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Summary. Iffor a process (en):'=_ 00 the conditional distribution of i;n given 

the past does not depend on n for e.g. n;?; 0, then the process may be called 

a chain with infinite connections. Under a well-known continuity condition 

on this conditional distribution the process is shown to be distributed as 

an instantaneous function of a countable state Markov chain. Also under 

a certain weaker continuity condition uniqueness of the distributions of the 

stationary chains is obtained. 

1. Introduction and Results 

Let I be a finite or countable set. A non-negative function g on I x 0 I 

is called a g-function if 

L g(i0 IL)=l for i_EJ _ := TI I. 
ioel n~ -1 

With a g-function one associates /-valued processes as follows. Let us say that 

if for a process (~n) 

(1.1) 

for n~O (or for all n) then it develops according to g for these n. Suppose 

that the distribution of (eJk<o is known. Then by (1.1) for n=O, 1, ... one deter­

mines successively the distribution of (i;k)ksn and then by Kolmogorov's exten­

sion theorem one finds the unique distribution of the entire sequence (ek). These 

processes were introduced by Doeblin and Fortet [4] under the name chain 

with infinite connections. The distributions of the stationary processes of this 

form were called g-measures by Keane [9]. 

We measure the continuity of g using r n• n;f; 0, defined by requiring 

-r,._· fg(iolL) 
e -m U 1 · ) g 0 ]-
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where the infimum is taken over all i. and j. such that i0 =j0 , ... , Ln=j-n. 

We will assume that g is bounded from below by a positive constant, so then 

r 1 ;?J2 ~ ... are finite. 
The following result discusses uniqueness of g-measures. 

Theorem 1.1. If g satisfies 

L exp (-r1 - •.. -rn)= oo 
n~1 

(1.2) 

then there is a unique shift invariant g-measure µ. Under this measure the shift 

is a Bernoulli shift and moreover 

P(~n=io, ... , ~n+k=ikl~- =L)~P(~o=io, ... , ~k=ik) 

as n~ oo uniformly in i_. Here ~n is any process developing according tog for 

n~O and (~J has the aforementioned g-measure as distribution. 

This answers a question in Ledrappier [11] which considers the traditional 

condition 

(1.3) 

that was discussed already by Doeblin and Fortet [4]. Our proof uses also 

coupling. Let us mention that under (1.3) the coupling contact can be made 

"lasting" while this may perhaps not always be true under the weaker condition 

(1.2). 

In a chain with infinite connections the distribution of ~n given the past 

may depend on the entire past GJk<n• which is an infinite sequence. Below 

we succeed in "simplifying" the description of this process at the cost of a 

randomization. We construct a Markov representation, i.e. a Markov chain 

(Xn)n;;;o with a countable state space Sand a function f: S ~I such that 

(1.4) 

The next result applies also in the non-stationary case. 

Theorem 1.2. If g satisfies (1.3) and (~") is a chain with irifinite connections such 

that (1.1) holds for n ~ 0, then there exists a Markov representation (1.4) for 

((n). 

Let us mention that the Markov chain in the representation happens to 

be quite simple: it has the form x.=(~n-j)O~j~t,, where !n is a.s. finite. It was 

already known that in the stationary case a chain with infinite connections 

has very strong mixing properties. However Berbee and Bradley [1] have shown 

by examples that existence of a Markov representation is only weakly related 

to mixing and so our result gives definite new information. Recently, Lalley 

[10] obtained by methods different from ours a similar result for the important 

subcase where r n ~ 0 at exponential rate. A remark at the end of Sect. 3 indicates 

a problem for this case that is still open. Much earlier Harris [6] obtained 
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a uniqueness result using a condition related to (1.2), that is even weaker in 

case III =2. The corresponding limit result of this paper uses however a condition 

related to (1.3) instead of to (1.2). Kaijser [8] discusses the literature further. 

Theorem 1.2 can be applied also to one-dimensional Ising systems where 

the continuity of the g-function can be investigated using Lemma 1 in Gallavotti 

[5]. We do not try here to get a generalization of Theorem 1.1 for Ising models. 

Let us just mention that the form of condition (1.2) seems to be pointing in 

the right direction by an example in Hofbauer [7]. 

