriate selection of scores depend-

ing on the scientific question.

The method can be utilized to analyse many research

questions, for example: a) given a set of data-driven asso-

ciations, e.g. oxidative stress and proteolysis, what is the

most likely causal, mechanistic connection in a given

Fig. 7 The recreated IGF-Akt pathway. The results of ChainRank were filtered by taking the intersection of the chains that has lower Connectivity
and Localisation score p-values lower than 0.05, then the ones with p-values ≤0.015 were assembled into a network (Fig. 6 (a) Intersection). The
size of the nodes represents the occurrence of a protein in the top chains. Octagons indicate the start and end proteins, nodes with yellow
border shows the gold standard proteins
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context? b) what are the common mechanisms driving

different diseases, e.g. systemic effects of COPD and

diabetes mellitus type 2? c) can computational model-

ling be supported by reducing the number of interac-

tions to the biologically most relevant ones and thereby

generate manageable complexity [35]? Another promis-

ing application field could be the analysis of synthetic

lethality in the context of anticancer therapy. By providing

evidence-supported alternatives to classical consensus path-

ways ChainRank could open up new avenues of investiga-

tion. A possible avenue is the improvement of the search

algorithm for example to use “information propagation”

methods [36] to include information from the neighbour-

hood of a chain into the ranking and thereby see whether

biological modularity can be used to further enhance the

context specificity of the results. Another interesting aspect

would be to implement and compare the current exhaust-

ive search with a heuristic search algorithm that is possibly

usable on the full multi-million node and association

network that makes up our current biological knowledge.

Availability

Project home page: https://github.com/atenyi/ChainRank

Programming language: R

Additional file

Additional file 1: This file contains supplementary tables, figures and

further information on the scores and the search algorithm. (PDF 1.43 MB)
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