2. A Setting for Markov Representation 

Suppose g is a given g-function. Let (en) be stationary such that (1.1) holds 

for all n. Assume there is a Markov representation as follows: there is a station­

ary Markov chain with a transition probability Q from a countable state S 

to itself and there is a function f: S-+I such that (f(X,,))=(e..). For the ease 

of the exposition we assume en= f (X ,J. 
To the pair f, Q describing the representation there is associated in a natural 

way an entrance law Q from I_ to S calculated as 

Qi_,x==lim P(X.=x!en- 1 =L 1 , •.. , en-k=Lk)P((c;k)k<nedL)-a.s. (2.1) 
k-+ co 

The a.s.-existence of this limit is a consequence of the backward martingale 

theorem and by stationarity Q does not depend on n. Because of (1.1) we have 
outside a null set 

L Qi_,x=g(io!L). (2.2) 
xeJ- 1(io) 

By the Markov property 

(2.3) 

From this we can calculate P(en-i =i0 , Xn=Yl(ek)k<n-i =L) in two ways and 
we get the equality 

g(io!L)Q;_10,y= L Q;_,xQxy (2.4) 
xef- 1 (10) 

valid outside a P(~_edi_)-null set for a suitable version of Q. 
The relation (2.4) is crucial for the Markov representation. It reflects that 

Q in (2.1) does not depend on n and that (2.2) holds. In Sect. 3 where we 

assume (1.3) we find a representation with Q defined everywhere and also the 
relations above are valid everywhere. We mention that in case g is discontinuous, 

which may occur for nice processes one cannot always find these relations to 
be valid everywhere. 

The following converse is easily proved by an inductive calculation of (2.5) 
as described above. 
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Lemma 2.1. Let g be a g-function for I. Suppose f: S ~I and assume Q and 

Q are transition probabilities from I_ to S and from S to S respectively such 

that (2.4) holds for all L el _, i0 el and x, yeS. Let 

~_,X 0 ,Xi.··· 

describe a Markov chain with arbitrary initial distribution on I - and transition 

probabilities Q, Q, Q, .... Then writing ~n •= f (X n) for n ;f; 0 we have 

P(X,. =X I (~Jk<n)= Q(~1<}1<<n,x a.s. (2.5) 

for n=O, 1, ... and because of (22) the process (n develops as g for n;f;O. 

Remark. Suppose Q has only one invariant distribution n. If in Lemma 2.1 

the initial distribution is chosen such that the full sequence ('") is stationary 

then X 0 has distribution n and there is only one g-measure. 

3. The Markov Representation 

To prove Theorem 1.2 we construct an entrance law Q from I_ to the state 

space S consisting of finite strings of I-elements. We construct Q; _,. uniquely 

for all LE I_, using continuity of g. Basic in our use of continuity below and 

in Sect. 4 are the functions 

g(io Ji- 1 .•• i_n)•= inf g(i0 I L). 
(i-J)j> n 

Clearly g(i0 Ii_ 1 ... L,,)jg(i0 I L) because rnLO and we may decompose gas 

g(io I L) = L L1g(ioIL1 .. · Ln) 
ni!:;O 

which is a sum of the non-negative terms 

Llg(io I L 1 ··· Ln)•=g(io I L 1 ·•· Ln)-g(io I L 1 · ·• Ln+ i) 

•=g(io) 

for n ;f; 1, 

for n=O. 

(3.1) 

(3.2) 

The split-up (3.2) suggests the construction of a Markov triple as follows. We 

construct a random vector ((0 , v0)eJ x {O, 1, 2, ... } such that 

(3.3) 

Note that e0 will have by {3.2) the right marginal conditional distribution. Also 

introducing v0 as above needs a randomization because v0 is not given determin­

istically in terms of '-values. 

Let us mention that as follows one can also construct v0 in steps, conditional­

ly given ~-=L. Generate the event {v0 =0} such that P(e0 =i0 ,v0 =0\e_ 
=L)=g(i0 ). Subsequently for n=l,2, ... generate {v 0 =n}={v 0 ~n}\{v 0 ~n 
- 1} such that 

(3.4) 
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This can be done consistently because the right hand side increases in n. Also 

the right hand side does not depend on ii for j < - n and one checks that 

e_, C!o. eo 

forms a Markov triple. Here one writes e~ •=(em, em+ i, ..• , en), m ~ n and one 
says that X, Y, Z forms a Markov triple if X and Z are independent given 

Y. 

Loosely speaking we may say that the random truncation e:::!0 of e- contains 
the relevant information from the past e _ to "generate" i;0 • However it may 

be untrue that we can truncate subsequently CC!0 , e0) so that this random 

vector contains the relevant information to generate e 1. Related to this difficulty 

is that to the entrance law 

Q~-.x==P(X 0 =x le- =L) where X0==eC:.0 

one may not be able to find Q' linked with Q' such that (2.4) holds. Note 
however that 

QL.x=Ag(ioli-1, ... , LnJ 

for x = (i _no• ... , i0) has the property that it does not depend on ii> j < -n. This 

nice property also holds for the "right" entrance law Q that we define below 

and makes it quite simple to come to our Markov representation. 

We constructed Ceo. Vo) given e-. Construct also (e1, vi), ((2. Vz), ... succes­
sively in the same way such that vk is independent of all other variables, given 

(e)i~k· To this end one requires 

P(eo=io, Vo= no, ... , eN=iN, VN=nNI e- =L) 

=A g(io li-1 · ·· L •0) · ·· Ag(iN I iN-1 • ·· ·, iN-nN). (3.5) 

Above we noted that (e _, ,;:::;0 , e0} is a Markov triple and similarly that 

W-~. e:=~k' ek) is a Markov triple. We now want to form a Markov triple 

of the form ((':: ~' c~O' (eo, ~ l• ... )). Let Fk be the random set Fk:={ k-vk, ... ' 
k-1 }, k=O, 1, 2, ... and take 'Co such that 

{-t0 , ... , -l}=[F0 uF1 u ... Jn{ ... , -2, -1}. 

Lemma 3.3 will imply that 1 0 is finite a.s. Define similarly 'Ck :=sup { vk, .. ., vk+ i 

-j, ... }.Then as we will see below go 

(3.6) 

describes the Markov chain for our Markov representation. From (3.5) one 
notes that the entrance law 

is defined uniquely for all L eJ _ as in lemma 2.1 and one takes f (x) as the 
last element in the string x of I-elements. 
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Lemma 3.1. e -'Xo. «e1, vi), ce2. Vz), .•. )is a Markov triple. 

We prove this lemma below. Using the following trivial technical lemma 

Lemma 3.2. If X, Y, Z is a Markov triple and Jt. is (X, Y)-measurable and Z 
is (Y, Z)-measurable then X, Y, Z is a Markov triple, 

it follows from Lemma 3.1 that e-, X 0 , X 1 is also a Markov triple and one 

easily verifies (2.4). Thus Lemma 2.1 gives us the Markov representation. Below 

we prove moreover that (3.6) gives us a representation, which needs some more 

arguments. 

To this end we use Lemma 3.1 again to show that (3.6) is Markov chain. 

Fix k~O and write 0=ek+J• X1=X"-+1, etc. Note that the distribution of 

((1, v)r:<:.o given c;_ =Lis the same as the distribution of((1, v)r?:.O given;;_ =L. 
Thus by Lemma 3.1 ~-, X0 , ((1, v)g 1 is a Markov triple. Because of the condi­

tional independence of (v 1 ) 0 ~J<k and the other variables of that triple, given 

~ _ = i _ it follows that 

(e-, ((o, Vo), ... '(ek-1' Vk-1)), Xk, ((ek+ l• Vk+ i), · .. ) 

is a Markov triple. By Lemma 3.2 it follows also that 

( ( _ , X 0 , ••• , X k- 1), X k• X k _ 1 is a Markov triple for any k and thus (3.6) describes 

a Markov chain. Because the conditional distribution given~- =L of ((1, v1)go 

and so of Xk, X k+ 1 , ... does not depend on k the Markov chain (3.6) has station­

ary transition probabilities. 

Proof of Lemma 3.1. Let xw>,=e?-•o)A ... A(N-•N)' We will show for any N that 

(3.7) 

is a Markov triple. To get the assertion observe that then for each n ~ N also 

e-, Xlfl, (ei, vi)j=o forms a Markov triple. For fixed n let N-+ oo. Then xlf> 
is a vector increasing in length to X 0 a.s., which has finite length by Lemma 

3.3. The assertion follows. 

To prove (3.7) we have to investigate the ratio of 

P(XW>=x, eo= io, Vo =no ... eN= iN, VN=nNI ~- = L) (3.8') 
and 

(3.8") 

and we want to show that this ratio depends only on x=(i0 , ... , L 1J and 

(i0 , n0 , ••. , iN, nN). Rewrite (3.8') as the product 

= Llg(io I j_ 1 ... Ln0} ... Llg(iN I iN-1 • .. ., iN-nN) 

in case t0 =n0 v(n1 -1) v ... v(nN-N) and as 

= 0 otherwise. 

(3.9') 

(3.9') 

Note that x determines t0 . To find a similar expression for (3.8'1 we have to 

sum (3.9') over all (i0 , n0 , ... , iN, nN) for which 



Chains with Infinite Connections 249 

Now note that in these expressions no i_ J occurs with j> t 0 = n0 v ... v (nN-N). 

This proves the assertion about the ratio and thus proves the lemma. 

Lemma 3.3. If l:rn < O'.J then r 0 =sup {vi-j) is finite a.s. 
go 

Proof Write 

P(r 0 ~nl(-=L)= lim P(v 0 ~n,. .. ,vN~n+Nl(-=L). 
N-+ oo 

By (3.4) and (3.5) the expression in the limit can be written as 

I g(iolL1···L.)g(i1lio···Ln) ... g(iNliN-l···i-n). (3.10) 
io- .. iN 

Note that as N increases this descends, say to qn(L) for N - oo. Clearly P(r0 

< oo I ~ _ = i _) = 1 if and only if 

(3.11) 

We prove this using the condition L.:r.<ro. We bound qn(i_) from below. By 

the definition of rn we have 

g ( i 0 I i _ 1 ..• i _ n);?;: e - '" g ( i0 I i _). 

Hence (3.10) is bounded from below by 

e-rn-···-'n•N I g(iolL)g(i1\(ioL)) ... g(iNI···)· 
io ... iN 

Because g is a g-function the sum above equals L Hence 

qn(i_);?;: lim e-rn-···-rn+N=e-rn-rn+!-···. 
N-+ ro 

So if Ir n < oo we indeed have (3.11). O 

Note. The condition L:r" < oo is a smooth uniform continuity condition on g. 

By the proof above it can be related to (3.11 ), retaining a.s. finiteness of r 0 . 

Remark. We mention an open problem. Let(~") be a chain with infinite connec­

tions for which rn - 0 exponentially. For this case Bowen [3] in the proof of 

1.25 verifies the !ft-mixing (or *-mixing) rate to be exponential. Blum et al. [2] 

introduce this mixing condition and prove that a 1/J-mixing Markov chain is 

exponentially 1/1-mixing. The question arises whether if rn-o exponentially there 

is a Markov representation based on a l/f-mixing Markov chain. The Markov 

chain constructed above is obtained as a truncation of the past and does not 

help to answer this, loosely speaking because too much detailed information 

of the past may be preserved. 

4. Uniqueness of g-Measures 

We prove Theorem 1.1. We study measures µon fZ (provided with the product 

a-field) and we do not yet assume shift invariance ofµ. Let ~ .. be the projection 
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on the nth coordinate. Assume for n=O, 1, ... that (n develops as g, i.e. (1.1) 
holds. Then as we noted in the introduction µ is determined uniquely by the 
distribution µ_ of ( _ •=(ek)k<O under µ. In case ( _ = L µ-a.s. where L EL we 
write µ=.µi_. 

We investigate the dependence of µ,_ on i _ and do this by formalizing 
the classical coupling of Doeblin and Fortet [4]. Suppose e _ 1 =Lt> ... , ( -n =L,. 

is given but ( _ n _ 1 is "unknown under µ ". Then g 0 = i0 } under µ has at least 
mass (3.1). So despite our lack of knowledge concerning ( _,,_ 1 this gives some 
information concerning the distribution of ( 0 . We will try to make similar state­
ments below (e.g. ( 4.2)). We will express absence of knowledge concerning e-n- 1 

by e_,,_ 1 =o where o is some point outside I. Write la•=lu {o}. We extend 
the g-function g defined with respect to I to a g-function g8 with respect to 

la such that 

(4.1) 

in case j _,,_ 1 =o, and i0 =j0 , ... , L,.= i-n are in l. The g-function normalization 
determines ga(o J. ). In this definition n = co is allowed and we may consider 
ga as a continuous extension of g. Let µa on l~ be such that e,.=o for n<O 
while(,. develops according to g8 for n~O. We prove uniformly for the measures 
µin the first paragraph that 

(4.2) 

for O~n 0 <n 1 < ... and all iiel. We also show that (1.2) implies the important 
property µ0((,.=o) ~o as n~ oo, so under µ0 we have for n<O that e. equals 
o, so is "unknown" while it becomes "known" for large n. This will imply 
our results. 

To get (4.2) we construct step by step a coupling. Order 10 partially by 
letting i~j ifj=o or i=j. We construct a probability Pon (I0xli!)z. Let (e,., e~ 
on this product space be the projection on the nth coordinate. We assume 
that (e,., e~, n<O, under P has an arbitrary distribution subject to the condition 
that (,.~(~. n<O, a.s. We want to construct P such that this inequality holds 
for all n and such that marginally both (,. and e~ develop according to gi!, 

for n ~ 0. Let us specify for n ~ 0 

P(e,.=io, (~= io I 'n-1 = j_ l • e~-1 =j-1, en-2 =L2, ... ) (4.3) 

where L 1 ~j- 1 ,L 2 ~j- 2 , .••. In case i0 el andj0 = i0 define (4.3) as 

ga(ioli-1.i-2 •... ) 

and if i0 el andj0 =8 as 

ga(iol L 1• L2, ... )-gaUo li-1.j-2, ... ) 

which is easily verified to be non-negative because i _ ~j _. Make (4.3) a g­

function for 10 x18 , so a conditional probability, by assigning the remaining 
mass g0(o I i- 1 , L 2 , ••• )to (4.3) for i 0 =j0 =o. Now let (en.(~ develop according 
to (4.3) for n~O. This determines P and describes a "coupling". 
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We get (4.2) if we specify (~=o, n<O, and let ((11 ) 11 < 0 be distributed under 

Pas underµ. Then marginally ~- and ~~have distributionµ and µe and using 

that a.s. (,, ~ ~~ (so ~,, = (~ as soon as (~El) we easily obtain ( 4.2). 

We can also get more information about µ0 in this way. Replace µin the 

argument in the last paragraph by r- 1 µ 8 , where T is the shift on sequence 

space. Because now also (n~ (~ a.s. for n < 0 and consequently for all n, we 

have 

where all i1el. Hence µ0((110 +m=i0, ... , ( 11"+ 111 =ik) is increasing in m and then 

y-mµ 0 converges weakly to a shift invariant measure µ8• on (10)°/l.. If nowµ 

on rz in (4.2) is required to be translation invariant then we can improve (4.2) 

to 

(4.4) 

The follows because y-m µ=µand by replacing nj by n1+m, m-HXJ in (4.2). 

By Lemma 4.1 below (1.2) implies that µ 8 (( 11 =0) descends to 0. Then µ 8 .(~ 0 

= o) = 0 and µ0• is concentrated on 1z. Then we should have equality in (4.4) 

and so there is only one translation invariant measure µ=µa• on {H. for which 

( 1.1) holds for n;?; 0. 

The limit assertion of Theorem 1.1 is now easily seen. Using (4.2) 

µ;_(~m=io, ... , ~m+k=ik);?;T-mµa((o=io, .. ., ~k=ik) 

iµa-(~o=io, ... , ~k=ik) as m-+oo. 

Because µ8• is concentrated on Jz it is easy to see from this that we have the 

asserted convergence, uniformly in i_. 

We claim also that ~,, develops according to g under µ 0 •• To this end note 

that en develops according to gil under µ0 for n;?; 0, and by Lemma 4.1 takes 

the value a increasingly less often. Moreover KJ is a (continuous) extension 

of g. The claim follows now easily by evaluating and estimating µa-(( 0 = i0 I ( _ 1 

= L 1 .•• ~ -n = i_") using that µ 8• is a weak limit of y-m µ 0 • 

Let us now proceed to show that the shift T under this unique µil" is a 

Bernoulli shift. Let us verify the very weak Bernoulli condition (see Shields 

[13] and Schwarz [12]). 

Consider now Po= P* as above such that ~. and (~ are distributed as µ0• 

and µ 0 respectively. Similarly we can define P = P_ such that these marginal 

distributions are µ;_ and µ0 respectively. Now we construct a new probability 

space with processes(~, e:· and(~ such that 

(i) ((~,(~)has distribution P* 

(ii) ( C, (~) has distribution P_ . 

This could be done e.g. by letting ~~ and C be independent given (~ such 

that (i) and (ii) hold. On this new probability space we have clearly that as 

soon as ~~ =l= a then ~: = ~n- = ~~ a.s. and so 

1 n I n 

-+1 I l(t=J::~;~-+1 I i~~=a· 
n k=O n k=O 
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So the a-distance of (e0 , •.• ,en) and (eo •... , en)l(ei=ii)i<O (see Shields [13]) 
is at most 

1 n 

- I P<ef=o) 
n+l k=O 

and tends to 0 for n-+ oo. Note that this holds even uniformly in L =(iJ)J<o· 
Thus the coupling has led us very easily to the verification of the very weak 

Bernoulli condition and so the shift is a Bernoulli shift under µ = µlJ*. 

Using the notation of the proof above we have the following comparison 

lemma. 

Lemma 4.1. Suppose en=8, n<O, and let en for n;;;;O develop according to ga. 

the extension of g determined by (4.1). If (1.2) holds for g then 

lim P(en=O)=O. 
n-+ oo 

Proof The process (c;11) has distribution µa. We want to compare en•=l{~n=i:l}> 
neZ, with a simpler process. By (4.1) for n;;;;o 

P(en=O\ en-1• en-2• ... );;;;Pm•= inf L&(io IL1 ... L,J 
f-1 .. ~i-m io 

on the set {A.,,=m} where A.11 is the smallest m~O for which e,,-,,,- 1 =8. Hence 

taking conditional expectations we have on Pn=m}={e11 _ 1 = ... =e11 -m 

=O,en-m-1=1} 

(4.5) 

If equality would hold above then a would be a renewal process. We construct 

8 11 ~e,. satisfying this property. Let e11 •=l, n<O. We prescribe for n;;;;O a g-function 

P(en = io, en= jo l (en-1 • 8.-1) =(i-1,i-1), (en-z, 8,,-z)=(i-z,j-2) •... ) (4.6) 

where Lk~j-k for all k. Let m and m~O be the smallest integers for which 

L,,.- 1=1 and j-m- 1=1. Clearly m~m. For i0 =j0 =0 let (4.6) be Pm and for 

i0 =0,j0 = 1 

This is nonnegative because of(4.5) and p,,.°?;Pm· Thus a11 has the right conditional 

marginal distribution. Because we want e11 ~en the remaining mass has to be 
assigned to {i0 =j0 = 1} to make (4.6) a probability. So 811 is a renewal process, 

satisfying for n ;;;; 0 

P(ln =0 I e,,-1. Bn-2• ... ) = Plfi on {ln-1 = ... = e..-111 =0, Bn-lh-1=1} 

if we let (en, :BJ develop according to the g-function (4.6). Because { e11 =1} c {e11 

= 1} it is sufficient to prove 

(4.7) 
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The renewal process e has the following property. Observe that for any nG -1 

on the set {en= 1} the distance 17 •=inf { k ~ 0: en+ k = 1} to the next renewal has 
a conditional distribution F, given by 

P(17 >m I en, B',,-1, · .. )=Po P1 ···Pm 

F determines the distribution of e. Its mean is µ •= L p0 ••• Pm. F may be defective 
m;?;O 

so lim Po ... Pm> 0. Then µ = oo and # { n !;;; 0: e,. = 1} is finite a.s. implying ( 4. 7). 

Otherwise by the renewal theorem 

lim P(en= 1)=!... 
n-co µ 

So in either caseµ= oo implies (4.7). Because (1.2) impliesµ= oo by the definition 
of Pm this completes the proof. O 
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